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Improving the Accuracy of Industrial Robots

via Iterative Reference Trajectory Modification
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Abstract—In this paper, a novel repetitive control scheme is
presented and discussed. The general framework is the control
of repetitive tasks of robotic systems or, more in general, of
automatic machines. The key idea of the proposed scheme
consists in modifying the reference trajectory provided to the
plant in order to compensate for external loads or unmodeled
dynamics that cyclically affect it. By exploiting the fact that
uniform B-spline trajectories can be generated by means of
dynamic filters, the trajectory planning phase has been integrated
within a repetitive control scheme able to modify in real-time the
reference signal in order to nullify the tracking errors occurring
at the desired via-points. Because of this mechanism, the control

scheme is very suitable for the application to industrial plants
with off-the-shelf, unmodifiable controllers. Experimental results
obtained with a standard industrial manipulator both in joint-
and in work-space show the effectiveness of the proposed method.

Index Terms—Repetitive Control, Learning Algorithms, Itera-
tive Methods, Robotic Manipulators, B-spline Trajectories.

I. INTRODUCTION

In practical applications, desired tasks are often repetitive or

cyclic in nature. This is particularly true in industrial robotics

and in automatic machines, where many tasks simply imply

the continuous repetition of a given path. From a control

point of view, it is therefore required to track and/or reject

a periodic exogenous signal that can be considered known

since it refers to planned trajectories or disturbances whose

cycle time is easily measurable or known in advance. In order

to improve the tracking accuracy, Repetitive Control (RC)

represents a simple and effective method, since it aims at

cancelling tracking errors over repetitions, by learning from

previous iterations. RC was first developed by Inoue et al. [1],

[2] to improve the control of the power supply in a proton

synchrotron accelerator, but soon was applied to many other

different systems. Many surveys, see e.g. [3], [4], report the

successful use of RC in a number of applications, such as

high accuracy trajectory tracking of servomechanism, torque

vibration suppression in motors, noise cancellation in power

supply, industrial robotics, and so on.

In this paper, a novel repetitive control scheme is presented.

The scheme is based on a proper modification of the reference

trajectory for the plant, which is supposed to be already

controlled by an off-the-shelf controller. A similar idea has
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been already proposed in the continuous-time domain in [5],

where a two-degrees-of-freedom local control, and a plug-in

RC is used to update the reference trajectory. The novelty of

this paper lies in the assumption that the reference trajectories

are defined by spline functions, which are de-facto the standard

tool used in the industrial field for planning complex motions

interpolating a set of given via-points [6]. Thanks to the

possibility of generating B-spline trajectories by means of

dynamic filters [7], in the seminal works [8] and [9] the

trajectory planner has been inserted inside a control loop that

modifies in real-time the control points of the B-spline curve

so that the tracking error at the desired via-points converges

to zero. The mechanism for the control points modification

induces a discrete-time repetitive control acting on the plant,

along with the trajectory generator, which works at a very

low rate. Therefore, the proposed control scheme, which has

been directly developed in the discrete-time domain, is char-

acterized by a very low computational complexity. Moreover,

the application of this control scheme is independent on the

particular control law of the plant, which is seen as a servo-

system able to track a spline curve. As a consequence, the

proposed approach can be easily implemented as an outer

feedback control loop, that provides a reference input for the

robotic system, able to reduce the error at the given via-points

below the level which is already guaranteed by the standard

robot controller. The implementation of the proposed method

is also supported by very weak stability conditions that, for a

given plant, only depend on the duration of the trajectory and

that, de facto, are always met in case of position-controlled

robot manipulators and more generally in position-controlled

electro-mechanical systems.

In recent years, the use of B-spline functions combined with

learning mechanisms, such as RC and ILC (Iterative Learning

Control) and similar, has been widely adopted with the purpose

of reducing the complexity of the resulting controller and

increasing the robustness of the system. Note that B-spline

functions are a particular case of basis functions, introduced

into the ILC to reduce the dimensionality of the input/output

spaces of the controlled plant, by describing command and

output signals as a linear combination of a relatively small

number of these basis functions [10]. The functions depend on

the original reference signal and on the system dynamics, or

are user-defined; for instance, in [11], [12], the basis functions

are chosen starting from the plant dynamics; in [13], [14],

the derivatives of the reference trajectory (position, velocity,

acceleration, etc.) are considered; in [15], the basis functions

are defined as Legendre polynomials. B-spline functions are

another notable example of user-defined functions. They have
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been used in [16], [17] to parameterize a feedforward control

term for improving the position control of robotic manipula-

tors. The weights defining the spline are adapted on the basis

of the tracking error with a learning algorithm, leading to the

control scheme called Desired Compensation Learning Law

(DCLL) [18]. In [19], the output trajectory of the plant, in this

case a nanomanipulation system, is decomposed in a number

of shaping primitives represented by B-spline functions and

then an iterative learning algorithm is applied in order to

determine the control input associated to each primitive. In

[20], a spline function is used to parameterize a signal which

is added to the reference input for a servo drive and its

parameters are determined by means of a particle swarm

based repetitive compensator with the purpose of reducing the

tracking error from one iteration to the next one. Finally, the

so called B-Spline Networks (BSN), which are a particular

implementation of Neural Networks that utilize B-spline basis

functions to store information, are combined with iterative

learning mechanism to improve the tracking performances of

mobile robots [21], inverters [22], [23], piezoelectric actuators

[24], linear reciprocating vapor compressors [25], etc.

With respect to these methods, in which the B-spline functions

are a way to describe in a concise manner the control signal,

in the proposed approach the B-splines represent the form of

the reference signals to be tracked, and therefore, on the one

hand, they are subject to a number of constraints descending

from the specific application, such as the order, the number of

control points and the duration of the knot spans, but, on the

other hand, they have a clear geometrical meaning, especially

when they are defined in the robot workspace.

Moreover, in the works cited above the order of the spline is

generally limited to small values because of the computational

burden due to the B-spline evaluation process while the high

efficiency of the overall algorithm, due to the use of dynamic

filters for B-spline generation, is one of the most important

feature of the proposed approach.

The paper is organized as follows. In Sec. II a general

overview of the filters for B-spline generation is given both

in the continuous- and in the discrete-time domain. Then, in

Sec. III the proposed RC approach, based on B-spline filters,

is illustrated and a convergence analysis is provided. This part

of the paper incorporates the contributions of the conference

papers [8], [9], with corrections and additions. In particular, the

effects of the proposed RC scheme on the trajectory provided

to the robot are further analyzed according to an ILC fashion,

in which the index denoting the current repetition is explicitly

reported. In fact, as often mentioned in the literature (see [4],

[26] among many others) Repetitive Control and the Iterative

Learning Control are nearly equivalent design philosophies

apart the settings of the initial conditions for each trial. In our

case, the RC formalism leads to a simpler control scheme and

to a straightforward stability analysis but the ILC perspective

provides a very intuitive insight into the behavior of the

proposed control method.

Finally, the main contribution of this work concerns the

experimental validation of the proposed controller on a multi

degrees-of-freedom industrial manipulator both in the joint-

space and in the workspace (Sec. IV). In particular, in order

to take into account the trajectory in the workspace, the RC

scheme has been adapted with respect to the basic scheme by

inserting the inverse kinematics function between the filter for

B-spline trajectory generation and the robot, controlled at the

joint level.

Final conclusions are reported in Sec. V.

II. B-SPLINE CURVES AND B-SPLINE FILTERS FOR

SET-POINT GENERATION

In a number of practical applications the reference signal

for dynamical systems is defined by using spline functions that

interpolate a set of desired via-points q⋆i , i = 0, . . . , n− 1 at

time instants ti. By assuming a B-spline form of the trajectory,

i.e.

q(t) =

n−1∑

i=0

piB
d
i (t), t0 ≤ t ≤ tn−1 (1)

where Bd
i (t) is a B-spline basis function of degree d, the

control points pi must be computed by imposing interpolation

conditions on the given data points q⋆i , see [6]. Note that,

as shown in Fig. 1, the control points alone determine the

geometric shape of the B-spline curve, which represents a sort

of smooth approximation of the so-called control polygon.

A. B-spline evaluation

In order to evaluate the B-spline (1) for a given value

t ∈ [t0, tn−1] it is necessary to compute the basis functions

Bd
i (t) via numerical procedures which are usually based on

recursion. In [7] uniform B-spline trajectories, i.e. B-splines

characterized by an equally-spaced distribution of the knots ti
i.e. ti+1 − ti = T i = 0, . . . n − 2, have been generated by

feeding a chain of d (continuous-time) dynamic filters defined

as

M(s) =
1− e−sT

Ts

B-spline q(t)

Control polygon

Via-points q⋆i
Control points p⋆i

q⋆i
p⋆i

Fig. 1. Two-dimensional B-spline trajectory interpolating a set of via-points
q⋆i .

︸ ︷︷ ︸

d filters

p(t) q(t−mT )
H0(s)

1− e−sT

Ts

1− e−sT

Ts

pi

Fig. 2. System composed by d mean filters and by a zero-order hold H0(s)
for the computation of continuous-time B-spline trajectories of degree d.
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Fig. 3. Control points sequence pi defining a cubic B-spline and related
reference trajectory q(t − mT ) obtained with the dynamic filter of Fig. 4
with d = 3 (and accordingly m = 2).

︸ ︷︷ ︸

d filters

up-sampler

1 : N

pi pk qk−mN1−z−N

1−z−1

1
N

1−z−N

1−z−1

1
N

1−z−N

1−z−1
Fd(z)

T Ts
Md(z)

Fig. 4. System Md(z) composed by d moving average filters and by the
FIR filter Fd(z) defined in (2) for the generation of discrete-time B-spline
trajectories of degree d.

with the staircase signal p(t) obtained by maintaining the value

of each control point pi for the entire period iT ≤ t < (i+1)T .

See the scheme of Fig. 2 and the signals shown in Fig. 3,

where the generation of a cubic B-spline is considered. Note

that p(t) is obtained by applying a zero-order hold to the train

of impulses of amplitude pi. Moreover, it is worth noticing that

the output trajectory is delayed with respect to the application

of control points of mT seconds, where m = d+1
2 . For com-

puter controlled systems equipped with digital controllers with

sampling period Ts, the B-spline reference trajectory must be

computed at time-instants kTs. It is therefore necessary to

discretize the filter of Fig. 2. By z-transforming the chain of

d filters M(s) with a zero-order hold the system of Fig. 4

is obtained. Besides the initial zero-order hold, the discrete-

time filter Md(z) for the evaluation of B-splines of degree d
is composed by d moving average filters and by the additional

FIR filter Fd(z) defined as

Fd(z) =
z−1Qd−1(z)

d!
, (2)

with the polynomial

Qr(z) = cr,0 + cr,1z
−1 + . . .+ cr,r−1z

−(r−1) + cr,rz
−r (3)

whose coefficients can be computed in a recursive way as

cr,0 = cr,r = 1
cr,r−i= cr,i = cr−1,r−i−1 · (i + 1) + cr−1,r−i · (r − i+ 1),

i = 1, . . . ,
[
r
2

]

being
[
·
]

the integer part operator.

In Tab. I the expression of the FIR filter Fd(z) is reported for

p
k

q k
−
m

N

k

k

i

p
i

T

Ts

Fig. 5. Control points sequence pi defining a cubic B-spline and related
reference trajectory qk−mN with m = 2 obtained with the dynamic filter of
Fig. 4.

several values of the B-spline degree d. Note that filter Fd(z)
can be written as Fd(z) = z−m F̃d(z) where F̃d(z) is a zero-

phase filter, i.e. a filter characterized by arg{F̃d(e
jωT )} = 0,

∀ω ∈ [0,∞).
The sequence pi of the control points is transformed in the

staircase sequence pk, with sampling time Ts, by means of an

upsampling operation with replication

pk = pi, k = iN, iN + 1, . . . , (i+ 1)N − 1 (4)

where N denotes the ratio, supposed to be an integer, between

T and Ts. The samples of the B-spline sequence are then

generated by the filter denoted by Md(z) and coincide with

the value of the continuous-time trajectory at time instants kT ,

i.e. qk = q(kT ), see Fig. 5.

In the multi-dimensional case, that is with vectorial control

points, the spline curve can be evaluated by considering a

filter like the one in Fig. 4 for each component of the vector

pi.

B. Control points computation

The control points pi are computed by imposing the in-

terpolation conditions on the via-points at the time-instants

defined by knots which for uniform B-spline are multiple of

the fundamental period T , i.e.

q(iT ) = q⋆i , i = 0, . . . , n− 1. (5)

F1(z) = z−1

F2(z) =
1

2
z−1 + 1

2
z−2

F3(z) =
1

6
z−1 + 4

6
z−2 + 1

6
z−3

F4(z) =
1

24
z−1 + 11

24
z−2 + 11

24
z−3 + 1

24
z−4

F5(z) =
1

120
z−1 + 26

120
z−2 + 66

120
z−3 + 26

120
z−4 + 1

120
z−5

TABLE I
EXPRESSION OF THE FILTER Fd(z) FOR DIFFERENT VALUES OF d.
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If for instance cubic B-splines are considered, (5) can be

written as

q(iT ) =
1

6
p⋆i−1 +

4

6
p⋆i +

1

6
p⋆i+1 = q⋆i , i = 0, . . . , n− 1. (6)

See [7] for more details. Since it is supposed that the motion

is repetitive, the so-called periodic splines must be considered,

i.e. spline functions characterized by the boundary conditions

q(j)(t0) = q(j)(tn−1), j = 1, . . . , d− 1. (7)

The conditions (6) and (7) lead to the linear system





















4 1 0 · · · 0 1
1 4 1 0 · · · 0
0 1 4 1 0 · · · 0
...

. . .
...

0 · · · 0 1 4 1 0
0 · · · 0 1 4 1
1 0 · · · 0 1 4









































p⋆0
p⋆1
p⋆2
...

p⋆n−3

p⋆n−2

p⋆n−1





















=





















6 q⋆0
6 q⋆1
6 q⋆2

...
6 q⋆n−3

6 q⋆n−2

6 q⋆n−1





















(8)

whose solution provides the sequence of control points p⋆i
defining the interpolating B-spline. As well-known the defi-

nition of the interpolating B-spline is a global problem, that

can be performed only when the entire set of via-points is

provided. However, it is possible to approximate this global

mapping between via-points q⋆i and control points p⋆i within

a smaller set of data. In fact, the relation (6) between q⋆i and

p⋆i can be written as a (discrete-time) dynamic system1, e.g.

P (zN)

Q(zN)
=

6

zN + 4 + z−1
N

(9)

for cubic B-splines. Although (9) represents an unstable sys-

tem, it can be used for computing the sequence p⋆i from q⋆i by

approximating its impulse response with a FIR filter defined

by

H(zN) =

r∑

n=−r

h(n) z−n
N

(10)

with the coefficients h(n) that for d = 3 can be computed as

h(n) =
1− α

1 + α
α|n| (11)

where α = −2 +
√
3 is the stable pole of (9). Note that the

value of h(n) becomes extremely small as |n| grows. This

means that for the computation of the control points p⋆k, only

the weights of the via-points close to q⋆k are important, while,

from a practical point of view, the others can be neglected

with consequent small approximation errors. For instance, the

choice r = 4 guarantees an approximation error with respect

to the exact solution of (8) smaller than 0.5% (for more details

see [8], [27] ). It is worth noticing that from (11) it descends

that h(n) = h(−n), therefore H(zN) is a zero-phase filter.

Moreover, the filter H(zN) is not causal and it is necessary to

introduce a delay equal to r to make it feasible, that is

H ′(zN) = z−r
N
H(zN) =

2r∑

n=0

h(n− r) z−n
N
. (12)

1The expressions depending on zN are referred to the sampling time T =
N Ts.

By feeding the filter H ′(zN) with the ordered sequence of via-

points q⋆i it is possible to obtain online the control points p⋆i
defining the interpolating B-spline at the price of a r samples

delay and a small approximation error.

Even if cubic B-splines have been used throughout the paper,

the expressions of the algebraic system and of the FIR filter

H(zN) for off-line and online computation of the control

points defining quintic B-splines, i.e. d = 5, have been

reported in the appendix because of their importance for the

applications.

III. TRACKING OF B-SPLINE CURVES AND ASYMPTOTIC

PERFECT TRACKING VIA ITERATIVE LEARNING

MODIFICATION OF THE CONTROL POINTS

The reference trajectory generated by the discrete B-spline

filter is then provided to the plant, as illustrated in Fig. 6.

Since this scheme has a standard feedforward cascade structure

without feedback control actions, with the only purpose of

generating arbitrarily complex trajectories for the plant G(z),
the capabilities of G(z) to track such inputs are implicitly

assumed. Therefore, the system G(z) is assumed to be a

controlled plant, with a standard closed-loop structure, whose

frequency response is characterized by a typical low-pass

behavior with a static gain as close as possible to the unity. In

order to follow the input signal accurately, the bandwidth of

G(z) must be large enough [28], and in particular larger than

the maximum spectral components of the reference input.

A great advantage of using the linear filter Md(z) for gener-

ating B-spline curves consists in the straightforward spectral

characterization of the resulting trajectory. The magnitude of

the frequency response of the discrete-time B-spline generator

of Fig. 4, including the initial interpolator,

M̃d(z) =
1− z−N

1− z−1
Md(z),

is given by

M̃d(e
jωTs) = F̃d(e

jωTs)




sinc

(
ω
ω0

)

sinc
(

ω
ωs

)





d+1

e−jω mT, ω ≤ ωs

2

where sinc(·) denotes the normalized sinc function defined

as sinc(x) = sin(πx)
πx and ω0 = 2π

T , ωs = 2π
Ts

. Note that

M̃d(e
jωTs) is characterized by a pure delay of mT seconds.

The zero-phase FIR filter F̃d(e
jωTs) has a standard low-pass

behavior, therefore M̃d(e
jωTs) is a low-pass filter as well and

its magnitude decreases rather quickly as ω grows, especially

for high values of d. In Fig. 7 the magnitude of the frequency

response of the B-spline filter M̃d(z) is shown for d = 1, 3, 5.

G(z)
Control Points

Computation

up-sampler

1 : N

pi pkq⋆i qrk−mN qk−mN
Md(z)

1− z−N

1− z−1

T Ts

Fig. 6. Set-point definition by means of a B-spline filter for a (controlled)
discrete-time plant G(z).
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Fig. 7. Magnitude of the frequency response of the B-spline filter M̃d(z) for
d = 1, 2, 3 (N = 50).

In case of cubic or quintic B-splines, that are rather standard

in the robotic field, the spectrum components of the reference

trajectory qrk−mN at the output of this filter are significant

only in the frequency range [0, ω0], while the reduction of the

components for ω > ω0 is at least of two order of magnitude

(-40 db). As a rule of thumb, in order to obtain a good

tracking performance the controlled plant G(z) must have a

cutoff frequency ωc ≫ ω0, and accordingly

G(ejωTs) ≈ 1 for ω ≤ 2π

T
= ω0 ≪ ωc. (13)

However, even though (13) is valid, the tracking error e =
q− qr between plant output and reference B-spline trajectory

can be significant, because of modeling errors and external

disturbances. For instance, in a robotic manipulator equipped

with a standard decentralized control, each motor is affected

by gravitational and dynamic coupling terms that are usually

neglected in the control design although they can significantly

deteriorate the tracking performance of the system [29].

A. Plug-in Repetitive Control

Since it is assumed that the structure of the internal con-

troller of the plant cannot be modified by the user, as in an

industrial robots, the proposed approach aims at improving

the tracking precision during repetitive tasks by modifying

the reference trajectory. As a B-spline curve is completely

determined by the position of its control points, the modifi-

cation of the trajectory can be obtained by directly acting on

them, e.g. by means of the control scheme reported in Fig. 8.

This scheme is obtained by inserting the trajectory generator,

including the filter for control points computation, and the

controlled plant G(z) in a discrete-time control loop that, on

the basis of the interpolation error q̃i = q⋆i − qi, modifies in

real-time the control points sequence (denoted by pri ) from

the initial value p⋆i . It is a typical dual rate system with the

feedback loop running at a sampling period T , considerably

higher than the period Ts of the trajectory generator and of the

controlled plant G(z). According to internal model principle

[30], it is straightforward to conclude that the presence in the

loop-function of the term

1

1− z−n
N

(14)

assures asymptotic perfect tracking of any periodic signal with

period n and therefore the tracking error at the given via-points

q⋆i asymptotically vanishes. This is a basic results of Repetitive

Control in the discrete-time domain [31], but it requires that

the feedback loop is stable. In order to analyze the stability

of the scheme running with sampling period T , let’s consider

the block-scheme representation of Fig. 9 obtained from the

control scheme of Fig. 8 after some formal manipulations.

The discrete-time transfer function [M̃dG]
T (zN) represents

the transfer function M̃d(z)G(z), modeling the trajectory gen-

erator and the plant, re-sampled with the period T . Note that

this scheme has a quite standard repetitive control structure

whose stability can be inferred by analyzing its characteristic

equation, i.e.

1 +
z−n
N

1− z−n
N

KpH(zN) z
m
N
[M̃dG]

T (zN) = 0. (15)

By following the approach proposed in [31], it is possible to

see that the asymptotic stability of (15) is equivalent to the

stability of the feedback system with loop-transfer function

L(zN) = z−n
N

(

KpH(zN) z
m
N
[M̃dG]

T (zN)− 1
)

.

Therefore, by applying the Nyquist criterion it descends that

all the poles of (15) are within the unit circle if and only if the

polar plot of L(ejωT ) for − π
T ≤ ω ≤ π

T does not encircle or

touch the critical points −1. This can be assured by imposing

that
∣
∣
∣KpH(ejωT ) ejω mT [M̃dG]

T (ejωT )− 1
∣
∣
∣ < 1, ω ≤ π

T
.

(16)

The condition (16) requires that the complex function

KpH(ejωT ) ejω mT [M̃dG]
T (ejωT ) lies within the circle of

unit radius centered in 1+j0, ∀ω ≤ π
T , see Fig. 10. In nominal

conditions, when the plant is able to track the reference

B-spline with negligible errors, and therefore (13) is met,

the transfer function [M̃dG]
T (zN) can be approximated as

[M̃dG]
T (zN) ≈ M̃T

d (zN). In this case, the transfer function

M̃d(z) of the B-spline filter, re-sampled with period T , de-

scribes the relationship between control points and interpolated

via-points with, as already remarked, an additional delay of

mT seconds, i.e.

M̃d(zN) =
Q(zN)

P (zN)
z−m
N

.

On the other hand, the transfer function H(ejωT ) approxi-

mates the relationship between via-points and control points.

Therefore,

H(ejωT ) ejω mT M̃T
d (ejωT ) ≈ 1, ω ≤ π

T
(17)

and the condition (16) is valid for 0 < Kp < 2. Note that the

value Kp = 1 maximizes the robustness of the RC scheme,

since in nominal conditions the polar plot of loop function

L(ejωT ) is a point located at the center of the stability region

shown in Fig. 10. If the condition (13) is not satisfied and

therefore even in nominal conditions (i.e. without external

periodic disturbances) the tracking of the reference trajectory

is not satisfactory, it is necessary to consider [M̃dG]
T (zN) ≈

M̃T
d (zN)∆Md(zN) where the term ∆Md(zN) takes into ac-

count the effects, that cannot be neglected, of the plant G(z) on

the reference input. Note that ∆Md(zN) 6= GT (zN) because
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Fig. 9. Equivalent block-scheme representation of Repetitive Control in Fig. 8.
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∆Md

∠∆Md

Im
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Fig. 10. Stability region of RC for Kp ∆Md(e
jωT ).

of aliasing phenomena. In fact, the down-sampling operation

does not commute, that is [M̃dG]
T (zN) 6= M̃T

d (zN)G
T (zN)

[32]. However, ∆Md(zN) is a direct consequence of G(z) and

therefore describes similar phenomena; for instance, if G(z)
involves a gain reduction/increase also ∆Md(zN) does involve

a similar gain variation, or if G(z) causes a phase delay also

∆Md(zN) is characterized by a negative phase shift.

In this case, condition (16) becomes
∣
∣
∣Kp∆Md(e

jωT )− 1
∣
∣
∣ < 1, ω ≤ π

T
. (18)

As shown in Fig. 10, where the stability region for the

function Kp∆Md(e
jωT ) is shown, the gain of ∆Md(e

jωT )
can be compensated by a proper choice of the free parameter

Kp. Simple geometrical considerations lead to the following

stability condition

0 < Kp <
2 cos(∠∆Md(e

jωT ))

|∆Md(ejωT )| , ∀ω ≤ π

T
(19)

where ∠ denotes the function that returns the phase angle of

a complex number. Obviously, (19) can be satisfied only if

−π/2 < ∠∆Md(e
jωT ) < π/2. If the phase shift due to the

plant exceeds ±π/2, the stability of the RC cannot be assured,

but a good feedback controller and a proper choice of the

trajectory (in particular a proper choice of the time-distance

T between the via-points) should ever prevent this possibility.

Since, in an industrial robotic system the controller can not

be (easily) modified, the stability condition determines the

minimum duration of the B-spline trajectory, which depends

on the minimum allowable value of T . In particular T must

be adapted to the controller bandwidth in order to verify (13).

B. Iterative Learning analysis of the proposed control scheme

In order to understand the effects of the control scheme

of Fig. 8 on the resulting reference trajectory, an analysis

based on the Iterative Learning perspective can be useful. By

a simple inspection of the scheme, it descends that the control

points pi defining the spline trajectory are updated according

to the law

pri,j = pri,j−1 +KpH(zN)q̃i−m,j−1 (20)

where the index j denotes the current cycle, and zN is the time-

shift operator. Therefore, the i-th control points is modified on

the basis of the error q̃i−m between desired position q⋆i−m and

the actual position qi−m (delayed by m samples), transformed

in an error in the “control points space” by means of the filter

H(zN). By combining (20) with the I/O relationship of the

plant with the B-spline generator, i.e.

qi−m,j = [M̃dG]
T (q) pri,j

it is possible to derive the equation of the iteration error

dynamics, that in the z-domain is

Q̃j(zN) =
[

1− [M̃dG]
T (zN)KpH(zN)

]

Q̃j−1(zN) (21)

where Q̃j(zN) = ZT {q̃i,j} is the Z-transform of the sequence

obtained from q̃j(t) with sampling time T . Therefore, the ILC

system is stable and the error q̃i,j asymptotically vanishes only

if
[
1−[M̃dG]

T (zN)KpH(zN)
]

is a contraction mapping [33],

that is

sup
ω∈[−π/T,π/T ]

∣
∣
∣1−KpH(ejωT ) ejω mT [M̃dG]

T (ejωT )
∣
∣
∣ < 1 .

(22)

Note that stability condition (22) is equivalent to (16), but

equation (21), that leads to (22), provides some additional

information, e.g. about the transient. If the condition (17) is

satisfied, the choice Kp = 1 guarantees that the error q̃i,j
converges to zero after one single cycle for any value of the

initial error q̃i,0 [34], while smaller values of Kp can aid to

satisfy (22), or equivalently (16), but, on the other hand, they

cause a slower convergence of the error to zero.

In Fig. 11 the mechanism is illustrated with an example
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Fig. 11. Example of tracking of a 2-D B-spline trajectory (a) and trajectory
modification via ILC mechanism (b): the solid back line is the reference
trajectory qr(t) while the solid red line is the actual trajectory q(t) performed
by the plant.

based on a 2-D B-spline trajectory. The initial tracking error

of the plant with its internal control has been assumed very

large only for the sake of clarity, see Fig. 11(a). For the same

reason, a very small value of Kp has been considered. In

this way, the asymptotic approach of the output trajectory to

the reference trajectory results very slow and it is possible to

appreciate the modification of trajectory and via-points, as

highlighted in Fig. 11(b).

C. A comparative evaluation of the proposed control scheme

In order to better highlight the advantages of the proposed

controller, its performances have been compared with those

of well-settled repetitive control based techniques that share

the same design philosophy, namely the possibility to be

applied to controlled plants as a plug-in module that does

not require modifications on the basic off-the-shelf controller.

In particular, the so-called plug-in repetitive control [35]–

[38], shown in Fig. 12(a), has been considered. Additionally,

the scheme recently proposed in [20], where an additive

signal, parameterized as a uniform B-spline, is added to the

given reference trajectory, has been taken into account, see

Fig. 12(b). In this latter case, the controller has not only a plug-

in structure but it is also based on the iterative modification

of a B-spline function. The main difference with respect to

the approach proposed in this paper is that the modification of

G(z)

Controlled plant

z−l

+

+−

qkq⋆k

q̃k
Q(z) L(z)

(a)

G(z)

Controlled plant

+

−

qkq⋆k

q̃k
PSO SplineObjective

function

uPSO uSpline

(b)

Fig. 12. Plug-in repetitive control scheme (a) and particle swarm based
repetitive spline compensator (b).

the B-spline is obtained by using a Particle Swarm Optimizer

(PSO) applied to a cost function that depends on the tracking

error and on the control signal.

The plant considered in the simulations is the servo drive

with a standard current/velocity/position control architecture

used to evaluate the PSO repetitive spline compensator in [20]

(the model and the controller are available in [39]), and also

the reference trajectory comes from the same paper. Since,

the proposed control scheme is based on a B-spline reference

trajectory interpolating a set of via-points, the trajectory in

[20] has been uniformly sampled in order to obtain the via-

points. In Fig. 13(a), the trajectory is shown along with the

tracking error without any RC mechanism. The duration of a

single cycle is Ttot = 0.5 s, and the control points are 50. The

sampling time of the servo drive is Ts = 0.1 ms, while the

knot span T is 0.01s. Accordingly N = 100.

The application of the B-spline based RC proposed in this
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Fig. 13. Reference trajectory and tracking error without RC (a). Tracking
error with the B-spline based RC -iteration #10- (b), the plug-in RC -iteration
#10- (c) and the PSO based RC -iteration #100- (d).
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Fig. 14. Comparison of the error decay obtained with the B-spline based RC
(a), the plug-in RC (b) and the PSO based RC (c).

paper (with Kp = 0.5) leads to a quick reduction of the

tracking error, as highlighted in Fig. 14(a). After nine cycles

the error q̃i at the knots has practically vanished, see Fig. 13(b).

In general, the overall tracking error has been considerably

reduced. Similar results are obtained with the plug-in RC,

working at Ts (thereforeN times faster than the B-spline based

RC), see Fig. 14(b) and Fig. 13(c). In this case the final level

of the error is influenced by the choice of the filter Q(z),
which has been assumed as a standard low-pass filter, while

the decay rate of the error depends on the filter L(z), that in

the simulation is a simple gain equal to Kp. Therefore, besides

the lower sampling rate, the integration of the B-spline filter

in the RC loop simplifies the tuning of the controller, because

the free parameters are only Kp and T , and guarantees that

the tracking errors goes exactly to zero (at least at the knots),

since the presence of the filter Q(z) is not necessary for the

stability of the control loop.

The PSO based RC modifies the B-spline curve on the basis

of the overall tracking error (and not only at the knots) and

for this reason it exhibits a higher robustness with respect to

noise and aperiodic disturbances. However, the tracking error

converges to zero very slowly, although the (numerous) free

parameters that characterize the scheme have been selected

by the authors of the paper and are therefore supposed to

be optimized. From Fig. 14(c) and Fig. 13(d) it is quite

evident that after 99 iterations the error level is higher than

the error level of the B-spline based RC after 9 cycles. Finally,

from a computational point of view, the PSO based RC

is rather demanding, because of the optimization procedure,

the spline computation, etc., and its implementation may be

unpractical. On the contrary, the computational burden of

proposed B-spline based scheme is very low, as it can be

roughly assessed by considering the time required by a 5

seconds simulation, namely tsim = 1.201383 s for the B-

spline based RC, tsim = 2.679974 s for the plug-in RC and

tsim = 33.3352 s for the PSO based RC.

IV. APPLICATION OF THE RC SCHEME TO AN INDUSTRIAL

MANIPULATOR

In order to show the importance for applications of the

proposed approach, an extensive experimental activity has

been performed. In a real scenario involving an industrial

manipulator the proposed control can be used according two

different schemes and purposes:

a) the iterative modification of the robot trajectories defined

in the joint-space is obtained on the basis of the mea-

surements provided by the proprioceptive sensors of the

robot, i.e. motors encoders;

b) the robot trajectories are directly defined in the workspace

and are modified on the basis of an external sensor that

detect the position of the end-effector in the 3-D space,

i.e. a RGB-D camera [40].

In case a), the goal of the repetitive control is improving the

robot precision by compensating the errors that the internal

controller of the robot is not able to correct.

In case b) the external sensor allows the compensation of

errors that are not sensed by the motors encoders, e.g. position

errors due to the elasticity of the transmission chain or to the

flexibility of the links, or errors due to misalignments between

the reference frame of the robot base and the reference frame

in which the desired trajectory is defined. Note that the

proposed control scheme based on a low-rate outer loop is

very attractive in this second scenario, since the integration of

many external sensors may be affected by some bottlenecks,

due to the intrinsic properties of the sensor itself, like in the

case of cameras, or to the time required for elaboration and

data transmission, that limit the minimum sampling time.

In Fig. 15, the 60 via-points, and the interpolating

workspace trajectory, used in all the experiments reported in

this section are shown. Obviously, in the scenario a, based

on joint-space trajectories, the reference trajectory is built by

firstly applying the inverse kinematics function of manipulator

to the given via-points.

A. Scenario a

In order to experimentally evaluate the proposed method

the setup shown in Fig. 16 has been arranged. The system

is composed by a Comau Smart5 Six industrial robotic arm,

a C4G Controller and a standard PC with an Intel Core

2 Duo 2.4 GHz processor. The Comau Smart5 Six is a 6

DOF robot with anthropomorphic structure with a payload

of 6 Kg. The robot is driven by the C4G Controller that

performs both the position/velocity control and the power stage

management with current control of each joint. Moreover, the

C4G controller implements a software option called “C4G

open” that allows the integration of the robot control unit

with an external personal computer in order to develop a
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Fig. 15. Reference trajectory interpolating a set of via-points disposed on the
plane y−z used to experimentally validate the proposed control scheme both
in the robot joint-space and in the robot workspace.
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Fig. 16. Experimental setup based on a Comau Smart5 Six industrial
manipulator.

complex control system at a higher hierarchical level. The C4G

Open architecture is based on a real time communication on

Ethernet network between the controller and the PC, equipped

with the real-time operating system RTAI-Linux on a Ubuntu

NATTY distribution, that allows the trajectory generator/RC

loop to run with a sampling period Ts = 1 ms. For the

design of the control scheme and of trajectory generator, the

MatLab/Simulink/RealTime Workshop environment has been

used. The knot span of the uniform trajectory has been set to

T = 0.5 s, and therefore its total duration is Ttot = 30 s.

For the sake of clarity, the behavior of only one robotic

joint (the third) has been initially analyzed. In Fig. 17(a) the

performance of the original robotic system, without RC, is

shown. As can be seen, the third joint is affected by a quite

evident tracking error, due to both the dynamic coupling with

the other joints and the 3 Kg payload represented by the

UBHand IV robotic hand [41].

In Fig. 18 the tracking performance of the third joint is

presented when the RC is switched on. It is worth noticing

that, as soon as the RC is activated, the error q̃i at the given

via-points q⋆i starts decreasing and vanishes in a few iterations.

More generally, the entire error between the planned B-

spline and curve tracked by the robot considerably decreases.

This reduction is quite evident if the tracking error obtained

without RC during a trajectory period, shown in Fig. 17(a),

is compared with the error obtained after application of the

controller, see Fig. 17(b) where a detail of the trajectory
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Fig. 17. Tracking performance of the third joint during a trajectory cycle
without (a) and with (b) RC (iteration #6).
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Fig. 18. Response of the robotic system when the RC is activated (t =
0). Errors at sampling instants T are highlighted in blue, while the red line
denotes the overall tracking error.

tracking with RC (after 5 cycles) is shown. In particular, a

reduction of the maximum tracking error of about 80% can

be observed, while the error at knots goes practically to zero.

Similar considerations are valid for all the robot joints, as

shown in Fig. 19 where the errors obtained during the tracking

of the trajectory in Fig. 15, with the RC mechanism activated,

are reported.

B. Scenario b

In this scenario, the cyclic motion of Fig. 15, directly

defined in the robot workspace by means of a uniform B-spline

interpolating a set of via-points, is considered. Additionally,

an external sensor, that is a simple vision system based on

ASUS Xtion PRO Live RGB-D camera, has been integrated

into the robotic setup described in Sec. IV-A, see Fig. 20. The

camera, which is disposed in front of the robot, detects the

position of a marker located at the robot end-effector with

a resolution of about 1 mm. Note that the precision of the

camera, which is a low cost device, is lower than the precision

of the industrial robot (whose repeatability is 0.05 mm) but

the proposed experiment is only a proof of concept aiming

at demonstrating how real applications can benefit from the

RC scheme. Besides the poor resolution of the camera and the

tracking error that affects the robot with the original controller

(which can be supposed periodic along a cyclic trajectory), the

main source of error is non-perfect calibration of the camera.

In fact, the position and the angular orientation of the camera

around its visual axis are certainly affected by an error, and in
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Fig. 19. Error decay for each joint of the robot Comau Smart5 Six during
the execution of the trajectory shown in Fig. 15 after the activation of the RC
mechanism (t = 0).
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Fig. 20. Experimental setup based on the Comau Smart5 Six industrial
manipulator with an external RGB-D sensor.

this application, only a rough calibration has been performed.

Note that, being the calibration errors constant, they can be

considered periodic.

For the sake of simplicity, a fixed orientation of the robot

end-effector has been considered, see Fig. 21 where the view

of the camera along with the desired trajectory is reported.

In the scenario, the via-points are six dimensional vectors

x

y

z

Fig. 21. View of the RGB-D camera and desired trajectory.

q⋆i = [x⋆i , y
⋆
i , z

⋆
i , ϕ

⋆
i , θ

⋆
i , ψ

⋆
i ]

T , where parameters ϕ⋆
i , θ⋆i , ψ⋆

i

are a minimal representation of the orientation, such as Roll-

Pitch-Yaw angles. As a consequence, the control points and

the cyclic B-spline trajectory are six dimensional too, and

therefore it is necessary to implement a vectorial version

of the trajectory generator, and more specifically of the RC

scheme. Moreover, since the reference trajectory is defined in

the robot workspace and the RC mechanism is performed in

the workspace as well, while the robot is controlled at the

joint level, the initial RC scheme shown in Fig. 8 has been

slightly modified in order to take into account the kinematic

transformations of the manipulator. In Fig. 22 the RC control

based on the modification of a uniform B-spline reference tra-

jectory defined in the robot manipulator workspace is shown.

Note that the only requirement for the success of the RC

is that the robot is able to track the planned trajectory in

nominal conditions and no additional hypotheses are necessary

in order to guarantee the stability of the loop. The gain Kp is

assumed equal to the identity matrix, i.e. Kp = I6, and T = 1s

(Ttot = 60s). In Fig. 23 the error decay along y and z axis

when the RC is activated is shown. In few cycles the RC is

able to considerably reduce the error at the via-points. In the

example, despite the noise due to the position estimation with

the camera, the error is reduced of one order of magnitude.

In order to better appreciate the improvement caused by the

application of the RC, a single trajectory cycle along the y-axis

with and without RC is considered in Fig. 24. By comparing

the tracking errors it is clear that the error is reduced not only

at the knots iT but also during the inter-samples.

Finally, in Fig. 25 the modification of the geometric ref-

erence path qr(t) due to the RC mechanism has been high-

lighted, by comparing the shape of the reference trajectory

qr(t) and of the actual trajectory q(t), before and after the

application of the RC. As already remarked in Sec. III-B, the

variation of the control points with respect to their initial value

obtained by interpolating the desired via-points produces a

deviation of the reference trajectory that compensate periodic

errors affecting the system, which in this way is able to follow

the desired path with an improved precision.
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Fig. 22. Repetitive Control scheme for tracking uniform B-spline trajectories defined in the workspace of a robot manipulator.
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Fig. 24. Tracking performance of the system along the y axis during a
trajectory cycle without and with RC (iteration #6).

V. CONCLUSIONS

In this paper, motion planning and reactive control have

been integrated in order to obtain a perfect tracking of a

desired set of via-points. By considering tasks performed cycli-

cally, which are quite common in the industrial and robotics

field, a B-spline trajectory generation algorithm has been

enhanced with a RC-type mechanism that modifies in real-

time the control points in order to nullify the tracking error at

the desired points. The effectiveness of the proposed approach

has been demonstrated both analytically and experimentally.

In particular, the tests performed on an industrial manipulator,

both in the joint space and in the workspace, have shown that

this scheme can be used to enhance the performance of the

original position controller of the robot without modification of

RC OFF RC ON

0 100 200 300 400 500 600 700 800 900

200

300

400

500

600

700

800

900

1000

1100

q⋆i

qr(t)
q⋆(t)

q(t)

z
[m

m
]

y [mm]

0 100 200 300 400 500 600 700 800 900

200

300

400

500

600

700

800

900

1000

1100

q⋆i

qr(t)
q⋆(t)

q(t)

z
[m

m
]

y [mm]

(a) (b)

Fig. 25. y− z planar view of the tracking performance of the system during
a trajectory cycle without and with RC (iteration #6).

the controller itself but only by implementing a low-rate outer

control loop that modifies the reference trajectory provided

to the manipulator. With respect to existing RC schemes, the

B-spline based controller offers the following advantages for

practical applications:

• straightforward scalability for multi-dimensional servo-

systems;

• low sampling rate;

• simple implementation with the need of tuning only the

gain Kp (generally equal to 1);

• stability conditions easily met, even in the presence of

non-linear elements, e.g. the inverse kinematics function

which has been included in the robot workspace RC

scheme.

The fact that the perfect tracking is guaranteed only at via-

points does not seem a limitation, since the reference trajec-

tory is generally defined by these via-points. Moreover, it is

possible to show that the reduction of the error at the via-

points also implies a reduction of the overall approximation

error of the curve. In general, the so-called inter-sample error

depends on the capability of the original plant to track the

given curve, and accordingly on the period T between knots

and on the spline degree d, see [8] for more details.

Finally, the proposed approach can be used to refine the

computation of the control points for a given motion trajectory

in order to compensate for cyclic disturbances that characterize

the plant. After an initial “training” the modified control points
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pri that take into account the dynamic behavior of the plant

can be applied without the adaptation mechanism in lieu of the

theoretical values p⋆i , computed on the basis of mere geometric

interpolation conditions.

APPENDIX

Control points computation for quintic B-spline trajectories

For quintic B-splines, i.e. d = 5, the system for the off-line

computation of control points p⋆ from the via-points q
⋆ is

Ap⋆ = q
⋆

with

A =
1

120


















66 26 1 0 · · · 0 1 26
26 66 26 1 0 · · · 0 1
1 26 66 26 1 · · · 0
0 1 26 66 26 1
...

. . .
. . .

. . .
...

1 26 66 26 1 0
0 · · · 0 1 26 66 26 1
1 0 · · · 0 1 26 66 26
26 1 0 · · · 0 1 26 66


















.

The coefficients h(n) of the FIR filter H(zN) for the online

computation of the control points are

h(n) = c1 α
|n|
1 + c2 α

|n|
2

where α1 and α2 are the stable poles of

P (zN)

Q(zN)
=

120

z2
N
+ 26zN + 66 + 26z−1

N + z−2
N

defined by

αi =
1

2
(2 + ui +

√

4 ui + u2i ), i = 1, 2

with ui = −15±
√
105, and the coefficients ci are

c1 =
α1(−1 + α1)(−1 + α2)

2

(α1 − α2)(−1 + α1α2)(1 + α1)

c2 =
α2(−1 + α2)(−1 + α1)

2

(α2 − α1)(−1 + α1α2)(1 + α2)
.
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