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Abstract 

Candida glabrata is a second most common human opportunistic pathogen which causes 

superficial but also life-threatening systemic candidiasis. According to the localization of mannans 

and mannoproteins in the outermost layer of the cell wall, mannan detection could be one of the 

first steps in the cell recognition of Candida cells by the host innate immune system. Mannans from 

the cell wall provide important immunomodulatory activities, compromising stimulation of cytokine 

production, induction of dendritic cells maturation and T-cell immunity. The model of DCs represents 

a promising tool to study immunomodulatory interventions throughout the vaccine development. 

Activated DCs induce, activate and polarize T-cell responses by expression of distinct maturation 

markers and cytokines regulating the adaptive immune responses. In addition, they are uniquely 

adept at decoding the fungus-associated information and translate it in qualitatively different T 

helper responses. We find out, that C. glabrata mannan is able to induce proliferation of splenocytes 

and to increase the production of TNF-α and IL-4. Next, increased the expression of co-stimulatory 

molecules CD80 and CD86 and the proportion of CD4+CD25+ and CD4+CD28+ T cells during in vitro 

stimulation of splenocytes. 

1. Introduction 

Several opportunistic fungal pathogens such as Aspergillus, Candida, Cryptococcus are 

frequently distributed and represent ethiological agents of  majority of invasive fungal infections. 

Generally, Candida glabrata is a part of the mycobiota of mucosal surfaces and gastrointestinal 

tract of healthy individuals (Hallen-Adams & Suhr, 2017). C. glabrata is non-dimorphic yeast, contrary 

to Candida albicans and other pathogenic Candida species; frequently found in a blastoconidia form 
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as a commensal but can easily turn as a pathogen (Fidel, et al., 1999)., C. glabrata has been long 

considered as non-pathogenic, causing life-threatening infections in humans only rarely (Fidel, et al., 

1999). In last decade, the frequency of mucosal and systemic infections caused by C. glabrata has 

significantly increased because of increasing use of broad-spectrum antimycotics together with 

immunosuppressive therapy (Fidel, et al., 1999). Depending on the site of infection, C. glabrata 

occurred as the second or the third most common cause of candidiasis after C.albicans and 

C.parapsilosis (Pfaller, et al., 2011). Various cellular and molecular defects are the predisposition 

factors in candidosis e.g. defects of the dectin-1/CARD9-MALT1-BCL10 signaling pathway are 

associated with chronic mucocutaneous candidiasis,and defects of the IL-12/IFN-γ pathway and T-

helper 17-mediated response  are associated with increased susceptibility to endemic mycoses (Vinh, 

2011, Lanternier, et al., 2013, Lee & Lau, 2017). C. glabrata infections have a high morbidity and 

mortality rate in immunocompromised persons. Candida glabrata is the second most common 

pathogen of severe candidiasis in immunocompromised hosts, following C. albicans (Chen, et al., 

2017). ) C. glabrata clinical isolates are highly resistant to azole antifungal agents, especially 

fluconazole in 15%-25% of cases and has decreased susceptibility to most antifungals,(Fidel, et al., 

1999) with high capacity to produce biofilms (Rodrigues, et al., 2014),  

The host immune response to the fungal infection depends on the antigenic determinants 

recognition and on effector cells activation. The majority of fungi are detected and identified by cells 

of innate immune system (Herring & Huffnagle, 2001, Romani, 2004).  

Anti-fungal adaptive immunity is induced by antigen presenting cells, most importantly by 

dendritic cells (DCs), currently believed to be the conductors of this complex cooperation. DCs 

activate T cells through expression of co-stimulatory molecules and trigger release of cytokines being 

able to regulate the adaptive immune response (Colonna, et al., 2006). Inflammatory DCs initiate 

antifungal Th17 and Th2 cell responses, while tolerogenic DCs activate Th1 and Tregs. The balance 

between these two subsets of DCs is determined, in part, by the kynurenine pathway and tryptophan 

catabolism, and involves indoleamine 2,3-dioxygenase (Romani, 2011). 

Although C. glabrata lacks several virulence factors of C. albicans, such as hyphae formation and 

secretion of proteinases, and differs in key aspects of host – fungus interactions from C. albicans, 

successfully represents second most common cause of systemic candidiasis. Innate immune cells 

such as dendritic cells and macrophages establish the first line of defence against microbial 

pathogens (Brown, 2011, Cheng, et al., 2012). Dendritic cells recognize and phagocytose C. albicans 

to process them for antigen presentation and differentiate between yeast and hyphal morphoform, 

thus initiate the T helper cellular immune response, essential requirement for long term resistance to 
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candidiasis (d'Ostiani, et al., 2000, Newman & Holly, 2001). It is established that interactions 

between different innate immune cells receptors and components of the fungal cell wall trigger 

phagocytosis and subsequent immune responses (Netea, et al., 2008, Kiyoura & Tamai, 2015), but 

the ligands mediating the appropriate host immune response have not been identified until yet. It 

was described that activation of host immune responses occurs after the initial recognition of 

mannan or a mannosylated protein by murine macrophages (Keppler-Ross, et al., 2010). Moreover, 

published results pointed out preference by J774 macrophages, in which C. glabrata yeast cells are 

preferred over C. albicans yeast cells suggesting mannose or some mannosylated protein as a critical 

recognition ligand (Keppler-Ross, et al., 2010). 

Yeasts, including C. glabrata, were shown to effectively induce the expression of the activation 

marker CD83, the co-stimulatory molecules CD80, CD86, CD54, CD58, and CD40, as well as the 

antigen-presenting molecules MHC I and MHC II on DCs (Bazan, et al., 2018). Efficient control of 

Candida relies on the generation of a protective Th1 response that is initiated by IL-12 secreted by 

DCs and phagocytic cells. IL-12 induces T cells to produce IFN-γ, a key activator of effector cells 

(neutrophils and macrophages) and ensures prolonged responsiveness of CD4+ Th1 cells to IL-12 

stimulation. It has been reported that yeast and hyphae morphoforms lead to differential activation 

of DCs, where hyphae inhibit IL-12 production, while inducing IL-4 (d'Ostiani, et al., 2000). In vitro 

studies have shown that both human and murine DCs recognize and internalize Candida cells 

(d'Ostiani, et al., 2000, Bacci, et al., 2002, Bozza, et al., 2004, Romagnoli, et al., 2004, Torosantucci, et 

al., 2004) and that fungi and fungal products may affect DCs functioning as well (Romagnoli, et al., 

2004, Torosantucci, et al., 2004). It was described, that yeast-activated DCs secrete various cytokines 

including inflammatory TNF-α, IL-6, IL-8, and IL-1β or T-cell polarizing IL-12, IL-10, IL-23, and IL-27 

(Bazan, et al., 2018).  

Mannan polysaccharide is exposed at the most external layer of the cell wall and is involved in 

several types of interactions of fungal cells with host immune system. Mannan consists of backbone 

with α-1,6-bonds and mannoside side chains of varying length, containing α-1,2, α-1,3 and β-1,2 

bound types (Kobayashi, et al., 1992, Shibata, et al., 2007). The mannans of medically important 

Candida species contain different structures that correspond to the species-specific antigens(Suzuki, 

1997a, Suzuki, 1997b). α-Linked mannose residues are known to be involved in host–pathogen 

interactions due to the interaction with mannose receptor, mannan-binding protein, and Dectin-2 

(Ifrim, et al., 2016) as well as the dendritic cell-specific intercellular adhesion molecule-3-grabbing 

non-integrin (DC-SIGN) (Cambi, et al., 2008, Netea, et al., 2008). Structural studies indicate that C. 

glabrata mannan is more closely related to S. cerevisiae mannan with the absence of long side chains 

and 3,6-branched mannose residue in the side chains of the mannan, present in C. albicans mannan 
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(Takahashi, et al., 2012). Moreover, C. glabrata mannan shows some inter-strain variations 

(Takahashi, et al., 2012). 

2. Material and methods 

2.1 Mannan preparation  

Yeast strains C. glabrata CCY 26-20-1, C. albicans CCY 29-3-32, and S. cerevisiae CCY 21-4-13 (Culture 

Collection of Yeast, Institute of Chemistry of Slovak Academy of Science, Bratislava, Slovakia) was 

cultured on semi-synthetic 2 % glucose medium at 28°C for 4 days. Cellular mannans was extracted 

by autoclaving in 0.2 mol/l NaCl (120°C, 700 kPa) for 10 minutes and purified using precipitation with 

Fehling’s reagent (Peat, et al., 1961). The mannans were analyzed for carbon, hydrogen, and nitrogen 

content using the EA 1108 device (FISONS Instruments, UK). Mannans´ stock solution and individual 

exposition doses were prepared aseptically using apyrogenic, sterile aqua pro injectione (Fresenius, 

Kabi Italia S.r.l., Verona) under sterile laminar flow conditions (Biohazard II, Esco). The stock solution 

was sterile filtered using a syringe with a 0.2-μm filter (Q-Max®Syringe filter) and was assayed with 

an EndoLISA® ELISA-based Endotoxin Detection Assay (Hyglos) and evaluated with a Cytation 5 

Imager Multi-Mode Reader (BioTek, USA). The average value of three individual measurements was 

0.01 EU ml/1, confirming an endotoxin-free solution. 

2.2 NMR spectroscopy of mannan 

C. glabrata mannan sample was exchanged twice with D2O, lyophilized between the exchanges and 

then dissolved in 600 μL of 99.95% D2O. 1 μl of acetone was added as internal standard (2.225/31.07 

ppm). NMR spectra were recorded on Bruker Avance III HD 600 MHz spectrometer equipped with 

inverse liquid nitrogen cooled cryoprobe (Prodigy) at 45°C. 1D 1H, and 1H-13C perfect heteronuclear 

HSQC spectra were acquired and processed using Bruker TOPSPIN software. Perfect HSQC is special 

case of HSQC pulse sequence where the spectrum is acquired with homonuclear “decoupling” so its 

lineshape is pure positive phase and is quantitative (Castanar, et al., 2015). 1H NMR and 1H–1H 2D 

TOCSY spectra were acquired in D2O (99.97 % D) at 45 °C on a Bruker AVANCE III HDX 600 MHz 

spectrometer (Bruker BioSpin, Rheinstetten, Germany) equipped with a triple inverse TCI H-C/N-D-

05-Z liquid He-cooled cryoprobe and processed using MestReNova 12.0.3 software. The 1H signal of 

acetone (2.225 ppm) was used as a reference for chemical shifts. 

2.3 Experimental animals 

CD1 mice (female, 4 - 6 weeks old, purchased from Charles River Breeding Laboratories, Calco, 

Lecco, Italy) were used for isolation of DCs and subsequent analysis of DCs activation and co-

stimulation with T cells. BALB/c mice (female, 6 weeks old, obtained from Research Institute of 
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Animal Production Velaz, Prague, Czech Republic) were used for isolation of splenocytes and 

following analyses of cytokine production and proliferation assay. 

2.4 Activation of splenocytes 

Female Balb/c mice aged 8–12 weeks were obtained from the breeding facility VELAZ, Prague 

(Czech Republic). Ex vivo animal experiments were conducted in compliance with GLP and OECD 

guidelines, according to the ethical guidelines issued by the Research Base of Slovak Medical 

University, Institute of Preventive and Clinical Medicine (Bratislava, Slovakia), under the approval of 

State veterinary and food administration of the Slovak Republic. The animals were provided food and 

water ad libitum and maintained in hoods under laminar flow conditions. Aseptically removed 

spleens were placed into sterile ice-cold saline (1 ml per spleen) and homogenized with the plunger 

end of the syringe. The cell suspension was centrifuged at 800 × g for 10 min at 4°C. The cell pellet 

was resuspended in 5 ml of ACK lysis buffer (0.15 M NH4Cl, 1 M K2CO3, and 0.01 M EDTA, pH 7.2) and 

incubated at room temperature for 5 min to lyse the red blood cells. The cell suspension was washed 

twice with saline and resuspended in complete RPMI-1640 (Lonza, Belgium) containing 10 % fetal 

bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin sulphate (Gibco, Germany). The cell 

density was adjusted to 1 × 106 cells per ml with RPMI-1640 following the determination of cell 

viability using trypan blue dye exclusion method. Splenocytes were seeded into 24 well culture 

dishes (suspension containing 4 × 105 cells per well) and stimulated in vitro with LPS (final 

concentration 10 µg/ml, Sigma) and C. glabrata mannan (400 µg/ml and 800 µg/ml) for 24 h at 37 °C 

in a humidified incubator with a 5% CO2 atmosphere. After stimulation the proliferation of spleen 

cells and ELISpot analyses of TNF-α production were performed and culture media were stored at -

20°C for determination of cytokines. 

2.5 Cell culture and exposition 

     Cell line murine macrophages RAW 264.7 (ATCC®TIB-71™, ATCC, UK) were cultured in complete 

Dulbecco’s Modified Eagle Medium for 24 h at 37°C in an atmosphere of 5% CO2 and 100% relative 

humidity until approx 80% confluency. Cell viability has been assayed with the Trypan blue dye  using 

a TC20™ automated cell counter (Bio-Rad Laboratories, Inc., USA). The starting inocula of 1 × 105 

cells/mL/well (approx 90% of viable cells) were seeded onto a 24-well cell culture plate (Sigma-

Aldrich, USA) and treated with 10 and 100 μg per well of mannan formulas, respectively. Cell 

mitogens Concanavalin A (Con A, 10 μg/mL, Sigma-Aldrich, St Louis, MO, USA), phytohemagglutinin 

(PHA, 10 μg/mL, Sigma- Aldrich, St Louis, MO, USA), pokeweed mitogen (PWM, 1 μg/ mL, Sigma-

Aldrich, St Louis, MO, USA), and E.coli lipopolysaccharide (LPS 10 μg/mL,Sigma- Aldrich, St Louis, MO, 

USA) were used as positive controls. Untreated cells were used as negative control. In vitro 
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exposition was performed for 24, and 48 h, respectively. The exposed cells were subjected to 

microscopic observation of morphological characteristics (ZoeTM fluorescent cell imager, Bio-Rad). 

The cell culture media were stored at −20°C until further use. 

2.6 ELISPOT analysis of TNF-α production 

Splenocytes were seeded in concentration 5 × 104 cells per well for the direct production and 

further enumeration of TNF-α producing cells onto anti-mouse TNF-α antibody pre-coated PVDF 

microplate. Following steps and procedures were according to manufacturer's recommendation 

(Mouse TNF-α ELISPOT, BenderMedSystems, Austria). Quantitative evaluation of spots was 

performed via KS ELISPOT 4.10 running under AxioVision software using Imager A.1 Microscope 

(Zeiss, Germany). 

2.7 Proliferation 

Proliferation of exposed splenocytes and RAW 264.7 cells was evaluated on the basis of ATP 

concentration measured by ViaLightTM plus kit (Lonza, Walkersville, Maryland, United States), using a 

microtitre plate computer-driven luminometer Immunotech LM-01T (Immunotech, Prague, Czech 

Republic). In this method, ATP was assessed enzymatically with firefly luciferase which catalyses the 

hydrolysis of ATP and oxidation of D-luciferin. As ATP is the limiting reagent in this reaction, the light 

reaching the photomultiplier tube of the luminometer is proportional to the amount of ATP. Light 

emission, expressed as relative light units (Mazzolla, et al.), was recorded continuously for 180 s and 

evaluated based on integral (peak) values. (Light emission, recorded during 1 s reading, and was 

expressed in relative light units - RLU). 

2.8 ELISA determination of cytokines 

The concentration of interleukins and growth factors in cell culture media supernates following 

the exposure with mannans were assayed with Platinum ELISAs®: Mouse IL-12 (p70) (Cat#BMS616, 

(minimum detectable dose) MDD 4 pg/mL), Mouse GM-CSF (Cat#BMS612, MDD 2 pg/mL), Mouse IL-

17(Cat#BMS6001, MDD 1.6 pg/mL), and Mouse IL-6 (Cat#BMS603/2, MDD 6.5 pg/mL); Instant 

ELISAs®: Mouse IL-1β (Cat#BMS600/2INST, MDD 3 pg/mL), Mouse tumor necrosis factor (TNF)-α 

(Cat#BMS607/2INST, MDD 4 pg/mL), Mouse IL-10 (Cat#BMS614INST, MDD 5.28 pg/mL), Mouse IL-4 

(Cat#BMS613INST, MDD 0.6 pg/mL) and Mouse IFNγ (Cat#BMS606INST, MDD 4.0 pg/mL),,all from 

Affymetrix e-Bioscience, USA, according to the instructions and test protocols of the manufacturer.  

2.9 CD11c
+
 DCs separation 

CD11c
+
 DCs were separated from spleens of CD1 mice using CD11c (N418) mAbs - conjugated 

MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany), followed by magnetic separation 
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according to the manufacturer’s instructions. After magnetic separation, CD11c
-
 cells were 

harvested, washed with RPMI 1640 medium adjusted with 10% FBS, 2mM L-glutamne, 100U/ml 

penicillin and 100 μg/ml streptomycin (compete RPMI 1640 medium) and incubated overnight in 48-

well flat-bottom culture plates.  

2.10  DCs stimulation and flow cytometry analysis 

For analysis of CD80 and CD86 time related expression, purified splenic CD11c
+
 DCs from CD1 

mice (5×105 cells per ml) were stimulated for 24 and 48 h with 10 μg/ml Escherichia coli 

lipopolysaccharide (LPS) and 100 μg/ml of C. glabrata mannan. For concentration dependent 

stimulation purified splenic CD11c
+
 DCs from CD1 mice (5×105 cells/ml) were stimulated for 24 h with 

10 μg/ml E. coli LPS and C. glabrata mannan in concentrations: 100μg/ml, 300μg/ml and 600μg/ml. 

After stimulation, cells were harvested and incubated for 30 min at 4°C with fluorochrome 

conjugated monoclonal antibodies Anti-Mouse CD80-PE (clone YTS, Rat IgG2b), Anti-Mouse CD86-PE 

(clone YTS, Rat IgG2b), Anti-Rat IgG2a-FITC (clone YTS, Rat IgG2b), Anti-Rat IgG2b-PE (clone YTS, Rat 

IgG2b), (Antigenix America Inc., USA). After incubation, cells were analyzed using a FACScan flow 

cytofluorometer (BD Biosciences, Franklin Lakes, NJ). Control staining of cells with irrelevant 

antibodies was used to obtain background fluorescence values. Data are expressed as mean 

percentage of CD80+ DCs and mean percentage of CD86+ DCs out of CD11c+ DCs ± SD and the mean 

fluorescence intensity (MFI) of CD80+ DCs and CD86+ DCs. The analysis was performed using Kaluza 

Flow Cytometry Analysis 1.0 software (Beckman Coulter Inc., Fullerton, CA, USA) (Supplementary Fig. 

S1, Supporting Information). 

2.11 Lymphocytes co-stimulation with prestimulated DCs and flow cytometry analysis 

Purified splenic CD11c
+
 DCs from CD1 mice (5×105 cells per ml) were pulsed with E. coli LPS (10 

μg/ml) and mannan C. glabrata (100 μg/ml) for 24 h at 37°C in a humid atmosphere of 5% CO2. C. 

glabrata mannan, LPS pulsed and unstimulated DCs were collected, washed and resuspended at 

5×105 cells per ml with complete RPMI 1640 medium. CD11c depleted splenocytes were maintained 

for 24 h at 37°C in a humid atmosphere of 5% CO2. Thereafter, non-adherent cells were harvested 

from CD11c depleted splenocytes, washed and adjusted to 5×106 cells per ml in complete RPMI 1640 

medium. Autologous co-cultures were performed in 48-well plates containing pulsed or control 

unstimulated DCs (1×105 cells per well) and non-adherent spleen cells (1×106 cells per well) and DCs 

(1×105 cells per well) in complete RPMI 1640 medium at a final volume of 500 μl per well. Co-cultures 

were incubated for 48 h or 5 days at 37°C in a humid atmosphere of 5% CO2. 
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The co-cultured cells were harvested and CD4+ T cells expression of CD28 and CD25 was 

analysed by FACS analysis of the resultant CD4+ T cells from this population. Cells were stained (30 

min at 4°C) with fluorochrome conjugated monoclonal antibodies Anti-Mouse CD3-FITC (clone KT3, 

Rat IgG2a), Anti-Mouse CD4-FITC (clone YTS, Rat IgG2b), Anti-Mouse CD4-PE (clone YTS, Rat IgG2b), 

Anti-Mouse CD8α-FITC (clone KT15, Rat IgG2a, λ), Anti-Mouse CD8α-PE (clone KT15, Rat IgG2a, λ), 

Anti-Mouse CD25-PE (clone Y6, Mouse IgM), Anti-Mouse CD28-PE (clone YTS, Rat IgG2b), (Antigenix 

America Inc., USA). For background fluorescence analysis isotype control monoclonal antibodies Anti-

Rat IgG2a-FITC (clone YTS, Rat IgG2b) and Anti-Rat IgG2b-PE (clone YTS, Rat IgG2b) were used. The 

analysis was performed using Kaluza Flow Cytometry Analysis 1.0 software (Beckman Coulter Inc., 

Fullerton, CA, USA) (Supplementary Fig. S1, Supporting Information). 

2.12 Study population 

The serological assays were performed in a patient cohort comprising 85 female participans 

(33.5 ± 5.6 years) with atopy and a history of recurrent vaginal mycosis (Dept. Clin. Immunol. and 

Allergy). Inhalant allergy was present in 58 % of patients. The exclusion criteria were recent or 

ongoing antibiotic or immunosuppressive therapy. Candida spp., Aspergillus spp., and Saccharomyces 

spp. isolated from vaginal (91.53%) or cervical (6.38%) swabs undergone typing and identification 

(MEDIREX Inc., HPL Mycology Labs., Slovakia). Cultures were predominantely positive for C. albicans 

(82.27%). C.glabrata was identified in 7.26% and S.cerevisiae in 3.33%. 

Alyostal® Stallergenes Skin prick test (SPT), including C. albicans allergen (Alyostal R 

Stallergenes), was performed on the patients’ forearm according to the international and national 

guidelines. SPT was evaluated after 15–20 min and rated as positive if the wheal diameter was ≥3 

mm and the negative control was negative. 

2.13 Ethics 

The research study and the protocol have been approved by the Ethical Committee of the 

Oncology Institute of St. Elisabeth, Bratislava, Slovakia (15.12.2010). Written informed consent to 

participate in the study and for blood collection and next laboratory examinations, in accordance 

with the principles in the Helsinki Declaration, was obtained from each patient prior to study 

enrolment. All patients were recruited from the outpatient department of the Department of Clinical 

Immunology and Allergy. Patient’s age, disease process, drug history, family history, and clinical signs 

and symptoms were documented at the first visit of Clinical Immunology and Allergy ambulance as a 

standard procedure. 
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2.14 ELISA assay for specific anti–Candida albicans CCY 29-3-32,, C. glabrata CCY 26-20-1  and anti- 

Saccharomyces .cerevisiae CCY 21-4-13 mannan antibodies.  

 Sera samples have been taken ahead of the onset of antifungal and/or immunomodulative 

therapy, respectively. The sera samples for the determination of anti-mannan antibodies were 

separated and immediately stored at −70°C until the further use. The ELISA for the determination of 

specific anti-mannan IgG, IgA, and IgM isotypic antibodies based on C. albicans, C. glabrata  and S 

.cerevisiae cell mannans has been developed by the modification of standard ELISA anti-Candida II 

and ELISA anti-ASCA (Biogema, Slovakia).  

2.15 Statistical analysis 

Data are reported as the means ± SD from three separate experiments. Statistical significance 

was determined using analysis of variance (ANOVA), corrected for multiple comparisons by the 

Bonferroni test. A value of p < 0.05 was considered significant. 

3. Results and Discussion 

3.1 Characterisation of C.glabrata mannan, chemical and structural features 

For immunomodulatory properties analysis of C. glabrata mannan we prepared acido-stabile 

part of C. glabrata mannan by precipitation with Fehling’s reagent. Prepared mannan with a 

molecular mass of 16.7 kDa contained no nitrogen (C, H, N analysis) and therefore this analysis 

confirmed that the mannan contained no protein. As published, the detailed mannan structures from 

different C. glabrata strains can differ and were correlated with antifungal drug susceptibility 

(Castanar, et al., 2015).  

Linkage types between mannose residues are determined from NMR. More specifically, they are 

determined from both proton and carbon chemical shifts in the anomeric region of hetero-correlated 

spectra. Acido-stable part of mannan from C. glabrata CCY 26-20-1 strain studied here does not 

contain any intense cross-peaks in the 4.5-4.9 ppm region for protons. That indicates absence of β 

glycosidic linkages. In the region above the 5 ppm, there are six intense cross-peaks (Fig. 1). Peaks at 

5.06/103 ppm and 5.08/99 ppm are assigned to α-1,6 linked mannoses in the backbone - substituted 

or unsubstituted by side chains, respectively. There are intense signals at 5.28/101.3 ppm and 

5.05/103 ppm and they are assigned to α-1,2 linked mannoses. The signals at 5.17/95 ppm and 

5.15/103 ppm indicate the presence of α-1,3 linkages at the interior and terminal positions of side 

chains. 
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Here, we investigate mannan from C. glabrata 26-20-1 strain prepared by the method described 

in subsection 2.1. The TOCSY spectrum of the obtained mannan is in Fig. 2. The main structural 

features are following: Absence of any signal around 5.43 ppm and 5.56 ppm indicate that there is no 

phosphodiesterified structure. CP 15 at 4.78;4.05 ppm (in this spectrum invisible) and CP 6 at 

5.18;4.28 ppm indicates a presence of a small portion of Manβ1→2Manα1→2 structure. Also, it has 

more (→6Manα1)n→6Manα1→ (CP 4.89;3.94) and →6Manα1 (CP 8 at 5.11;4.04) units, and less 

Manα1→3Manα1→2 (CP 7 at 5.15;4.08 and CP 12 at 5.05;4.22) units than S. cerevisiae (21-4-13) 

mannan (see supplement for both spectra, Supplementary Fig. S2, Supporting Information). 

The study of Grauss et al. (Graus, et al., 2018) with mannosylation C. albicans and C.glabrata 

mutants revealed correlation between N-mannan structure and the amount of β-glucan exposed. 

They define specific N-mannan structural features of both yeasts and thei mutants affecting  immune 

evasion via the alteration of glucan exposure geometries at the molecular level. Their findings 

pointed out the importancy N-mannan side-chain abundance and complexity in C. albicans and 

backbone length in C. glabrata as features that are important for masking glucan. 

3.2 C. glabrata incidence. 

C. glabrata is the second most common cause of systemic candidiasis in immuno- compromised 

patients following C. albicans (Yapar, 2014). Infections caused by C. glabrata accounts for 

approximately 18 - 29% of all bloodstream infection isolates in the USA (Pfaller, et al., 2011, Pfaller, 

et al., 2012, Yapar, 2014). In Slovakia, epidemiological data on yeast cultures obtained from patients 

displayed that C. albicans was the most frequently isolated species followed by C. glabrata. The main 

incidence of C. glabrata in yeast clinical isolates was localized in lower respiratory tract (2010-27%, 

2013-31.9%, 2016-25.16%) followed by upper respiratory tract (2010 - 22%, 2013 - 16.6%, 2016 -

16.2%) (Fig. 3). Decreased susceptibility of C. glabrata to azoles is eminent (Pfaller, et al., 2012) and 

the emergence of co-resistance to the echinocandins among fluconazole-resistant C. glabrata 

isolates was documented (Pfaller, et al., 2012). 

3.3 Distribution of antimycotic antibodies in vulvovaginitis patients 

The serologic analysis of anti-mannan antibodies in cohort of atopic females with episodes of 

mycotic colpitis revealed that highest concentrations of antifungal antibodies are of IgM isotype, 

followed by IgG class antibodies.The majority of positive results over normal reference interval is 

observed with IgM isotype antibodies against, C.albicans and C. glabarata, less in the case of S. 

cerevisiae mannan (Tab.1).  
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Generally, IgM antibodies represent the most abundant immunoglobulin isotype, involved in 

early infection. IgG antibodies are considered as indicator of past or ongoing infection, elevated IgG is 

characteristic for reccurent attacs (Casadevall, 1995). Our previous results on serological pattern of  

specific antibodies anti-synthetically prepared galactomannosides mimicking the structure of  natural  

Aspergillus cell revealed the highest levels also with antigen-specific IgM isotypic antibodies  glycan in 

mycotic colpitis cohort (Paulovicova, et al., 2017). Recently, the role of natural IgM antibodies as 

scavenger, protector and regulator is stressed (Ehrenstein & Notley, 2010, Gronwall, et al., 2012).  

3.4 Splenocytes 

3.4.1 Proliferation of  mannan exposed splenocytes  

We examined the ability of isolated C. glabrata mannan to induce proliferative response of 

splenocytes and we compared obtained results with effectiveness of LPS (Fig. 4). C. glabrata  mannan 

slightly increased the proliferation of splenocytes. Both concentrations used for stimulation (400 

μg/ml and 800 μg/ml) induced comparable statistically significant increases (1.29 times higher resp. 

1.25 times higher compared to unstimulated splenocytes) of splenocytes proliferation (Fig. 4). 

Despite published negative influence of mannan isolated by Fehling method onto proliferation of 

lymphocytes (Nelson, et al., 1991) we observed increase of splenocytes´ proliferation induced by C. 

glabrata mannan. 

3.4.2 Mannan induced splenic proinflammatory cytokines 

Given that cytokines could act not only as modulators of antifungal effector functions but also as 

important mediators of the regulation of Th lymphocyte repertoire development (Romani, 1999) we 

tested whether C. glabrata mannan stimulation have the ability to induce cytokines production of 

splenocytes. 

We analysed the TNF-α production of C. glabrata mannan stimulated splenocytes and obtained 

results compared with unstimulated and LPS stimulated splenocytes by ELISpot method (Fig. 5). C. 

glabrata mannan induced significant increase of TNF-α producing cells frequency, even comparable 

to the efficacy of LPS as positive control. Interestingly, the lower concentration of C. glabrata 

mannan (400 μg/ml) induced slightly higher number of TNF-α producing cells in comparison with 

higher concentration (800 μg/ml).  

As expected, according to results of TNF-α producing cells frequency, stimulation of splenocytes 

with C. glabrata mannan induced significant increase of TNF-α concentration in culture media, 400 
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μg/ml of mannan 13.8 times higher and 800 μg/ml of mannan 41.0 times higher in comparison with 

unstimulated splenocytes (Fig. 6). Stimulation of splenocytes with mannan did not significantly 

influence the production of IL-6 and IFN-γ, but increased the production of IL-4. Statistically 

significantly higher IL-4 concentration (1.6 times higher compared to unstimulated control) was 

detected by using 400 μg/ml of C. glabrata mannan for stimulation (Fig. 6). The lower concentration 

of mannan was more effective in evocation of IL-4 production than the higher concentration. These 

results reveal inversely proportional dependence between IL-4 induction upon stimulation of 

splenocytes and used mannan concentration. 

Previous studies indicated that a mannan with a highly branched structure exhibited stronger 

pyrogenic activity than less branched mannans and the TNF-α-inducing ability of mannan was also 

affected by proportions and length of the branches of α-(1-2)- and α-(1-3)-linked mannopyranosyl 

residues (Tada, et al., 2002). S. cerevisiae mannan showed higher activity than C. albicans mannan 

and therefore variation of structure, especially the proportion of branching in different mannan 

preparations, might be responsible for variation of cytokine-inducing activities (Tada, et al., 2002). 

3.5. RAW 264.7 cell line 

3.5.1 Mannan-induced RAW264.7 proliferation  

Next, we compared the proliferative response of RAW 264.7 macrophages (Fig. 7) to C. glabrata 

mannan stimulation with mannan C. albicans mannan and S. cerevisiae mannan at different 

concentrations (100, 300, 400, 600 and 800μg/ml). We observed that all three used mannans were 

able to stimulate proliferation of RAW 264.7 macrophages, especially after 48 h treatment. Obtained 

results showed slight differences in used mannans capability to induce proliferation (concentration 

dependent effect, Fig. 7). It was described, that mannan-derived oligosaccharides produced by 

catabolism of mannan in vivo are immunoinhibitory and contribute to the deficit in cell-mediated 

immune function associated with chronic candidiasis (Podzorski, et al., 1990). 

3.5.2 Mannan-induced RAW264.7 macrophages’cytokine release  

To analyse differences of C. glabrata mannan, C. albicans mannan and S. cerevisiae mannan 

capability to induce cytokines production, RAW 264.7 macrophages were treated with five 

concentrations of each mannan (100, 300, 400, 600 and 800μg/ml) and subsequently culture media 

were analysed (Fig. 8 ). 
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Obtained results reveal significant differences in the induction of TNFα production, the highest 

for C. albicans mannan, lower for S. cerevisiae mannan and the lowest for C. glabrata mannan. The 

IL-6 concentration was statistically significantly increased only after C. albicans mannan stimulation. 

Also IL-12(p70) levels in culture media after C. albicans mannan treatment of RAW 264.7 

macrophages most markedly statistically significantly increased. The S. cerevisiae mannan slightly 

increased the IL-12(p70) production and C. glabrata mannan stimulation of macrophages for 48 h 

induced even decrease of IL-12(p70) production, especially the highest concentration (800μg/ml, 

0.49 times lower than control). The C. glabrata mannan and S. cerevisiae mannan did not significantly 

alter the IL-10 production, but C. albicans mannan significantly increased the IL-10 levels. Obtained 

results concerning C. glabrata mannan stimulatory activity did not reveal concentration dependent 

manner. This mainly concentration dependent activity was observed for C. albicans mannan and S. 

cerevisiae mannan, with higher efficacy for C. albicans mannan (Fig. 8).  

Previously published results of inflammatory cytokine production induced by mannan lacking β-

1,2-mannosides (Ueno, et al., 2013) shoved concentration dependent cytokine release in the C. 

albicans mannan concentration range 4-100 μg/ml. They observed, that β-1,2-mannosides mitigated 

the production by mouse DCs of inflammatory cytokines, including IL-6, IL-12p40 and TNF- α (Ueno, 

et al., 2013). Our results, obtained for C. glabrata mannan and C. albicans mannan did not confirmed 

this assumption.  

Candida mannan is recognized by various specific receptors of immune cellse.g. mannose 

receptor, complement receptor 3, dectin-2, DC-SIGN, TLR- 2, TLR-4 and TLR-6 (Netea, et al., 2008, 

Ueno, et al., 2013) depending on its structure (Romani, 2011, Hall & Gow, 2013). The mannose 

receptor (MR, also known as CD206), a transmembrane lectin found predominantly in macrophages 

can recognize terminal mannose structures (Netea, et al., 2008, Vautier, et al., 2012). 

RAW264.7 macrophages, expressing both dectin-2 and dectin-3, produced greater amounts of 

TNF-α_ in response to purified _α-mannans compared to the cells expressing only one of these 

receptors (Zhu, et al., 2013).  O-linked mannans on the surface of C. albicans yeast cells are 

recognised by TLR4, expressed on both human mononuclear cells and murine macrophages. The 

interaction of MR and TLR4 with  N- and O-linked mannans, respectively  trigerred induced release of 

TNF_, IL-6, IL-10, and IFNγ  by these cells(Netea, et al., 2006). Chen et al (Chen, et al., 2017) using a 

macrophage-C. glabrata interaction model revealed, that C. glabrata could activate NF-kB signaling, 

which including nuclear translocation of NFkB (p65), Syk phosphorylation, IkBa phosphorylation, 

together with IkBa degradation in thioglycolate-elicited peritoneal macrophages. Subsequently, they 

observed C. glabrata (UV-inactivated and live C. glabrata) induced release of TH polarizing cytokines 
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including pro- inflammatory cytokines, TNF-a, IL-6, IL-12p40, and antiinflammatory IL-10, in 

thioglycolate-elicited peritoneal macrophages. 

3.5 Dentritic cells  

3.5.1 Mannan-induced expression of activation and co-stimulatory antigens in dendritic cells 

Antigen presentation and immune recognition are two critical events in the generation of 

effective immune responses to microbial pathogens. Initiation and maintenance of specific T cell 

responses rely on the interaction of the fungus with professional antigen-presenting cells (APCs). DCs 

are efficient in priming and expanding Candida specific T lymphocytes in the inductive sites of the 

immune system (Romagnoli, et al., 2004). The first signal is the occupancy of the T-cell receptor (TCR) 

by a complex of the antigenic peptide and major histocompatibility complex (MHC) molecules on the 

APC surface. The second signal results from binding co-stimulatory ligand molecule on the APC 

surface to a receptor on the T-cell surface. The major co-stimulatory signal appears to be provided by 

the B7 molecules, B7-1 (CD80) and B7-2 (CD86), on the DCs. CD80 and CD86 are ligands for the T-cell 

membrane proteins CD28 and CTLA-4 and have been concerned as important determinants on 

professional APCs that play a major role in CD4+ T cell activation (Zhang, et al., 2004). 

We analyzed the capacity of purified C. glabrata mannan to induce the activation of splenic DCs. 

For optimization of the DCs treatment and to set the optimal time period for the highest expression 

of activation antigens CD80 and CD86 on DCs we performed stimulation with one concentration of C. 

glabrata mannan (400 μg/ml) and as a positive control for stimulation we used Escherichia coli LPS 

(10 μg/ml) (Fig. 9). Results reveal 24 h as optimal time for induction of CD80 and CD86 expression on 

DCs. After 48 h stimulation, we observed decrease in CD80 and CD86 expression compared to 24 h 

treatment (Fig. 9). According to obtained results, we used 24 h treatment of DCs for all following 

experiments. 

Based on the concentration-dependent stimulatory efficacy of mannan, we analysed the activity 

of various concentrations of C. glabrata mannan (100 μg/ml, 300 μg/ml, 600 μg/ml) onto activation 

of purified DCs (Fig. 10).  

The cells were analyzed for CD80 and CD86 expression. The reported results (Fig. 10) indicate 

that all three tested concentrations of mannan C. glabrata are able to induce increase of CD80 and 

CD86 expression on DCs. When compared different stimulant concentration, we observed, that after 

24 h stimulation with concentration of 100 μg/ml of mannan C. glabrata the significant increase of 

both co-stimulatory molecules expression was induced (Fig. 10). Splenic DCs stimulated with 300 

μg/ml of mannan retain high expression of CD80 but we observed decrease of CD86 expression. 
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Stimulation of DCs with the highest tested concentration of mannan (600 μg/ml) significantly 

decreased the efficacy of mannan to induce expression of CD80 on DCs. By using mannan 

concentration 600 μg/ml, the expression of CD86 significantly decreased (Fig. 10). 

To evaluate DCs and T lymphocytes co-stimulation we analysed the expression of CD28 on CD4+ 

T cells after co-cultivation with C. glabrata mannan pulsed DCs (Fig. 11). For the determination of 

CD4+CD28+ T cells induction we used the concentration 100 μg/ml of C. glabrata mannan, based on 

the highest induction of B7 co-stimulatory molecules (CD80, CD86) on DCs. After 48 hours of co-

cultivation, we observed slight increase of CD28 on CD4+ T cells (1.4 times higher than unstimulated 

control). Extended duration of mannan pulsed DCs and lymphocytes co-cultivation (120 hours) 

induced an additional increase of CD4+CD28+ T cells proportion within the CD4+ T cells (Fig. 11). After 

120 hours of co-cultivation CD4+CD28+ T cells the percentage was significantly higher (1.5 times) 

compared to unstimulated control and even comparable with LPS pulsed DCs as a positive control 

(Fig. 11). The activation of CD4+ T cells in vitro was monitored by expression of CD25, an alpha chain 

of the IL-2 receptor (Fig. 11). We observed slight increase of CD4+CD25+ T cells proportion within the 

CD4+ T cells upon co-stimulation with mannan pulsed DCs (both, 48 hours and 120 hours of co-

cultivation) compared to unstimulated cells (Fig. 11). 

In vitro and in vivo models have demonstrated the importance of both co-stimulations in the 

generation of antigen-specific immune responses (Zhang, et al., 2004). It was shown that both 

ligands have a critical role in the activation of CD4+ T cells in vitro and in vivo (Zhang, et al., 2004). It 

has been suggested that the relative expression of CD80 and CD86 on APCs may have different 

functional consequences, such as driving T-cell differentiation into either the Th1 or the Th2 

pathway. Both CD80 and CD86 could have distinct effects on the generation of T cell responses to 

different antigens and can compensate for each other in T cell activation and proliferation (Zhang, et 

al., 2004). In this study, we analyse the interaction of mannan from C. glabrata with dendritic cells 

and demonstrate that mannan stimulates DCs and induces DCs maturation by increasing 

costimulatory molecules CD80 and CD86. Concentration dependent induction of CD80 and CD86 

expression reveals differences in mannan ability to increase expression of costimulatory molecules 

on DCs. 

4. Conclusions 

Reported results provide new information about the possible role of the mannan antigen in the 

induction of immune response and show that mannan could be a useful tool to promote DCs 
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maturation and activation and, as a consequence, antigen presentation process. DCs are potential 

vehicles to induce or potentiate protective immune response and prevent fungal infection. 

The model of DCs is a promising target for immunotherapy interventions and vaccine 

development. The most opportunistic fungal pathogens need a stable host– microbe interaction. The 

aim of this study was to evaluate capability of mannan to modulate DCs activation, induce expression 

of co-stimulatory molecules CD80, and CD86 on DCs as well as antigen presentation activity, thereby 

influencing T cell phenotype in response to stimulation. This study proved applicability of low 

molecular mannan as efficient molecular immunomodulator which was used in our consequent study 

for binding onto nanoliposomes via orthogonal aminooxy ligation (Bartheldyová, et al., In Press). 

Moreover, nanoliposomes with orthogonally bound mannan represent a platform for development 

of targeted drug delivery systems and self-adjuvanted carriers for construction of recombinant 

vaccines. 
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Fig. 1: Anomeric region of HSQC-NMR spectra of acido-stable part of mannan from C. glabrata CCY 

26-20-1 measured at 45°C in D2O. Aceton was used as internal standard (2.225/31.07 ppm).  

  

Fig. 2: TOCSY NMR spectrum of the mannan, detail on the anomeric part (D2O, 45 °C, 600 MHz). The 

numbering of cross-peaks is according to Takahashi et al. (Takahashi, et al., 2012). 
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Fig. 3: Incidence of C. glabrata in yeast clinical isolates (years 2010, 2013, and 2016) according to 

location of infection (with permission of MEDIREX Inc., HPL Mycology Labs., Slovakia) 

 

Fig. 4: Proliferation of splenocytes 

Splenocytes were stimulated for 24 h with E. coli LPS (LPS, 10μg/ml) and mannan C. glabrata (M400 - 

400μg/ml, M800 - 800μg/ml). As a negative control, splenocytes cultured without stimulants were 

used. Results are expressed as a mean stimulation indexes (average relative light units in the 

presence of antigens/average relative light units obtained without antigen). All data are presented 

as a mean stimulation indexes ± SD and statistical significances of difference between unstimulated 

cells (negative control, stimulation index 1) and stimulated cells are expressed: *** - P<0.001, * - 

0.01<P<0.05. 
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Fig. 5: Splenocytes production of TNF-α Splenocytes were stimulated for 24 h with E. coli LPS (LPS, 

10μg/ml) and mannan C. glabrata (M400 - 400μg/ml, M800 - 800μg/ml). As a negative control, 

splenocytes cultured without stimulants (Control) were used. All data are presented as a mean 

frequency of spot forming cells (SFCs) per 5×104 splenocytes ± SD and statistical significance of 

differences between unstimulated cells (Control) and stimulated cells are expressed: ** - 

0.001<P<0.01, * - 0.01<P<0.05. 
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Fig. 6: Cytokines´pattern induced by mannan and LPS 

Culture media after splenocytes stimulation were analysed for cytokines concentration. Splenocytes 

were stimulated for 24 h with E. coli LPS (LPS, 10μg/ml) and mannan C. glabrata (M400 – 400 μg/ml, 

M800 – 800 μg/ml). As a negative control, splenocytes cultured without stimulants (Control) were 

used. All data are presented as mean ± SD. Statistical significance of differences between stimulated 

cells and unstimulated cells (Control) are expressed (*** - P<0.001, ** - 0.001<P<0.01, * - 

0.01<P<0.05) and statistical significance of differences between LPS stimulated cells and mannan 

stimulated cells are expressed (### - P<0.001, ## - 0.001<P<0.01). 
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Fig. 7: Proliferation of RAW 264.7 macrophages 

RAW 264.7 cells were stimulated for 24 h (A) and 48 h (B) with Con A (10 μg/mL), PHA (10 μg/mL), 

PWM (1 μg/ mL), and LPS (10 μg/mL) were used as positive controls and C. glabrata mannan, C. 

albicans mannan and S. cerevisiae mannan (100, 300, 400, 600 and 800μg/ml). As a negative control, 

RAW 264.7 cells cultured without stimulants were used. Results were calculated as a stimulation 

indexes (average relative light units in the presence of antigens/average relative light units obtained 

without antigen). All data are presented as a mean stimulation indexes ± SD and statistical 

significances of difference between unstimulated cells (negative control, stimulation index 1) and 

stimulated cells are expressed: ** - 0.001<P<0.01, * - 0.01<P<0.05. 
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Fig. 8: RAW264.7 macrophages’cytokine release induced by mannan 

Culture media after stimulation of RAW 264.7 macrophages were analysed for cytokines 

concentration. Cells were stimulated for 24 and 48 h with Con A (10 μg/mL), PHA (10 μg/mL), PWM 

(1 μg/ mL), and LPS (10 μg/mL), used as positive controls, and C. glabrata mannan (Cg), C. albicans 

mannan (Ca) and S. cerevisiae mannan (Sc) (100, 300, 400, 600 and 800μg/ml). As a negative control 

(Control), RAW 264.7 cells cultured without stimulants were used. All data are presented as mean ± 

SD. Statistical significances of difference between stimulated cells and unstimulated cells (Control) 

after 24 h treatment are expressed (*** - P<0.001, ** - 0.001<P<0.01, * - 0.01<P<0.05) and after 48 h 

treatment are expressed (### - P<0.001, ## - 0.001<P<0.01, # - 0.01<P<0.05). 
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Fig. 9: Expression of CD80 and CD86 upon DCs stimulation 

DCs were stimulated for 24 h and 48 h with 10 μg/ml E. coli lipopolysaccharide (LPS) and 100 μg/ml 

of mannan C. glabrata (Mannan). DCs cultured without stimulants (Control) were used as a negative 

control. Data are expressed as mean percentage of CD80+ DCs and mean percentage of CD86+ DCs 

out of CD11c+ DCs ± SD and the mean fluorescence intensity of CD80+ DCs and CD86+ DCs.  
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Fig. 10: Expression of CD80 and CD86  

DCs were stimulated for 24 h with 10 μg/ml E. coli lipopolysaccharide (LPS10), 100 μg/ml mannan C. 

glabrata (M100), 300 μg/ml mannan C. glabrata (M300) and 600 μg/ml mannan C. glabrata (M600).  

 

Fig. 11: Expression of CD28 and CD25 on CD4+ T lymphocytes  

DCs were stimulated for 24 h with 10 μg/ml E. coli lipopolysaccharide (LPS10), 100 μg/ml mannan C. 

glabrata (M100). Antigen pulsed DCs were co-cultured with non-adherent cells obtained after 

CD11c+ DCs isolation for 48 hours and 120 hours. 
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Table 1. Serologic profiles of anti-Candida albicans, anti-Candida glabrata and anti-Saccharomyces 

cerevisiae isotypic antibodies. 

 Anti-Candida albicans Anti-Candida glabrata Anti-Saccharomyces 

cerevisiae 

IgG (UmL-1) 

average  ±    s.d. 

positive results ( %) 

 

45.179 ± 68.452 

36 

 

81.498 ± 131.734 

53.8 

 

36.788 ± 47.92 

33 

IgM (UmL-1) 

average  ±    s.d.  

positive results ( %) 

 

216 ± 458.343 

70 

 

142.01 ± 107.368 

79.5 

 

57.279 ± 47.386 

60 

IgA (UmL-1) 

average  ±    s.d.  

positive results ( %) 

 

39.596 ± 31.903 

20 

 

33.939 ± 33.365 

30.7 

 

24.097 ± 24.275 

43 
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