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Abstract. We introduce two models for imprecise probabilities which
generalise the Pari-Mutuel Model while retaining its simple structure.
Their consistency properties are investigated, as well as their capability of
formalising an assessor’s different attitudes. It turns out that one model is
always coherent, while the other is (occasionally coherent but) generally
only 2-coherent, and may elicit a conflicting attitude towards risk.

1 Introduction

The term imprecise probability incorporates a large variety of uncertainty mod-
els. While being well suited for assessing imprecise, uncertain or vague beliefs, 
general models, like coherent lower probabilities, may be less manageable for 
other purposes, like inference or merely checking their coherence. Some special 
models are nimbler with respect to these issues. In particular, the Pari-Mutuel 
Model (PMM) is assessed once a reference precise probability P0 and a parameter 
are given, and is guaranteed to be coherent [W,PVZ,MMD]. P0(A) may  also be  
interpreted as the ‘true’ probability of event A in the assessor’s or agent’s mind, 
but unlike its derived PMM may not correspond, in a behavioural or betting 
scheme, to the agent’s selling or buying prices for A.

Our purpose in this paper is to explore further models that generalise the 
PMM while retaining its simple features. We also focus on what sort of beliefs 
they can express. After recalling some preliminary matters in Sect. 2, we lay  
down the general framework for the new models, i.e., the family of what we term 
Nearly-Linear (NL) models, in Sect. 3. Then, notable instances of NL models, 
the Vertical Barrier PMM (VB-PMM) and the Horizontal Barrier PMM (HB-
PMM), are investigated in Sects. 4 and 5, respectively. The VB-PMM is coherent 
(even 2-monotone as a lower probability) and may express, so to say, an agent’s 
greedier attitude than the PMM. The HB-PMM is always at least 2-coherent, 
but may be coherent subject to certain (restrictive) conditions. Its coherence 
is characterised in a finite setting: for upper probabilities, it is equivalent to 
subadditivity. Behaviourally, the HB-PMM elicits an agent’s conflicting (and 
partly irrational) beliefs towards risk. Section 6 contains some comparisons with 
related models in the literature, while Sect. 7 concludes the paper. Due to space 
limitations, proofs of the results are omitted.
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2 Preliminaries

Let P (P ) be a lower (upper) probability, i.e., a map from a set D of events into
IR.

P is coherent on D iff, ∀n ∈ IN, ∀A0, . . . , An ∈ D, ∀s0, . . . , sn ≥ 0, defining
G =

∑n
i=1 si(IAi

− P (Ai)) − s0(IA0 − P (A0)), it holds that maxG ≥ 0 [W].
P is 2-coherent on D if either n = 2 and s0 = 0 or n ∈ {0, 1} in the above

definition [W,PV].
In a behavioural interpretation, P (A) (P (A)) is an agent’s supremum buying

price (infimum selling price) for A or its indicator IA [W]. In the gain G above,
IAi

−P (Ai) is the agent’s elementary gain from exchanging event Ai at the price
P (Ai); coherence and 2-coherence require max G ≥ 0, i.e., that a finite linear
combination of bets on events in D with certain constraints on the coefficients
does not produce a sure loss.

In this paper, D will be the set A(IP) of events logically dependent on a given
partition IP (the powerset of IP). Given P and P on A(IP), they are conjugate
if P (A) = 1 − P (¬A), ∀A ∈ A(IP).

P is coherent, alternatively 2-coherent on A(IP), if its conjugate P is.
It is necessary for coherence of P , P that [W, Sect. 2.7.4]:

(c1) P (A) + P (B) ≥ P (A ∨ B) (subadditivity),
(c2) if A ∧ B = ∅, P (A) + P (B) ≤ P (A ∨ B) (superadditivity).

Definition 1. PPMM : A(IP) → IR is a Pari-Mutuel lower probability if
PPMM(A) = max{(1 + δ)P0(A) − δ, 0}, ∀A ∈ A(IP), where P0 is a given prob-
ability and δ ∈ IR+. Its conjugate upper probability is PPMM(A) = min{(1 +
δ)P0(A), 1}. (PPMM, PPMM) constitute a Pari-Mutuel Model (PMM).

PPMM and PPMM are coherent. PPMM is also 2-monotone: ∀A,B ∈ A(IP),
PPMM(A ∨ B) + PPMM(A ∧ B) ≥ PPMM(A) + PPMM(B) (while PPMM is 2-
alternating) [W,PVZ].

2-coherence is a weaker consistency requirement than coherence (cf. [PV] for
details). On A(IP), a still weaker condition is that μ (μ = P or μ = P ) is a
capacity : it is requested only that ∀A,B ∈ A(IP) : A ⇒ B, it is μ(A) ≤ μ(B)
(monotonicity), and that μ(∅) = 0, μ(Ω) = 1 (normalisation).

3 Nearly-Linear Imprecise Probability Models

The Pari-Mutuel Model and the models we shall investigate in the next sections
belong to the broader family of Nearly-Linear Models, which we define next.

Let for this μ : A(IP) → IR be either a lower or an upper probability.

Definition 2. μ : A(IP) → IR is a Nearly-Linear (NL) imprecise probability
iff μ(∅) = 0, μ(Ω) = 1 and, given a probability P0 on A(IP), a ∈ IR, b > 0,
∀A ∈ A(IP) \ {∅, Ω},

μ(A) def= min{max{bP0(A) + a, 0}, 1} = max{min{bP0(A) + a, 1}, 0}. (1)
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Lemma 1. A NL μ is a capacity.

If μ is given by Definition 2, we shall say shortly that μ is NL(a, b).
An interesting feature of NL models is that they are self-conjugate: if μ is

NL(a, b), also its conjugate μc(A) = 1 − μ(¬A), ∀A ∈ A(IP), is NL(a�, b�):

Proposition 1. If μ is NL(a, b), then μc is NL(a�, b�), with

a� = 1 − (a + b), b� = b. (2)

Example 1. In the PMM, PPMM is NL(0, 1 + δ), PPMM is NL(−δ, 1 + δ), hence
here a = −δ < 0, b = 1 + δ > 1, a + b = 1.

A NL model typically gives extreme evaluations to a number of events whose
probability P0 is strictly between 0 and 1. We may keep track of this defining:

Definition 3. Given μ, NL(a, b), define:

• N = {A ∈ A(IP) : μ(A) = 0} =
{
A ∈ A(IP) : P0(A) ≤ −a

b

} ∪ {∅},
• U = {A ∈ A(IP) : μ(A) = 1} =

{
A ∈ A(IP) : P0(A) ≥ 1−a

b

} ∪ {Ω},
• E = A(IP) \ (N ∪ U) =

{
A ∈ A(IP) \ {∅, Ω} : −a

b < P0(A) < 1−a
b

}
.

N is the set of null events according to μ, U the set of universal events.
If a generic NL measure μ includes a known model μ∗ as a special case,

μ is interpreted as either a lower or upper probability if μ∗ is so. In general,
we may apply the maximum consistency principle: μ is a lower probability if it
determines a model with a higher degree of consistency than interpreting μ as
an upper probability.

In the next two sections, we analyse the two major NL submodels.1 They
relax the PMM condition a + b = 1 (cf. Example 1) to, respectively, a + b ≤ 1
and a + b ≥ 1, while both keeping a ≤ 0.

4 The Vertical Barrier Pari-Mutuel Model

To introduce our first model, let μ be a NL(a, b) measure such that

0 < a + b ≤ 1, a ≤ 0. (3)

Then, ∀A ∈ A(IP) \ {Ω}, bP0(A) + a ≤ a + b ≤ 1, and μ in (1) simplifies to
μ(A) = max{bP0(A) + a, 0}. (μ(∅) is also computed with this formula.)

Note that, when a + b ≤ 0, μ reduces to the vacuous lower probability
PV (A) = 0, ∀A ∈ A(IP) \ {Ω}. Hence the constraint a + b > 0 rules out (only)
this case.

Recalling Example 1, when a + b = 1 and a = −δ < 0, μ is the lower
probability of a PMM (Definition 1).2

1 It can be shown that a third, less relevant, submodel completes the family of NL
models.

2 When b = 1, a = 0, µ is a probability. We shall hereafter neglect this subcase.
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Putting a = 0, b = ε < 1, we obtain the lower probability of the ε-contamina-
tion model (also termed linear-vacuous mixture in [W]):

P (A) = εP0(A), A ∈ A(IP) \ {Ω} (P (Ω) = 1).

Clearly, requiring conditions (3) μ is a lower probability. Its conjugate upper
probability is easily obtained using (2). Summing up, we define

Definition 4. A Vertical Barrier Pari-Mutuel Model (VB-PMM) is a NL model
where P and its conjugate P are given by:

P (A) = max{bP0(A) + a, 0}, ∀A ∈ A(IP) \ {Ω} (P (Ω) = 1), (4)

P (A) = min{bP0(A) + c, 1}, ∀A ∈ A(IP) \ {∅} (P (∅) = 0), (5)

with a, b satisfying (3) and c = 1 − (a + b) ≥ 0.

A VB-PMM offers very good consistency properties:

Proposition 2. In a VB-PMM, P and P are coherent. Further, P is 2-mono-
tone, P is 2-alternating.

To justify the name and significance of a VB-PMM, take its upper probability
P , given by (5). Then:

(i) P (A) ≥ P0(A),∀A. Obvious when P (A) = 1 or A = ∅; otherwise, use Defini-
tion 4 to get P (A) = bP0(A)+1−(a+b) ≥ P0(A) iff (1−b)P0(A) ≤ 1−(a+b).
If 1 − b ≤ 0, this inequality holds trivially (1 − (a + b) ≥ 0); if 1 − b > 0, it is
equivalent to P0(A) ≤ 1−b−a

1−b , true because 1−b−a
1−b ≥ 1 for a ≤ 0;

(ii) P (A) → c ≥ 0 as P0(A) → 0 (for P0(A) low enough, P (A) = bP0(A)+c → c);
(iii) P (A) = 1 iff P0(A) ≥ 1−c

b = b+a
b .

Now compare P with its special case c = 0, i.e., a + b = 1 (and b > 1), which
specialises P into PPMM(A) = min{bP0(A), 1}. In the behavioural interpreta-
tion, both (a generic) P and PPMM imply that the agent is essentially unwilling
to sell events whose reference or ‘true’ probability P0 is too high, by (iii), and in
any case her/his selling price is not less than the ‘fair’ price P0, by (i). P adds
a further barrier regarding low probability events: by (ii), if c > 0 the agent
is not willing to sell (too) low probability events for less than c, whilst PPMM

enforces no such barrier. We may deduce that, ceteris paribus, the P -agent is,
loosely speaking, greedier than the PPMM-agent. This can be easily justified in
real-world situations: if the agent is a bookmaker or an insurer, for instance,
c > 0 may take account of the agent’s fixed costs in managing any bet/contract.

While c measures the agent’s advantage at P0 = 0, b determines how it varies
with P0 growing. In fact, the advantage is unchanged, decreasing or increasing
according to whether it is, respectively, b = 1, b < 1, b > 1.

These features of the VB-PMM can be visualised in a (P0, P ) plot, as in
Fig. 1, 1): the VB-PMM additional barrier is the dotted segment on the P -axis.
The interpretation of P , defined by (4), is similar. It is easy to check that:
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(i�) P (A) ≤ P0(A), ∀A;
(ii�) P (A) → a + b ≤ 1 as P0(A) → 1;
(iii�) P (A) = 0 iff P0(A) ≤ −a

b .

Now the agent using P acts as a buyer, but by (ii�) does not want to pay
more than a + b for any event, even those whose probability P0 is very high.
If a + b < 1, this amounts to requiring that the maximum gain GMAX from
buying any A for P (A) (achieved when A occurs) is 1− (a+ b) > 0. By contrast,
GMAX → 0 as P0(A) → 1 if a + b = 1, as in the PMM. Thus, P in the typical
VB-PMM (i.e., such that a + b < 1) introduces an additional barrier, of width
1 − (a + b), with respect to PPMM: the dotted segment in the P0 = 1 line of
Fig. 1, 1).

5 The Horizontal Barrier Pari-Mutuel Model

Let now μ be a NL(a, b) measure, with the conditions

(k) a + b > 1, 2a + b < 1.

Note that conditions (k) imply a < 0, b > 1. It can be shown that

Proposition 3. μ is a 2-coherent lower probability, whilst it is not a 2-coherent
upper probability.

From Proposition 3, and by the maximum consistency principle stated at the
end of Sect. 3, μ is conveniently viewed as a lower probability. We define then:

Definition 5. A Horizontal Barrier Pari-Mutuel Model (HB-PMM) is a NL
model where P and its conjugate P satisfy P (∅) = P (∅) = 0, P (Ω) = P (Ω) = 1,
c = 1 − (a + b) < 0, a, b are as in (k)3 and, for all A ∈ A(IP) \ {∅, Ω},

P (A) = min{max{bP0(A) + a, 0}, 1}, (6)

P (A) = max{min{bP0(A) + c, 1}, 0}. (7)

Let us discuss the basic features of this model, referring to P given by (6). It is
easy to check that (in particular, (jj) and (jjj) follow simply from Definition 3):

(j) P (A) > P0(A) iff 1 > P0(A) > − a
b−1 ;

(jj) P (A) = 0 iff P0(A) ≤ −a
b ;

(jjj) P (A) = 1 iff P0(A) ≥ 1−a
b .

It follows easily from (k) that conditions (j), (jj), (jjj) are not vacuous, i.e.,
may be satisfied by some events. As for (j), for instance, − a

b−1 < 1 iff −a < b−1
(by (k)) iff a + b > 1, which is true, and it is always − a

b−1 > 0.
Conditions (j), (jj), (jjj) point out an interesting feature of the HB-PMM:

the beliefs it represents may be conflicting and, partly, irrational. In fact, assum-
ing again that P0 is the ‘true’ probability for the events in A(IP), by (j) the agent
3 a + b > 1 in (k) could be relaxed to a + b ≥ 1, thus including the PMM as a special

HB-PMM. We left out this case to focus on the ‘proper’ HB-PMMs.
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is willing to buy some events for less, others for more than their probability P0.
In the extreme situations, by (jj) and (jjj), the agent would not buy events
whose probability is too low, whilst would certainly buy a high probability event
A at the price of 1, gaining from the transaction at most 0 (if A occurs). Thus
the agent underestimates the riskiness of a transaction regarding high probabil-
ity events, but overestimates the risk with low probability events. She/he may
be both risk averse and not. Which attitude prevails? In a sense, the prudential
one. To see this, note that by (jj) and (jjj) the HB-PMM sets up two horizontal
barriers in the (P0, P ) plane (cf. Fig. 1, 2)). The lower (prudential) barrier is a
segment with measure −a

b , the upper barrier (in the imprudent area) a segment
measuring 1 − 1−a

b , and is narrower: −a
b > 1 − 1−a

b iff 2a + b < 1, true by (k).
Similarly, the boundary probability P0 between the opposite attitudes is set at
− a

b−1 , larger than 1
2 (by (k)). In this sense, the prudent behaviour prevails.

Fig. 1. Plots of P or P against P0. (1) A VB-PMM P (continuous bold line) and a
(non-conjugate) VB-PMM P (dashed bold). (2) A HB-PMM P (dashed bold line in
the prudential part, continuous bold otherwise).

For P , defined by (7), we can get to specular conclusions. Again the HB-PMM
agent is subject to conflicting moods: she/he is unwilling to sell high probability
events, but would give away for free low probability events. The lower barrier
represents now the imprudent behaviour at its utmost degree, and is narrower
than the upper barrier - that emphasising the cautious attitude.

Given this and Proposition 3, one would be tempted to conclude that the
HB-PMM can be no more than 2-coherent. While this is true for the ‘typical’
HB-PMM model, coherence is compatible with some HB-PMM. Even more, there
are instances of some HB-PMM P (or also P ) which are (0–1 valued) precise
probabilities, as in the following example.
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Example 2. Let IP = {ω1, ω2, ω3}, and define P by (6), with a = −0.15, b = 1.25
(a, b comply with (k)). The starting probability P0 takes the following values
on IP: P0(ω1) = P0(ω2) = 0.02, P0(ω3) = 0.96. The resulting HB-PMM lower
probability P is 0–1 valued: P (A) = 0 if A ∈ {∅, ω1, ω2, ω1 ∨ ω2}, P (A) = 1
otherwise. Clearly, P is a probability on A(IP).

However, these instances are more an exception, rather than the rule. As for
P being a precise probability, it holds that:

Proposition 4. If P in the HB-PMM is a precise probability, then it is neces-
sarily 0–1 valued. Conversely, if P is 0–1 valued, it may be a probability or a
lower probability, coherent or only 2-coherent.

Coherence of P , or of P , is subject to rather restrictive conditions. To see this, we
suppose in the next two results that IP is finite. We refer to an upper probability
P , because the conditions for coherence are more straightforwardly described in
this case. We present first necessary conditions for P to be subadditive, which on
its turn is necessary for coherence of P (Sect. 2, (c1)), then state (Proposition 6)
that subadditivity alone is also sufficient for coherence of a HB-PMM P .

Proposition 5. Let P : A(IP) → IR be defined by (7), IP finite. Suppose P is
subadditive. Then (referring to the sets E , N of Definition 3), for A ∈ A(IP):

(a) A ∈ E iff A = ω∗ ∨ ∨k
h=1 ωih

, with ω∗ ∈ IP ∩ E , ωih
∈ IP ∩ N , P0(ωih

) = 0,
h = 1, . . . , k, k ∈ IN;

(b) A ∈ N iff A =
∨k

h=1 ωih
, with ωih

∈ IP ∩ N , h = 1, . . . , k, k ∈ IN;
(c) if A ∈ E, then P (A) = P (ω∗), with ω∗ ∈ IP ∩ E, ω∗ ⇒ A.

By Proposition 5(a), (c), if P is coherent (hence subadditive), its value on any
event A in E is that of the one atom in IP, among those implying A, that belongs
to E . Put differently, P (A) depends on a single atom only, ω∗. It ensues that, on
the whole A(IP), P may take up at most n + 2 distinct values including 0 and
1, if |IP| = n. Clearly, these are severe constraints. As for subadditivity, it holds
that

Proposition 6. Let P : A(IP) → IR be defined by (7), IP finite. Then P is
coherent iff it is subadditive.

A corresponding condition for P is less immediate, since superadditivity is not
the conjugate property of subadditivity. However, superadditivity is necessary
for 2-coherence of P in the HB-PMM, whatever the cardinality of IP:

Proposition 7. Let P : A(IP) → IR be defined by (6), with IP arbitrary (finite
or not). Then P is superadditive (i.e., satisfies (c2) in Sect. 2).
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6 Similar Models

Despite the simplicity of NL models, there are not so many similar or partly
overlapping models in the literature, to the best of our knowledge.

In a paper focused on statistical robustness issues, Rieder [R] introduces a
specific VB-PMM and proves the 2-monotonicity of P . His model is a special
case of ours, since he requires (using our parametrisation) conditions (3), and
the extra condition a ≥ −1.

Neo-additive capacities, introduced in [CEG], are somewhat similar to NL
models, because μ(A) = bP0(A) + a there, when A ∈ E . Yet, the approach
is radically different: the sets N , E , U are fixed a priori, and it is required that
A ∈ N iff ¬A ∈ U . This condition is unduly restrictive, in our view, for measures
that are not precise probabilities. It is usually not met by NL models, not even
by the PMM (just think that if μ = PPMM, then U = {Ω}, while generally
N = {A ∈ A(IP) : P0(A) ≤ −a

b } is larger than {∅}). Further, μ is only required
to be a capacity, while our models ensure at least 2-coherence. Interestingly, neo-
additive capacities were introduced to describe both optimistic and pessimistic
attitudes towards uncertainty at the same time. This is similar to the agent’s
waving attitude towards risky contracts expressed by the HB-PMM.

7 Conclusions

In this paper we introduced two models of imprecise probabilities, both gener-
alising the PMM, and studied their basic features and consistency properties.
While the VB-PMM is always coherent, the HB-PMM is generally not, but
may formalise a conflicting behaviour of the agent towards risk. Further work
is needed to complete the analysis of NL models and to explore their connec-
tions with other models, for instance probability intervals that were shown to
be closely related with the PMM in [MMD]. We also plan to study conditioning
with the VB-PMM, its natural extension and relationships with risk measures;
this should generalise the analogous work in [PVZ] for the PMM.
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