
Work-in-Progress: NVIDIA GPU Scheduling details in
Virtualized environments

Nicola Capodieci, Roberto Cavicchioli and Marko Bertogna
University of Modena and Reggio Emilia, Department of Physics, Informatics and Mathematics, Modena, Italy

[name.surname]@unimore.it

ABSTRACT
Modern automotive grade embedded platforms feature high per-
formance Graphics Processing Units (GPUs) to support the mas-
sively parallel processing power needed for next-generation au-
tonomous driving applications. Hence, a GPU scheduling approach
with strong Real-Time guarantees is needed. While previous re-
search e�orts focused on reverse engineering the GPU ecosystem in
order to understand and control GPU scheduling on NVIDIA plat-
forms, we provide an in depth explanation of the NVIDIA standard
approach to GPU application scheduling on a Drive PX platform.
Then, we discuss how a privileged scheduling server can be used to
enforce arbitrary scheduling policies in a virtualized environment.

1 INTRODUCTION
Advanced Driver-Assistance Systems (ADAS) often feature an inte-
grated GPU as a massively parallel programmable processor that
has to be shared across a potentially large variety of applications,
each having di�erent timing requirements. We disclose and discuss
the current NVIDIA approach to GPU scheduling for both graphic
and compute applications on the Drive PX-2 “AutoCruise’ platform.
The board features a single Tegra Parker SoC, which is composed
by an exa-core CPU complex (a four-core ARM Cortex A-57 cluster,
and a dual-core ARM-v8 compatible NVIDIA Denver cluster) and
an integrated GPU. The GPU (gp10b) is an integrated version of
the newly released Pascal Architecture, commonly featured in both
consumer-level and HPC-level graphics cards, characterized by two
Streaming Multiprocessors (SMs), each featuring 128 CUDA cores.
Note that not all in-depth technical details can be revealed due to
NDA restrictions. Still, we did an extensive e�ort to provide informa-
tion on previously undisclosed technical details, whereas previous
research contributions mostly involved reverse engineering the
architecture [3], due to the closed-source nature of the NVIDIA
software ecosystem [6]. Moreover, we describe how to enforce ar-
bitrary scheduling policies at hypervisor level, as NVIDIA Pascal
architecture allows for graphic shader/compute kernel preemption
at pixel/thread granularity.

2 GPU SCHEDULING
The NVIDIA GPU scheduler features a hardware controller em-
bedded in the GPU within a component called “Host"". The Host
component is responsible for dispatching work to the respective
GPU engines, such as the Copy, Compute and Graphics engines,
in a Round-Robin way, and it is able to act in an asynchronous
and parallel manner with respect to the CPU complex. The Host

Conference’18, -
© 2019 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

scheduler fetches work related to channels, where a channel is an
independent stream of work to be executed on the GPU on behalf of
user-space applications. Channels are transparent to a user-space
programmer, which speci�es GPU workloads through API (CUDA,
OpenGL, etc.) function calls. The workload consists of a sequence
of GPU commands that are inserted in a Command Push Bu�er,
which is a memory region written by the CPU and read by the
GPU. Channels are therefore related to an application’s Command
Push bu�er. A GPU application maps itself to one or more channels.
Each channel is characterized by a timeslice value to timeshare the
GPU execution among the di�erent channels. Whenever all the
work within a channel is consumed, or a preemption is needed for
timeslice expiration, the currently running channel undergoes a
context switch. Hence, the Host will start dispatching workloads
related to the next channel from a list called runlist. The runlist is
a list of established channels that may or may not have pending
work to execute. The GPU Host implements a list-based scheduling
policy that snoops each channel for work by browsing the runlist.
Each application has a number of entries in the runlist that is pro-
portional to its interleaving level. The scheduler browses the runlist,
checking for each entry if the corresponding Command Push Bu�er
has workload to execute. If it does, the channel is scheduled until
it either completes execution, or its timeslice expires. In the latter
case, the channel is preempted, and it will be resumed in the next
entry associated to that channel. If instead the application has no
workload to execute, the scheduler skips its entries, proceeding to
the channels related to the next application. An open source version
of the runlist construction algorithm can be found in the NVIDIA
kernel driver stack (distributed with L4T, Linux For Tegra). 1. In
general, all channels of a given priority level have an occurrence
in the runlist before there is an entry for one lower priority slot.
The next entry at that priority level will be after all channels of the
higher priority level had another slot, and so on. Figure 1 shows
a sample runlist built with the mentioned algorithm for the case
with three high priority applications and one best e�ort (medium
or low priority), each consisting of one channel.

Timeslice length, interleaving level and allowed preemption pol-
icy are the scheduling parameters that can be tuned by a user. The
timeslice is the execution time assigned to a channel before being
preempted. The interleaving level refers to the number of occur-
rences of a particular channel within a runlist. The rationale for
allowing a channel to be replicated more than once in a runlist
is to have higher priority channels checked for work more often
than lower priority ones, allowing critical applications to be more
resilient towards CPU-side delays when submitting commands, as
the GPU scheduler polls more often higher priority applications
1Available in the L4T (Linux For Tegra) kernel sources at https://developer.nvidia.
com/embedded/linux-tegra and described in the o�cial documentation available at
https://docs.nvidia.com/drive/nvvib_docs/index.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/195755925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://developer.nvidia.com/embedded/linux-tegra
https://developer.nvidia.com/embedded/linux-tegra
https://docs.nvidia.com/drive/nvvib_docs/index.html

Conference’18, 2018, - Nicola Capodieci, Roberto Cavicchioli and Marko Bertogna

to reduce their latency. Finally, the preemption policy allows label-
ing a channel to be non-preemptable, so that even if its timeslice
expires, it may keep executing until it has no more pending work.
Channels are established at application launch. In the NVIDIA run-
list approach, the Host scheduler allows only one application to be
resident within the GPU engines at a given time, and preemption is
only initiated by a timeslice expiration event. If the executing chan-
nel is marked as preemptive, a timeslice expiration event triggers
its preemption at pixel- or thread-level boundary, depending if it
is a graphic or compute workload. We are interested in analyzing
the response time of a GPU task, which is de�ned as a recurring
set of commands sent to the Command Push Bu�er associated to
a channel. In our notation, a GPU task τi is characterized as hav-
ing a requested GPU execution time Ci , with Di being its relative
deadline, and Pi is the period or minimum inter-arrival time be-
tween two job submissions. This model �ts advanced automotive
applications where critical jobs (both graphic and compute) such
as pedestrian detection and speedometer rendering follow a recur-
ring pattern. The computing platform acquires frames from one or
more cameras at periodic rates, to feed them to Deep Neural Net-
works (DNNs) for object detection. Speedometer rendering must
have a minimum target framerate that coincides with the periodic
VBLANK signal. The execution time Ci may match the inference
time for a DNN, or any other combination of CUDA kernel invo-
cations, or the actual rendering time of the draw calls needed for
displaying a graphic application. Such a scheduler is e�cient for
Best-E�ort activities, but it shows some drawbacks in case of tighter
Real-Time requirements. The scheduler allows only three priority
levels (for interleaving), making this mechanism not su�ciently
�exible for complex task sets. Moreover, parameters’ estimation
(interleaving level and timeslice length) are di�cult to optimize for
complex task sets. It is trivial to prove that an upper bound on the
response time Ri of a GPU task τi at the highest interleaving level
scheduled with NVIDIA’s scheduler can be found when (i) τi arrives
right after one of its assigned slot elapsed, and (ii) all other tasks in
the runlist are released as soon as possible after their execution.

3 FUTUREWORK ON VIRTUALIZATION
NVIDIA GPU virtualization technology allows multiple guests to
run and access the GPU engines. This is accomplished through
a privileged hypervisor guest called RunList Manager, or RLM.
The other guests wishing to access the GPU have to contact the
RLM server through the inter-VM communication infrastructure of
the hypervisor for operations such as channel allocations, sched-
uling parameters setting, memory management operations and
obviously runlist construction. We are in the process of modifying
the underlying GPU to RLM communication infrastructure so to
have the RLM being able to intercept command submissions, to
then de�ne arbitrary SW scheduling policies and enforce them by
simply constructing runlist having only the channels related to
the applications we wish to schedule. By doing this, we are able
to test and validate event-based approaches, that are known to
provide stronger real-time guarantees compared to table driven
approaches as the NVIDIA baseline interleaved scheduler. More
speci�cally, preliminary results of a prototype Earliest Deadline
First, augmented with a Constant Bandwidth Server (EDF+CBS),

show a signi�cant improvement in schedulability ratio over high
utilization tasksets. This lead to no deadline misses and signi�-
cant improvements over the Worst Case Response Time (WCRT) in
our on board experiments (see Table 1). Changes in the GPU-RLM
communication infrastructure means implementing signals at each
scheduling event related to an application: new work has been sub-
mitted, previous work has been consumed by GPU engines and the
event of server budget expiration (A, B and C respectively in �gure
2). We are also investigating methodologies to mitigate memory
interference between CPU and GPU in embedded SoCs [1, 2, 4, 5].

Figure 1: Worst-case scenario for a GPU taskH2. The darker
green H2 slot is shorter since the GPU Host had no work to
dispatch.

Figure 2: The main blocks of the prototype scheduler. A, B
and C are event signals triggered for scheduling decisions.

Table 1

Task class WCRT decrease
[Interleaved vs. EDF %]

Deadline miss
[Interleaved % | EDF %]

RT CUDA
DNN Inference 64.56% 0.55% | 0%

RT Graphic app.
(30 FPS) 93.35% 4.02% | 0%

Best E�ort Graphic
app. (60 FPS) 17.70% -

Best E�ort Graphic
app. (unbounded) (increase) 158.84% -

Work-in-Progress: NVIDIA GPU Scheduling details in Virtualized environments Conference’18, 2018, -

ACKNOWLEDGMENT
The authors would like to thank NVIDIA Corporation for letting
us work on their GPU architectures and for the useful information
given to us. This work is also part of the Hercules and OPEN-NEXT
projects, which are respectively funded by the EU Commission
under the HORIZON 2020 framework program (GA-688860) and
ERDF-OP CUP E32I16000040007.

REFERENCES
[1] Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna. 2017.

SiGAMMA: Server Based Integrated GPU Arbitration Mechanism for Memory
Accesses. In Proceedings of the 25th International Conference on Real-Time Net-
works and Systems (RTNS ’17). ACM, New York, NY, USA, 48–57.

[2] R. Cavicchioli, N. Capodieci, and M. Bertogna. 2017. Memory interference
characterization between CPU cores and integrated GPUs in mixed-criticality
platforms. In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). 1–10.

[3] Glenn A Elliott. 2015. Real-time scheduling for GPUS with applications in advanced
automotive systems. Ph.D. Dissertation. The University of North Carolina at
Chapel Hill.

[4] Björn Forsberg, Andrea Marongiu, and Luca Benini. 2017. GPUguard: Towards
supporting a predictable execution model for heterogeneous SoC. In 2017 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 318–321.

[5] Přemysl Houdek, Michal Sojka, and Zdeněk Hanzálek. 2017. Towards predictable
execution model on ARM-based heterogeneous platforms. In Industrial Electronics
(ISIE), 2017 IEEE 26th International Symposium on. IEEE, 1297–1302.

[6] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. 2011.
TimeGraph: GPU scheduling for real-time multi-tasking environments.

	Abstract
	1 Introduction
	2 GPU Scheduling
	3 Future work on Virtualization
	References

