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Cytokine-induced killer (CIK) cells, a heterogeneous T cell population obtained by in

vitro differentiation of peripheral blood mononuclear cells (PBMC), represent a promising

immunological approach in cancer. Numerous studies have explored the role of CD38,

CD39, CD203a/PC-1, and CD73 in generating extracellular adenosine (ADO) and thus

in shaping the tumor niche in favor of proliferation. The findings shown here reveal

that CIK cells are able to produce extracellular ADO via traditional (CD39/CD73) and/or

alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways. Transcriptome analysis

showed the mRNA expression of these molecules and their modulation during PBMC to

CIK differentiation. When PBMC from normal subjects or cancer bearing patients were

differentiated into CIK cells under normoxic conditions, CD38 and CD39 were greatly

up-regulated while the number of CD203a, and CD73 positive cells underwent minor

changes. Since hypoxic conditions are often found in tumors, we asked whether CD39,

CD38, CD203a, and CD73 expressed by CIK cells were modulated by hypoxia. PBMC

isolated from cancer patients and differentiated into CIK cells in hypoxic conditions did

not show relevant changes in CD38, CD39, CD73, CD203a, and CD26. CIK cells also

expressed A1, A2A, and A2B ADO receptors and they only underwent minor changes

as a consequence of hypoxia. The present study sheds light on a previously unknown

functional aspect of CIK cells, opening the possibility of pharmacologically modulated

ADO-generating ectoezymes to improve CIK cells performance.

Keywords: CIK, adenosine, CD38, CD39, CD73, CD203a/PC-1, hypoxia, P1 receptors

INTRODUCTION

CIK cells are polyclonal T effector cells sharing immunological properties and receptors with
NK cells. They are attracting increasing interest for their ability to perform non-MHC-restricted
cytolytic activities toward susceptible autologous and allogeneic cancer cells (Schmidt-Wolf et al.,
1991; Lu and Negrin, 1994). This capacity, along with their safety and easy in vitro generation has
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opened the door to multiple applications of CIK adoptive
immunotherapy against different types of cancer. Hence, CIK can
be employed against solid and hematological tumors, either alone
or together with chemotherapy. An experimental CIK based
approach has been undertaken for the following neoplasms:
chronic and acute lymphocytic leukemias, lymphomas, kidney
carcinoma, renal, liver and stomach cancer, melanomas and bone
sarcomas (Linn and Hui, 2010; Gammaitoni et al., 2013; Jiang
et al., 2013; Sangiolo et al., 2014). CIK cells are generated by ex
vivo cultivation of human PBMC in the presence of the cytokine
interferon gamma (IFN-È), the anti-CD3 monoclonal antibody
OKT3, and then adding recombinant human IL-2 (rhIL-2)
(Introna et al., 2007; Jiang et al., 2013; Giraudo et al., 2015). The
addition of IFN-γ has the main goal of activating monocytes
present in the mixed PBMC population to secrete IL-12, which
favors CD58/LFA-3-mediated activation, while the binding of
anti-CD3 antibody to CD3 membrane antigen expressed by T
lymphocytes and the addition of IL-2 provides cells with the
mitogenic stimuli they need for proliferation (Franceschetti et al.,
2009). CIK cells are a heterogeneous population comprising
CD3+CD8+ T cells, CD3+CD56− T cells (from 20 to 60% of total
CIK), and CD3+CD56+ double positive cells (from 40 to 80% of
total CIK), as well as of a small number of CD3−CD56+ NK cells
(from 1 to 10%) (Franceschetti et al., 2009; Pievani et al., 2011;
Introna et al., 2013; Valgardsdottir et al., 2014).

Immune cells interact with cancer cells in the so called
“tumor niche,” i.e., in a localized neoplastic tissue context;
therefore they are heavily influenced by the superimposed
tumor conditions. Some of the most influential extracellular
mediators in the niche are the nucleotides and nucleosides.
Adenosine (ADO), the main nucleoside mediator generated both
intracellularly and extracellularly, suppresses the anti-tumoral
immune response, thus favoring metastasis to the detriment
of the host organism. Once present in the extracellular milieu,
nucleotides and nucleosides bind purinergic receptors, i.e.,
specific plasma membrane receptors necessary for cell-to-cell
communication and named P2 (activated by ATP, UTP, ADP,
UDP, UDP-glucose, and NAD+) and P1 receptors (G protein-
coupled, activated by ADO). P1 are further divided into four
subtypes (A1R, A2AR, A2BR, A3R) (Burnstock, 2007; Surprenant
and North, 2009; Harden et al., 2010; Plattner and Verkhratsky,
2016).

Extracellular nucleotides and nucleosides are subjected to
continuous transformation. The main canonical actors of this
function are four ectonucleotidases: ectonucleoside triphosphate
diphosphohydrolase (NTPDase, CD39), ectonucleotide
pyrophosphatase/phosphodiesterase (NPP, CD203a) or PC-
1, ecto-5′nucleotidase (CD73), and alkaline phosphatases
(Yegutkin, 2008; Zimmermann et al., 2012) which degrade ATP
and its metabolites, eventually leading to ADO production

Abbreviations: ADO, adenosine; ADA, adenosine deaminase; AR,

adenosine receptor; ADPR, ADP-ribose; CD38, ADP-ribosyl cyclase/cyclic

ADPR-hydrolase; CD39, ecto-nucleoside triphosphate diphosphohydrolase

(NTPDase); CD73, ecto-5′-nucleotidase (5′-NT); CD203a/PC-1, ectonucleotide

pyrophosphatase/phosphodiesterase-1 (NPP-1); CIK, cytokine-induced killer;

EHNA, erytro-9 (2-hydroxy-3-nonyl) adenine; GIST, Gastrointestinal Stromal

Tumor; PBMC, peripheral blood mononuclear cells; OS, osteosarcoma.

and the subsequent activation of P1 receptors (Fredholm et al.,
2001). Transformation of extracellular ATP into its metabolites
requires the sequential participation of the CD39 ectoenzyme
(stepwise forming extracellular AMP) subsequently metabolized
by CD73 into ADO (Yegutkin, 2008; Zimmermann et al.,
2012).

Another pathway generating extracellular AMP, which
can then be transformed into ADO, involves participation of
extracellular NAD+ and CD38 an ADP-ribosyl cyclase/cyclic
ADP-ribose (cADPR) hydrolase. Expression of CD203a
(ectonucleotide pyrophosphatase/phosphodiesterase-1)
accompanied by the extracellular presence of its substrate
ADPR (product of the deconstruction of NAD+ by CD38) favors
the generation of additional AMP (Horenstein et al., 2013).

ADO plays multiple roles as an extracellular mediator both
in physiological and pathological conditions. It is released
in different tissue contexts, including neurons, kidney cells,
cardiomyocytes, vascular endothelium and immune cells
(Shryock and Belardinelli, 1997; Latini and Pedata, 2001; Dale
and Frenguelli, 2009; Praetorius and Leipziger, 2010; Morandi
et al., 2015; Silva, 2016). However, the interest in ADO and
ectoenzymes involved in ADO formation (CD38, CD39, CD73
and CD203a) was prompted by growing evidence of their role
in cancer biology. Indeed, ADO suppresses immune responses
against tumor cells, and cancer-derived ADO is recognized
as a crucial extracellular immune checkpoint target for re-
establishing immune-surveillance mechanisms (Young et al.,
2014; Hatfield and Sitkovsky, 2016; Allard et al., 2017).

A role in favoring cancer growth and dissemination has
been described for each of the extracellular enzymes involved in
nucleotide/nucleoside and NAD+ metabolism (i.e., CD39, CD38,
CD203a and CD73) and for the complexing ADO deaminase
(ADA)/CD26 molecules, a controller of ADO in the extracellular
space. CD39 is involved in colorectal cancer dissemination (Stagg
and Smyth, 2010) as well as in the metastatic competence of non-
small-cell lung cancer (NSCLC) (Schmid et al., 2015; Ferrari et al.,
2017). CD73 is involved in the spread of cancer and in reducing
immune-surveillance (Wang et al., 2008; Antonioli et al., 2016a,b;
Ferrari et al., 2017). This is achieved by using antibodies to
CD73 and CD39 (Young et al., 2014; Allard et al., 2017; Kazemi
et al., 2017) to block ADO, a normal immune regulator, which
is hijacked by tumors to evade immune attack. Likewise, human
CD38 (Malavasi et al., 2008) is implicated in multiple myeloma,
where it is main target of therapeutic treatments (Horenstein
et al., 2015; Sanchez et al., 2016; Costa et al., 2017; Shallis et al.,
2017). Concerning P1, A2AR and A2BR have been indicated as the
main candidate receptors in cancer therapy (Beavis et al., 2013;
Desmet et al., 2013; Hatfield and Sitkovsky, 2016; Allard et al.,
2017; Garber, 2017; Mittal et al., 2017).

However, so far, there is no information on P1, CD39, CD38,
CD203a, CD73, and CD26 expression in CIK cells. In view
of the important immunosuppressive role played by ADO and
the promising use of CIK cells in adoptive cancer therapy,
we investigated the metabolic processes of ADO generated
during the differentiation of human T cells present into the
PBMC fraction into CIK cells under normoxic and hypoxic
conditions.
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MATERIALS AND METHODS

CIK Cell Production and Characterization
PBMC cells from 11 donors, five healthy donors, five patients
with histologic confirmed Gastrointestinal Stromal Tumors
(GIST) and 1 patient with osteosarcoma (OS). Blood samples
were obtained through an ongoing collaboration with Dr
D. Sangiolo at the Candiolo Cancer Institute FPO-IRCCS
Fondazione del Piemonte per l’Oncologia. Patients provided
written informed consent for blood donation according to
a protocol approved by the internal review board and ethic
committee (Ethic Committee, IRCCS Candiolo Cancer Institute,
Turin, Italy. Prot. CE IRCCS 244/2015).

Cryopreserved PBMCwere seeded at a concentration of 2x106

cells/ml according to the standard protocols (Gammaitoni et al.,
2013; Sangiolo et al., 2014), including 21 days of culture in RPMI-
1640 medium (Gibco BRL Life Technologies Italia, Monza, Italy)
supplemented with 10% fetal bovine serum (Sigma Aldrich, MI,
Italy) 100 U/ml penicillin, and 100 U/ml streptomycin (Gibco
BRL Life Technologies Italia, Italy) at 37◦C and 5% CO2, with
the timed addition of IFN-γ (1,000 U/ml on day 0), Ab anti-CD3
OKT3 (50 ng/ml on day 1) and IL-2 (300 U/ml on day 1 up to the
end, refreshing the medium every 2-3 days) (all factors are from
Miltenyi Biotec S.r.l., Calderara di Reno, BO, Italy). In parallel
with the standard ex vivo cultures, at day 0 an aliquot (7× 106) of
PBMCwas seeded (2× 106 cells/ml) in RPMI-1640mediumwith
10% fetal bovine serum, 100 U/ml penicillin and streptomycin at
37◦C and 5% CO2) but without the addition of INF-γ to perform
mRNA analysis. At day 1 of culture, 3 × 106 of these cells were
collected for RNA extraction. Cells were lysed in InvitrogenTM

TRIzolTM (Thermo Fisher Scientific S.p.a., MI, Italy) and stored
at−80◦C. RNA extraction was repeated with the same procedure
for each CIK cells cultures at day 14 and 21.

Phenotype of CIK cells was weekly analyzed starting from day
0 by standard flow cytometric assays. The following monoclonal
antibodies (mAb) were used: CD3-FITC, CD4-PE, CD56-APC,
CD8-PE, and CD314-APC (anti-NKG2D) (all mAb are from
Miltenyi Biotec S.r.l., BO, Italy). Labeled cells were read on FACS
Cyan (Cyan ADP, Beckman Coulter s.r.l., Cassina De’ Pecchi, MI,
Italy) and analyzed using Summit Software.

Evaluation of Ectoenzyme Expression on
CIK Cells by Flow Cytometry
FACS analysis of CD56+CD3+ CIK cells was performed using
FITC-labeled anti-CD56 (Beckman Coulter Inc., Brea CA, USA)
and PE-Cy7-labeled anti-CD3 antibodies (BioLegend, Milan,
Italy). Expression of ectoezymes was detected by using the
following mAbs generated and purified in-house by two-step
HPLC chromatography (Horenstein et al., 2003) and APC-
conjugated by Aczon (BO, Italy): anti-CD38 (clone IB4), anti-
CD73 (clone CB73), anti-CD203a (clone 3E8, kindly provided
by J. Goding) and anti-CD26 (clone BT5.9). CD39 expression
was analyzed using anti-CD39 APC mAb (clone eBioA1,
eBiosciences, San Diego, CA, USA). Tests were performed on
cells washed in phosphate buffered saline (PBS) containing 1%
bovine serum albumin (BSA) + NaN3 and incubated with
APC-conjugated mAb for 1 h at 4◦C. The samples were then

washed, resuspended in PBS and acquired on a FACSort flow
cytometer (Becton-Dickinson, USA) using CellQuest Software
(Becton-Dickinson). Data were analyzed using FlowJo Software
(TreeStar).

Expression of ADO receptors was evaluated on CIK cells
gated for CD3+ CD56+ and assayed in PBMC and in the
corresponding CIK cells using the following antibodies: purified
rabbit polyclonal anti-A1R (LifeSpan BioSciences, Inc., USA),
rabbit polyclonal anti-A2AR and rabbit polyclonal anti-A2BR
(Thermo Scientific, USA). PE-conjugated goat anti-rabbit Ig
(Beckman Coulter, USA) was used as secondary reagent. Data
were expressed as mean relative of fluorescence intensity
(MRFI), obtained as follows: mean fluorescence obtained
with specific mAb/mean fluorescence obtained with irrelevant
isotype-matched mAb.

For FACS analysis under hypoxic culture conditions, total
cryopreserved PBMC were seeded at a concentration of 2 × 106

cells/ml in a humidified CO2 incubator (Thermo ScientificWater
Jacketed 3010) and differentiated into CIK cells by using the
standard procedure. Culture conditions were 21% (normoxia) or
1% (hypoxia) O2, 5% CO2 at 37◦C. The phenotype was weekly
analyzed starting from day 0 by standard flow cytometric assays.

Quantification of ADO Production by CIK
Cells
CIK (1 × 106/ml) were incubated in 500 µl HBSS at 37◦C and
5% CO2 in 24 well plates (Costar Corning) and pre-treated with
50 µL of stop solution [EHNA (5µM) + Dipyridamole (20µM)
+ Levamisole (30µM) + Deoxycoformicin (50µM)], in the
presence (or absence) of NAD+, ADPR, ATP or AMP (100µM).
At the end of the incubation time (30min), supernatants were
collected and acetonitrile (ACN, Sigma Aldrich) was immediately
added (1:2 ratio) to stabilize ADO. Samples were then centrifuged
at 13,700 × g, collected and stored at −80◦C until use. The
presence of NAD+, ATP, ADPR, AMP, and ADOwas investigated
by high-pressure liquid chromatography (HPLC, Beckman Gold
126/166NM, Beckman Coulter) equipped with a reversed-phase
column (Synergi Polar C18, 5µm; 150× 4.5mm, Phenomenex).
The metabolites were separated using a pH 5.1 mobile-phase
buffer (0.125M citric acid and 0.025M KH2PO4 containing
8% ACN) over ten min with a flow rate of 0.8 mL/min and
UV detection set at 254 nm. Peak identities were confirmed
by using standard compounds. The presence of ADO was also
confirmed by spiking standard (50µM ADO), followed by
chromatography. The retention times (Rt, in min) of standards
were: ATP, 2.00; AMP, 2.35; NAD+, 2.8; ADPR, 3.44, and ADO;
5.56. All concentrations measured on CIK-derived supernatants
were normalized to cell number and volume.

Expression Profile of Adenosinergic
Ectoenzymes and P1 Purinergic Receptors
in CIK Cells
The mRNA expression data of PBMC and CIK cells originate
from Mesiano et al. (2017) and were deposited in the Gene
Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE97581).
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Briefly, we performed the gene expression profile (GEP) of
PBMC (day 1, absence of INF- γ) and CIK cells (day 14)
obtained from 3 GIST patients by means of HG-U219 Array
Strip (Affymetrix; Santa Clara, CA, USA) (Mesiano et al., 2017).
Microarray data were analyzed by using the Partek GS 6.6
Software Package and normalized using the robust multiarray
average (RMA) procedure (Irizarry et al., 2003).

Differentially expressed genes (DEGs) were then selected
using a supervised approach with the ANOVA module included
in Partek GS package. In particular, we considered differentially
expressed genes (DEGs) all the probe sets with a fold change
contrast ≥ 1.4 in the pairwise comparison of CIK cells with
PBMCs, and a false discovery rate (FDR) (q-value) < 0.5.

Statistical Analysis
p-value was calculated using an unpaired nonparametric test,
two-tailed Mann-Whitney for GraphPad Prism 6. Reported data
are expressed as mean values± SD.

RESULTS

Transcriptome Analysis on Adenosinergic
Ectoenzymes
In vitro differentiation of CIK cells starts with cultivation of
PBMC according to standard protocols (Gammaitoni et al., 2013;
Sangiolo et al., 2014). To shed light on extracellular enzymes
involved in nucleotide/nucleoside and NAD+ metabolism we
checked the expression levels of CD39, CD38, CD203a and CD73
during CIK cell differentiation. As shown in Figure 1, CD38 and
CD39 were up-regulated in CIK cells form 3 GIST subjects (day
14) vs. PBMC (day 1, absence of INF-γ), whereas CD73 and
CD203a resulted down-regulated.

Expression of Nucleotide-Hydrolyzing
Ectoenzymes in PBMC and CIK Cells
Firstly, cell cultures were gated for CD3+CD56+ expression and
CD38, CD39, CD203a, and CD73 were assayed both in PBMC
and in the corresponding CIK cells. A representative gating of

FIGURE 1 | Transcriptome analysis of CIK ectoenzymes. mRNA expression

was analyzed in PBMC (day 1, absence of INF-γ) and CIK cells (day 14)

obtained from 3 GIST patients. The black blocks display the transcripts that

are down-regulated during CIK differentiation; whereas, the chess pattern

displays the mRNAs that are up-regulated during CIK differentiation.

the CIK population at the third week of culture is shown in
Figure 2A. Expression of the assayed markers is represented by
white peaks (Figure 2B). Cytofluorometric analysis revealed that
the NAD+-consuming CD38 ectoenzyme was present in 45.7%
of the PBMC while it was expressed by the vast majority (98.9
± 1%) of CIK cells, with minor variations in mean fluorescence
intensity (MFI; mean ± SD, 148 ± 25). The expression of CD39
increased during PBMC to CIK differentiation (PBMC 35.7 ±

1.89; CIK 97.9 ± 2.34). CD203a and CD73 were also monitored
(Figure 2B). In contrast to CD38 and CD39, CD203a was barely
expressed by PBMC and increased in CIK cells (PBMC 7.7 ±

0.29; CIK 14.9 ± 0.34); while expression of CD73 was almost
unchanged during differentiation (28.8± 3.65 vs. 23.8± 12.1).

While day 0 corresponds to withdrawal of PBMC, day 21 is
usually chosen as end of in vitro differentiation period to start
procedures for CIK cell infusion into cancer patients. Figure 2C
shows that CD3+ CD56+ CIK cells from 6 subjects 5 GIST and 1
OS) maintained the initial high levels of CD38 with a mean value
of 62.5% (min 53.2%, max 75.0%) vs. 92.5% (min 81.5%, max
98.8%); CD39 had a mean value of 13.2% (min 2.3%, max 23.5%)
vs. 53.3% (min 32.2%, max 75.2%) associated to a significant
increase at day 21 of the expression of CD26 as compared to
resting PBMCwith amean value of 20.5% (min 6.8%,max 23.1%)
vs. 91.2% (min 76.5%, max 96.5%), along with minimal CD203a
up-regulation with a mean value of 15.1% (min 2.5%, max 24.1%)
vs. 23.5% (min. 13.6%, max 35.1%), and stable expression of
CD73 with a mean value of 75.2% (min 63.5%, max 80.30%) vs.
93.6% (min 77.5%, max 97.6%). These results indicate that CIK
cells are provided with a complete ectoenzymatic machinery able
to produce ADO through the traditional (CD39/CD73) as well as
alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways.

Extracellular ADO Production by CIK Cells
The role of ADO as potent suppressor of immune-surveillance
has been well ascertained and has adopted by many cancer
types as a mechanism of escape from the deleterious activity
of macrophages, dendritic cells, T lymphocytes and NK
(Morandi et al., 2015; Antonioli et al., 2016a,b). For adoptive
immunotherapy CIK cells are usually infused as bulk into
tumor bearing patients. Therefore, we checked whether the
adenosinergic ectoenzymes expressed by bulk CIK cells deriving
from PBMC of cancer patients were functional. To address
this issue, we evaluated ADO produced by CIK cells obtained
from 6 subjects (5 GIST and 1 OS). ADO release was
investigated in supernatants from CIK cells incubated with
NAD+ (CD38 substrate), ADPR (CD203a substrate) and AMP
(CD73 substrate) in the presence of EHNA (adenosine deaminase
inhibitor).

Metabolism of Extracellular NAD+

HPLC-assisted analysis of the supernatants of bulk CIK cells
revealed the presence of non-consumed NAD+ together with
the enzymatic products ADPR and nicotinamide (NIC) (n = 5)
(Figure 3). Besides the non-consumed NAD+, which could be
identified in the HPLC assay by its unique retention time (Rt)
of 2.80min, the metabolic products of CIK cells were ADPR,
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FIGURE 2 | Expression of CD38, CD39, CD203a, and CD73 in CD3+CD56+ human PBMC and in the corresponding CIK cells. (A) Representative gating of CD3+

and CD3+CD56+ populations present in CIK cells at the third week of culture. Analysis was performed by using the fluorophores PE-Cy7 or FITC for CD3 and CD56

antigens, respectively. (B) Cytofluorometric expression analysis of ectoenzymes (white peaks) in PBMC at day 0 (upper panel) and CIK cells at day 21 (lower panel).

CD38, CD39, CD73, and CD203a were detected by APC conjugated antibodies. Gray peaks demarcate isotype control staining. Percentage of positive cells is

indicated. (C) Percentage of expression of the different markers in PBMC (day 0) and CIK cells (day 21). Cells were from 6 subjects (5 gastrointestinal stromal tumors

and 1 osteosarcoma). In C, data are expressed as mean, minimum and maximum values.
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NIC and AMP, exhibiting corresponding Rt of 3.44, 6.87, and
2.35min, respectively.

The NAD+ hydrolytic profile of CIK cells, converting
extracellular NAD+ into AMP, can be attributed to
the ADP-ribosyl cyclase/cyclic ADPR-hydrolase activity
of CD38 and CD203a, which exhibits nucleotide
pyrophosphatase/phosphodiesterase activity. ADPR produced
by CD38 upon the partial breakdown of NAD+ can subsequently
be degraded to AMP by CD203a, confirming the observations
reported in other cell systems (Horenstein et al., 2015, 2016).

Since ADPR was the principal product of exogenously applied
NAD+, we wondered whether it would be source of the AMP
generated by CIK cells. Thus, we tested the functional activity
of CD203a by directly applying ADPR, a known substrate
for this ectoenzyme (Figure 3). CIK cells displayed an ADPR-
hydrolyzing activity leading to AMP, supporting our hypothesis
that the NAD+ converting pathway leading to AMP is operative
in CIK cells concomitantly expressing CD38 and CD203a.

Metabolism of Extracellular ATP

The canonical adenosinergic pathway in CIK cells was
investigated using ATP, a known substrate for CD39 or
alternatively for CD203a (Figures 4A,B). Therefore, analysis
(n= 5) of ATP consumption by CIK cells allowed a comparison
of both nucleotide transformation pathways. The incubation
of CIK cells with ATP led to a predominant accumulation of
AMP, with low levels of ADP due to the catabolism of ATP
by CD39 ectoenzyme (Figure 4A). However, at variance with
reports pointing to the exclusive CD39-mediated ATP hydrolysis
to ADP and AMP by lymphoid cells, CIK cells converted part of
the ATP substrate directly to AMP, confirming the simultaneous
presence of functional CD203a. This finding was confirmed
by the attenuation (∼50%) of the metabolic conversion of
ATP into AMP in the presence of the CD39 inhibitor POM-1
(Figures 4A,B). These experiments support the view that the
enzymatic activity of CD203a produced AMP also by a secondary
conversion of ADPR (arising from the breakdown of NAD+ by
CD38), in a CD39-independent manner.

Metabolism of Extracellular AMP

The 5′-NT CD73 is expressed on the surface of select lymphoid
cells. Thus, the heterogeneous T cell population composing CIK
cells, ought to display AMP-degrading activity toward ADO
generation. Indeed, these cells provided the proper phenotypic
background with the capacity to degrade extracellular AMP
to ADO (see the complete cellular phenotype of CIK cells in
Figure 1).

HPLC experiments confirmed that CIK cells dephosphorylate
extracellular AMP (Figure 3). HPLC analysis showed that AMP
was dephosphorylated to ADO: AMP (Rt = 2.35min) was
metabolized (∼80% within 30min) by CIK cells resulting in a
production of ADO (Rt = 5.56min). Low level of inosine (INO,
Rt = 3.26min) was detected in the absence of EHNA (CD26
inhibitor) (not shown). Inhibition experiments further evinced
the role of CD73 in the conversion of AMP. When CIK cells
were incubated with AMP in the presence of α,β-methylene-
ADP (APCP, a CD73 inhibitor), the catabolism of AMP and

FIGURE 3 | Extracellular products of CIK enzymatic reactions using NAD+,

ADPR, and AMP as substrates. Products (NIC, ADPR, AMP, or ADO) obtained

from bulk CIK cell cultures (n = 5) using (i) NAD+, (ii) ADPR or (iii) AMP as

substrates, were evaluated by HPLC assays in the presence of the adenosine

deaminase inhibitor (EHNA) as described in Materials and Methods. Products

(gray bars) are expressed as area percentage (Area %) for each enzymatic

product as compared to the total components present in the ACN-treated CIK

cell supernatant (100%). Substrates are represented as Area % of consumed

substrate (white bars). Results indicate that bulk CIK cells efficiently hydrolyze

NAD+, ADPR and AMP to generate ADO. Of note, CIK cells produce low or

undetectable amounts of ADO when incubated with NAD+, ADPR, or AMP

substrates in the absence of EHNA (not shown). The identity of peaks was

confirmed by the co-migration of reference standards.

the formation of ADO were strongly decreased (∼80%). These
results indicate that the CD73 was the predominant ectoenzyme
participating in ADO generation by CIK cells.

Metabolism of Extracellular ADO

Extracellular ADO may partially accumulate in the culture
medium (or tumor extracellular milieu) where it binds specific
P1 receptors or be internalized through nucleoside transporters.
Alternatively, surface adenosine deaminase (ADA), complexed
to CD26, converts ADO to INO (Figure 4B). PBMC expressed
CD26 (6.8%) and during the cytokine-dependent differentiation
to CIK cells the molecule raised to 89.4%. We confirmed such
feature of CIK cells by measuring the increment of ADO
production upon the incubation of these cells with AMP in the
presence of EHNA (an inhibitor of ADA). Consequently, ADA
on the surface of CIK cells, anchored to the CD26 receptor, offer
to a combination of ectoenzymes [CD38 (cyclase/hydrolase),
CD203a (NPP) or CD39 (NTDase) along with CD73 (5′-NT)]
a machinery for ADO generation (Figure 4B). Indeed, results
obtained indicated that consumption of 50% of the added
ATP produced AMP (20%) and ADO (23%) after 30min of
incubation (Figure 4A). The presence of ADO indicated that
the ectoenzyme clustering on the surface of CIK cells leaded to
the production of the nucleoside. The consumption of NAD+

by CIK cell in 30min was, however, kinetically slower. As
shown in Figure 3, consumed NAD+ (22%) leaded to the
production of 8% of ADPR, 5% of AMP and only 8% of
ADO. Taking into consideration that low metabolization of
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FIGURE 4 | Canonical adenosinergic pathway in CIK cells. (A) To prove the existence of ATP adenosinergic pathway in CIK cells, production of ADO was investigated

in CIK supernatants collected 30min after 100µM ATP addition. White columns indicate the concentration of consumed ATP in the presence or absence of POM-1

(inhibitor of CD39). White/dotted columns indicate the total area of the substrate ATP (100%). Generated products (AMP and ADO) are indicated by grey and black

columns, respectively. Data are expressed as area percentage (AREA %) of AMP and ADO. (B) Canonical and alternative scheme pathways of ADO production

showing the enzymatic targets of POM-1 (inhibitor of CD39) and EHNA (inhibitor of adenosine deaminase, ADA).

AMP as substrate (20%) was paralleled by a high efficiency of
ADO production (20%) confirmed the observation of a reduced
expression of CD203a. Alternatively, a plausible explanation is a
low enzymatic efficiency of CD203a to catalyze the conversion
of ADPR into AMP. Accordingly, ADO production by CIK cells
using NAD+ was lower than using ATP either by CD39 or
CD203a. In conclusion, CIK cells are equipped with a functional
ectoenzymatic machinery leading to ADO production in the
extracellular milieu (∼25 µmol/min/106 cells). However, CIK
cells produced low amounts of ADO when incubated with
NAD+, ADPR, AMP, or ATP as substrates in the absence of
EHNA (CD26/ADA tandem inhibitor), confirming the presence

of ADA (evaluated by measuring the expression of the surrogate
CD26 molecule) as shown in Figure 3.

Expression of P1 Receptors During CIK
Cell Differentiation
Cellular responses to ADO are induced through activation of four
subtypes of specific G protein-coupled receptors (A1R, A2AR,
A2BR, and A3R) (Chen et al., 2013). Extracellular ADO generated
by canonical (CD39/CD73) or alternative (CD38/CD203a/CD73
and CD203a/CD73) pathways, can be captured by the cells,
thereby explaining its local signaling. Therefore, next step was
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to detect at mRNA and protein levels, the expression of these
receptors during CIK cell differentiation. As shown in Figure 5,
mRNA expression level of A2AR, A2BR, and A3R were decreased

FIGURE 5 | Transcriptome analysis of P1 receptors in CIK cells. mRNA

expression of A1R, A2AR, A2BR, A3R was analyzed in PBMC (day 1, absence

of INF-γ) and CIK cells (day 14) obtained from 3 GIST patients as described in

Materials and Methods.

in CIK cells compared to PBMC, while A1R expression was not
changed (n= 3).

To further investigate CIK immune regulation mechanisms,
we analyzed the expression of ADO receptors at the protein level.
Results obtained in additional patients confirmed that CIK cells
of further expressed A1R, A2AR, and A2BR (see below), a feature
that can be exploited by CIK cells to modulate intracellular cyclic
AMP (cAMP). A2AR plays a role in lymphocyte deactivation by
ADO and accumulation of high extracellular ADO in the absence
of ADA is lymphotoxic (Huang et al., 1997; Burnstock and
Boeynaems, 2014). Hence, to support cytotoxic CIK properties,
the final product of the adenosinergic reaction might be devoid
of an autocrine cAMP-dependent signaling. To comply with
this condition, we hypothesized that a CIK active ADA/CD26
complex might scavenge pericellular ADO from the extracellular
environment to facilitate their own survival and to protect its
cytotoxic activities. In fact, we were unable to detect physiological
levels of ADO when HPLC assays were carried in the absence of
EHNA, an inhibitor of adenosine deaminase (Figure 3).

CIK Cell Ectoenzymes and Purinergic
Receptors in Hypoxic Conditions
Hypoxic microenvironment has been shown to be one of the
main drivers for the accumulation of ADO in different cancers
and in some cases it increases the expression of CD39 and CD73
(Sitkovsky et al., 2014; Allard et al., 2016). CIK cells have a mixed

FIGURE 6 | Expression of ectoenzymes in CIK cells under normoxic and hypoxic conditions. Comparative cytofluorimetric analysis of CIK cells stained with primary

antibodies to various ectonucleotidases as reported in Materials and Methods. To compare hypoxia and normoxia we used unpaired nonparametric test, two-tailed

Mann-Whitney for GraphPad Prism 6. Circles, normoxia; squares, hypoxia. Patients are as following: PT1, red; PT2, black; PT3, blue; PT4, pink; PT5, green. Reported

data are expressed as mean values ± SD.
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T- and NK cell-like phenotype and ADO has been shown to
hamper anti-tumor functions of these cells. For these reasons, the
expression of CD39, CD38, CD203a and CD73 was monitored
during CIK differentiation of cells from 5 patients, both in
normoxic and hypoxic culture conditions. Figure 6 shows that no
significant (p > 0.05) differences were evidenced between values
obtained in normoxia and hypoxia. ADO receptors are known to
suppress immune responses against tumors. Expression analysis
of A1R, A2AR, and A2BR was also performed, showing that
ADO receptors only underwentminor, non-significant (p> 0.05)
changes as a consequence of hypoxia (Figure 7).

DISCUSSION

Adoptive immunotherapy consists in potentiating the anticancer
effects of selected immune populations. CIK cells represent a
fundamental advancement in immunotherapy because of their
ability to eradicate transformed cells, while sparing normal
tissues (Vesely et al., 2011; Gajewski et al., 2013). However, in
some cases tumors evade the killing activities of these cells.
Numerous attempts are being made to enhance the potency and
specificity of CIK cells (Wong et al., 2013).

Purine nucleoside adenosine (ADO) is attributed important
roles in physiology and pathology. In immunity, ADO has
immunosuppressive functions through activation of P1
purinergic receptors expressed by immune cells. ADO is
produced from the dismantling of mono- and dinucleotides
(ATP and NAD+) and their byproducts (ADP, ADPR,
AMP) by a set of ectoenzymes (CD39, CD38, CD203a,
and CD73), of interest to both basic and clinical research
because of their involvement in tumor biology and immune
response.

The canonical pathway of ADO production originates from
CD39, which metabolizes ATP. However, it was recently
demonstrated that CD38 leads to an alternative pathway, whose
substrate is NAD+ (Horenstein et al., 2013). Both pathways
converge into AMP, produced either from ATP/ADP (by means
of CD39) or from ADPR (by means of CD203a/PC-1). AMP is
then converted to ADO by CD73, the bottleneck enzyme for
both adenosinergic pathways. These ectoenzymes are expressed
by different normal cells (such as immune effectors) and by
tumor cells. In the latter instance, these ectoenzymes grant
immunosuppressive properties to the tumor cells by means of
ligation of adenosine receptors (A1R, A2AR, A2BR, and A3R).

The aim of this study was to investigate expression and
function of plasma membrane molecules involved in the
adenosinergic pathways in PBMC and CIK cells. Here we showed
that CIK cells are characterized by a combination of functional
CD38, CD39, CD203a/PC-1, and CD73 ectonucleotidases.
Consequently, these cells are potentially able to exploit ex
vivo the coexistence of the canonical (CD39/CD73) and the
alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways.
As a result they are able to generate the immunosuppressive
purine nucleoside ADO, which either arises from the degradation
of ATP or NAD+ substrates. Accordingly, the substrates (ATP,
NAD+) were added to cell cultures, and their products (ADPR,

FIGURE 7 | Expression of P1 receptors in normal and hypoxic conditions.

Comparative cytofluorometric analysis of A1R, A2AR and A2BR expression in

CIK cells stained with primary antibodies to various P1 receptors and detected

with fluorescein (FITC)-conjugated secondary antibodies as reported in

Materials and Methods. To compare data obtained in hypoxia and normoxia

we used unpaired nonparametric test, two-tailed Mann-Whitney for GraphPad

Prism 6. Circles, normoxia; squares, hypoxia. Patients are as following: PT1,

red; PT2, black; PT3, blue; PT4, pink; PT5, green. Reported data are

expressed as mean values ± SD.

NIC, AMP, ADO and INO) were quantified in the supernatants
by means of a dedicated HPLC assay.

At the head of the alternative network converting extracellular
NAD+ is CD38, a molecule with multiple functions. As an
ectoenzyme, CD38 acts as a primary regulator of extracellular
NAD+ levels (Malavasi et al., 2008). The next component in
the ectonucleotidase cascade is CD203a, an ectoenzyme initially
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FIGURE 8 | Conceptual model of the role of ADO production, metabolism and receptor ligation in the cytotoxic activity of CIK cells. CIK cells prevent the induction of

an autocrine immunosuppression by abrogating A2AR-mediated signaling (by A1R activation) and deamination of ADO catalyzed by the CD26/ADA complex. In turn,

ADO produced by CIK cells can reduce pro-cancer immune responses through paracrine cell inhibition (e.g., Treg, MDSC functions).

known as Plasma Cell-1 (PC-1) (Goding et al., 1998). The
interactions between extracellular NAD+ and the CD38/CD203a
enzymatic tandem can be exploited by CIK to generate AMP.
Indeed, the addition of NAD+ to CIK cells causes production of
ADPR and NIC (products of the enzymatic activity of CD38) and
AMP, in the culture supernatants. These results indicate that the
outer plasma membrane of CIK cells is equipped with molecules
endowed with hydrolytic activities that determine the fate of
extracellular NAD+. Lastly, we demonstrate that ADPR or AMP
added exogenously to CIK cell cultures are further metabolized
to produce ADO.

Extracellular ADO homeostasis is influenced by the presence
of ADA, which irreversibly deaminates ADO, converting it to
the related nucleoside inosine. This means that generated ADO
is in vivo partially transformed by the cells of the surrounding
environment, consequently locking the immunosuppressive
effects of the nucleoside. Indeed, the low production of ADO in
the absence of EHNA (a CD26/ADA inhibitor) is not ascribable
to the high expression of ectonucleotidases by CIK cells. There
are at least two possible explanations for this lowered production:
either up-regulation of the ADA (as inferred by proxy from the
increase in its surrogate, CD26) or low expression of CD203a,
both of which are observed in differentiated CIK cells. Under
such conditions, CIK cells would protect their ability to generate
toxic effects against neoplastic cells. The remnant ADO generated
by CIK cells in the extracellular medium is however available
for binding to P1 purinergic receptors. Alternatively, it can be

internalized by nucleoside transporters. This internalization step
through the nucleoside transport was not observed in the system
analyzed. Indeed, the addition of dipyridamole, an inhibitor of
nucleoside transporters, was not followed by an increase in ADO.
Things become even more complex considering the finding that
CIK cells express high affinity A1R and A2AR. The presence of
the two receptors would support the hypothesis that CIK cells
take advantage of the P1 receptors to achieve autocrine signaling
and thus self-regulation. Indeed, it is known that many cells
expressmore than one purinergic receptor along with nucleotides
degrading ectoenzymes, establishing a regulatory membrane
network (Volonté et al., 2006). Therefore, trace amount of
pericellular ADO may be sufficient to bind and activate (high
affinity) A2AR on the surface of CIK cells (inducing a reduction in
their immune activity). Nonetheless, A2AR activation is reported
as being self-inhibited through the action of A1R. This effect
allow us to postulate that ADO binding to A1R expressed by
CIK cells can induce an autocrine inhibition of the nucleoside
immunosuppressive effect, as depicted in Figure 8. Extracellular
nucleoside concentrations can potentially favor (or suppress) the
local immune responses, depending on its concentration as well
as the relative abundance of P1 receptor subtypes expressed by
CIK cells. These P1 receptor subtypes are coupled to different
combinations of G-protein family members, namely A1 receptors
to Gi/Go, A2a receptors to Gs/Golf, and A2b receptors to Gs/Gq.
Accordingly, engagement of A2a and A2b activates adenyl cyclase,
leading to elevated levels of cellular cyclic AMP (cAMP). Instead,
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A1 stimulation inhibits adenyl cyclase, resulting in decreased
cellular levels of cAMP. Accordingly, the observed biphasic
effect of extracellular ADO could be explained by the peculiar
functionality of A1 and A2a receptors (Cunha, 2005; Milne and
Palmer, 2011).

It has been reported that hypoxia inhibit the proliferation,
cytotoxicity and migration of CIK cells in vitro (Shi et al., 2013),
hampering the effectiveness of CIK therapy. Moreover, the ex
vivo infiltration of CIK cells in the hypoxic area is hindered,
suggesting that a high expression of the complex CD26/ADA
might be a condition sine-qua-non to warrant cytotoxicity to
infused CIK cells. On this premise, we elaborate a model for
CD26/ADA action at the CIK cell surface, where human ADA
fine-tune ADO concentrations protecting CIK cells from an
ADO mediated inhibition of proliferation. Consequently, this
versatile strategy would provide a safety lock of CIK cell cytotoxic
activities (Figure 8).

Treg cells and mesenchymal derived stromal cells (MDSC)
are widely considered immune mediators of peripheral tolerance,
playing a pivotal role in limiting anti-tumor immunity (Quarona
et al., 2015; Chillemi et al., 2017). Therefore, pathways leading to
ADO synthesis on CIK cells may contribute to the induction of
paracrine suppression of the Tregs and MDSC immune activities
(Figure 8).

A bona fide conclusion of the present study is that CIK cells are
equipped with a surface machinery leading to ADO production.
Moreover, CIK cells are characterized by the expression of ADO
receptors with high affinity (A1R and A2AR): the activation
occurs when ADO reaches 1-3 nM concentrations (Burnstock,
2007). CIK cells may produce microenvironmental ADO
concentrations above the affinity constant (Ka) of adenosinergic
A1 and A2A receptors present on the same cells and on
immune effectors (e.g., Treg, MDSC). This sequence of events
may occur in situ in the microenvironment or at a distance.
The final outcome is an implementation by CIK cells of an
autocrine/paracrine network required for optimal physiological

activities. Support for this hypothesis comes from a recent
study that showed T helper (Th) 17 cells (CD26+) are also
equipped with an adenosinergic machinery, which induces a
negative regulation of the immune response of Tregs through the
production of ADO (Bailey et al., 2014).

In conclusion, the results of this work consented us to
highlight critical functional features of human CIK cells, not
appreciated yet. Schematically, CIK cells express (i) a panel
of extracellular enzymes involved in nucleotide/nucleoside and
NAD+ metabolism i.e., CD39, CD38, CD203a, and CD73.
(ii) The same cells exploit the chain CD26/ADA/ADO to
govern the extracellular concentration of ADO. The same
effects are likely to be extended at distance, providing negative
signals to T lymphocyte populations (De Meester et al.,
1999). The results of this work pave the way to verify this
hypothesis during the discrete steps of the induction of the
CIK cells. Future studies are required to explore the functional
implications of our findings within the challenging setting of
solid tumors.
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