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Abstract

Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat

products with an increased n-3 fatty acid content, and the combined antioxidants addition

could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive

compounds at the molecular level in porcine skeletal muscle are mostly unknown. This

study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed

three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed

and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg.

After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs)

were submitted to functional analysis. The L vs LES comparison did not show differences,

while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other

groups showed the highest number of up-regulated genes involved in preserving muscle

metabolism and structure. Results enlighten that the combined supplementation of bioactive

lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases,

compared to the only addition of linseed, the expression of genes involved in mRNA meta-

bolic processes and transcriptional regulation, glucose uptake and, finally, in supporting

muscle development and physiology. These results improve the knowledge of the biological

effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing

interest over their use in pig production.
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Introduction

Supplementing pig diets with n-3 PUFA is a strategy to obtain healthier meat products con-

taining more unsaturated fatty acids (FAs) and a lower n-6/n-3 ratio, in view of the general

concern on the high consumption of saturated FAs from red meat, which may increase the

risk of disease such as type 2 diabetes and cardiovascular disease [1]. Several studies showed

that supplementing farm animal diets with functional ingredients such as antioxidants can

improve the nutritional quality of meat products by reducing lipid oxidation [2–7], and many

functional additives containing vitamin E and polyphenols are already used in pig production.

Despite that, knowledge of the effects of these nutrients at the molecular level is poorly known

[8]. High-throughput technology such as next-generation sequencing of RNA (RNA-Seq) is

presently an efficient suitable method in nutrigenomics studies in order to identify diet-

induced changes in the transcriptome of a biological tissue [9]. In swine, few studies have

investigated the effects of plant-derived bioactive compounds, such as n-3 PUFA and polyphe-

nols or synthetic antioxidants on gene expression [10–14]. It is worth noting that both n-3
PUFA and antioxidants/polyphenols can have a positive role in human metabolism showing

antioxidant and anti-inflammatory activity and a positive effect against obesity and insulin

resistance [15–18]. However, the effects of antioxidants and polyphenols in the diet have been

investigated mainly in rodents and only scarcely in farm animals so far [11,19]. In pigs, the few

studies reported in literature evidenced that polyphenols may influence the expression of

genes involved in lipid metabolism, inflammation and extracellular matrix remodelling

[10,11] even if the role of these compounds in pig skeletal muscle needs to be better elucidated

also at the molecular level [13]. The aim of the present research is to analyse the transcriptome

of Longissimus thoracis muscle of pigs fed different diets supplemented with linseed, vitamin E

and plant extracts as a source of polyphenols. This research aimed also to enlighten the effects

of the different diets on skeletal muscle gene expression and to compare changes in the tran-

script profile among diets.

Materials and methods

Ethics approval

One of the partners of the research project was the Council for Agriculture and Agricultural

Economy Analysis (Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria-

CREA). This is a public body and member of the National Institutional Animal Care Commit-

tee. CREA stated with a decision included in the Report 2 of 2016 September, 14 that all the

procedures performed in this study were in accomplishment with the Italian legislation, D.Lgs
4 Marzo 2014 n. 26 art. 2 punto F, and did not require further specific authorization. Moreover,

all farming procedures followed the Council Directive 98/58/EC concerning the protection of

animals kept for farming purposes, and Council Directive 2008/120/EC laying down mini-

mum standards for the protection of pigs. Animal transport was performed according to

Council Regulation (EC) No 1/2005 on the protection of animals during transport and related

operations. Slaughter was performed at commercial abattoir following the Council Regulation

(EC) n. 1099/2009 on the protection of animals at the time of killing and under the control of

the Veterinary Service from the Italian Ministry of Health, as indicated in the Regulation (EU)

2017/625 of the European Parliament and of the Council on official controls and other official

activities performed to ensure the application of food and feed law, rules on animal health and

welfare, plant health and plant protection products. Authors declare that all the biological sam-

ples were collected from carcasses and none of them comes from live animals.
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Animals, diets and sampling

A total of 36 Italian Large White purebred pigs, 18 gilts and 18 barrows, were used for the

study. The pigs were selected from a progeny of 258 piglets born from 21 sows and 3 boars reg-

istered to the herd book of the Italian National Association of Pig Breeders (ANAS, URL:

http://www.anas.it/). Pigs were reared indoor in pens of three pigs each, on partially slatted

floor. Each pen was provided with environmental enrichment devices constituted by metal

chains with plastic discs inserted. The enrichments were manipulable and chewable but not

edible, in order to avoid any influence over the effects of the diets. Water was always available

with nipple drinkers installed inside each pen and their efficiency was tested twice per day.

Animals were daily checked for any clinical sign of distress and the correct functioning of air

ventilation, humidity and temperature was constantly monitored. No sanitary problems

occurred during all the rearing period, with the exception of one pig dead in the finishing

period due to an abdominal hernia. After weaning, the pigs were divided into 3 groups of 12

animals each, balanced for weight, father and sex. Pigs after weaning were all fed a standard

diet until the starting of the trial at the average live weight of 80.8 ± 5.6 kg. During the trial

each pig group was fed one of the following diets: a diet enriched with extruded linseed (source

of n-3 PUFA) (L); a diet enriched with extruded linseed, vitamin E and selenium (LES); a diet

enriched with extruded linseed and plant extracts from grape-skin and oregano (source of

polyphenols) (LPE). Since one pig belonging to LPE group died before the end of the trial, this

group was finally composed of 11 pigs. Diets were adjusted during the trial according to the

average weight of pigs, as follows: during the first period (1st on Table 1), lasting from an aver-

age live weight of 80.8 ± 5.6 kg to 114.2 ± 10.7 kg, the amount of the supplied meal was calcu-

lated as 7.5% of the metabolic weight; during the finishing period (2nd on Table 1), ranging

from 114.2 ± 10.7 kg to slaughter (at an average live weight of 151.8 ± 9.9 kg), the amount of

the supplied meal was calculated as 8.5% of the pig metabolic weight. The composition of the

diets administered and their nutritional contents are described in Table 1. The three diets were

isoenergetic and isoproteic with the same lysine/digestible energy ratio. Diet formulation was

done in order to reduce the content of linoleic acid and to increase linolenic acid, without

damaging meat quality over lipid oxidation and microbiological susceptibility, as reported in

the literature [20,21]. According to the same studies, the three diets were monocereal, based

on barley as it has the lower content of linoleic acid, and extruded linseed was added to

increase the content in n-3 PUFA. Linseed was extruded and the chemical composition

resulted as follow: moisture (8%), crude fibre (25.0%), crude protein (20.2%), crude lipids

(29.6%), and ashes (3.0%). The total content of α-Linolenic acid in linseed was 54.7%. The α-

Linolenic acid content on the total n-3 PUFA (g per 100 g of total fatty acids) was 25.4% in all

diets. Vitamin E addition in LES was done according to the study of Rossi et al. [22]. For what

concerns plant extracts doses in LPE, since specific guidelines or reference standard do not

exist in pig nutrition, plant-derived extracts were formulated according to the producers indi-

cation based on the human food industry. The analytical total content of polyphenols con-

tained in plant extracts was 10.4 g/L for grape-skin extract and 3.9 g/L for oregano extract.

Grape-skin extracts were produced by Enocianina Fornaciari s.n.c. (Reggio Emilia, Italy) and

oregano extracts by Phenbiox s.r.l. (Bologna, Italy).

At the end of the trial, animals were transported to a commercial abattoir and slaughtered

in two batches, at an interval of 14 days. Each batch was composed by half of the pigs from

each group (i.e. six pigs per group were sacrificed for each slaughter day). Pigs were weighted

the day before the slaughtering and the six heaviest pigs in each group were chosen to be sacri-

ficed in the first slaughter batch. Slaughter was performed at the abattoir O.P.A.S. Società
Cooperativa Agricola, Via Guastalla 21A, 41012 Carpi MO (Italy). Pigs were electrically
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stunned and were sacrificed by jugulation on prone position. All slaughter procedures were

monitored by the veterinary team appointed by the Italian Ministry of Health. At the end of

the slaughter line, a sample of about 50 g of Longissimus thoracis muscle was taken from each

pig carcass and immediately frozen in liquid nitrogen. Samples were then stored at -80˚C

pending RNA extraction. Longissimus thoracis muscle was chosen as it is one of the main cuts

intended for fresh meat consumption and it is one of the most studied in pork production.

RNA extraction, library preparation and sequencing

Total RNA was extracted using a standard RNA protocol with TRIzol (Invitrogen, Carlsbad,

CA, USA) from 30 mg of Longissimus thoracis muscle. The RNA concentration was then eval-

uated in each sample with an ND-1000 spectrophotometer (NanoDrop Technologies) and the

Table 1. Feed component and proximate composition (on a wet basis) of the three diets.

L(1) LES(1) LPE(1)

1st(2) 2nd(2) 1st(2) 2nd(2) 1st(2) 2nd(2)

Ingredients
Extruded linseed % 5.00 5.00 5.00 5.00 5.00 5.00

Barley meal % 80.50 86.60 80.30 86.40 80.50 86.60

Soya bean meal % 11.00 5.00 11.00 5.00 11.00 5.00

L-Lysine % 0.30 0.29 0.30 0.29 0.30 0.29

DL-Methionine % 0.06 0.03 0.06 0.03 0.06 0.03

L-Threonine % 0.05 0.03 0.05 0.03 0.05 0.03

Calcium carbonate % 1.19 1.15 0.89 0.85 1.19 1.15

Dicalcium phosphate % 1.00 1.00 1.00 1.00 1.00 1.00

Salt (NaCl) % 0.40 0.40 0.40 0.40 0.40 0.40

Vitamin/mineral pre-mix % 0.50 0.50 0.50 0.50 0.50 0.50

Vitamin E and Selenium pre-mix % 0.00 0.00 0.50 0.50 0.00 0.00

Plant extracts (Grape-skin + oregano) g per kg of feed - - - - 3.00+ 2.00 3.00+ 2.00

Proximate composition
Dry matter % 88.6 89.8 88.7 89.9 88.8 90.0

Digestible energy kcal/kg DM 3255 3235 3248 3228 3255 3235

Crude protein % 15.39 11.73 15.37 11.71 15.39 11.73

Crude fat % 3.58 3.58 3.58 3.58 3.58 3.58

Crude fibre % 4.62 4.48 4.61 4.47 4.62 4.48

Ca % 0.82 0.79 0.82 0.79 0.82 0.79

P % 0.55 0.53 0.55 0.53 0.55 0.53

Fatty acids composition % of total FAs

C 14:0 % 0.25 0.21 0.25 0.22 0.26 0.22

C 16:0 % 18.13 15.20 17.78 15.59 18.80 15.31

C 16:1 % 0.17 0.15 0.17 0.17 0.02 0.15

C 18:0 % 4.00 3.18 3.88 3.34 4.16 3.23

C 18:1 n-9 % 20.60 18.12 20.24 18.45 21.29 18.26

C 18:2 n-6 % 33.50 34.69 33.91 34.09 32.52 34.47

C 18:3 n-3 % 22.83 28.02 23.25 27.73 22.38 27.95

C 20:1 % 0.53 0.41 0.52 0.42 0.57 0.41

(1)L = standard diet supplemented with extruded linseed (source of n-3 PUFA); LES = standard diet supplemented with extruded linseed, vitamin E and selenium;

LPE = standard diet supplemented with extruded linseed and plant extracts (source of polyphenols).
(2)1st = feed administered from an average weight of 80 kg to 115kg; 2nd = feed administered from an average weight of 115 kg to slaughter.

https://doi.org/10.1371/journal.pone.0212449.t001

Dietary-induced changes in pig muscle transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0212449 February 20, 2019 4 / 23

https://doi.org/10.1371/journal.pone.0212449.t001
https://doi.org/10.1371/journal.pone.0212449


quality was assessed with the Agilent 2100 Bioanalyzer through Agilent RNA 6000 nano kit

(Agilent Technologies, Santa Clara, CA, USA). Samples were processed only if the RIN quality

was> 7. Next-generation sequencing analysis was performed by the external service Geno-

mix4life S.R.L. (Baronissi, Salerno, Italy). The indexed libraries were prepared from 1 μg of

purified RNA from each sample with TruSeq Stranded mRNA (Illumina, San Diego, CA,

USA) Library Prep Kit. The libraries were quantified using the Agilent 2100 Bioanalyzer (Agi-

lent Technologies, Santa Clara, CA, USA) and divided into 3 pools such that each index-tagged

sample was present in equimolar amounts, with a final concentration of the pooled samples of

2nM. The pooled samples were submitted to cluster generation and sequencing using an Illu-

mina HiSeq 2500 System (Illumina, San Diego, CA, USA) in a 2x100 paired-end (RNA-Seq)

format loading the pool on a single lane. The raw sequence files generated are in FASTQ for-

mat. The sequences obtained by RNA-Seq analysis from the present study can be retrieved

from Annotare database under the accession number E-MTAB-7131.

RNA-Seq data processing

RNA-Seq data processing and gene expression analysis were performed by the external service

MENTOTHEC s.r.l. (Naples, Italy). Quality control of the raw reads was performed through

the FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which gener-

ates a report for each sample read set. All reads were trimmed using the BBDuk software

(https://jgi.doe.gov/data-and-tools/bbtools/) to eliminate Illumina adapters and bases with a

quality Phred score lower than 25; only the reads with a length higher than 35 nucleotides

were kept after trimming. The high-quality reads were aligned to the swine genome

(Sscrofa11.1) using STAR aligner (version 2.5.2b) [23].

For gene expression analysis, the program featureCounts implemented in Subread software

(version 1.5.1 [24]) was used to calculate the gene expression values as raw fragment counts,

followed by FPKM (Fragments Per Kilobase of transcript per Million mapped reads) calcula-

tion with EdgeR [25]. Then the genes were assessed for differential expression (DE) among

pairs of groups: L vs. LPE, LES vs. LPE, L vs. LES for a total of three comparisons. These com-

parisons were performed with NOISeq R/Bioc package [26], applying a TMM (Trimmed

Mean of M values) normalization, removing the genes with less than 1 CPM (Counts Per Mil-

lion) in all the samples and after applying the ARSyN (ASCA Removal of Systematic Noise for

sequencing data) correction method using the dietary groups as factors. The posterior proba-

bilities of differential expression were converted to false discovery rate (FDR) as showed in the

NOISeq manual. Differentially expressed genes were considered statistically significant with

the FDR P-value� 0.05.

Validation using RT-qPCR

Validation was performed using quantitative Real-Time PCR (RT-qPCR) standard curve

method [27]. Five genes were selected among the differentially expressed genes (DEGs) and

used to validate RNA-Seq data. The synthesis of cDNA was performed from 1μg of RNA using

the ImProm-II Reverse Transcription System (Promega Corporation, Milan, Italy), resulting

in 20 μl of cDNA solution. RT-qPCR was performed on Rotor Gene 6000 (Corbett Life Sci-

ence, Concorde, New South Wales, Australia) using 5 μl of SYBR Premix Ex Taq (TAKARA

Bio INC, Olsu, Shiga, Japan), 10 pmol of each primer, 2 μl of cDNA template diluted 1:10 in

nuclease-free water. RT-qPCR was performed using a two-step amplification constituted by a

denaturation phase of 95˚C for 5 seconds, followed by an annealing-extension phase at tem-

peratures optimized per each primer couple for 20 seconds (annealing temperatures for each

primer couple were reported in S1 Table). Each cycle was repeated for 40 times. The variation
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coefficient (CV = standard deviation of the crossing points/average of the crossing points) of

the replicated analysis for each sample (three in 2 different cycles of RT-qPCR) was set at 0.2 as

maximum level accepted. Beta-2-microglobulin (B2M) and hypoxanthine phosphoribosyltrans-
ferase 1 (HPRT1), were used as reference genes. The expression levels of the five selected genes

were then calculated using the standard curve methods, as described in Zappaterra et al. [28].

Standard curves were obtained amplifying 12 progressive dilutions (from 109 to 25 molecules/

μl) of a known concentration of a cDNA sample, obtained by PCR. The absence of unspecific

amplicons during RT-qPCR on Rotor-Gene 6000 was tested using the melting step after the

cycling. Pearson’s correlations were then calculated between RT-qPCR and RNA-Seq expres-

sion data for the five tested genes using the R software [29]. Correlation coefficient (R) was

considered significant if P� 0.05.

Functional analysis of differentially expressed genes

For the analysis, only DEGs presenting a Log2 fold change (Log2FC)� 0.30 or� -0.30 and an

FDR adjusted P� 0.05 were considered. To compensate poor pig gene annotation, the Homo
sapiens background was applied, so the gene IDs were converted to human gene IDs using Bio-

Mart–Ensembl (URL: https://www.ensembl.org/biomart) prior to proceeding with the func-

tional analysis. The functional analyses were performed separately on each pairwise

comparison L vs LPE, L vs LES, LES vs LPE.

The functional enrichment analysis was carried out using two software: Cytoscape

v3.5.1 software (Institute for Genomics and Bioinformatics, Graz University of Technol-

ogy, Graz, Austria) and DAVID Functional Annotation Tool v. 6.8 (URL: https://david.

ncifcrf.gov/).

Cytoscape analysis started building a network of DEGs using the GeneMANIA plug-in [30]

and then functional analysis was performed using the ClueGO plug-in [31]. For each diet com-

parison, the ClueGO plug-in divided the significant DEGs into different functional groups

having different P-values. Each group contained the pathways and biological processes (BPs)

regrouped in functional groups according to terms similarities. Each pathway and BPs in each

functional group had different P-values and could contain both up and down-regulated DEGs.

If the percentage of up-regulated DEGs were the majority, that pathway/biological process was

assigned to cluster #1, thus considered up-regulated; if the down-regulated DEGs were the

majority, that pathway/biological process was assigned to cluster #2, thus considered down-

regulated; finally if the percentage of both up-regulated and down-regulated DEGs in a path-

way/biological process was ranging between 40–60%, the cluster was called none specific clus-
ter. The statistical method was set at right-sided hypergeometric distribution, and Bonferroni’s

P-value correction was used. Minimum clustering was set at P� 0.05 and minimum k-score at

0.4. The BPs ontology and KEGG and REACTOME pathways were used as databases for the

functional analysis. Gene ontology (GO) levels were set from 6 to 8, and a minimum number

of genes per cluster was set at 5 (in case the number of DEGs in a cluster was minor than 5, the

maximum number of available genes was set in that cluster). To graphically represent the data

obtained, REVIGO online tool (URL: http://revigo.irb.hr/) was employed to summarize the

enriched GO terms and, when necessary, also the pathways were summarized by selecting the

higher level in REACTOME pathway hierarchy (URL: https://reactome.org/user/guide/

pathway-browser). Subsequently, CytoHubba and CluePedia plug-ins were applied to select

and display in the figures the hub DEGs with the aim to visualize the interaction between the

most significant DEGs and their related pathways and BPs. Only the pathways and BPs linked

to these selected hub genes were chosen to visualize the interaction between DEGs and GO

Terms in the presented figures.
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The DAVID Functional Annotation Tool v. 6.8 (URL: https://david.ncifcrf.gov/) was

directed to identify Pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

and REACTOME database and the Gene Ontology GOTERM Biological Process [32]. The

genes were uploaded using the Human genome as background. P-value of the term enrich-

ment was evaluated using Benjamini’s correction and P� 0.05 was considered significant. The

up- and down-regulated DEGs were analysed separately in each diet comparison.

Results

Differentially expressed genes

The obtained total reads are reported in S2 Table. RNA-Seq analysis resulted in a total of 1544

DEGs among the three diet comparisons (L vs LES, L vs LPE, LES vs LPE) with several DEGs

common in more than one comparison, for a total of 1734 DEGs (Fig 1; Table 2; S3 Table).

The comparison L vs LPE showed to have the highest number of DEGs, while the L vs LES

showed the lowest number of DEGs with only four differentially expressed genes. Before sub-

mitting genes to functional analysis, a Log2FC cut-off� +0.30 or� -0.30 was applied. After

the cut-off application, the number of genes was reduced to 1112 differentially expressed genes

(DEGs) and then submitted to functional analysis (Fig 1, Table 2). The L vs LES comparison

did not present DEGs, therefore it was not considered for the functional analysis. The total

number of genes in Table 2 includes also the DEGs common to more than one comparison.

The complete list of significant DEGs and the information about the Log2FC and FDR

adjusted P-values are reported in S3 Table.

In LES vs LPE, 70 out of 80 DEGs are the same genes found in L vs LPE comparison (Fig 1),

also showing the same expression trend (e.g. the genes up-regulated in LPE compared to L

were also up-regulated in LPE with respect to LES, and vice versa) (S3 Table). Only ten genes

(DMPK, DNAJA4, HSPA8, HSP90AA1, HSP90AB1, IER5, PDE4B, PSMC1, SLC20A1, STIP1)
were not common between the two comparisons, and they are all up-regulated in LPE com-

pared to LES.

Functional analysis with Cytoscape

Results from the functional analysis showed that in L vs LPE, the enriched pathways and bio-

logical processes included in the cluster #1 (majority of DEGs up-regulated by L) were repre-

sented by four functional groups (Figs 2 and 3, S4 Table). For each of these groups the most

significant pathway/biological process (leading term) was identified, according to P-value,

namely: “RNA processing” (P = 0.00001), “GPCR downstream signaling” (P = 0.00002), “RNA

splicing via transesterification reactions” (P = 0.004), “Centriole-centriole cohesion”

(P = 0.03). The enriched pathways and biological processes included in cluster #2 (the majority

of DEGs down-regulated by L, thus up-regulated in LPE) were represented by five functional

groups (Figs 2 and 3, S4 Table). For each of these five groups, the most significant pathway/

biological process (leading term) was identified, namely: “Muscle organ development”

(P = 0.00005), “Response to elevated platelet cytosolic Ca2+” (P = 0.0003), “HIF-1 signaling

pathway” (P = 0.002), “Proteoglycans in cancer” (P = 0.01), “Negative regulation of protein

metabolic process” (P = 0.02). Finally, the enriched pathways and biological processes included

in the none specific cluster were characterized by seven functional groups (Figs 2 and 3, S4

Table). For each of these seven groups it was identified the leading term according to P-value:

“RNA metabolic process” (P = 1.79E-06), “Translocation of GLUT4 to the plasma membrane”

(P = 0.01), “Intracellular protein transport” (P = 0.01), “Regulation of DNA-templated tran-

scription in response to stress” (P = 0.01), “Regulation of cellular protein metabolic process”
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(P = 0.02), “DNA-templated transcription, initiation” (P = 0.04), “Protein autophosphoryla-

tion” (P = 0.04).

In the comparison LES vs LPE the enriched pathways and biological processes included in

the cluster #1 with the majority of DEGs up-regulated in LES, resulted in one functional group

(Figs 4 and 5, S4 Table) in which the most significant leading term was “Cardiac conduction”

Fig 1. Venn diagram showing the distribution of DEGs in the three diet comparisons before (a) and after (b) the

Log2FC cut-off application.

https://doi.org/10.1371/journal.pone.0212449.g001

Table 2. Up- and down-regulated DEGs in group comparisons before and after setting the Log2FC cut-off. The total number of DEGs (1182) considers also genes

common to more than one comparison.

L-LES L-LPE LES-LPE

All Cut-off All Cut-off All Cut-off

Up-regulated 4 0 726 628 21 21

Down-regulated 0 0 804 474 179 59

Total 4 0 1530 1102 200 80

https://doi.org/10.1371/journal.pone.0212449.t002
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(P = 3.18E-06). The enriched pathways and biological processes included in the cluster #2 are

included in five functional groups (Figs 4 and 5, S4 Table) summarized in the following leading

term: “Metal ion transport” (P = 0.00007); “Protein processing in endoplasmic reticulum”

(P = 0.001), “HSF1-dependent transactivation” (P = 1.19E-06)”; “Axon guidance” (P = 0.0043);

“Disease” (P = 0.0024). Finally, the enriched pathways and biological processes included in

none specific cluster were represented by one functional group (Figs 4 and 5, S4 Table) in

which the leading term was: “Regulation of heart contraction” (P = 1.79E-06).

Functional analysis with DAVID

Functional analysis performed using DAVID was done to compare the results from Cytoscape

analysis with another bioinformatics tool frequently used in literature. DAVID results for the

comparison L vs LPE are displayed in Table 3. The results confirmed the majority of the path-

ways and biological processes found by Cytoscape in the comparison L vs LPE namely “Spli-

ceosome”, “mRNA processing”, “RNA splicing”, “Focal adhesion”, “HIF-1 signaling pathway”,

“Proteoglycans in cancer”, “Platelet degranulation”.

The LES vs LPE results are showed in Table 4, and also in this comparison, some results are

similar to those from Cytoscape, namely “Regulation of cardiac conduction” and “Regulation

of cellular response to heat”. However, the number of DEGs included by DAVID software in

Fig 2. Cytoscape functional analysis of L vs LPE comparison. squares = pathways; circles = biological processes; shape

size = according to the P-value of the term in its own group; red colour = up-regulated (cluster #1); green colour = down-

regulated (cluster #2); grey colour = same number of up- and down-regulated genes (none specific cluster); font size = according

to the P-value of the term in its own group; interaction line thickness = according to Kappa Score value, represents the strength of

the interactions, lighter colour corresponds to a lower strength while darker colour to a higher strength.

https://doi.org/10.1371/journal.pone.0212449.g002
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each pathway or biological process was lower than the respective one using Cytoscape. The

reason for the different number of DEGs clustered in each function by the two software is

likely attributable to differences in the statistical methods used and to the different setting

tools. Overall, even considering these differences, the pathways and BPs reported by the two

software were concordant.

Validation using RT-qPCR

The validation of RNA-Seq results by RT-qPCR showed agreement between the gene expres-

sion data obtained with the two methods. The five genes validated showed an overall good cor-

relation between the two methods (Table 5).

Discussion

Over the last two decades, there has been an increasing interest in the beneficial effects of bio-

active lipids on human health. Among them, a large body of evidence indicated the prominent

Fig 3. Cytoscape functional analysis of L vs LPE comparison displaying hub DEGs. Significant GO terms are graphically

summarized using REVIGO. squares = pathways; circles = biological processes; shape size = according to the P-value of the term

in its own group; red colour = up-regulated (cluster #1); green colour = down-regulated (cluster #2); grey colour = same number

of up- and down-regulated genes (None specific cluster); fill colour transparency = according to the percentage of genes belonging

to the term, lighter colour corresponds to a lower percentage while darker colour to a higher percentage; font size = according to

the P-value of the term in its own group; interaction line thickness = according to Kappa Score value, represents the strength of

the interactions, lighter colour corresponds to a lower strength while darker colour to a higher strength.

https://doi.org/10.1371/journal.pone.0212449.g003
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role of n-3 PUFA as protective lipid mediators in the context of inflammatory, metabolic,

neurodegenerative, and neoplastic diseases [33,34]. This evidence has drawn the attention of

clinicians and animal scientists to the possibility of turning animal-derived products into func-

tional foods providing health benefits to consumers [35–37]. Studies have reported that the

content of n-3 PUFA in swine muscle can be increased adding oilseed ingredients to the feed

[38,39], and the addition of antioxidant compounds such as vitamin E and polyphenols can

help to avoid lipid oxidation [38,40]. Anyway, the knowledge on the muscle physiological pro-

cesses influenced by dietary antioxidant addition is still poor and could involve a large number

of genes associated with both muscle metabolism and structure [41]. Transcriptomics actually

represents one of the most relevant techniques in nutrigenomics studies to obtain a compre-

hensive analysis of gene expression changes and molecular processes influenced by the diet

components in order to increase the scientific understanding of the biology behind production

traits [41,42].

In L vs LPE comparison the majority of the hub genes displayed in Fig 3 was related to

“RNA metabolic process”, a large GO term including cellular processes involving RNA and

linked to “mRNA metabolic process”, “RNA splicing” and “negative regulation of protein met-

abolic process”. Interestingly, the percentages of genes up- and down-regulated by the two

diets are very similar (S4 Table), thus suggesting that both diets may overall influence the tran-

scriptional activity and the splicing of muscle mRNA. Indeed, recent studies have reported

that macro- and micronutrients, including PUFA and resveratrol, could influence the

Fig 4. Cytoscape functional analysis of LES vs LPE comparison. squares = pathways; circles = biological processes; shape

size = according to the P-value of the term in its own group; red colour = up-regulated (cluster #1); green colour = down-regulated

(cluster #2); grey colour = same number of up- and down-regulated genes (none specific cluster); font size = according to the P-

value of the term in its own group; interaction line thickness = according to Kappa Score value, represents the strength of the

interactions, lighter colour corresponds to a lower strength while darker colour to a higher strength.

https://doi.org/10.1371/journal.pone.0212449.g004
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regulation of pre-mRNA splicing and in particular can modulate the expression of the Serine/

Arginine-rich protein gene family (SRs) and HNRNP1, like in our study, that in turns regulate

the alternative splicing of several genes involved in lipid and energy metabolism [43,44]. In L

vs LPE, among the DEGs, one of the most interesting hub genes linking “RNA metabolic pro-

cess”, “mRNA metabolic process”, “RNA splicing” and “negative regulation of protein meta-

bolic process”, is PPARGC1A (also known as PGC-1α), that is up-regulated in LPE compared

to L. This gene is a member of PPARGs family and it is a transcriptional coactivator of

PPARG. It is well known from in vitro studies that the expression of PPARG, and more gener-

ally of the PPARGs family, can be stimulated by both dietary n-3 PUFA and polyphenols [45].

This statement is in agreement with our results since we observed an up-regulation of

PPARGC1A in LPE group. In literature, it is reported that PPARGC1A may be involved in

many biological mechanisms like fatty acid oxidation, glucose utilization, mitochondrial bio-

genesis, angiogenesis and muscle trophic stimulation [46]. Recent literature [47] demonstrated

the role of PPARGC1A in the maintenance of lipid balance via its engagement in numerous

metabolic processes related to lipid synthesis and/or lipid utilization (i.e. Krebs cycle, β-oxida-

tion, oxidative phosphorylation and electron transport chain). In particular, in insulin-sensi-

tive tissues such as the skeletal muscle, PPARGC1A is regarded as one of the factors eliciting

FA uptake by the cells, controlling their oxidation for energy purposes or esterification for the

Fig 5. Cytoscape functional analysis of LES vs LPE comparison displaying hub DEGs. Significant GO terms are graphically

summarized using REVIGO. squares = pathways; circles = biological processes; shape size = according to the P-value of the term

in its own group; red colour = up-regulated (cluster #1); green colour = down-regulated (cluster #2); grey colour = same number of

up- and down-regulated genes (None specific cluster); fill colour transparency = according to the percentage of genes belonging to

the term, lighter colour corresponds to a lower percentage while darker colour to a higher percentage; font size = according to the

P-value of the term in its own group; interaction line thickness = according to Kappa Score value, represents the strength of the

interactions, lighter colour corresponds to a lower strength while darker colour to a higher strength.

https://doi.org/10.1371/journal.pone.0212449.g005

Dietary-induced changes in pig muscle transcriptome

PLOS ONE | https://doi.org/10.1371/journal.pone.0212449 February 20, 2019 12 / 23

https://doi.org/10.1371/journal.pone.0212449.g005
https://doi.org/10.1371/journal.pone.0212449


Table 3. DAVID functional annotation results of L vs LPE comparison. Only significant functional terms

(P� 0.05) are reported with the relative list of annotated genes found in this comparison.

Category Up-regulated DEGs in L compared to LPE P-

value

KEGG Pathway (201 DEGs found�)
Spliceosome SRSF1, SRSF10, TRA2A, U2SURP, PRPF3, DDX5, SF3B1, SRSF2,

SRSF5, SRSF6, CDC40, LSM5, THOC2, RBM25
0.0241

GO Biological Process (515 DEGs found�)
GO:0006397 mRNA processing SRSF1, PAN2, PAN3, SREK1, FMR1, SRSF11, PRPF3, MBNL1,

NSRP1, SRSF2, SRSF5, SCAF11, PAPD4, CNOT6L, ZRANB2, LSM5,

QKI, SREK1IP1, RBM25, RBM26

0.0051

GO:0008380 RNA splicing SREK1, FMR1, SRSF11, MPHOSPH10, RBM5, PRPF3, MBNL1,

NSRP1, SRSF2, SCAF11, PPIG, CDC40, ZRANB2, QKI, RNPC3,

SREK1IP1, THOC2, RBM25, LUC7L3

0.0034

GO:0006405 RNA export from

nucleus

SRSF1, SRSF2, SRSF5, SRSF6, CDC40, SRSF11, ZC3H11A, NXF1,

TPR, THOC2
0.0260

Category Down-regulated DEGs in L compared to LPE P-

value

KEGG Pathway (235 DEGs found�)
Focal adhesion TLN2, BCAR1, MYLK2, ARHGAP35, ACTN3, CAPN2, FLNB,

FLNA, COL5A1, ITGA5, MAPK3, COL1A2, COL6A2, COL6A1,

COL1A1, ZYX, THBS1, RAPGEF1, THBS4

0.0440

Insulin signaling pathway MAP2K2, FLOT2, HK1, FBP2, PPARGC1A, PRKAR2A, PPP1R3C,

PYGM, PYGL, ARAF, MAPK3, GYS1, PRKACA, MTOR, RAPGEF1
0.0250

Glycolysis / Gluconeogenesis PKM, GPI, LDHA, TPI1, PGM1, PGAM2, HK1, FBP2, GAPDH,

ENO1
0.0290

HIF-1 signaling pathway CDKN1A, LTBR, MAP2K2, MAPK3, SERPINE1, EGLN3, HK1,

MTOR, GAPDH, STAT3, TIMP1, ENO1
0.0250

Gap junction TUBB, ADCY1, TUBA8, GNAI2, MAP2K2, MAPK3, TUBA4A,

TUBB6, PRKACA, TUBA1A, TUBB4B
0.0330

Proteoglycans in cancer MAP2K2, IGF2, MMP2, FLNB, STAT3, FLNA, EIF4B, CDKN1A,

CD44, ITGA5, ARAF, MAPK3, PRKACA, MTOR, MSN, THBS1,

MYC

0.0440

GO Biological Process (445 DEGs found�)
GO:0006936 muscle contraction ACTA1, CRYAB, ACTA2, ACTN3, CACNG1, KCNJ12, CACNA1S,

MYH8, DYSF, MYOM2, RYR1, MYOM1, LMOD2, EMD, SGCA,

SNTA1

0.0003

GO:0098609 cell-cell adhesion HDLBP, LDHA, TAGLN2, GPRC5A, CAPZB, PKM, PFN1, BAG3,

SND1, RAB11B, HSPA5, EHD1, EMD, ENO1, EHD4, PLEC,

DAB2IP, EEF2, FLNB, ANXA2, MICALL1, LASP1, UBAP2, EPN2,

ADD1

0.0003

GO:0002576 platelet degranulation CD9, SELP, CYB5R1, PSAP, CLU, SERPINE1, TUBA4A, IGF2,

SERPING1, WDR1, THBS1, ECM1, FLNA, TIMP1
0.0025

GO:0006094 gluconeogenesis GPI, TPI1, ATF3, PGM1, PGAM2, FBP2, PPARGC1A, GAPDH,

ENO1
0.0100

GO:0006096 glycolytic process GPI, LDHA, TPI1, PGM1, PGAM2, HK1, GAPDH, ENO1 0.0120

GO:0007155 cell adhesion TLN2, BCAR1, BCAM, NEO1, CD151, CD9, CD44, TGFBI,
COL6A2, COL6A1, ZYX, THBS1, THBS4, ICAM1, SYMPK, SELP,

FLOT2, ADGRE5, MFGE8, CTNNA1, COL5A1, THY1, CDH13,

RND3, ITGA5, COL1A1, SEMA4D, ENG, EMP2

0.0150

GO:0061621 canonical glycolysis PKM, GPI, TPI1, PGAM2, HK1, GAPDH, ENO1 0.0160

GO:0008219 cell death FOSL2, HMOX1, CLU, RRAGA, EMP3, PMP22, EMP2, EMP1 0.0190

GO:0036498 IRE1-mediated

unfolded protein response

XBP1, TPP1, LMNA, SRPRA, HSPA5, ASNA1, DCTN1, SEC61A2,

ADD1
0.0390

(Continued)
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conversion into bioactive fractions [47]. Other regulatory genes up-regulated in LPE compared

to L are PRKACA and PRKAR2A, two genes also involved in glucose and lipid homeostasis

and in cell growth [48,49]. The low number of DEGs related to lipid metabolism found in this

comparison can be explained by the fact that all the diets had the same amount of extruded lin-

seed as a source of n-3 PUFA. Therefore the differences observed in the expression of genes

with a role in lipid metabolism are reasonably due to the concurrent polyphenols supplemen-

tation and/or to their interaction with the other components of the diet.

The results obtained with DAVID showed that PPARGC1A, PRKACA and PRKAR2 were

also involved in glucose and glycogen metabolism and in the insulin signaling pathway,

together with other DEGs found up-regulated in LPE, namely ARAF, FBP2, FLOT2, GYS1,

HK1, MAPK2, MAPK3, MTOR, PPP1R3C, PYGL, PYGM, RAPGEF. Moreover, our results

showed also the up-regulation in LPE, of some genes involved in “Translocation of GLUT4 to

the plasma membrane” (MYH8, MYO1C, RALGAPA2, TUBA1A, TUBA4A, TUBA8, TUBB4B,

TUBB6). On the whole, considering these results, it could be postulated that in LPE group the

diet has induced an increased glucose uptake by the muscle cells. Indeed, it is worth noting

that glucose uptake is endorsed by the translocation of GLUT4 vesicles to the plasma mem-

brane [50] and accordingly, the capacity of polyphenols to enhance glucose uptake was already

reviewed in muscle cells [51,52]. An increased glucose uptake was also found to stimulate

PRKAR2 expression in human muscle [53]. Therefore the increased modulation of functions

related to glucose metabolism, observed in LPE compared to L in the present study, seems to

be mainly ascribable to polyphenols supplementation, according to previous literature

Table 3. (Continued)

GO:0071230 cellular response to

amino acid stimulus

XBP1, COL1A2, RRAGA, COL6A1, COL1A1, CAPN2, MMP2,

NEURL1
0.0500

� = Number of DEGs found associated within each category (GO Biological Process or Pathway).

https://doi.org/10.1371/journal.pone.0212449.t003

Table 4. DAVID functional annotation results of LES vs LPE comparison. Only significant functional terms

(P� 0.05) are reported with the relative list of annotated genes found in this comparison.

Category Up-regulated DEGs in LES compared to LPE P-

value

KEGG Pathway (9 DEGs found�)
cGMP-PKG signaling pathway ATP1B1, ROCK2, PLN, ATP1A2 0.0236

cAMP signaling pathway ATP1B1, ROCK2, PLN, ATP1A2 0.0228

GO Biological Process (17 DEGs found�)
GO:1903779 regulation of cardiac

conduction

TRDN, ATP1B1, PLN, ATP1A2 0.0041

GO:0055119 relaxation of cardiac muscle ATP1B1, PLN, ATP1A2 0.0060

Category Down-regulated DEGs in LES compared to LPE P-

value

GO Biological Process (57 DEGs found�)
GO:0006457 protein folding HSP90AB1, HSP90AA1, CRYAB, FKBP4, BAG3, SACS,

DNAJA4, HSPA8
0.0014

GO:1900034 regulation of cellular response

to heat

HSP90AB1, HSP90AA1, CRYAB, FKBP4, BAG3, HSPA8 0.0016

� = Number of DEGs found associated with each category (GO Biological Process or Pathway).

https://doi.org/10.1371/journal.pone.0212449.t004
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findings, reporting that polyphenols can up-regulate the expression of genes involved in the

insulin signaling pathway and in glucose uptake by the cells [54–56].

Many DEGs involved in glucose and glycogen metabolism can play also a role in the “HIF-

1 signaling pathway”. For example, glucose-dependent insulin release in response to feeding

was found to increase MTOR expression which may enhance energy storage and growth in the

muscle tissue [57]. Other genes of the HIF-1 signaling pathway with a role in glucose metabo-

lism, were also ENO1, GAPDH, HK1, LDHA, and the transcriptional factors MAPK2 and

MAPK3. These genes were all up-regulated in LPE compared to L. In particular, it was

reported that the up-regulation of MAPK and MTOR can activate the HIF-1 signaling pathway

[58,59] and plays a pivotal role in the regulation of oxygen and glucose cellular utilization, pro-

moting anaerobic glycolysis. The overexpression of LDHA in the LPE individuals seems, there-

fore, to confirm the presence of anaerobic glycolysis processes in the muscle since in literature

the overexpression of LDHA was found associated with the utilization of glucose in the anaero-

bic metabolism and with the regulation of lactate homeostasis in pig cardiac muscle [51]. In

this view, in the present study, the up-regulation of HIF-1 signaling pathway, in pigs fed LPE

diet, seems to reveal the presence of anaerobic glycolysis addressed to energy production in

the myocytes. Anyway, this hypothesis would need to be validated with phenotypic measures

on muscle tissue. Moreover, the HIF-1 signaling pathway is also involved in the control of cel-

lular growth and proliferation. DEGs with a role in cellular proliferation were CDKN1A, LTBR
and the transcriptional factors MAPK and MTOR, up-regulated in LPE. Actually, some papers

[57,60] reported that when MTOR is up-regulated with AKT (as suggested by the similar

expression pattern found in the present study) it may stimulate the expression of genes

involved in skeletal muscle tissue trophy. Considering, therefore, the concurrent up-regulation

of the MAPK2, MAPK3, MTOR, and STAT3 genes in the LPE dietary group, it is possible to

presume an effect of the LPE diet in favouring muscle cells growth by stimulating the HIF-1

signaling pathway. Indeed, the present research also showed that LPE diet compared to L diet

up-regulated many genes clustered in the “Muscle organ development” BP (ACTA1, ACTN3,

ATF3, BTG2, BVES, CASQ1, EEF2, EMD, FLNB, MAFF, MEF2D, MYH14, MYLK2, MYOM1,

MYOM2, NEURL1, RYR1, SELENON, SMYD1). This result enforces the hypothesis that a diet

supplemented with n-3 PUFA and polyphenols may enhance muscle growth. In addition,

among the above-cited genes, the hub gene BTG2 is an important regulatory element that

belongs to the anti-proliferative family genes playing an important role in the regulation of the

transcriptional activity and in tumour suppression [61]. In studies on lambs and growing pigs

[62,63], BTG2 was reported to be highly expressed in skeletal muscle tissue and its overexpres-

sion was associated with increased muscle cells size thus promoting muscle hypertrophy. Of

particular interest is the study of Mo et al. [62] who reported, in two swine breeds, a higher

Table 5. Pearson’s correlation coefficient (r) and P-values between RNA-Seq and RT-qPCR expression values of five selected genes.

Gene r coefficient P-value Diet comparison(1)

PPARGC1A 0.77 < 0.0001 L-LPE

THBS1 0.73 < 0.0001 LES-LPE

THBS1 0.56 0.006 L-LPE

TGFBI 0.53 0.008 L-LPE

LPL 0.52 0.01 L-LPE

RXRA 0.44 0.04 L-LPE

(1)L = diet enriched with extruded linseed (source of n-3 PUFA); LES = diet enriched with extruded linseed, vitamin E and selenium; LPE = diet enriched with extruded

linseed and plant extracts (source of polyphenols).

https://doi.org/10.1371/journal.pone.0212449.t005
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expression of BTG2 in the muscle of lean-type pigs in comparison to the fat-type breed. Inter-

estingly, in human oncological studies, the expression of BTG2 was found stimulated by die-

tary polyphenols [64,65], supporting the hypothesis of an increased expression of BTG2 as an

effect of LPE diet in the present study.

Lastly, the results from the present study evidenced also a relationship among “HIF-1 sig-

naling pathway” and “Platelet activation, signaling and aggregation” and “Hemostasis”

through the hub genes TIMP1 and ECM1, up-regulated in LPE compared to L (Fig 3). Other

genes in these pathways, also up-regulated in LPE compared to L, are THBS1 and SERPINE1.

These genes, together with TIMP1, are known to have a role as anti-angiogenic factors that

may be released by platelet activation [66]. Indeed, platelets can release pro- and anti-angio-

genic proteins that regulate angiogenetic processes [66]. The release of these proteins as result

of platelet activation is involved in vascular development. Moreover, compared to L, the LPE

diet showed to down-regulate VEGF and PI3K, which are key genes involved in angiogenesis,

thus supporting also an effect of polyphenols and n-3 PUFA in inhibiting angiogenesis in

agreement with data reported in the literature [67–69]. By contrast IGF2, a gene coding for a

pro-angiogenic factor was also up-regulated in LPE. This result is not surprising because in

physiological conditions platelets fulfil, through the balanced release of pro- and anti-angio-

genic proteins, many key roles in establishing and maintaining vascular homeostasis and vas-

cular integrity in all the tissues [66].

Overall, the results obtained in L vs LPE comparison suggested that plant extracts added to

n-3 PUFA in LPE increased the expression of genes involved in the stimulation of mRNA met-

abolic process addressed to glucose uptake and cells growth in pig muscle tissue. Further com-

parison with the literature is difficult or not reliable because most of the published studies

assessed the effect of n-3 PUFA and polyphenols on gene expression under pathological condi-

tions (e.g. obesity, diabetes, tumour, ageing and neurodegenerative disease) and in different

species. Therefore, it is important to report that only a few studies were found aimed to analyse

the effect of these compounds on the transcriptome of healthy growing animals, and in live-

stock species. Among the few papers evaluating the effects of polyphenols and n-3 PUFA on

the mRNA and protein levels of genes in skeletal muscle, the one from Gutierrez-Salmean

et al. [70] reported that the treatment with epicatechin (belonging to the flavonols class) posi-

tively increased the amounts of proteins encoded by genes involved in the regulation of skeletal

muscle growth and differentiation. Moreover, Kaminski et al. [71] found that resveratrol, a

grape-derived polyphenolic compound, is able to upregulate the expression of genes involved

in the control of metabolic pathways in mouse skeletal muscle cells, thus supporting a positive

effect of this compound on skeletal muscle function. Recently, Dugdale et al. [72] have evi-

denced that resveratrol has also the potential to maintain appropriate muscle cell functions,

stimulating muscle cell growth and regeneration. Also, n-3 PUFA has been implicated in

improving muscle efficiency and may contribute to maintaining both muscle mass and func-

tion [73–75]. Unless the result of the present research need to be further validated by pheno-

typic traits, comparison with the found literature allows to hypothesize that, considering the

upregulation in LPE of several genes encoding for proteins involved in muscle development

and functions, the combined supplementation with polyphenols and n-3 PUFA can enhance

skeletal muscle efficiency and structure, compared to the only n-3 PUFA supplementation in

L.

The LES vs LPE comparison showed that the diet supplemented with n-3 PUFA, vitamin E

and selenium (LES) reduced the expression of several genes, while the diet supplemented with

n-3 PUFA and plant extracts (LPE) showed the general effect of stimulating gene expression.

As previously reported in the results section of the manuscript, it is possible to observe that 70

out of 80 DEGs (Fig 1) in LES vs LPE comparison are the same found differentially expressed
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in L vs LPE also showing the same expression trend. This result suggests that the diet added

with vitamin E appears to have similar but slighter effects on pig transcriptome, compared to

the diet added with plant extracts. The ten genes left, DMPK, DNAJA4, HSPA8, HSP90AA1,

HSP90AB1, IER5, PDE4B, PSMC1, SLC20A1, STIP1, were not shared between the two compar-

isons but they were also involved in functions related to those previously found and described

in L vs LPE comparison. In fact, DMPK is a gene influencing the maintenance of functions

and structure of the skeletal muscle [76] and DNAJA4, HSPA8, HSP90AA1, HSP90AB1, IER5,

PDE4B, STIP1 are all involved in cellular signaling and in response to cellular stress [77–83].

Therefore, the main differences between LPE and LES are referred to the level of transcrip-

tion of some genes up-regulated in LPE (BAG3, CRYAB, DNAJA4, FKBP4, HSP90AA1,

HSP90AB1, HSPA8, PSMC1, STIP1) and involved in pathways linked to the cellular stress

response such as “HSF1-dependent transactivation”, “HSP90 chaperone cycle for steroid hor-

mone receptors (SHR)”, “Cellular responses to external stimuli” and “Cellular responses to

stress”. These pathways were connected through some hub genes (BAG3, CRYAB, DNAJA4,

PSMC1) to the BPs involved in protein metabolism such as “Negative regulation of proteolysis”

and “Regulation of proteolysis”. It is worth noting that these genes (especially the members of

the HSPs family) are not only involved in the cellular stress response but also in basic cellular

processes related to protein folding and trafficking, addressed to maintain and support physio-

logical muscle activity [84,85]. There is a lack of studies on the effects of polyphenols on these

genes, in particular about the role of these bioactive compounds on the skeletal muscle physiol-

ogy of healthy individuals, like in the present research. Other DEGs between LES and LPE are

involved in functions related to the muscle contraction and conduction such as “Metal ion

transport”, “regulation of ion transmembrane transport”, “Muscle contraction”, “Regulation

of heart contraction” and “Cardiac conduction”, which are all connected through the hub

genes THBS1 and FKBP4. These pathways and BPs related to muscle contraction, contained in

similar proportion up-regulated genes (AKAP9, ATP1A2, ATP1B1, CUL5, PLN, TRDN) and

down-regulated genes (ATP1A1, DMPK, FKBP4, KCNJ11, PDE4B, RRAD, SLC20A1, SNTA1,

TMEM38A) in LES compared to LPE. In fact, in the present study, some genes coding for pro-

teins involved in ion transmembrane transport and calcium-release complex addressed to

muscle contraction and relaxation (ATP1A1, KCNJ11, DMPK, RRAD, TMEM38A), were

found up-regulated in LPE compared to LES. Also, this result leads to support, in the present

study, a stronger effect of polyphenols in improving muscle functionality compared to the vita-

min E supplementation. However, the knowledge about the effects of plant-derived polyphe-

nols is still very limited in livestock species and sometimes the results are controversial,

because of substantial differences among the experimental conditions [18].

Interestingly, in LES vs LPE comparison, we did not find any DEGs among those that in L

vs LPE were involved in the “HIF-1 signaling pathway”. Since the genes of the “HIF-1 signaling

pathway” were either not differentially expressed in L vs LES, it is possible to hypothesize that

the effect of the diet integration on gene expression was of a lesser extent in LES (i.e. the tran-

script levels of the genes involved in HIF-1 signaling pathway were in-between the lowest tran-

scriptional level found in L group and the highest expression found for the same genes in LPE

dietary group). Therefore, it is possible to hypothesise that the addition of vitamin E and Sele-

nium to a diet rich in n-3 PUFA (LES) caused, in the present study, a low-magnitude effect on

swine skeletal muscle transcriptome compared to plant-derived polyphenols (LPE). The differ-

ent effect observed between the two groups fed antioxidant compounds (LES and LPE) should

be imputable to the composition of the antioxidant integration (vitamin E or plant-derived

polyphenols). In fact, it has been reviewed that a mixture of polyphenolic compounds may

have a greater phenotypic effect on a tissue compared to the administration of a single com-

pound [86] unless other studies reported opposite results [87]. Moreover, it is important to
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consider that many other factors could have been occurred, since the knowledge on the in vivo
molecular effects of polyphenols and antioxidant compounds is presently scant in the livestock

species, as well as the knowledge on the bioavailability and on the interaction among plant

extracts and nutrients in the diet [88]. To the best of Authors’ knowledge, this is one of the few

studies investigating the in vivo effects of dietary n-3 PUFA and antioxidants on the transcrip-

tome of Longissimus thoracis in swine, and the results need to be further elucidated consider-

ing potential phenotypic effects in the porcine muscle tissue.

Conclusions

The present study evidenced that adding antioxidants to a n-3 PUFA-rich diet can influence

the transcription level of Longissimus thoracis muscle in pigs. These effects were more evident

with the addition of plant extracts (source of polyphenols) compared to the addition of vitamin

E. Indeed, the diet with linseed and plant extracts showed to up-regulate a large number of

genes compared to the linseed supplementation alone. These genes were involved in many

functions belonging to the regulation of transcriptional activity and glucose metabolism aimed

to support muscle tissue trophy, vascular homeostasis and muscle activity. Differently, the

addition of vitamin E to a n-3 PUFA-rich diet did not show any significant difference in the

transcriptome compared to the linseed supplementation alone. These findings provide new

knowledge on the effects of dietary plant extracts and n-3 PUFA on pig muscle transcriptome.

Further investigation on the phenotypical effects in vivo and in derived meat products, as well

as the potential benefits for consumers, are needed for both research and industry purposes.
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80. Daugaard M, Rohde M, Jäättelä M. The heat shock protein 70 family: Highly homologous proteins with

overlapping and distinct functions. FEBS Lett. 2007; 581: 3702–3710. https://doi.org/10.1016/j.febslet.

2007.05.039 PMID: 17544402

81. Mika D, Richter W, Westenbroek RE, Catterall WA, Conti M. PDE4B mediates local feedback regulation

of β-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci. 2014;

127: 1033–1042. https://doi.org/10.1242/jcs.140251 PMID: 24413164

82. Taipale M, Tucker G, Peng J, Krykbaeva I, Lin Z-Y, Larsen B, et al. A quantitative chaperone interaction

network reveals the architecture of cellular protein homeostasis pathways. Cell. 2014; 158: 434–448.

https://doi.org/10.1016/j.cell.2014.05.039 PMID: 25036637

83. Kawabata S, Ishita Y, Ishikawa Y, Sakurai H. Immediate-early response 5 (IER5) interacts with protein

phosphatase 2A and regulates the phosphorylation of ribosomal protein S6 kinase and heat shock fac-

tor 1. FEBS Lett. 2015; 589: 3679–3685. https://doi.org/10.1016/j.febslet.2015.10.013 PMID: 26496226

84. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, et al. Report Chaperone-Assisted Selec-

tive Autophagy Is Essential for Muscle Maintenance. Curr Biol. 2010; 20: 143–148. https://doi.org/10.

1016/j.cub.2009.11.022 PMID: 20060297
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