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Abstract
Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic
charge-transfer salts, such as κ-(BEDT-TTF)2Cu[N(CN)2]Cl, we investigatemagnetic and charge-
ordered phases that emerge in an extended two-orbital Hubbardmodel on the anisotropic
triangular lattice at 3/4 filling. Thismodel takes into account the presence of two organic BEDT-
TTFmolecules, which form a dimer on each site of the lattice, and includes short-range
intramolecular and intermolecular interactions and hoppings. By using variational wave functions
and quantumMonte Carlo techniques, we find two polar states with charge disproportionation
inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in
the strongly correlated limit and their actual charge pattern is determined by the relative strength of
intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by
magnetism, since these polar phases can be stabilized also without antiferromagnetic order and
provide a possiblemicroscopic explanation of the experimental observations. In addition, a
conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar
charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern)
can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are
weak,metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity
that generates honeycomb-like charge order.

1. Introduction

Orbital, charge, and spin degrees of freedom are intertwined in correlated electron systems and the search for
unconventional quantumphases emerging from the interplay of these degrees of freedom is a very active field
of research in condensed-matter physics. In particular, multiferroicity [1], wheremagnetism and
ferroelectricity coexist, has received a lot of attention in recent years. Conventionally, one can divide
multiferroics into two groups: In type-Imultiferroics, ferroelectricity andmagnetism have different origins
[2], while in type-IImultiferroics, ferroelectricity occurs only in themagnetically ordered state, where, for
example, it is induced by helical magnetic order in geometrically frustrated antiferromagnets [3–5]. Recently,
charge-order-driven ferroelectricity was proposed in organic charge transfer salts [6], such as
κ-(ET)2Cu[N(CN)2]Cl [7] andα-(ET)2I3 [8–10], where ET stands for BEDT-TTF [bis(ethylenedithio)-
tetrathiafulvalene]. In the former one, ferroelectric and antiferromagnetic order appear simultaneously and
the emergence of charge order is still under debate [11–13]; instead, the latter one is nonmagnetic and
ferroelectricity is observed in the presence of pronounced charge order. These observations have opened a
debate about the nature and interplay of charge order, ferroelectricity andmagnetism in thesematerials,
whichwill be at the focus of this study.
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The building blocks of theκ-(ET)2X family (where X indicates amonovalent anion) are strongly-coupled
dimers of ETmolecules forming a triangular lattice. Thesematerials have beenwidely studiedwithin the half-
filled single-bandHubbardmodel on the anisotropic triangular lattice, where only a single orbital per dimer is
retained [14]. Indeed, because of the strong hybridization between ETmolecules belonging to the same dimer,
the gap between the bonding and anti-bonding orbitals is large; the former one is fully occupied, while the latter
one is half filled, thus justifying a single-band picture. However, this coarse-grained approach cannot explain the
possible emergence of ferroelectricity (ormultiferroicity) in thesematerials, which has been suggested to arise
from a charge disproportionationwithin each dimer. In this sense, theminimalmodel that could capture these
featuresmust include twomolecular orbitals on each dimer and 3/4filling.

In the last few decades there have been several attempts to obtain accurate values of the parameters defining
microscopicmodels that would capture the low-energy properties of charge-transfer salts. The hopping
integrals between the differentmolecular orbitals are found to significantly affect the nature of the ground states,
as already reported in thefirstHartree–Fock studies of correlatedmodels for charge-transfer salts [15–17]. These
considerationsmotivated a revision of thefirst estimates of the hopping parameters, that were based on the
extendedHückelmethod [18], bymeans of density-functional calculations. Here, consistent results for the
hopping parameters of theκ-(ET)2X family have been reported by three independent calculations [19–21], while
slightly different values have been recently proposed [22]. Besides the role of hopping parameters, the
importance of Coulomb interactions between differentmolecules in organic systems has been intensively
discussedwithin ab-initio calculations [19, 23–25].More recently, the analysis of various (low-energy)
multiorbitalmodels also points to the key role of intermolecular Coulomb interactions in order to describe
complex phases relevant for charge-transfer salts. In particular, possible stripe and non-stripe charge orderings
[26, 27] and themutual exclusion of ferroelectricity andmagnetism [28] have been discussed for variousmodels
with intermolecular interactions. In addition, the existence of a dipolar spin-liquid phase has been suggested
[29, 30] (possibly also explaining the dielectric anomaly inκ-(ET)2Cu2(CN)3 [31]). Furthermore, the two-orbital
Hubbardmodel has been claimed to be relevant for the description of superconductivity in charge-transfer salts
[32–35], including its proximity to charge-ordered phases [36, 37]. In addition, spin and charge fluctuations
near themetal–insulator transition inmultiorbitalmodels have been analyzed [38].

In this paper, we concentrate on the question of what kind of charge orderings are driven by competing
Coulomb interactions andwhich is their relation to ferroelectricity andmagnetism. By using variationalMonte
Carlomethods, we investigate the phase diagramof an extended two-orbital Hubbardmodel on the triangular
lattice at 3/4filling. Our results show that there exist two polar charge-ordered insulating phases, where charge
disproportionation occurs within the dimer, and one nonpolar charge-ordered phase, with charge
disproportionation between different dimers. All these phases are present also in the absence ofmagnetic order,
indicating that they are not driven bymagnetism.Whenmagnetism is also included in the variational wave
functions, wefind that it coexists with charge order. These results could explain the observed behavior in
κ-(ET)2Cu[N(CN)2]Cl. On the contrary,magnetism is crucial to stabilize the uniformdimer-Mott insulator
(DMI), which appears in a narrow region between the two polar phases. In this respect, it has been
experimentally suggested that a transition between theDMI and charge-ordered states is a common feature
among organic systems [39]. Finally, when intramolecular and intermolecular Coulomb interactions are small
and similar inmagnitude, ametallic phase emerges, featuring charge order in the formof an effective
honeycomb-lattice superstructure.

The paper is organized as follows: in section 2, we present the extended two-bandHubbardmodel for the
organic charge transfer salts and the variationalMonte Carlomethod to study the phase diagram at zero
temperature. In section 3, we show the numerical results and discuss the nature of charge-ordered phases.
Finally, in section 4, we drawour conclusions.

2.Model andmethods

2.1. The extended two-orbital Hubbardmodel
In the following, wewill consider amodel inwhich every site (i.e. dimer) accommodates two orbitals
(hereinafter referred to as c and f ), one for each ETmolecule. The original lattice is triangular, with hopping and
interaction terms depicted infigure 1(a). An equivalent description is given by considering a two-orbitalmodel
on the square lattice, see figure 1(b). Here, we can define a partition in two sub-lattices  and  , where the ET
molecules formhorizontal and vertical dimers, respectively. The full Hamiltonian, in this latter description, is
given by:

, 1t V U   = + + ( )
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are thedensity operator for c ( f ) electrons at site i.Hopping and interaction terms canbedivided into those that
connect c and forbitals and those that connect orbitals of the samekind, seefigure1(b). Belonging to the former class,
there are terms connectingorbitalswithin the samedimer (b1-type), along x and ynearest-neighbor sites (q-type), and
along the x=ydiagonal (b2-type); instead,p-type terms connect orbitals at nearest-neighbor sites andbelong to the
latter class. Accordingly, thenoninteractingHamiltonian t contains fourhoppingparameters, i.e. tb1, tb2, tq, and tp.
Similarly, the interactingHamiltonian V contains four intermolecularCoulomb interactions, i.e.Vb1,Vb2,Vq, and
Vp.Note that the translational symmetry and the consequent partitionbetween and  sub-lattices is onlydue to
thepresence ofp-type terms. Finally, U describes theHubbard-U interactionon eachmolecule.Our calculations
are performedonfinite clusters of size N Ls

2= (where on each site there are twomolecules, i.e. orbitals), with
periodic–antiperiodic boundary conditions onbothdirections. Thefilling factor isfixed to be 3/4.

As discussed in [35], this two-orbitalmodel reduces to the single-bandHubbardmodel (at half filling), when
the intradimer hopping is very large (i.e. t t t t, ,b b p q1 2 ). Furthermore, at t 0b2 = and t 0p = (or t 0q = ) the
Hamiltonian reduces to the recently investigatedHubbardmodel on the honeycomb latticewith anisotropic
terms [40].

In this work, we consider the following hopping parameters (in units of tb1):

t t t t1, 0.359, 0.539, 0.221, 5b b p q1 2= = = = ( )

which are based on the results obtained by density functional theory calculations onκ-(ET)2Cu[N(CN)2]Cl
[35, 41]. The noninteracting band structure is reported infigure 2. As far as the interaction terms are concerned,
for realistic systems, one expectsU to be the largest Coulomb repulsion term andVb1 to be the second largest
one, whileVb2 should be comparable toVp andVq.

Figure 1. (a)Dimer alignment inκ-(ET)2X charge-transfer salts. (b)Equivalent square-lattice structure used in the calculations.
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2.2. The atomic limit
Wefirst discuss the possible ground states in the atomic limit, i.e. for t t t t 0b b p q1 2= = = = at 3/4 filling. If the
only finite interaction is the intramolecularHubbard-U term, the ground state is highly degenerate, with all
possible charge patterns havingNs doubly-occupiedmolecules. A further degeneracy arises from the remaining
Nsmolecules being singly-occupied, where any spin configuration gives the same energy. The charge degeneracy
can be lifted by including the intermolecular interactionsVb1,Vb2,Vp, andVq.We concentrate here on three
particular relevant cases that show regular patterns of charge order (see figure 3): two of them are polar charge-
order insulators (hereinafter denoted as PCOI and PCOI ¢), since there is a charge disproportionation inside
each dimer, and one is a nonpolar charge-order insulator (denoted asNPCOI), since the twomolecules of the
same dimer have the same amount of charge. Their energies per site (i.e. per dimer) can be easily evaluated in the
atomic limit:

E E V , 6qpolar = + ( )

E E V , 7ppolar = +¢ ( )

E E V V
1

2
, 8b bnonpolar 1 2= + +( ) ( )

wherewe defined:

E U V V V V2 4 4 2 . 9b p q b1 2= + + + + ( )

The phase diagram in theV Vp q– plane is shown infigure 3.Here,Vb1 andVb2 onlymodify the phase boundaries
between the polar and nonpolar charge-ordered phases. TheNPCOI appears when bothVp andVq dominate

Figure 2.Band structure for the set of parameters given in equation (5). Four bands are present because there are two orbitals per site
and two inequivalent sites with vertical and horizontal dimers, see figure 1.

Figure 3. Schematic phase diagramofmodel equation (1) in the atomic limit (t t t t 0b b p q1 2= = = = ), with two polar charge-
ordered insulators (PCOI andPCOI ¢) and one nonpolar charge-ordered insulator (NPCOI). Large ovals represent doubly occupied
molecules, while small ovals represent singly-occupiedmolecules. The spin configurations on singly-occupiedmolecules have
macroscopic degeneracy.
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overVb1 andVb2. Otherwise, the two polar states are stable and the competition betweenVp andVq determines
the detailed charge pattern. All three phases are degenerate forV V V V 2p q b b1 2= = +( ) .

2.3. Variational wave functions
Our numerical results are obtained bymeans of the variationalMonte Carlomethod, that is based on the
definition of suitable wave functions that approximate the ground-state properties beyond perturbative
approaches.We consider Jastrow–Slater wave functions [42–45], which are described as:

. 10Yñ = Fñ∣ ∣ ( )

Here, is a long-range density–density Jastrow factor given by:

v n nexp
1

2
, 11

i j
ij i j

, , ,

 å= -
a b

ab a b
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

where ni
a is the electronic density at site i and orbital c f,a = , while vij

ab are translational invariant variational
parameters, that are optimized by only imposing translational and inversion symmetry in the square lattice
defined by R x y,i i i= ( ). Fñ∣ is a noninteracting fermionic state that is defined as the ground state of an auxiliary
Hamiltonianwith site-dependent chemical potentials andmagnetic order parameters. Such a choice of an
auxiliaryHamiltonian allows us to describe both charge and spin orders induced by the intermolecular Coulomb
interactions [40, 46, 47]. In particular, for the insulating states, we consider:

, 12tins COI AF   = + + ( )

where t is the kinetic part of equation (2) and

n ne , 13Q R
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Here, Q ,p p= ( ) describes theNPCOI (with c fm m= ) and the PCOI (with c fm m= - )phases offigure 3, while
Q 0, 0= ( ) (with c fm m= - ) gives the PCOI ¢ phase offigure 3.We optimize the variationalmagnetic
parameters at charge-rich and charge-poormolecular orbitals independently, according to the condition:
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which implies that m1
a and m2

a are associated to themagnetization of the charge-rich and charge-poormolecular
orbitals on site i, respectively. In general, incommensuratemagnetic ordermay coexist with commensurate
charge order; however, this is beyond the scope of the present paper, andwe restrict ourselves to commensurate
(and collinear)magnetic order. Notice that, within our variational description based upon an auxiliary
Hamiltonian, it is particularly easy to consider nonmagnetic states, which can be described by taking
m m 0i

c
i
f= = in equation (14).

In order to describemetallic states, we consider the following auxiliaryHamiltonian:

, 16tmet COM  = + ( )

where

n n ; 17
i

R i
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i
c

R i
f

i
f

COM å m m= +[ ] ( )( ) ( )

here, the sublattice indexR(i) at position Ri is defined as:

R i x ymod , 6 , 18i i= -( ) ( ) ( )

which allows a 12-sublattice charge ordering, since there are two orbitals on each site.We neglect in the
calculation the possible presence ofmagnetic order in themetallic states.

In order to exclude the presence of further ordered phases in the explored regions of the phase diagram,we
have also employed unbiasedwave functions, where different charge orderings can spontaneously emerge. In
particular, we constructed a noninteractingwave function Fñ∣ as the ground state of the tight-binding

Hamiltonianwith site-dependent chemical potentials i
cm and i

fm :

n n , 19t
i

i
c

i
c

i
f

i
f

full  å m m= + +( ) ( )

where the chemical potentials are variational parameters independently optimized for each site i (several initial
configurations of i

cm and i
fm have been chosen, in order to assess the possibility to remain stuck in localminima).

Since the number of parameters to be optimized grows as 2Ns, we considered this approach only forNs= 36. In
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this case, we have observed that the selected charge orderings are consistent with the states described by the
simpler approach above. In addition, we notice that charge order can be also generated by a translationally
invariant Jastrow factor, without explicitly breaking the symmetry in the Slater determinant, as shown in
[46, 47]. The advantage is that we do not need to assume a priori any type of charge ordering and, if long-range
order exists, charge-ordered states should be selected by the optimization of the Jastrow factor. In general, for the
chosen set of hoppings and interaction terms, we never found charge orders that cannot be captured by the
previous parametrization of equations (13) and(16).

Given the presence of the correlation term (i.e. the Jastrow factor), an analytical evaluation of the variational
energy or of any correlation function is impossible on large sizes; nevertheless, a standardMonte Carlo sampling
can be employed to obtain all the physical quantities with high accuracy.

3. Results

3.1. Phase diagram for largeU
Wenow investigate how the hopping terms in equation (1)modify the phase diagramobtained for the atomic
limit, in the regionU tb1 . The schematic phase diagram is shown infigure 4. The three charge-ordered phases
obtained in the atomic limit are stable also in the presence offinite values of the hopping terms; however,
magnetic order is generated from virtual hopping processes involving charge-poormolecules, which formone-
dimensional patterns in the lattice and are effectively half filled in all these phases. Antiferromagnetic
correlations are then expected along these one-dimensional chains, which are formed by the bondswith
hopping tb1 and tb2 for the nonpolar state and by the bondswith hopping tp (tq) for the PCOI ¢ (PCOI). Therefore,
in the nonpolar charge-ordered state, the two spins on themolecules of the same dimer have opposite
orientations, thus implying that the dimer has no netmagnetization. By contrast, the two polar states show
ferromagnetic spin correlationswithin the dimers; here, each dimer contains one charge-rich and one charge-
poormolecule, themagnetization being large in the latter one.Moreover, we observe long-range
antiferromagnetic order of themagneticmoments of dimers.

In addition to these three states, a uniformDMI intrudes between the polar phases. This correlated phase
should appear whenU ismuch larger than all theV terms, in the regionwhereVp andVq are competing [15–17].
Here, spin correlations are ferromagnetic within each dimer, since there is an average of three electrons per site:
two electrons have opposite spins and do not contribute to themagneticmoment, which is fully due to the third
electron that is delocalized between the twomolecules. Similarly to the two polar charge-ordered states, also here
the spins of the dimers possess long-range antiferromagnetic order.Wefind that the transitions between the
DMI and the polar charge-ordered phases (PCOI and PCOI ¢) are continuous (see below). Close to the
boundaries between nonpolar and polar charge-ordered phases, theDMI state can also be stabilized; however its
energy remains higher than the energies of the other phases, indicating that it is ametastable state.

In order to understand the nature of the charge properties of all the insulating phases, we calculate the total
charge structure factorN(q) and the charge-disproportionation structure factor N qCD( ), defined as:

Figure 4. Schematic phase diagramofmodel equation (1) for largeU tb1. In addition to the phases of the atomic limit (seefigure 3),
the uniformdimer-Mott insulator (DMI) appears. Here, the points wherewe performed the variational calculations have been
marked by green up-triangles (PCOI ¢), blue down-triangles (NPCOI), red squares (PCOI), and violet diamonds (DMI). Notice that
finite nonzero hopping terms generate effective super-exchange couplings that stabilize antiferromagnetic order.

6

New J. Phys. 19 (2017) 103033 RKaneko et al



N q
N

n n n n
1

e , 20q R R

s i j
i
c

i
f

j
c

j
f

,

i i jå= á + + ñ -( ) ( )( ) ( )·( )

N q
N

n n n n
1

e , 21q R R

s i j
i
c

i
f

j
c

j
f

CD
,

i i jå= á - - ñ -( ) ( )( ) ( )·( )

where ...á ñ indicates the expectation value over the variational wave function of equation (10). Here, N q 0=( ) is
set to zero. Themetallic or insulating character can be assessed by inspecting the small-q limit of the total charge
structure factor. Indeed, in the limit q 0∣ ∣ , qN q µ( ) ∣ ∣ for ametal, while qN q 2µ( ) ∣ ∣ for an insulator
[48, 49]. In addition, charge order is indicated by the presence of a Bragg peak inN(q) or N qCD( ). In the former
case, charge order is characterized by charge-rich dimers on one sublattice and charge-poor dimers on the other
one, while, in the latter case, charge disproportionation occurs within the dimers.

In the following, we fix theCoulomb interactions toU t 10b1 = ,V t 4b b1 1 = , andV t 2b b2 1 = , and varyVp

andVq.Within this choice, in the atomic limit, the polar and nonpolar phases are degenerate forV V t3p q b1= = .
As shown infigure 5, all the phases presented in the phase diagrams are insulating, since qN q 2µ( ) ∣ ∣ in the limit
q 0∣ ∣ , both along the qy= 0 and the qx= qy lines in reciprocal space. Then, each insulating phase can be fully
characterized byN(q) and N qCD( ), see figures 6 and 7. TheDMI does not show any Bragg peak either inN(q) or
in N qCD( ) (figures 6(d) and 7(d)), suggesting that no long-range charge order occurs. The nonpolar charge-
ordered state shows the Bragg peak at Q ,p p= ( ) inN(q) (figure 6(c)), but no sharp peaks in N qCD( )
(figure 7(c)). This implies that staggered charge disproportionation appears between different dimers, but not
within the dimers. Finally, the polar charge-ordered states show the Bragg peak at Q 0, 0= ( ) (PCOI ¢) or
Q ,p p= ( ) (PCOI) in N qCD( ) (figures 7(a) and b)), but no sharp peaks inN(q) (figures 6(a) and (b)). This fact
indicates charge disproportionationwithin the dimers, while the number of electrons in each dimer is constant.
Each orbital has the same number of electrons at each site for Q 0, 0= ( ), while each orbital alternates between
charge-rich and charge-poor configurations for Q ,p p= ( ), see figure 4.

Remarkably, all polar and nonpolar phases can be stabilizedwithin the variational approach alsowithout
consideringmagnetic order in the Slater determinant. By contrast, theDMI cannot be stabilizedwithout
including the AF of equation (14), see figure 8. The charge patterns are similar to the ones that have been
obtained previously with the inclusion ofmagnetic order (not shown).

3.2. Competition between charge andmagnetic orders
We focus nowon the interplay between charge and spin degrees of freedomnear the boundary of the polar
charge-ordered phases. In particular, we show the numerical results along theV V t3p q b1+ = line (stillfixing

Figure 5.Total charge structure factor for the four states infigure 4, divided by themomentum: qN q( ) ∣ ∣. qN q 2µ( ) ∣ ∣ for q 0∣ ∣ in
all cases, suggesting insulating behavior. Data are shown along the qy= 0 (red) and the qx= qy (blue) lines in the Brillouin zone, for
three lattice sizes: L=6 (squares), L=8 (circles), and L=10 (triangles).
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U t 10b1 = ,V t 4b b1 1 = , andV t 2b b2 1 = ), which crosses the two polar and theDMI phases. The absolute value
of the difference between the optimized chemical potentials c fm m-∣ ∣ for orbitals c and f (see equation (13)) can
be used as a diagnostic to detect polar and nonpolar states. As shown infigure 9, wefind that c fm m-∣ ∣ isfinite
forV t 1.3p b1  andV t 1.7p b1  , while it vanishes in a narrow but finite region for V t1.4 1.6p b1  ,

indicating the existence of theDMI. In addition, c fm m-∣ ∣does not show any evidence of discontinuities at the
transition points, strongly suggesting that the three phases are continuously connected. Indeed, near the phase
boundary obtained in the atomic limit (V t 1.5p b1 = ) it is not possible to stabilizemetastable wave functions
with higher energies.

To further investigate the connection among these three phases, we calculate the charge-disproportionation
structure factor as function ofVp, as shown infigure 10.WhenVq (Vp) is sufficiently large, N qCD( ) shows a sharp
peak at Q 0, 0= ( ) (Q ,p p= ( )) (figures 10(a) and (b), respectively). By contrast, whenV Vp q» , N qCD( ) shows
a broad crest along the q q 2x y p+ = direction (figures 10(c)–(e)). Importantly, there are no divergences in the

thermodynamic limit, since the crest remainsfinite when increasing the size of the cluster. The peculiar one-
dimensional-like shape of N qCD( )might be understood in the following simple way: forV Vp q» , the emergence
of charge order is controlled only byVb1 andVb2, which define diagonal chains in the lattice, see figure 1. It is
then natural to expect that correlations do not show any dependence on the transverse direction.

Figure 6.Total charge structure factorN(q), as a function of q , for the four states in figure 4.Only theNPCOI state has a sharp peak at
Q ,p p= ( ), corresponding to interdimer charge disproportionation.

Figure 7. Structure factor for charge disproportionation N qCD( ), as a function of q , for the four states in figure 4.Only the PCOI and
PCOI ¢ states have a sharp peak at Q ,p p= ( ) and at Q 0, 0= ( ), respectively, indicating charge disproportionationwithin the
dimers.
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The absence of charge disproportionation for V t1.4 1.6p b1  is clearly demonstrated by performing the

size scaling of N Q LCD
2( ) for L  ¥. The results are reported infigure 11. ForV t 1.3p b1  andV t 1.7p b1  ,

we have that N Q LCD
2( ) isfinite for Q 0, 0= ( ) and Q ,p p= ( ), respectively. Instead, for V t1.4 1.6p 

this quantity goes to zero for L  ¥, suggesting that theDMI is stable in this region.
Even if all the charge-ordered phases are present also in the absence ofmagnetic order, all of them are found

to possess stablemagnetic order when this possibility is included in the variational state, as shown infigure 12.
TheDMI shows the same absolute value of themagneticmoment for the orbitals c and f, as expected for a charge
uniform state.When the intersite Coulomb interactions become anisotropic (i.e. V V 0p q- >∣ ∣ ), magnetic
orders for the orbitals c and f start to deviate. This is due to the fact that the charge-rich (charge-poor)molecular
orbitals possess a smaller (larger)magneticmoment in the polar charge-ordered phases. Notice that the PCOI
state has a largermagnetic order than the PCOI ¢ one. Thismay be due to the anisotropy in the hopping terms.
Indeed, in the PCOI state the singly-occupiedmolecules are connected by tq, while in the PCOI ¢ one they are
connected by tp; since t tp q> (see equation (5)) the latter case hasmore chargefluctuations (i.e. it is closer to a
metal–insulator transition), thus implying smallermagneticmoments.

Figure 8.The same as infigure 5, butwithout including antiferromagnetic order in the variational wave functions.

Figure 9.Absolute value of the difference between the optimized orbital chemical potentials c fm m-∣ ∣ as a function of V tp b1. The
PCOI and PCOI ¢ states are continuously connected to theDMI state. Data are shown for three lattice sizes L=6 (squares), L=8
(circles), and L=10 (triangles).
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3.3. Twelve-site orderedmetallic phase
Finally, we focus our attention on the charge-orderedmetal (COM) that appears for small values ofU tb1.
Therefore, we nowfixV t 4b b1 1 = ,V t 3.5p b1 = , andV t 3q b1 = and varyU tb1 andV tb b2 1. The phase diagram
is shown infigure 13(a). Here, a largemetallic phase, with honeycomb-like charge ordering, appears, for
relatively small values of the intramolecular interaction. This charge-ordered pattern is similar to the three-
sublattice one [46, 50, 51], which has been stabilized on the triangular lattice for intermediate values of the
nearest-neighbor interaction. In our case, the periodicity is extended to 12 sites due to the anisotropy of the
parameters.

The emergence of the honeycomb-like COMcan be easily understoodwhen all the bonds (of b1-, b2-, p-, and
q-type) are equivalent. In this ‘isotropic’ limit, when considering eachmolecule as an independent site, the
underlying lattice becomes triangular, seefigure 13(b). In this case, by decreasing the intramolecular Coulomb
interactionU, there is an insulator tometal transition, with ametallic phase below the critical point.Moreover,
since intermolecular Coulomb interactions screen the actual value ofU, themetallic phase is evenmore stable

Figure 10.Evolution of the charge-disproportionation structure factor N qCD( ) as a function of q along the V V t3p q b1+ = line for the
PCOI ¢, PCOI, andDMI states infigure 4.

Figure 11.Evolution of N QCD( ) for Q 0, 0= ( ) (green) and Q ,p p= ( ) (red), divided by L2, as a function of V t V t3p b q b1 1= -/ / .
TheDMI phase is stabilized in a narrow regionwhere both peaks in N QCD( ) donot diverge with the system size. Data are shown for
three lattice sizes: L=6 (squares), L=8 (circles), and L=10 (triangles).
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when theVʼs are present in themodel. However, the presence of intermolecular Coulomb interactions leads to a
spontaneous symmetry breaking in the translational symmetry and to charge disproportionation, that on the
triangular lattice it is natural to assumewith a three-sublattice ordering A B C– – . For an average occupation per
site (i.e.molecule) n 3 2= , the only possible choice tominimize the energy loss due to the intermolecular
interactions is then to reduce the electron occupation on one sublattice and increase it on the other two (the
limiting case being nA= 0.5 and n n 2B C= = ).

We investigate now the stability of the COMagainst a normalmetal when decreasing the intermolecular
interactions. In this case, we vary all the Coulomb terms together, takingV tb b1 1 a= ,V t 0.5b b2 1 a= ,
V t 0.875p b1 a= , andV t 0.75q b1 a= , while the intramolecular interaction isfixed toU t 6b1 = . As shown in
figure 14, for 2a the ground state is found to be a uniformmetal, with no charge disproportionation. Charge
order appears for 2.5a » and is characterized by the rich–rich–poor pattern. A direct comparison between the
COMat 4a = and the uniformmetallic phase is presented infigure 15. Both phases are indeedmetallic, since

qN q µ( ) ∣ ∣ for smallmomenta (figures 15(a), (b)). On the contrary, the formation of charge order in theCOM
phase, is signaled by the appearance of strong peaks in both the total charge structure factorN(q) and the
structure factor for charge disproportionation N qCD( ), corresponding to the real-space configuration illustrated
infigure 13(b).

4. Summary and conclusions

By using variational wave functions and quantumMonteCarlo techniques, we have investigated the ground-
state phase diagramof an extended two-orbital Hubbardmodel at 3/4filling on the anisotropic triangular

Figure 12.Optimizedmagnetic order parameters for the charge-rich (m1
a) and for the charge-poor (m2

a)molecules, as a function of
V tp b1. m m1 2<a a in the charge-ordered phases, while they become equal in the uniformDMI.Data are shown for three lattice sizes:
L=6 (squares), L=8 (circles), and L=10 (triangles).

Figure 13. (a)Phase diagram in theU Vb2– plane, obtained by fixing V t 4b b1 1 = , V t 3.5p b1 = , and V t 3q b1 = . Three phases are
present: the nonpolar charge-ordered insulator (NPCOI), the polar charge ordered insulator (PCOI), and a 12-sublattice charge
orderedmetal (COM). The location of the transition between theNPCOI and PCOI phases for largeU is in agreement with the atomic
limit, see figure 3. (b) Schematic charge configuration of the 12-sublattice charge-orderedmetal.
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lattice, which is relevant for theκ-(ET)2X family of organic charge-transfer salts. As a representative example, we
have chosen the hopping parameters that correspond toκ-(ET)2Cu[N(CN)2]Cl and varied the interaction
terms. For large values of the intramolecular repulsionU and by varying the strength of the competing
intermolecular Coulomb interactions, we stabilize two polar and one nonpolar charge-ordered insulating
phases, as well as a uniformDMI. All these phases possesmagnetic order, which ismainly determined by the
behavior of the spins at the charge-poormolecules (that are effectively at halffilling).We have also found that the
DMI is continuously connected to the two polar charge-ordered states: when the anisotropy between the
intersite Coulomb interactionsVp andVq goes to zero, the Bragg peaks of the two polar phasesmelt and form a
one-dimensional-like structure. For smaller values of the intramolecular interactionU, wefind aCOM, that is
similar to the three-sublattice (rich-rich-poor) charge order on the triangular lattice; however, the anisotropy in
the intermolecular parametersmodify the period of the charge ordering to a 12-sublattice structure. Although

Figure 14.Electron density in each of the six sublattices defined in equation (18), for orbitals c and f, as a function of V tb b1 1a = ,
which controls the strength of the intermolecular Coulomb interactions. Data are shown on the L=12 lattice size.

Figure 15.Upper panels: charge structure factorN(q), divided by q∣ ∣, for theCOMphase (a) and for the uniformmetallic phase (b).
Data are shown along the qy= 0 (red) and the qx= qy (blue) lines in reciprocal space, for L=6 (squares) and L=12 (circles).Middle
panels: charge structure factorN(q) as a function of q, for theCOMphase (c) and for the uniformmetallic phase (d). Lower panels:
structure factor for charge disproportionation N qCD( ) as a function of q, for theCOMphase (e) and for the uniformmetallic phase
(f).
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COMs in ETorganic compounds often show a stripe-like charge pattern [52, 53], the observation of theCOM
phasewould be an intriguing proof for the possibility of stabilizing nontrivial charge orders inmetallic phases.

In organic charge transfer salts, the size of the intermolecular Coulomb interactions is expected to be larger
when themolecules are closer. In this respect, it is plausible to assume thatVb1 is the stronger intermolecular
Coulomb interaction and thatV Vp q , see figure 1. In addition to the fact that the strongest Coulomb
interaction is the intramolecular oneU, most of the compounds should be located at the border between the
PCOI and theDMI phases. Since the two phases are continuously connected, a small amount of anisotropy
V Vp q will lead to aweak charge order, as shown for example infigure 9; this factmay explain the difficulty in
finding stable charge ordering inκ-(ET)2Cu[N(CN)2]Cl.Nevertheless, our results indicate that the PCOI phase
is polarized, suggesting that charge order is the correctmechanism to induce afinite polarization.Moreover, we
observe thatmagnetism coexists with electronic polarization, as observed in experiments, even if it is not the
drivingmechanism for it, since polarization occurs also in the absence ofmagnetic order. In this respect, our
study shows that ferroelectricity in organic charge-transfer salts is not driven bymagnetism.

Finally, wewould like to conclude bymentioning that superconducting pairing correlations (with
unconventional pairing symmetries)may be enhanced close to charge-ordered phases inmultiorbital Hubbard
models [37]. Investigating possible superconductivity (also coexistingwith charge ordering) is left for future
studies.
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