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ABSTRACT

The design of multi-target directed ligands (MTDLs) is a valid approach for obtaining effective drugs for
complex pathologies. MTDLs that combine neuro-repair properties and block the first steps of neurotoxic
cascades could be the so long wanted remedies to treat neurodegenerative diseases (NDs). By linking two
privileged scaffolds with well-known activities in ND-targets, the flavonoid and the N,N-dibenzyl(N-methyl)-
amine (DBMA) fragments, new CNS-permeable flavonoid — DBMA hybrids (1-13) were obtained. They
were subjected to biological evaluation in a battery of targets involved in Alzheimer's disease (AD) and
other NDs, namely human cholinesterases (hAChE/hBuChE), fS-secretase (hBACE-1), monoamine oxidases
(hMAO-A/B), lipoxygenase-5 (hLOX-5) and sigma receptors (o,R/a,R). After a funnel-type screening, 6,7-
dimethoxychromone — DBMA (6) was highlighted due to its neurogenic properties and an interesting
MTD-profile in hAChE, hLOX-5, hBACE-1 and &;R. Molecular dynamic simulations showed the most rele-
vant drug-protein interactions of hybrid 6, which could synergistically contribute to neuronal regeneration

and block neurodegeneration.

Introduction

Despite the great advances achieved in the understanding of the
Alzheimer’s disease (AD) pathophysiology, our current knowledge
about this illness is still an incomplete puzzle. Based on different
causative factors, several hypotheses have tried to explain its ori-
gin, such as the amyloid-beta peptide (Af)) accumulation, abnor-
mal tau phosphorylation, cholinergic transmission deficits,
exacerbated neuroinflammatory response and oxidative damage.
Nevertheless, up to date, all of them are just loose pieces of the
puzzle, and none of them is able to account for the complexity
of AD".

This brings us to the main fact that is clear today, the multifac-
torial nature of this disease, in which different factors contribute
to its onset and progression. However, the current approved
drugs are mainly active at a single target, acetylcholinesterase
(AChE) or N-methyl-D-aspartate receptor (NMDA), that have barely
been able to modify the disease progression®. This failure lies in
the complex network of pathophysiological processes underlying
the origin of the AD-related neurodegeneration, and in our lack of
knowledge about the primordial event that triggers the others, if
there is only one. So far, we understand that genetic, epigenetic
and environmental factors are involved in neurodegeneration.
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Moreover, increasing evidence suggests that some systemic altera-
tions in AD should be understood as the echo of underlying proc-
esses related to the origin of the disease and not only as
secondary effects of neuronal death. Some of these systemic alter-
ations include abnormalities in immunity and antioxidant
responses, metabolic disorders, hepatic dysfunction, cardiovascular
diseases and gut microbiota disturbance, among others®. This
reveals that a multifactorial process such as AD cannot be stopped
or prevented with a treatment based on a single and simple
mechanism of action.

From these ideas, more holistic strategies must be explored,
not only regarding to the pharmacological approach but to the
whole body of research that is developing around the world
related to neurodegeneration. From a pharmacological point of
view, the multi-target directed ligand (MTDL) strategy has
emerged as an alternative against the traditional single target -
single molecule approach*>. Indeed, in the last decade an increas-
ing number of new drugs based on this paradigm have been
developed for the treatment of several complex diseases. In the
field of NDs, safinamide was approved in Europe in February 2015
and in the United States in March 2017 for the treatment of
Parkinson’s disease (PD), due to its MTD-profile that combines
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dopaminergic (MAO-B and dopamine reuptake inhibition) and
non-dopaminergic properties (blockade of voltage-dependent Na*
and Ca®?" channels)®. Interestingly, to achieve maximum efficiency
in stopping or delaying neurodegeneration, the MTD drugs must
hit targets located upstream in the neurotoxic cascades”?.

Different post-mortem studies in AD patients have shown a
great increase in the peroxidation of brain biomolecules®, suggest-
ing that oxidative damage is an early event that precedes the for-
mation of abnormal protein aggregates and that antioxidant
drugs could be useful for preventing such injuries'®. On other
hand, levels of monoamine oxidases (MAO-A and MAO-B) are
increased in neurodegenerative pathologies, such as AD and PD'".
The activities of these enzymes contribute to the neurodegenera-
tive process by promoting the formation of the harmful Af pep-
tide and by increasing the oxidative stress (OS) through the
production of hydrogen peroxide'?. Consequently, MAOs' inhibi-
tors could decrease both the generation of amyloid plaques and
radical oxygen/nitrogen species (ROS/RNS)">.

Sequential cleavage of the amyloid precursor protein by - and
y-secretases produces pathologic A peptides, which are prone to
aggregate into amyloid plaques'®. The fact that f-secretase, also
known as p-site amyloid-precursor-protein-cleaving enzyme 1
(BACE-1), is located upstream in the amyloid cascade makes its
inhibitors interesting AD disease-modifying drugs'. In recent
years, BACE-1 has gained great importance because several clinical
trials have shown a correlation between the inhibition of this
enzyme and low levels of pathological Af peptides'®'’. In spite of
the above, several potent BACE-1 inhibitors have failed in different
clinical trials. For instance, verubecestat (MK-8931) a potent BACE-
1 inhibitor, able to reduce Af levels in cerebrospinal fluid up to
81%, was ineffective in AD patients ranging from 55 to 85years in
phase Il studies'®. Although these negative results may lead us to
reconsider the validity of the amyloid hypothesis, the results of
current clinical trials of BACE-1 inhibitors in asymptomatic individ-
uals at risk to develop AD or with prodromal AD are still to be
seen'®. From another point of view, issues associated to BACE-1
inhibitors could be related to the fact that they are administered
to AD patients in the severe stages where they cannot provide
any therapeutic benefit, or to the fact that these drugs are still
based on the single-target paradigm. The situation is so complex
that the ideal drug for AD should be administered in the right
moment and has to be able to reduce neuronal death coming
from almost all sources of toxicity: oxidative stress, misfolded pro-
teins, excitotoxicity and so on. Therefore, we still consider import-
ant the search for new BACE-1 inhibitors, but endowed with a
MTD-profile in light of the current literature®.

Lipoxygenase-5 (LOX-5) is an enzyme widely distributed in cen-
tral nervous system (CNS), mainly in neurons and glia. Two espe-
cially vulnerable regions to neurodegeneration, the cerebral cortex
and the hippocampus, possess the highest expression levels of
this enzyme that is upregulated in AD patients®'. LOX-5 plays a
key role in inflammatory processes, which per se may be an
important reason for its pharmacological modulation, and interest-
ingly, overexpression of LOX-5 in the AD-triple transgenic mouse
model (3xTg) leads to a clear exacerbation of memory deficits and
increased burdens of both tau and amyloid deposits®2. Conversely,
3xTg mice treated with the LOX-5 inhibitor zileuton present an
improvement in memory, cognition, synaptic integrity and a
reduction in amyloid and tau pathologies®*. These findings estab-
lish a functional role of LOX-5 in the AD-pathogenesis, pointing
out the interest of LOX-5 inhibitors as valuable therapeutic agents,
as they reduce neuro-inflammation and the main AD-hallmarks,
amyloid plaques and neurofibrillary tangles.
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On the other hand, the sigma-1 receptor (g;R) is a chaperone-
like receptor located at the mitochondria-associated endoplasmic
reticulum membrane, widely distributed in CNS and implicated in
memory, emotional and cognitive processes. While the complete
biological role of this receptor remains unknown, it has been dis-
covered to regulate the function of a variety of processes through
opioid, NMDA, dopaminergic and cholinergic receptors.
Pharmacological or genetic invalidation of ;R enhances Af tox-
icity®*, whereas its activation exerts protection against OS by
stimulation of the antioxidant response elements and subsequent
transcription of the proteins involved in the cellular response to
oxidative damage®.

Although the adult neurogenic processes are restricted to spe-
cific small brain regions and a large characterisation of their
extent and relevance is still needed’®?’, the pharmacological
induction of neurogenesis is achievable and may significate a
great opportunity to help the brain to recover its own self-renewal
capacity?®?°, Maybe the so desired disease-modifying AD-drug
would include the ability to induce the differentiation of neural
stem cells into mature neurons capable to replace those lost by
neurodegeneration. In this regard, a promising compound is the
steroid allopregnanolone that has demonstrated to promote
neurogenic processes and reverse cognitive deficits in a mouse
model of AD*® and that recently completed phase-I studies®'.

In the last years, a part of our work has been focussed on the
design of new compounds with a MTD-profile aiming at some of
the most important pharmacological objectives related to AD and
NDs. Apart from the classical targets (AChE, BACE-1, MAOs), other
important proteins involved in NDs have been explored, such as
o1R, LOX-5 and the activation of neurogenic processes>>>’,
Continuing with our interest in MTDLs, in this work we describe
the synthesis of new flavonoid-based hybrids (1-13) and their bio-
logical evaluation in a battery of ND-targets, namely hAChE,
hBACE-1, hMAOs, hLOX-5 and ¢,R, and in a phenotypic assay for
assessing neurogenic properties.

New hybrids were designed by linking two privileged chemo-
types with well-known therapeutic activities in AD and other NDs:
(i) a flavonoid core derived from 4-chromenone or 4-quinolone,
with potential neurogenic properties®® and inhibition of BACE-1%,
LOX-5° and MAO*'; and (i) the N,N-dibenzyl(N-methyl)amine
(DBMA) fragment, present in AP2238**"** and other AD-directed
MTDLs****%, due to its proved interaction with the catalytic anionic
site (CAS) of AChE* (Figure 1).

Materials and methods
Chemistry

Reagents and solvents were purchased from common commercial
suppliers, mostly Sigma-Aldrich, and were used without further
purification. Thin-layer chromatography (TLC) was carried out
using Merck silica gel 60 F254 plates and compounds were visual-
ised under UV-light (1=254 or 365nm) and/or stained with
phosphomolybdic acid 10% wt. in ethanol. Automatised chroma-
tographic separation was carried out in an IsoleraOne (Biotage)
equip, using different silica Biotage ZIP KP-Sil 50 u cartridges.
High-performance liquid chromatography was performed on a
Waters analytical HPLC-MS (Alliance Watters 2690) equipped with
a SunFire Cig 4.6 x50mm column, a UV photodiode array
detector (A=214-274nm) and quadrupole mass spectrometer
(Micromass ZQ). HPLC analyses were used to confirm the purity of
all compounds (> 95%) and were performed on Waters 6000
equipment, at a flow rate of 1.0 ml/min, with a UV photodiode
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Figure 1. Structures of flavonoids, AP2238 and flavonoid — N,N-dibenzyl(N-methyl)amine hybrids (1-13).

array detector (4 =214-274nm), and using a Delta Pak C;g 5pum,
300 A column. The elution was performed in a gradient mixture of
acetonitrile (ACN)/water, starting in most of cases with 15% and
ending with 95% of ACN within 5min (Water - ACN (1 5 —95%),
g.t. 5min). Melting points were determined in a MP70 apparatus
(Mettler Toledo). "H NMR and '*C NMR spectra were obtained in
MeOD, DMSO-dg CDCl; or CD3OD solutions using Varian INOVA-
300, Varian INOVA-400, Varian Mercury-400 or Varian Unity-500
spectrometers. High resolution mass spectrometry (HRMS) data
were obtained by electron spray ionisation in positive mode (ESI™)
using a Hewlett-Packard MSD 1100 spectrometer.

Synthesis of chromene — DBMA hybrids (general method A)

The corresponding 4-oxo-4H-chromene-2-carboxylic acid
(1.0mmol) and CDI (1.3 mmol) were mixed into a 10 ml mw vial
under N, atmosphere. The vial was sealed up and 5ml of anhyd-
rous DMF were added using a syringe to dissolve the mixture
(CO51). This solution was heated into an mw reactor at 120 °C dur-
ing 10min to complete the activation of the acid. Afterward, a
solution of the corresponding amine (1.2 mmol) in 2ml of DMF
was added with a syringe; this final solution was heated during
10 min at 150°C to obtain the desired amide. After completion of
the reaction, the DMF was evaporated under reduced pressure;
the crude material was re-dissolved in 25 ml of EtOAc and washed
with water (5 x 5ml), brine (3 x 5ml), dried over MgSO,4 and con-
centrated. The product was purified by column chromatography
using EtOAc:MeOH (9:1) as eluent.

Synthesis of phenolic derivatives (method B)

Under N, atmosphere, to a solution of the corresponding methoxy
hybrid (0.1 mmol) in anhydrous DCM (3 ml), BBrs (1 equivalent per
each heteroatom present in the molecule) was added slowly
under magnetic stirring. The mixture was allowed to react over-
night at RT and then, quenched with MeOH (dropwise until end
of effervescence). Solvent was evaporated under reduced pressure
and MeOH addition was repeated several times until no fumes
were observed. The residue was purified by column chromatog-
raphy using a gradient of EtOAc/MeOH 0 — 10% as eluent.

Synthesis of 4-oxo-1,4-dihydroquinoline — DBMA hybrids (general
method C)

Under N, atmosphere, to a mixture of the corresponding methyl
4-oxo-1,4-dihydroquinoline-2-carboxylate (1.0 mmol) and the corre-
sponding amine (2.5mmol) in dry THF (3.5ml) in a mw vial,
Al(CH3)3 (2M in heptane, 3.0 mmol) was injected with a syringe.
This mixture was heated into an mw reactor at 120°C during

1.5min and then, the crude material was treated with HCl 2M
(dropwise) until the end of gas generation, neutralised with NaOH
2M and the liquid phase evaporated to dryness. The solid was
washed with EtOAc (5 x 5.0ml) and MeOH (2 x 5.0 ml) and these
fractions were mixed and concentrated under reduced pressure.
The product was purified by column chromatography using a gra-
dient of EtOAc in hexane (0 — 65%) as eluent.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-6-methoxy-4-oxo-
4H-chromene-2-carboxamide (1). White solid, yield: 77% (method
A); mp 146-147°C. "H NMR (300 MHz, CDCl5) § 8.55 (s, 1H, NH),
7.67 (d, J=8.5Hz, 2H, Hy), 7.59 (d, J=3.1Hz, 1H, Hs), 7.54 (d,
J=9.1Hz, 1H, H,), 742 (d, J=8.5Hz, 2H, Hs), 7.39 - 7.29 (m, 5H,
He, o, m), 7.28 = 7.23 (m, 2H, Hs, ,), 3.91 (s, 3H, 6-OMe), 3.54 (s, 2H,
Hp), 3.53 (s, 2H, H,), 2.20 (s, 3H, H,) (Figure S1). '*C NMR (75 MHz,
CDCl3) & 178.02 (C,), 157.78 (Cg), 157.06 (Cg), 154.52 (C,), 150.02
(Cga), 139.28 (C)), 137.14 (Cy4), 135.26 (Cy1), 129.86 (C31), 129.05 (C,),
128.39 (Cp), 127.13 (C,), 125.24 (C4a), 124.90 (Cg), 120.47 (Cy), 119.
60 (C;), 111.84 (C3), 105.34 (Cs), 61.99 (Cp), 61.37 (C,), 56.16 (C, 6-
OMe), 42.37 (C,) (Figure S2). HRMS [ESI+] m/z=428.1754 [M]*,
calculated for [CygH,uN-0,]7 428.1736 (Figure S3). HPLC pur-
ity 99%.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-6-hydroxy-4-oxo-
4H-chromene-2-carboxamide (2). Yellow solid, yield: 90%
(method B); mp 186-189°C. 'H NMR (500 MHz, MeOD) § 7.77 (d,
J=8.6Hz, 2H, H,), 7.73 (d, J=9.1Hz, 1H, Hg), 745 (d, J=2.9Hz,
1H, Hs), 7.41 (d, J=8.6Hz, 2H, H3), 7.38 - 7.31 (m, 5H, H;, o ),
7.29 - 7.25 (m, 1H, Hp), 7.05 (s, TH, Hs), 3.56 (s, 4H, H,, 4), 2.20 (s,
3H, H,) (Figure S4). >C NMR (126 MHz, MeOD) & 180.41 (C,), 159.
57 (Co), 157.38 (Cy), 157.29 (Cga), 151.03 (Cg), 139.51 (C)), 137.75
(Cy), 136.84 (C4), 130.92 (C,), 130.42 (Cy), 129.36 (Cyy), 128.36 (Cp),
126.09 (C4,), 125.57 (C5), 122.39 (C3), 121.32 (Cg), 111.16 (C3), 108.
72 (Cs), 62.65 (Cp), 62.13 (C,), 42.30 (C,) (Figure S5). HRMS [ESI-+]
m/z=414.1583 [M]", calculated for [CosH5oN>0,]" 414.1580
(Figure S6). HPLC purity 100%.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-5,7-dimethoxy-4-
ox0-4H-chromene-2-carboxamide (3). White solid, yield: 70%
(method A); mp 99-101°C. "H NMR (300 MHz, CDCl5) § 8.81 (s, 1H,
NH), 7.88 (d, J=8.4Hz, 2H, H,), 7.60 (d, J=8.4Hz, 2H, H3), 7.56 -
7.41 (m, 5H, Ph), 7.26 (s, 1H, Hs), 6.75 (d, J=2.3Hz, 1H, He), 6.58
(d, J=2.3Hz, 1H, Hg), 4.11 (s, 3H, 7-OMe), 4.09 (s, 3H, 5-OMe), 3.73
(s, 2H, Hp), 3.72 (s, 2H, H,), 2.39 (s, 3H, H,) (Figure S7). 3C NMR
(75 MHz, CDCls) & 176.96 (C,), 164.84 (C5), 161.28 (Cs), 159.02 (Cgy),
157.16 (Co), 152.57 (Cy), 139.22 (C)), 136.85 (C4), 135.48 (Cy), 129.
81 (C3), 129.05 (Cp), 12838 (Cpy), 127.13 (Cp), 12047 (Cy), 114.39
(C3), 109.85 (C4,), 96.86 (Ce), 93.03 (Cg), 61.94 (Cp), 61.37 (C,), 56.55
(C, 5-OMe), 56.05 (C, 7-OMe), 42.34 (C,) (Figure S8). HRMS [ESI+]
m/z=458.1863 [M]", calculated for [Cy7HN,Os]™ 458.1842
(Figure S9). HPLC purity 99%.
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N-(4-((Benzyl(methyl)amino)methyl)phenyl)-5,7-dihydroxy-4-
ox0-4H-chromene-2-carboxamide (4). Bright yellow solid, yield:
90% (method B); mp 199-200°C. "H NMR (500 MHz, MeQD) & 7.75
(d, J=8.5Hz 2H, H3), 7.41 (d, J=8.5Hz, 2H, Hy), 739 - 7.33 (m,
4H, Ho, m), 7.30 - 7.26 (m, 1H, H,), 6.94 (s, TH, H3), 6.63 (d,
J=2.1Hz, TH, Hg), 6.28 (d, J=2.1Hz, TH, He), 3.59 (s, 4H, H,, ),
2.22 (s, 3H, H,). >C NMR (126 MHz, MeOD) J 183.60 (C,), 167.44
(C7), 163.42 (Cs), 159.15 (Cy), 159.00 (Cg,), 157.45 (Cy), 139.22 (C)),
137.77 (C4), 136.59 (C;), 13098 (Cy), 13048 (C.), 129.40 (C,,),
12846 (C,), 122.50 (C3), 111.22 (C3), 106.32 (C,n), 100.92 (Cg),
95.94 (Cg), 62,60 (C,), 62.07 (Cp), 4222 (C). HRMS [ESIH] m/
z=430.1517 [MI*, calculated for [Cy5HN,O0s* 430.1529. HPLC
purity 100%.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-6,7-dimethoxy-4-
oxo-4H-chromene-2-carboxamide (5). White solid, yield: 80%
(method A); mp 119-120°C. "H NMR (300 MHz, MeOD) § 7.89 (d,
J=86Hz, 2H, H3), 7.53 - 7.35 (m, 9H, Ph, Hy s, g), 7.06 (s, TH, Hy),
4.04 (s, 3H, 6-OMe), 3.98 (bs, 4H, H,, p), 3.95 (s, 3H, 7-OMe), 2.49 (s,
3H, H,). >C NMR (75MHz, MeOD) & 179.39 (C4), 159.50 (Co),
157.48 (Cg), 156.76 (C5), 153.49 (Cg,), 150.17 (C;), 139.17 (Cy),
136.52 (Cy), 13441 (C), 131.99 (Cy), 131.33 (Co), 129.93 (Cp),
129.84 (Cp), 122.53 (C3), 11853 (Cqa), 111.87 (C3), 104.71 (Cy),
101.48 (Cg), 61.77 (Cy), 61.30 (Cp), 57.14 (C, 6-OMe), 56.69 (C, 7-
OMe), 40.87 (C,). HRMS [ESI+] m/z=458.1848 [M]", calculated for
[Cy7H26N05] ™ 450.1842. HPLC purity 100%.

N-(3-((Benzyl(methyl)amino)methyl)phenyl)-6,7-dimethoxy-4-
oxo-4H-chromene-2-carboxamide (6). White solid, yield: 90%
(method A); mp 105-108°C. "H NMR (400 MHz, MeOD) ¢ 7.79 (bs,
1H, Hy), 7.71 (dd, J=8.2, 1.6 Hz, 1H, Hy), 7.46 (s, 1H, Hs), 7.39 -
7.31 (M, 6H, Hy m p o), 7.29 - 7.21 (m, 1H, Hs), 7.20 (dt, J=8.2,
1.5Hz, 1H, Hg), 7.03 (s, 1H, Hs), 4.01 (s, 3H, 6-OMe), 3.92 (s, 3H, 7-
OMe), 3.55 (bs, 4H, H,, ), 2.19 (s, 3H, H,) (Figure S10). *C NMR
(101 MHz, MeOD) 6 179.43 (C4), 159.40 (Co), 157.41 (C), 156.94
(Cy), 153.48 (Cgy), 150.11 (C;), 140.93 (C), 139.68 (C;/), 138.69 (C3),
130.40 (Cp), 129.89 (Cp,), 129.34 (C,), 128.29 (Cs), 127.37 (Cg), 123.
17 (Cy), 121.27 (Cy), 11850 (Cya), 111.78 (C5), 104.68 (Cs), 101.45
(Cq), 62.79 (C,), 62.57 (Cp), 57.10 (C, 6-OMe), 56.67 (C,/-OMe), 42.42
(C,) (Figure S11). HRMS [ESI+] m/z=458.1840 [M]*, calculated for
[Co7H26N-0511 458.1841 (Figure S12). HPLC purity 100%.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-5-methoxy-4-oxo-
1,4-dihydroquinoline-2-carboxamide (7). White solid, yield: 60%
(method C); mp 263-265°C. "H NMR (500 MHz, CDCl5) 6 10.20 (s,
1TH NHyp), 9.88 (s, 1H, NH,), 7.80 (d, J=8.3Hz, 2H, Hy), 7.75 (s, 1H,
Hs), 7.73 (m, 1H, Hg), 7.63 (t, J=7.8Hz, 1H, H), 7.46 — 7.36 (m, 4H,
Hs, o), 7.34 (t, J=7.5Hz, 2H, H,,), 7.29 - 7.26 (m, 1H, H,), 6.92 (dd,
J=7.8, 09Hz, 1H, Hg), 413 (s, 3H, 5-OMe), 3.57 (s, 4H, H,, 4), 2.23
(s, 3H, H,) (Figure S13). >C NMR (126 MHz, CDCl3) 6 164.19 (C,),
162.09 (Co), 156.07 (Cs), 152.06 (Cy), 149.81 (Cg,), 136.90 (C4), 135.
49 (Cy), 130.07 (Cy), 129.88 (C3), 129.23 (C,), 12845 (C,,), 127.25
(Cp), 121337 (Cg), 119.77 (C2), 11261 (Cua), 10539 (Cq), 104.34
(G3), 61.84 (C,), 61.49 (Cp), 56.76 (Cs4), 42.24 (C,) (Ci not detected)
(Figure S14). HRMS [ESI+] m/z=427.1900 [M]*, calculated for
[Ca6Ha5N305] ™ 427.1896 (Figure S15). HPLC purity 99%.

N-(4-((Benzyl(methyl)amino)methyl)phenyl)-6-methoxy-4-oxo-
1,4-dihydroquinoline-2-carboxamide (8). White solid, yield: 60%
(method C); mp 261-263°C. "H NMR (500 MHz, DMSO-ds) 6 10.61
(s, TH, NH), 7.96 (d, J=9.1Hz, 1Hg), 7.82 (d, J/=8.0Hz, 2H, H;),
7.49 (d, J=29Hz 1H, Hs), 7.40 (dd, J=9.1, 29Hz, 1H, H,), 7.38 -
730 (m, 7H, H3 3, 6, m), 7.28 = 7.23 (m, 1H, H,), 3.89 (s, 3H, 6-
OMe), 3.50 (s, 2H, Hp), 3.48 (s, 2H, H,), 2.08 (s, 3H, H,) (Figure S16).
>C NMR (126 MHz, DMSO-ds) & 157.07 (Cg), 139.09 (C), 136.99
(Cy), 134.98 (Cy), 128.98 (C3), 128.60 (Cp,), 128.20 (C,), 126.88 (Cp),
12298 (C;), 120.18 (Cy), 60.97 (Cp), 60.57 (C,), 5543 (C, 6-OMe),
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41.63 (C,) (C3 and quaternary carbons of 4-oxo-1,4-dihydroquino-
line ring not detected) (Figure S17). HRMS [ESI+] m/z=427.1905
[MI*, calculated for [CogHosN3O51T 427.1896 (Figure S18). HPLC
purity 99%.
N-(4-((Benzyl(methyl)amino)methyl)phenyl)-6-hydroxy-4-oxo-
1,4-dihydroquinoline-2-carboxamide (9). White solid, yield: 90%
(method B); mp 248-251°C. "H NMR (300 MHz, DMSO-dg) & 10.56
(s, TH, NH), 7.90 (s, 1H), 7.82 (d, J=8.3Hz, 2H), 7.53 - 7.15 (m,
10H), 3.50 (s, 2H, CH,), 3.48 (s, 2H, CH,), 2.08 (s, 3H, CHs) (Figure
$19). '>C NMR (75 MHz, DMSO-ds) & 139.08 (C), 137.00 (C), 128.96
(CH), 128.58 (CH), 128.18 (CH), 126.86 (CH), 122.80 (CH), 120.14
(CH), 60.95 (CH,), 60.56 (CH,), 41.61(CH3) (Only one CH from the
4-chromenone system was detected in '*C NMR) (Figure $20).
HRMS [ESIH+] m/z=413.1751 [M]", calculated for [C5sH,3N505]"
413.1739 (Figure S21). HPLC purity 99%.
N-(4-((Benzyl(methyl)amino)methyl)phenyl)-7-methoxy-4-oxo-
1,4-dihydroquinoline-2-carboxamide (10). White solid, yield: 62%
(method C); mp 261-263°C. "H NMR (300 MHz, DMSO-d¢) 6 11.73
(s, TH, NH;), 10.63 (s, TH, NH1o), 8.01 (d, J=9.0Hz, TH, Hs), 7.79 (d,
J=8.1Hz, 2H, H3), 7.50 — 7.42 (m, TH, Hg), 7.40 - 7.29 (m, 6H, Ha.
o m) 7:28 = 7.19 (m, TH, H,), 6.99 (bs, TH, He), 6.86 (bs, H, Ha),
3.87 (s, 3H, 7-OMe), 3.50 (s, 2H, Hp), 3.49 (s, 2H, H,), 2.08 (s, 3H,
H,). ">C NMR (75 MHz, DMSO-de) & 177.03 (C,), 162.28 (C;), 160.65
(Co), 139.04 (C)), 136.88 (C4), 135.22 (Cy), 128.98 (Cy), 128.59 (Cp),
128.18 (C,), 126.87 (Cp), 12644 (Cs), 12043 (C3), 113.96 (Co),
107.56 (C3), 100.31 (Cg), 60.96 (Cp), 60.53 (C,), 55.45 (C, 7-OMe),
4159 (C,). HRMS [ESI+] m/z=427.1898 [M]", calculated for
[Ca6Ha5N305]" 427.1896. HPLC purity 99%.
N-(4-((benzyl(methyl)amino)methyl)phenyl)-6,7-dimethoxy-4-
oxo-1,4-dihydroquinoline-2-carboxamide (11). White solid, yield:
35% (method C); mp 245-248°C. '"H NMR (500 MHz, MeOD) § 7.79
(d, J=8.2Hz, 2H, CH), 7.59 (s, 1H, CH), 7.42 (d, J=8.2Hz, 2H, CH),
7.48 - 7.25 (m, 7H,), 7.05 (bs, 1H, NH), 4.00 (s, 3H, Me), 3.96 (s, 3H,
OMe), 3.70 (bs, 4H, 2xCH,), 2.30 (s, 3H, CHs). '>C NMR (126 MHz,
MeOD) ¢ 156.16 (C), 150.33 (C), 138.73 (C), 137.98 (C), 134.68 (C),
131.33 (CH), 130.76 (CH), 129.57 (CH), 128.89 (CH), 122.06 (CH),
103.89 (CH), 62.32 (CH), 61.85 (CH), 56.70 (C, OMe), 56.48 (C, OMe),
41.82 (CHs3) (Some CH's and quaternary carbons were not
detected). HRMS [ESI+] m/z=457.2009 [M]*, calculated for
[C27H7N30,4]" 457.2002. HPLC purity 99%.
N-(4-((benzyl(methyl)amino)methyl)phenyl)-6,7-dihydroxy-4-
oxo-1,4-dihydroquinoline-2-carboxamide (12). White solid, yield:
90% (method B); mp 248-251°C. "H NMR (500 MHz, MeOD) & 7.99
(d, J=8.1Hz, 2H, H,), 7.64 (d, J=8.1Hz, 2H, H3), 7.62 (s, 1H, Hs),
7.60 — 7.55 (m, 2H, H,), 7.54 = 7.50 (M, 5H, Hs, 5 o, ), 4.58 - 4.51
(m, 2H, H,), 439 - 430 (m, 2H, Hp), 2.77 (s, 3H, H,). >C NMR
(126 MHz, MeOD) § 194.03 (C,), 170.55 (Cy), 160.79 (C), 156.94 (C,),
150.15 (Cg), 143.73 (Q), 140.71 (Cy), 133.97 (C), 133.26 (C3), 132.39
(Co), 13131 (Cp), 130.77 (C)), 13045 (Cpp), 127.38 (Cy), 122,65 (Cy),
11834 (Cg), 111.41 (C), 105.80 (C3), 103.76 (Cs), 60.76 (C,), 60.30
(Cp), 39.55 (C,). HRMS [ESI+] m/z=429.1700 [M]*, calculated for
[Co5H23N30,4] 429.1689. HPLC purity 99%.
N-(3-((Benzyl(methyl)amino)methyl)phenyl)-6,7-dimethoxy-4-
oxo-1,4-dihydroquinoline-2-carboxamide (13). White solid, yield:
90% (method C); mp 131-133°C. '"H NMR (500 MHz, MeQOD) § 7.92
(s, TH, CH), 7.76 (dd, J=7.6, 1.3Hz, 1H, CH), 7.55 (s, 1H, CH), 7.50
- 7.38 (m, 7H, Ph, 2xCH,), 7.31 (s, 1H, CH), 7.27 (dt, J=7.7, 1.3 Hz,
1H, CH), 4.04 — 4.00 (bs, 4H, 2xCH5), 3.99 - 3.98 (m, 3H, OMe), 3.94
(s, 3H, OMe), 2.51 (s, 3H, CHs) (Figure S22). >*C NMR (126 MHz,
MeOD) ¢ 156.08 (C), 150.35 (C), 139.66 (CH), 131.43 (CH), 130.54
(CH), 129.98 (CH), 129.98 (CH), 127.84 (CH), 123.80 (CH), 122.42
(CH), 103.75 (CH), 61.75 (CH,), 61.58 (CH,), 56.68 (C, OMe), 56.45
(C, OMe), 41.00 (CH,) (Quaternary carbons not observed and just
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one CH from the 4-chromenone system detected in '*C NMR)
(Figure S23). HRMS [ESI+] m/z=457.2002 [M]*, calculated for
[C27H27N303]+ 457.2001 (F|gure 524) HPLC purlty 99%.

Biochemical studies

Inhibition of human acetyl- and butyrylcholinesterase (hAChE
and hBuChE)

The Ellman method was followed, using human recombinant
AChE and BuChE from human serum®. The assay solution con-
sisted of 0.1 M phosphate buffer pH 8.0, 400 uM 5,5-dithiobis(2-
nitrobenzoic acid) (DTNB, Ellman’s reagent), 0.05U/mL hAChE
(Sigma Chemical Co.) or 0.024 U/mL hBuChE (Sigma Chemical Co.),
and 800 uM acetylthiocholine iodide, or 500 uM butyrylthiocholine
as the substrate of the enzymatic reaction, respectively. The com-
pounds tested were added to the assay solution and preincubated
with the enzyme for 5min at 30°C. After that period, the sub-
strate was added. The absorbance changes at 412nm were
recorded for 5min with a UV/Vis microplate spectrophotometer,
Multiskan Spectrum, Thermo-Electron Co. The reaction rates were
compared and the inhibition percentage due to the presence of
test compound was calculated. The ICsg is defined as the concen-
tration of each compound that reduces at 50% the enzymatic
activity without any inhibitor.

Inhibition of human monoamine oxidases (hnMAO-A and hMAO-B)
MAO inhibition measurements were evaluated following the gen-
eral procedure previously described*®. Briefly, test drugs and
adequate amounts of recombinant hMAO-A or hMAO-B (Sigma-
Aldrich, Spain) required and adjusted to oxidise 165 pmol of p-tyr-
amine/min in the control group, were incubated for 15min at
37°C in a flat-black-bottom 96-well microtest plate (BD
Biosciences, Franklin Lakes, NJ) placed in the dark fluorimeter
chamber. The reaction was started by adding 200 mM Amplex Red
reagent (Molecular Probes, Inc., Eugene, OR), 1U/mL horseradish
peroxidase, and 1 mM p-tyramine. Then, the production of resoru-
fin was quantified at 37°C in a multidetection microplate fluores-
cence reader (FLX800, Bio-Tek Instruments, Inc., Winooski, VT)
based on the fluorescence generated (excitation, 545 nm; emis-
sion, 590 nm). The specific fluorescence emission was calculated
after subtraction of the background activity, which was deter-
mined from wells containing all components except the hMAO
isoforms, which were replaced by a sodium phosphate buf-
fer solution.

Oxygen radical absorbance capacity assay (ORAC)

Antioxidant activities were measured using the ORAC method°,
in a Polarstar Galaxy plate reader (BMG Labtechnologies GmbH,
Offenburg, Germany) with 485-P excitation and 520-P emission fil-
ters. The equipment was controlled by the Fluorostar Galaxy soft-
ware (version 4.11-0) for fluorescence measurement. 2,2’-Azobis-
(amidinopropane) dihydrochloride (AAPH), (+)-6-hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid (trolox) and fluorescein (FL)
were purchased from Sigma-Aldrich. The reaction was carried out
in 75mM phosphate buffer (pH 7.4) and the final reaction mixture
was 200 pL. Antioxidant (20 uL) and FL (120 uL; 70 mM, final con-
centration) solutions were placed in a black 96-well microplate
(96 F untreat, Nunc). The mixture was pre-incubated for 15 min at
37°C and then, AAPH solution (60 uL, 12 mM, final concentration)
was added rapidly using a multichannel pipette. The microplate
was immediately placed in the reader and the fluorescence

recorded every minute for 80 min. The microplate was automatic-
ally shaken prior each reading. Samples were measured at eight
different concentrations (0.1-1 uM). A blank (FL+ AAPH in phos-
phate buffer) instead of the sample solution and eight calibration
solutions using trolox (1-8 M) were also carried out in each assay.
All the reaction mixtures were prepared in duplicate, and at least
three independent assays were performed for each sample. Raw
data were exported from the Fluostar Galaxy Software to an Excel
sheet for further calculations. Antioxidant curves (fluorescence vs.
time) were first normalised to the curve of the blank correspond-
ing to the same assay, and the area under the fluorescence decay
curve (AUC) was calculated. The net AUC corresponding to a sam-
ple was calculated by subtracting the AUC corresponding to the
blank. Regression equations between net AUC and antioxidant
concentration were calculated for all the samples. ORAC values
were expressed as trolox equivalents by using the standard curve
calculated for each assay, where the ORAC value of trolox was
taken as 1.0.

In vitro blood-brain barrier permeation assay (PAMPA-BBB)
Prediction of the brain penetration was evaluated using a parallel
artificial membrane permeation assay (PAMPA-BBB), in a similar
manner as previously described®®**6°'=>3, pipetting was performed
with a semi-automatic pipettor (CyBi®-SELMA) and UV reading
with a microplate spectrophotometer (Multiskan Spectrum,
Thermo Electron Co.). Commercial drugs, phosphate buffered
saline solution at pH 7.4 (PBS), and dodecane were purchased
from Sigma, Aldrich, Acros, and Fluka. Millex filter units (PVDF
membrane, diameter 25mm, pore size 0.45um) were acquired
from Millipore. The porcine brain lipid (PBL) was obtained from
Avanti Polar Lipids. The donor microplate was a 96-well filter plate
(PVDF membrane, pore size 0.45 um) and the acceptor microplate
was an indented 96-well plate, both from Millipore. The acceptor
96-well microplate was filled with 200 uL of PBS: ethanol (70:30)
and the filter surface of the donor microplate was impregnated
with 5 uL of porcine brain lipid (PBL) in dodecane (20 mg mL™").
Compounds were dissolved in PBS: ethanol (70:30) at 100 ug
mL~", filtered through a Millex filter, and then added to the donor
wells (200 uL). The donor filter plate was carefully put on the
acceptor plate to form a sandwich, which was left undisturbed for
120min at 25°C. After incubation, the donor plate is carefully
removed and the concentration of compounds in the acceptor
wells was determined by UV-Vis spectroscopy. Every sample is
analysed at five wavelengths, in four wells and at least in three
independent runs, and the results are given as the mean *stan-
dard deviation. In each experiment, 11 quality control standards
of known BBB permeability were included to validate and normal-
ise the analysis set.

Human BACE-1 inhibition assay

This experiment was carried out according to the protocol
described by the manufacturer (Invitrogen) using a FRET assay®”.
Briefly, an APP-based peptide substrate (rhodamine-EVNLDAEFK-
quencher, Km of 20 uM) carrying the Swedish mutation and con-
taining a rhodamine as a fluorescence donor and a quencher
acceptor at each end was used. The intact substrate is weakly
fluorescent and becomes highly fluorescent upon enzymatic cleav-
age. The assays were conducted in 50 mM sodium acetate buffer,
pH 4.5, in a final enzyme concentration (1 U/mL). The mixture was
incubated for 60min at 25°C under dark conditions and then
stopped with 25M sodium acetate. Fluorescence was
measured with a FLUOstar Optima (BMG Labtechnologies GmbH,
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Offenburg, Germany) microplate reader at 545nm excitation and
585 nm emission.

Inhibition of human lipoxygenase-5 (hLOX-5)

The fluorescence-based enzyme method developed by Pufahl
et al. was followed>?, in 96-well microtiter plates. The assay solu-
tion consists of Tris buffer (50 mM, pH 7.5), ethylenediaminetetra-
acetic acid (EDTA, 2mM), CaCl, (2mM), arachidonic acid (AA,
3uM), ATP (10uM), 2',7'-dichlorodihydrofluorescein diacetate
(H,DCFDA, 10 uM), hLOX-5 (100 mU/well), bovine glutathione per-
oxidase (GPx, 25 mU/well) and reduced glutathione (GSH, 1T mM).
Compounds to be tested were added to the test solution prior to
AA and ATP, and pre-incubated for a period of 10min at room
temperature. Then, the AA and ATP substrates were added; the
enzymatic reaction allowed to progress for 20 min and ended by
the addition of 40 uL of acetonitrile. The fluorescence measure-
ments (excitation: 485 nm; emission: 520 nm) were performed on a
FLUOstar OPTIMA (BMG LABTECH, Offenburg, Germany). ICsq is
defined as the concentration of compound that inhibits enzymatic
activity by 50% over the control of untreated enzyme.

Binding assays at sigma-1 and sigma-2 receptors

For 4R assay, the thawed membrane preparation of guinea pig
brain cortex (about 100 ug of protein) were incubated for 120 min
at 37°C with 2nM [3H]—(+)—pentazocine (PerkinElmer, specific
activity 34.9C/mmol) in 50mM Tris-HCl, pH 7.4, 0.5ml final vol-
ume. Non-specific binding was defined in the presence of 10 uM
of unlabelled (+)-pentazocine. The reaction was stopped by vac-
uum filtration through GF/B glass-fiber filters presoaked with 0.5%
polyethylenimine, followed by rapid washing with 2ml ice-cold
buffer. Filters were placed in 3ml scintillation cocktail and the
radioactivity determined by liquid scintillation counting.

For o,R assay, 150 ug of rat liver homogenate were incubated
for 120 min at room temperature with 3 nM [PH]-DTG (PerkinElmer,
specific activity 58.1 G/mmol) in 50 mM Tris-HCI, pH 8.0, 0.5ml
final volume. (+)-Pentazocine (500 nM) was used to mask ¢;R and
to define non-specific binding, respectively.

Competition studies were done using at least 11 different con-
centrations of the ligand under investigation. As control, three
increasing concentrations of unlabeled (+)-pentazocine (o¢R) or
DTG (0,R) were always included. The compounds were prepared
as 10 mM stock solutions in 100% DMSO and diluted with Tris-HCI
buffer on the day of the experiment. The final DMSO concentra-
tion in the incubation tubes was maintained at 0.1%°.

ICso values and Hill's coefficients ny were calculated by nonlin-
ear regression using a four parameters curve-fitting algorithm of
the GraphPad Prism software (v(0).6, La Jolla California USA), and
are reported as the mean +SEM of three separate determinations
performed in duplicate. The corresponding K; values were
obtained by means of the Cheng-Prusoff equation, using the K,
values obtained in saturation experiments.

Molecular simulation details

All simulations were carried out using the Pmemd modules of
Amber 18%, running on our own CPU/GPU calculation cluster.
Molecular graphics images were produced using the UCSF
Chimera package (v.1.10)°%. All other graphs were obtained using
GraphPad Prism (v. 6.0). The molecular structures of hAChE, of
hLOX-5, and of hBACE-1 were obtained from the Protein Data
Bank (pdb code: 4EY7°, pdb code: 3V99%°, and pdb code: TM4H®'
respectively) while the optimised membrane-bound 3D structure
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of the ¢, receptor was obtained starting from the available
Protein Data Bank file (pdb code: 5HK1%%) and following a proced-
ure previously described®*%*,

The optimised structures of 6 were docked into each protein
identified binding pocket using Autodock 4.2.6/Autodock Tools
1.4.6% on a win64 platform. The resulting docked conformations
were clustered and visualised; then, the structure of each resulting
complex characterised by the lowest Autodock interaction energy
in the prevailing cluster was selected for further modeling. Each
compound/protein complex obtained from the docking procedure
was further refined in Amber 18 using the quenched molecular
dynamics (QMD) method as previously described [see, for
example®*©57%8 and reference therein]. Next, the best energy con-
figuration of each complex resulting from QMD was subsequently
solvated by a cubic box of TIP3P water molecules® extending at
least 10 A in each direction from the solute. The system was neu-
tralised and the solution ionic strength was adjusted to the
physiological value of 0.15M by adding the proper amounts of
Na™ and CI~ ions. Each solvated system was relaxed (500 steps of
steepest descent followed by 500 other conjugate-gradient mini-
misation steps) and then gradually heated to the target tempera-
ture of 298K in intervals of 50ps of constant volume-constant
temperature (NVT) molecular dynamics (MD) simulations (Verlet
integration method, time step 1.0 fs). The Langevin thermostat
was used to control temperature. During this phase of MD, the
protein was restrained with a force constant of 2.0 kcal/(mol A),
and all simulations were carried out with periodic boundary condi-
tions. Subsequently, the density of the system was equilibrated
via MD runs in the isothermal-isobaric (NPT) ensemble, with a
time step of 1 fs. All restraints on the protein atoms were then
removed, and each system was further equilibrated using NPT MD
runs at 298vK. Three equilibration steps were performed (4ns
each, time step 2.0 fs). System stability was monitored by the fluc-
tuations of the root-mean-square-deviation (RMSD) of the simu-
lated position of the backbone atoms of the protein with respect
to those of the initial protein model. The equilibration phase was
followed by a data production run consisting of 50 ns of MD simu-
lations in the NVT ensemble. Data collection was performed on
over the last 20ns of each equilibrated MD trajectory were
considered for statistical data collections. 1000 trajectory snap-
shots were analysed for each 6/receptor complex. The free energy
of binding AGpi,q between 6 and the target proteins was esti-
mated by resorting to the well-validated Molecular Mechanics/
Poisson-Boltzmann Surface Area (MM/PBSA) approach’® imple-
mented in Amber 18. The per residue binding free energy
decomposition (interaction spectra) was carried out using the
Molecular Mechanics/Generalized Boltzmann Surface Area (MM/
GBSA) approach’"”?, and was based on the same snapshots used
in the binding free energy calculation.

Study of theoretical medicinal chemistry alerts in free databases
SMILES code of hybrids 1-13 were uploaded in two databases,
namely ZINC15 (http://zinc15.docking.org/)”®> and SwissADME
(http://www.swissadme.ch/)’*. PAINs and aggregation results are
gathered in Table ST (Supplementary information).

Neurogenic assays

Adult (3 months old) male C57BL/6 mice were used following the
animal experimental procedures previously approved by the Ethics
Committee for Animal Experimentation of the CSIC in accordance
with the European Communities Council, directive 2010/63/EEC
and National regulations, normative 53/2013. Special care was
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taken to minimise animal suffering. Neural stem cells were iso-
lated from the SGZ of the dentate gyrus of the hippocampus of
adult mice and cultured as NS according to previously published
protocols”>’®, Neural stem cells grown as NS were treated for
7days in culture with compound 6 (10uM). Now, NS were
adhered onto 100 ug/mL poly-L-lysine-coated coverslips and
treated for 3 additional days in the presence of serum but in the
absence of exogenous growth factors to induce differentiation””.
Finally, the expression of neuronal markers was analysed by
immunocytochemistry using antibodies linked to neurogenesis:
p-lll-tubulin polyclonal antibody (TuJ clone; Abcam), a protein
expressed at early stages of neurogenesis and a monoclonal
microtubule-associated protein type 2 (MAP-2) antibody, a clas-
sical marker of late neuronal maturation. To visualise primary anti-
bodies Alexa-fluor-labeled secondary antibodies (Molecular
probes) were used. Nuclei were stained with DAPI. Fluorescent
representative images were acquired in a LSM710 laser scanning
spectral confocal microscope (Zeiss). Confocal microscope settings
were adjusted to produce the optimum signal-to-noise ratio.

In silico toxicity and metabolism predictions

To assess toxicity prediction, we use Derek Nexus v 6.0.1 (know-
ledge base 2018 1.1, species: human), which is a knowledge-based
expert system by Lhasa Limited where toxicity predictions con-
sider the presence of a toxicophore in the query structure, and
are the result of two processes: evaluating alerts and estimating
the likelihood of toxicity’®. The likelihood levels in Derek Nexus in
highest to lowest order are: certain, probable, plausible, equivocal,
doubted, improbable, and impossible”®.

To predict metabolism, we use Meteor Nexus v 3.1.0 (know-
ledge base 2018 1.0.0), a knowledge-based approach to rank
metabolites based on known metabolic reactions’®. To predict first
metabolic step of the parent compound (hybrid 6), we analysed
the phase-l biotransformation pathways, combining two different
methods®. A qualitative [absolute reasoning (AR)] and quantita-
tive (site of metabolism (SOM) scoring) assessment was applied,
selecting the matching metabolites. The AR evaluated the likeli-
hood level for a biotransformation to occur, and the minimal like-
lihood level was settled in “plausible”, what means that the
weight of evidence supports the proposition”®. The SOM scoring
method uses experimental data for compounds that match the
same biotransformation, have similar molecular weights and are
chemically similar around the site of metabolism to hybrid 6.
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Mutagenic and carcinogenic risk assessment

The International Conference on Harmonisation (ICH) of technical
requirements for registration of pharmaceuticals for human use
has developed a guideline for the assessment and control of
mutagenic impurities to limit potential carcinogenic risk, ICH M7,
This guideline purposes to provide a framework to identify muta-
genic alerts with computational toxicology assessment, it has to
be performed using two complementary QSAR methodologies. To
reach this objective, we have used an in silico prediction system
from Lhasa Itd. (Leeds, UK), Derek Nexus v3.2.0 (expert rule-based
methodology) and Sarah Nexus v3.0.0 (statistical-based method-
ology) to obtain a classification according to OECD Guidance
Document on the Validation of (Q)SAR Models®2.

Results and discussion
Chemistry

The common precursors for synthetising desired hybrids 1-13
were 3- or 4-((benzyl(methyl)amino)methyl)anilines (Figure 2),
which were obtained in excellent yields following well-known pro-
cedures. The coupling reaction between the above-mentioned ani-
lines and several substituted 4-oxo-4H-chromene-2-carboxylic
acids, in a microwave oven (mw) at 120°C, using 1,1'-carbonyldii-
midazole (CDI) as activating agent, gave 4-chromenone hybrids 1,
3, 5, and 6 in good yields (70-90%). The methoxy-bearing 4-qui-
nolinone hybrids (7, 8, 10, 11, and 13) were obtained in 50-90%
yield by the Al(CHs);-mediated amide formation between the cor-
responding aniline precursor and several substituted methyl 4-
oxo-1,4-dihydroquinoline-2-carboxylates, into a mw oven at
120°C. Finally, hydroxyl substituted compounds (2, 4, 9, and 12)
were obtained by the overnight treatment of the corresponding
methoxy derivative with BBr; in THF at RT. For achieving good
yields in these transformations (70-90%) it was necessary to use
one BBr3 equivalent for each ether group to be cleavage plus an
additional equivalent for each heteroatom present in the mol-
ecule, due to the well-known complexation ability of the
boron atom>*%3,

All 4-chromenone - and 4-quinolone - DBMA hybrids 1-13
were purified in silica gel cartridges using an automatic chromato-
graphic equip (IsoleraOne, Biotage) and were characterised by
their analytical (HPLC, HRMS) and spectroscopic data ("H NMR, *C
NMR). Complete NMR assignment of their hydrogen and carbon
atoms were made by 'H - "*C two-dimensional diagrams, mainly

R Subst
6-OMe 4 (77%)
6-OH 4' (90%)
5,7-diOMe 4' (70%)
5,7-diOH  4' (90%)
6,7-diOMe 4' (80%)

(
6,7-diOMe 3' (90%)

R Subst

7 5-OMe 4" ( )
6-OMe 4' (80%)
6-OH 4" ( )

6,7-diOH 4
13 6,7-diOMe 3' (90%)

Figure 2. Synthesis of flavonoid — N,N-dibenzyl(N-methyl)amine hybrids (1-13). Reagents and conditions: (A) CDI, DMF, mw 120°C, 10 min; (B) BBrs, DCM, r.t., over-

night; (C) Al(CHs)s, THF, mw 120°C, 3 min.



HSQC (heteronuclear single quantum correlation) and HMBC (het-
eronuclear multiple bond correlation).

Inhibition of human cholinesterases

Firstly, new hybrids 1-13 were tested as inhibitors of human chol-
inesterases, namely hAChE and hBuChE, following the Ellman
method and using donepezil as reference drug*®. As shown in
Table 1, new hybrids are potent and selective inhibitors of hAChE,
with ICso values comprised between the one-digit-micromolar and
the sub-micromolar range. In all cases, the inhibition of hBuChE
was worse, with 1C5o exceeding 10 uM. Chromone derivatives dis-
played better hAChE inhibition potencies than their 4-quinolone
counterparts (e.g. compare the pairs 1 vs. 8;2vs. 9; 5 vs. 11; 6 vs.
13). The nature of the substituents in the 4-chromenone ring
exerted only modest effects on the hAChE inhibition; from the
most effective hybrid 5 (IC50=0.99 uM) derived from 6,7-dime-
thoxy-4-oxo-4H-chromene, the inhibitory potencies given by the
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substituents ranked as follows: 6-hydroxy > 6-methoxy > 5,7-dihy-
droxy > 5,7-dimethoxy.

Inhibition of human monoamine oxidases and
antioxidant properties

New 4-chromenone - DBMA and 4-quinolone — DBMA hybrids
(1-13) were evaluated as inhibitors of human recombinant MAO's,
expressed in baculovirus containing cDNA inserts for hMAO-A and
hMAO-B. The production of oxygen peroxide from a common sub-
strate for both isoenzymes (p-tyramine) was quantified using the
Amplex Red MAO assay kit®* and results are gathered in Table 1.
Five derivatives inhibited hMAOQO’s in the micromolar range,
whereas the rest of tested compounds were found to be
inactive at 100 uM (the highest concentration tested). All active
hybrids, displayed higher potency towards hMAO-A than several
drugs currently in clinical use for treating AD, PD and depressive

Table 1. Inhibition of human acetylcholinesterase (hAChE) and human monoamine oxidases (hMAO-A and hMAO-B). Assessment of the oxygen radical absorbance

capacity (ORAC, trolox equivalents) and the CNS-permeation (PAMPA-BBB assay).

Compd. X R Substitution hAChE® hMAO-A® hMAO-B* ORAC® PAMPA-BBB®
1 (0] 6-OMe 4 1.5+£0.2 1.6+£04 59.8+3.7 n.d. 17115
2 0 6-OH 4 13+£03 7008 9.7+16 1.6+0.2 6.8+0.4
3 (0] 5,7-diOMe 4 32104 >100 >100 n.d. 194+1.7
4 (0] 5,7-diOH 4 19+0.6 228+15 >100 1.2+0.1 14.7£1.2
5 (0] 6,7-diOMe 4 1.0+£0.2 9.0+0.1 81104 n.d. 19.1+£1.5
6 0 6,7-diOMe 3 45+0.8 >100 >100 n.d. 18.8+1.3
7 NH 5-OMe 4 40+04 >100 152+1.0 n.d. 23.0+2.1
8 NH 6-OMe 4 23x0.1 >100 >100 n.d. 248+20
9 NH 6-OH 4 3.1+03 >100 >100 1.2+0.1 84+0.7
10 NH 7-OMe 4 23%0.2 >100 >100 n.d. 21.7+£19
11 NH 6,7-diOMe 4 45+0.3 >100 >100 n.d. 19.1+£1.5
12 NH 6,7-diOH 4 >10 >100 >100 0.5+0.1 8.8+0.7
13 NH 6,7-diOMe 3 >10 >100 >100 n.d. 151+£1.2
Donepezil 0.01+0.002 n.d. n.d. n.d. n.d.
(R)-Deprenyl n.d. 68.7 +4.2 0.017 +£0.002 n.d. n.d.
Iproniazid n.d. 6.7+0.8 75+04 n.d. n.d.
Moclobemide n.d. 161.4+19.4 >100 n.d. n.d.
Trolox n.d. n.d. n.d. 1.0 n.d.
Results are expressed as the mean £ SEM (n=3).
2ICso (UM).
bTrolox equivalents (mmol of trolox/mmol of tested compound).
“Permeability in the CNS (P, 10 %cm s77).
—_— 6
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Figure 3. Kinetic study on the mechanism of hAChE inhibition by hybrid 5. (A) Overlaid Lineweaver-Burk reciprocal plots of hAChE initial velocity at increasing sub-
strate concentration (ATCh, 0.2-1.6 mM) in the absence of inhibitor and in the presence of 5 (0-10 uM) are shown. Lines were derived from a least-squares analysis of
the data points. (B) Replot of slopes vs. inhibitor concentration for calculating K; as the intersection in the x-axis.
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disorders, such as selegiline (IC50=68.7 uM) and moclobemide
(ICso=161.4 uM)®.

The 4-chromenone derivatives 1 (R=6-OMe) and 4 (R=5,7-
diOH) showed a preference of at least 4.4-times for h(MAO-A com-
pared to hMAO-B, whereas the 5-methoxy-4-quinolone hybrid 7
was 6.6-fold more active in hMAO-B than in hMAO-A. Otherwise,
the 4-chromenone derivatives 2 (R=6-OH) and 5 (R=6,7-diOCHs)
exhibited a balanced inhibitory activity towards hMAO-A and
hMAO-B, with ICsgs in the low-micromolar range, between 7.0 and
9.7 uM. Interestingly, these values are very close to the ICsps dis-
played by the well-known antidepressant iproniazid®® (Table 1).

Furthermore, the antioxidant activities of new hybrids were
measured using the oxygen radical absorbance capacity assay
(ORAQ). Trolox, the aromatic part of vitamin E responsible for its
scavenging properties, was used as internal standard with the
arbitrary value of ORAC = 1.0. Results are expressed as trolox
equivalents (mmol of trolox/mmol of tested compound) in a com-
parative scale that indicates if a compound is a better (ORAC >
1.0) or a worse scavenger (ORAC < 1.0) than vitamin E. In this
assay, only hybrids bearing hydroxyl groups were tested, because
we reasonably expected that methoxy-derivatives would not
exhibit substantial radical capture capacities according to our pre-
vious experience in flavonoid derivatives®*>?. Thus, all assayed
hydroxyl hybrids displayed interesting ORAC values, ranging from
0.5 to 1.6-fold the trolox value. Best results were found in 6-
hydroxy derivatives (2 and 9, ORAC = 1.6 and 1.2, respectively)
and in the 5,7-dihydroxy-4-chromenone hybrid 4 (ORAC = 1.2).
The ORAC value clearly dropped for the 4-quinolinone - based
hybrid 12 with two adjacent hydroxyl groups in positions 6 and 7
(ORAC = 0.5).

Kinetic analysis of hAChE inhibition

The most potent hAChE inhibitor 5 (IC50=0.99 uM) was selected
for studying inhibition kinetics using the Lineweaver-Burk method.
The initial velocity of enzymatic inhibition was measured at four
concentrations of the substrate acetylthiocholine (ATCh,
0.2-1.6 mM), in absence and presence of increasing concentrations
of inhibitor 5 (0.5-10uM). For each inhibitor concentration,

Table 2. Inhibition of human hLOX-5 (ICs, pM)®.

Compd. X R Substitution 1G5 (UM)

1 0 6-OMe 4 124+05
2 0 6-OH 4 >100 (38%)
5 0 6,7-diOMe 4 724+22
6 (0] 6,7-diOMe 3 304+1.6
8 NH 6-OMe 4 >100

10 NH 7-OMe 4 82.8+4.1
13 NH 6,7-diOMe 3 36.6+3.1
(R,S)-Zileuton 0.15+0.03
NDGA 0.097 £0.019

“Results are the mean + SEM from three independent experiments.

Table 3. Affinity and selectivity towards o, and o, receptors.

plotting reciprocals of velocity vs. ATCh concentration (1/V vs. 1/
[ATCh]) gave straight lines that were fitted by least-squares ana-
lysis (Figure 3). As inhibitor concentration increased, both 1/V,qy
(y intercept) and —1/K,, (x intercept) also increased, meaning a
mixture of competitive and non-competitive mechanisms in the
enzymatic inhibition. This mixed pattern could be due to the sim-
ultaneous interaction of hybrid 5 with both CAS and peripheral
anionic site (PAS) of hAChE. Replot of slopes vs. inhibitor concen-
tration gave a straight line that was also fitted by least-squares
analysis and whose intersection on the negative x-axis provided
an estimated inhibition constant (K;) of 0.95 pM.

Prediction of the CNS-permeation

To check if new compounds could be able to reach their CNS-tar-
gets, we used the in vitro parallel artificial membrane permeability
assay for the blood-brain barrier (PAMPA-BBB) described by Di
et al.¥’, and partially modified by us for testing molecules with
limited water-solubility®®#%>"~>3, The passive CNS-permeation of
new compounds 1-13 through a lipid extract of porcine brain
was measured at room temperature. In each experiment, 11 com-
mercial drugs of known brain permeability were also tested and
their permeability values normalised to the reported PAMPA-BBB
data. According to the patterns previously established in the bibli-
ography®”, compounds with P, exceeding 4 x 10~®cm s~' would
be able to cross the blood-brain barrier (cns+), whereas those dis-
playing P, less than 2x 10 °cm s~' would not reach the CNS
(cns-). All new 4-chromenone — and 4-quinolone — DBMA hybrids
1-13 showed permeability values above 4 x 107%cm s~ in this in
vitro BBB model (Table 1) and thus, it is expected they could enter
into the CNS for interacting with their biological targets.

Inhibition of human BACE-1

New compounds were evaluated as inhibitors of the human
recombinant BACE-1 protein, using the fluorescence resonance
energy transfer (FRET) assay®®. Firstly, all compounds were tested
at 10uM giving inhibition percentages below 35%, with the
exception of the 6,7-dimethoxy-4-chromenone hybrid with a
meta-substitution in the central benzene ring 6, which blocked
around the 80% of the enzymatic activity. Then, the ICsy of 6 was
calculated from the plot of hBACE-1 activity vs. inhibitor concen-
trations (0.1-100 uM) giving a value of 6.7 + 0.8 uM.

Inhibition of human lipoxygenase-5 (hLOX-5)

A selection of new hybrids covering different structural motifs was
assayed as inhibitors of hLOX-5, followed the method described
by Pufahl et al.>>. Two well-known inhibitors, namely (R,S)-zileuton
and nordihydroguaiaretic acid (NDGA), were used as internal refer-
ences and results are gathered in Table 2. Tested compounds

Ki (um)°®
Compd. X R Substitution oqR o,R Selectivity vs. o1RP
1 [0} 6-OMe 4 0.48+0.05 1.78+0.43 37
2 (o] 6-OH 4 0.38+0.05 1.60+0.28 4.2
4 [0} 5,7-diOH 4 0.51+0.07 > 3.0 > 59
6 (o] 6,7-diOMe 3 0.53+0.07 1.30+0.35 2.5
Pentazocine 0.015+0.003 n.d.
DTG n.d. 0.054 +0.008

3Results are expressed as K; (LM) and are the mean+SEM of the experiments repeated in triplicates. “Selectivity vs. o,R was calculated as

Kio,R/Kio4R. DTG: 1,3-di-o-tolylguanidine.



were modest hLOX-5 inhibitors, the majority of them with ICsq val-
ues in the two-digit micromolar range.

The best hLOX-5 inhibitor was the 6-methoxy-4-oxochromene
hybrid 1 displaying an 1Csy of 12.4 uM. Interestingly, minimal struc-
tural modifications, namely replacement of the methoxy by a
hydroxyl group (2) or the change of the 4-oxo-chromene by a 4-
oxoquinoline ring (8), led to inactive compounds.
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Studies on sigma receptors

A selection of the most active hybrids in the previous experi-
ments, covering also different structural features, was assayed on
sigma receptors using competition experiments with radioli-
gand556. Mammalian ¢, and o, receptors were obtained from
guinea pig brain and rat liver, respectively. (+)-Pentazocine (a o;-
selective ligand) and 1,3-di-o-tolylguanidine (DTG, a o,-selective
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Figure 4. Upper panel: Details of compound 6 in the binding pocket of the hAChE (A), hLOX-5 (B), hBACE-1 (C), and &R (D). Compound 6 is shown as atom-coloured
sticks-and-balls (C, grey, N, blue, O, red) while the side chains of proteins residues mainly interacting with 6 are depicted as coloured sticks and labelled. Hydrogen
bonds are shown as black broken lines. Hydrogen atoms, water molecules, ions, and counterions are omitted for clarity. Lower panel: Per-residue binding free energy
decomposition of the main involved amino acids of the complex between 6 with hAChE (E), hLOX-5 (F), hBACE-1 (G) and ;R (H).
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ligand) were also evaluated for comparative purposes.
Independently from the position of substituents on the 4-oxo-
chromene ring and from the relative meta- or para-substitution of
central benzene, all tested hybrids showed selectivity for the o,
subtype with Kis in the sub-micromolar range, whereas Kis for the
a,R displayed one-digit micromolar values (Table 3).

Study of the theoretical medicinal chemistry alerts

In order to choose the best candidate for neurogenic studies, we
studied the medicinal chemistry alerts of new flavonoid — DBMA
hybrids 1-13 in two free databases, namely ZINC15 (http://zinc15.
docking.org/)”®> and SwissADME  (http://www.swissadme.ch/)”*.
According to the ZINC15 web site, none of the hybrids was high-
lighted as pan assay interference compound (PAINS) or aggregator
(see Table S1 in Supplementary Information). However, in the
SwissADME platform hybrid 12 was marked with a structural alert
(catechol), according to the Brenk method®®.

Molecular modelling rationale for the binding of compound 6
against its target proteins

Since 6,7-dimethoxychromone — DBMA 6 resulted to be the new
derivative with the most interesting MTD-profile, we carried out
molecular dynamics (MD) simulations in order to describe the dif-
ferent binding mechanisms against its biological targets.
Accordingly, a putative binding site for 6 was identified on
hAChE, hLOX-5, hBACE-1 and ¢;R (Figure 4(A-D)), by applying a
well-validated docking protocol®®™®8, Accordingly, MD simulations
of the resulting 6/protein complexes were carried out, and the
corresponding ligand/protein free energy of binding (AGping) Were
calculated via the MM/PBSA (Molecular Mechanics/Poisson-
Boltzmann Surface Area) approach’®, yielding values in agreement
with relevant experimental activity or affinity.

Afterwards, through a per-residue binding free energy decon-
volution (PRBFED) of the enthalpic terms (AH,.s), we were able to

Inner Part

Control

define and describe the different binding mechanisms of 6 to its
target proteins (Figure 4(E-H)). The quantification of the single
contribution of the main protein residues involved in ligand bind-
ing allowed us to rationalise the specific interaction within the dif-
ferent receptor cavities.

Starting from the esterase enzyme, the binding mode of 6
(Figure 4(A)) is fostered by a stable hydrogen bond between the
N-methyl nitrogen atom with the hydroxyl group of the hAChE
S125 side chain (AH,es= —1.71kcal/mol, Figure 4(E)). Furthermore,
the N-benzyl ring is involved in a =m-m interaction with W286
(AH,es= —1.21 kcal/mol), while the flavonoid core of 6 stacks
through the chromene moiety against the side chain of W86
(AH;es= —1.11 kcal/mol). Finally, the 6/hAChE complex is further
stabilised in the putative binding site through hydrophobic inter-
actions between the ligand and the side chains of Y124, V294,
F297, and F338 (> AH,es= —2.59 kcal/mol, Figure 4(E)). The sum of
these stabilising energies results in favorable AGp,g values of
—7.63£0.23 kcal/mol.

The binding free energy calculated for the 6/hLOX-5 complex
was slightly less favourable than that for hAChE, with a
AGping= —6.21 +0.25 kcal/mol. The docking pose of 6 (Figure 4(B))
within the hLOX-5 binding site reveals two stable hydrogen bonds
between the DBMA derivative and the lipoxygenase: the basic
nitrogen atom acts as acceptor and finds its donor counterpart in
the amidic -NH of the side chain of N613 (AH,.s=—1.50 kcal/mol),
while a methoxy group of 6 performs a hydrogen bridge
with Q557 (AH,es=—1.83 kcal/mol). Moreover, the aromatic and
hydrophobic portions of 6 are nestled in a cavity surrounded
by the hLOX-5 residues F169, F177, 1406, and L607
(D" AH,es= —3.08 kcal/mol, Figure 4(F)).

Molecular modelling procedure was further expanded to ana-
lyse the interaction between 6 and human hBACE-1. The favour-
able binding process thermodynamics reflects into a negative
AGping of —7.21+0.28 kcal/mol, supporting the good inhibitory
activity of 6 against hBACE-1. In details, the chromene moiety of 6
is involved in two hydrogen bonds with the secretase enzyme

Outer Part

Figure 5. In vitro neurogenic effects of chromone-based hybrid 6 (10 uM) on adult mice SGZ-derived NSCs. In the presence of compound 6, NS were grown for 7 days
and allowed to differentiate for 3 additional days. Immunocytochemical analysis shows the expression of two neuronal markers: TuJ1 clone (green) and MAP-2 (red), in
the inner and outer part of the NS. DAPI was used for nuclear staining. Scale bar: 20 um.
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(Figure 4(C)): the methoxy substituent interacts with the hydroxyl
group of T72 (AH,es=—1.32kcal/mol, Figure 4(G)), whilst the
acceptor carbonylic group engages its donor counterpart of D32
(AH,es= —1.24 kcal/mol). A further hydrogen bond is detected
between the N-CHs; group of 6 and the backbone amide oxygen
atom between F108 and F109 (3 AH=—1.21kcal/mol).
Additionally, unspecific and favourable contacts are been detected
between the lipophilic scaffold of 6 and the secretase residues
Y71, 1110, W115, and 1127 leaning the enzyme binding cavity
(5" AH,es= —2.81 kcal/mol).

We concluded our computational analysis with the description
of the binding mode of 6 onto o, R (Figure 4(D)). The interaction
spectrum resulting from the analysis of the corresponding MD tra-
jectory (Figure 4(H)) reveals a prototypical pattern of ligand-based
intermolecular interactions in the ¢;R cavity: (i) a n-n interaction
between the N-benzyl ring with the aromatic side chain of F133
(AH,es= —1.38 kcal/mol) and H154 (AH,.s=—1.33 kcal/mol); (ii) a
permanent salt bridge between the basic N-methyl nitrogen atom
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of 6 and the COO™ group of E172 (AH,es= —1.91 kcal/mol), and (jii)
a favourable network of hydrophobic interactions provided by a
good insertion of the DBMA derivatives into the a,R lipophilic
cavity surrounded by the side chains of residues W89, L105, F107,
W164, L182, and F184 (> AH,.s=—3.95 kcal/mol, Figure 4(H)). This
efficient intermolecular interaction scheme is reflected in the
good affinity of 6 toward o¢R, as testified by the favourable value
of the free energy of binding AGp;,q= —8.08 + 0.23 kcal/mol.

Neurogenic studies

Compound 6 with an interesting MTD-profile in hAChE, hLOX-5,
hBACE-1 and &R [ICso (hAChE)=4.5 uM; ICso (hLOX-5)=30 uM; ICso
(hBACE-1)=6.7 uM; and IC5q (07R)=0.53 pM], and without any medi-
cinal chemistry alert, was selected for neurogenic experiments.
Thus, we studied the capacity of the chromone-based hybrid 6 to
promote neurogenic effects in a primary culture of neural stem-

Table 4. The high scored metabolites of hybrid 6 with reasoning levels of “plausible” and “probable” predictions.
Biotransformation names, phase-l enzymes and toxicological effects predictions by Derek v3.2.0. Mutagenic risks assess-
ment by two complementary QSAR methodologies (Derek v3.2.0 and Sarah v3.0.0).

Derek v3.2.0 Sarah v3.0.0
Bio-transformation . . . .
Compd. Structure name (phase-I Toxicological Mut'agemc Mut.agenlc
enzyme) outcomes risks risks
o i p-Hydroxylation HERG channel
M3 . mn of monosubstituted inhibition in Inactive Equivocal
© o @”T“@ benzene compounds vitro
o (CYP450) Plausible
o Q Oxidative HERG channel
M9 m\(“ O-demethylation inhibition in Inactive Equivocal
(¢} (¢} N ;
I (CYP450) vitro
° Plausible
o 2 Oxidative HERG channel
M0 mn O-demethylation inhibition in Inactive Equivocal
HO O N i
I ) (CYP450) vitro
¢ Plausible
o i Oxidative HERG channel )
M19 mh O-demethylation inhibition in Inactive Nezgza:;lve
HO [} N i (J
\ (CYP450) vitro
roTro Plausible
/OJQ)%\'r Oxidative
M20 I H N-dealkylation No alerts fired Inactive Equivocal
NNV (CYPAs0) !
o]
HN Oxidative Negative
M21 | N-dealkylation No alerts fired Inactive 4g70/
(CYP450) ?
e}
_o o Oxidative
M22 | R N-dealkylation No alerts fired Inactive Equivocal
o o OH (CYP450)
o
0 Oxidative Negative
M23 HOJK© N-dealkylation No alerts fired Inactive l(g)OO/
(CYP450) °
o
_o Oxidative
M24 | N N-dealkylation No alerts fired Inactive Equivocal
o Y OAOH (CYP450)
Oxidative .
M25 HO/\O N-dealkylation No alerts fired Inactive Ni:%g;ve
0

(CYP450)
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cells (NSCs), isolated from the subgranular zone (SGZ) of adult rats
and grown as free-floating neurospheres (NS). Compound was
added to NS cultures for 7 days and then, NS were fixed to a sub-
strate and allowed to differentiate in the presence of 6 for a 3-
days additional period. Then, we evaluated the expression of f-llI-
tubulin (TuJ-1 clone; green) and microtubule-associated protein 2
(MAP-2, red) antibodies to visualise early and late neuronal matur-
ation, respectively. As shown in Figure 5, control (basal) experi-
ments (vehicle-treated cultures) only showed a few positive cells
for TuJ-1 or MAP-2, whereas in cultures treated with compound 6
the number of both TuJ-1 and MAP-2 marked cells was clearly
increased. These results indicate that chromone-based hybrid 6 is
able to induce the differentiation of NSCs to a neuronal pheno-
type in vitro.

In silico toxicity and metabolism of hybrid 6

With the aim of advancing one step further in the study of the
potential therapeutic success of hybrid 6, we performed an in sil-
ico prediction of its toxicity and metabolism, using the Derek
Nexus system’®. The toxicity predictions obtained with Derek
Nexus are based on the comparison of the structural features of a
given compound with one or more toxicophore patterns (struc-
tural alerts) in human species using the Lhasa’s knowledge data-
base. Among the 57 toxicity endpoints analysed for hybrid 6, for
56 of them no alerts were predicted at the minimum reasoning
level of “impossible” (See Chart S1 in the Supplementary
Information). Only in vitro inhibition of the human ether-a-go-go-
related gene (hERG) potassium channel was considered
“plausible”, although with a low-confidence under 67% according
to Judson et al.”®

To add value to the toxicological assessment of hybrid 6, we
performed an in silico prediction of its phase-l metabolism in
humans, obtaining 10 matching metabolites (Table 4). Potential tox-
icity was also evaluated for these metabolites with Derek Nexus, in
which the minimum likelihood to consider a toxic result in the ana-
lysis was "plausible”. Results showed that six metabolites were not
associated with any structural alerts for toxicity by Derek, and four
(M3, M9, M10 and M19) were associated to a “plausible” hERG
channel inhibition in vitro, also with a confidence under 67%.

Furthermore, each predicted metabolite was selected to evalu-
ate its toxicity and mutagenic potential under the ICH M7 guide-
line®" and results are also gathered in Table 4. The carcinogenic
risk assessment was carried out with two complementary QSAR
methodologies, Derek (KB 2018 1.1) and Sarah (Model 2.0), which
predicted an absence of structural alerts for four of the ten
metabolites of the hybrid 6. According to the ICH M7 guide, these
results are sufficient to conclude that there is no mutagenic con-
cern and no further tests are recommended for them (Class 5).
However, six metabolites obtained an uncertain result, since Derek
Nexus predicted a confident negative prediction, while Sarah gave
an equivocal prediction. Nevertheless, the equivocal predictions
by Sarah are not enough strong to overturn the negative result
obtained by Derek. Whereas they are all based on negative results,
they have low percentages of confidence, and the confidence
level was settled below the 8% as equivocal.

For the parent compound hybrid 6, in spite of hERG channel
inhibition in vitro, no other toxicity alerts were fired. Four of the
predicted metabolites also showed the same alert. This alert
describes a structure-based pharmacophore developed primarily
from compounds that have been reported to be inhibitors of the
hERG potassium channel®®2. The blockage of this channel can
lead to the lengthening of the ventricular repolarization phase in

the heart, and is characterised on the electrocardiogram as a pro-
longation of the QT interval®®. As this is a common feature that
makes molecules fall in the preclinical phases, a more deeper
investigation should be performed for hybrid 6 and its four
metabolites prior to pass to advanced pharmacological assays.

Conclusions

Thirteen new 4-chromenone - DBMA and 4-quinolone - DBMA
hybrids were obtained by connecting flavonoid-related structures
and an AP2238 fragment. In general, these MTDLs displayed
selective inhibition of hAChE (ICs0s =0.99-4.5 uM) compared with
hBuChE (ICsos > 10uM) and were CNS-permeable according to
the in vitro PAMPA-BBB assay. Some hybrids showed micromolar
inhibiton of hMAO-A  (IC5os=1.6-22.8uM) and hMAO-B
(IC50s =8.1-59.8 uM), in many cases with ICs, values very close or
better than the well-known antidepressants selegiline, iproniazid
and moclobemide, concomitantly used in the treatment of AD
and PD. Compounds bearing any hydroxyl group in the flavonoid
core are good radical scavengers, in some cases 1.6- and 1.2-fold
better than vitamin E. Flavonoid - DBMA hybrids were not able to
inhibit hBACE-1, with the exception of compound 6 that showed
an ICso value of 6.7 uM. Several hybrids were determined to be
micromolar inhibitors of hLOX-5, 4-chromenone derivatives being
better than their 4-quinolone counterparts. Regarding sigma
receptors, all tested hybrids showed affinity values in the micro-
molar and sub-micromolar scales, with a selectivity of at least 2.5-
times in favour to the ¢;R subtype (Ki=0.4-0.5 M) compared to
the o,R.

N-(3-((Benzyl(methyl)amino)methyl)phenyl)-6,7-dimethoxy-4-
oxo-4H-chromene-2-carboxamide (6), with an interesting MTD-pro-
file in hAChE, hLOX-5, hBACE-1 and 4R [ICso (hAChE)=4.5 uM; ICs
(hLOX-5)=30 uM; 1Cso (hBACE-1)=6.7 uM; and 1C5q (04R) = 0.5 uM],
was selected for a phenotypic assay to study its capacity to pro-
mote neurogenic effects. In a primary culture of neural stem-cells
from the SGZ of adult rats, hybrid 6 stimulated the differentiation
of neural stem-cells to a neuronal phenotype and thus, this hybrid
could be a therapeutic agent promoting brain auto-repair proc-
esses and blocking early steps of neurodegenerative cascades.

Molecular dynamics simulations of hybrid 6 in hAChE, hLOX-5,
hBACE-1 and ;R have shown the main interactions with these pro-
teins, providing a rational about the experimental values obtained.

The toxicological alerts for hybrid 6 and its predicted metabo-
lites were promising and relative safe profiles were expected.
Nevertheless, the hERG channel inhibition in vitro alert was
showed, although with a low-confidence below 67%. In next
works, in vivo studies of hybrid 6 will be carried out to verify its
therapeutic actions, its potential cardiac effects, as well as its toxi-
cological behaviour.
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