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Abstract 

Perishable items with a limited lifespan and intermittent/erratic consumption are found in a variety 

of industrial settings: dealing with such items is challenging for inventory managers. In this study, a 

periodic inventory control system is analysed, in which items are characterised by intermittent 

demand and known expiration dates. We propose a new inventory management method, 

considering both perishability and intermittency constraints. The new method is a modification of a 

method proposed in the literature, which uses a periodic order-up-to-level inventory policy and a 

compound Bernoulli demand.  We derive the analytical expression of the fill rate and propose a 

computational procedure to calculate the optimal solution. A comparative numerical analysis is 

conducted to evaluate the performance of the proposed solution against the standard inventory 

control method, which does not take into account perishability. The proposed method leads to a bias 

that is only affected by demand size, in contrast to the standard method which is impacted by more 

severe biases driven by intermittence and periods before expiration. 

Keywords: Intermittent demand, perishable items, forecasting, inventory control, periodic 

inventory system. 

 

1. Introduction 

Inventory systems for perishable goods have been the focus of much attention in the academic 

literature, particularly for their application in common sectors of goods (e.g., food and 

pharmaceutical products). The assumption that an item can be stored indefinitely in warehouses 

does not hold for perishable goods, and this complicates their inventory control. Perishability is a 

broad topic in the literature, as confirmed by the extensive reviews of the relevant research, such as 

those of Raafat (1991), Goyal and Giri (2001), and Bakker, Riezebos, and Teunter (2012). The 
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taxonomy drivers in the latter two reviews establish that the first key element to investigate is the 

lifetime of the item, which may be fixed, distributed according to certain probability distributions, 

or characterised by a time-inventory dependent deterioration rate (White and Censlive, 2015; Kouki 

et al. 2014; Kouki et al. 2016a,b). It is worth to remark indeed that deterioration can occur in 

various ways, but it must be distinguished from obsolescence, which refers to the loss of value due 

to technological changes or the entry of new products into the market. However, obsolescence has 

attracted little attention because an obsolete good is simply not reordered (Goyal and Giri 2001). In 

our study we regard the lifetime of goods as deterministic (i.e., known a priori). The second key 

element is the demand, which can be either deterministic or stochastic. Our contribution deals with 

a stochastic demand.  

When perishable goods also exhibit intermittent consumptions, their inventory control results in a 

further complication due to the ineffectiveness of inventory systems for non-intermittent demand 

generation processes. Nevertheless, intermittency is relevant in several industrial settings. Spare 

parts are typical items of intermittent consumption, but intermittency could be also the consequence 

of batching decisions in the supply chain. Hence, food and pharmaceutical multi-echelon supply 

chains are contexts in which perishable goods, in particular those with fixed lifetimes (decaying 

products are not considered here), may also exhibit intermittency. To the best of our knowledge, no 

inventory models for perishable goods with intermittent demand are provided in the literature. 

Addressing this research gap is the objective of our study. 

In this study, the periodic inventory system proposed in Teunter, Syntetos, and Babai (2010) is 

adapted to perishable items with fixed lifetimes. This work represents an extension of Balugani et 

al. (2017). Our inventory control model is validated through a two-level full factorial design 

experiment around the most significant variables, whereas in Balugani et al. (2017) only a scenario 

analysis was presented. The experimental results are statistically analysed with a linear regression, 

proving that the variables do not impact its performance and suggesting that the underlying model is 



unbiased. In addition, differently from Balugani et al., we conduct in this paper a more realistic 

numerical investigation where the demand distribution parameters are forecasted (using an 

appropriate intermittent demand forecasting method) and this is integrated in the inventory model. 

The paper is organised as follows. Section 2 contains an overview of the background of two 

research streams, i.e. stochastic demand of perishable goods with fixed lifetimes and intermittent 

demand. Section 3 details the forecasting and inventory control models and their assumptions; 

Section 4 outlines the experiment designed to validate the model and the obtained experimental 

results. Section 5 provides conclusions and the research agenda. 

 

2. Research background 

Recent contributions have referred to the stochastic demand of perishable goods with fixed 

lifetimes. Minner and Transchel (2010) dynamically determined replenishment quantities for 

perishable goods with fixed lifetimes that satisfy multiple service-level constraints during a specific 

period, and they extended their model to non-stationary demand. Xin, Pang, and Limeng (2014) 

addressed a joint pricing and inventory control problem for stochastic perishable inventory systems, 

in which both backlogging and lost-sales cases were studied. They provided an approach able to 

deal with both continuous and discrete demand distributions. Similarly, Duan, Cao, and Huo (2018) 

dealt with the dynamic pricing and production rate for stochastic and price-dependent demand of 

items with fixed-lifetime in a continuous-time environment. Pauls-Worm et al. (2014) addressed the 

production planning of perishable products with fixed lifetimes when the demand is non-stationary; 

they formulated an MILP model containing a service-level constraint. Pauls-Worm et al. (2016) 

proposed another MILP model for a fill-rate constraint. Muriana (2016) addressed the normally 

distributed demand of perishable items with fixed lifetimes to reach the optimum lot size. She 

evaluated the probability of a product remaining in stock beyond the end of its lifetime, and 

determined the best order size, the time at which the inventory level drops to zero, and the cycle 

time minimizing the expected total cost. Gutierrez-Alcoba et al. (2017) achieved the expected 



inventory level at different ages for the non-stationary stochastic demand of perishable items with 

fixed lifetimes. They also extended Silver’s heuristic (Silver 1978) to deal with these conditions by 

means of analytical and simulation-based variants of the original heuristic. Janssen et al. (2018) 

adopted a periodic review system for the stochastic demand of items with fixed lifetimes, adding the 

closing days constraint as a typical feature of groceries.  Kouki, Babai, and Minner (2016) showed 

the value of dual-sourcing in the context of perishable items with fixed lifetimes and a Poisson-

distributed demand. They considered an age-based control with a base stock policy. Perishable 

items with stochastic demand and fixed lifetimes have also been studied by Kara and Dogan (2018), 

who proposed an aged-based replenishment policy solved by a reinforcement learning algorithm. 

Intermittent demand can be characterised by two stochastic variables, the non-zero demand (i.e., 

demand size) and the time interval between two successive non-zero demands (i.e., the inter-

demand interval). Croston’s method (Croston 1972) is the seminal contribution to intermittent 

demand forecasting according to a normally distributed demand size and a Bernoulli probability of 

a demand occurrence. A simple exponential smoothing is applied to both variables when the 

demand occurs, and an estimator of the expected value of demand per period is then evaluated by 

the ratio of these estimators. Syntetos and Boylan (2005) proposed an approximately unbiased 

modification of Croston’s method called the Syntetos-Boylan Approximation (SBA). Another 

modification of Croston’s method was proposed by Levén and Segerstedt (2004). However, Boylan 

and Syntetos (2007) demonstrated that this leads to a more biased estimator than Croston’s original 

method. Teunter and Sani (2009) compared several modifications of Croston’s method, while 

Regattieri et al. (2005) compared other forecasting approaches for intermittent demand. Babai, 

Syntetos, and Teunter (2014) and Babai et al. (2018) addressed the intermittent demand forecasting 

issue for items with a risk of obsolescence. Machine learning techniques, in particular artificial 

neural networks, have also been used to forecast intermittent demand by exploiting their ability to 

deal with not linear processes without requiring any distributional assumptions (e.g., Gutierrez, 

Solis, and Mukhopadhyay 2008; Kourentzes 2013; Lolli et al. 2017). When the intermittent demand 



patterns also contain seasonal and trend components, Seasonal Auto Regressive Integrated Moving 

Average (SARIMA) modelling has shown promising results (e.g., Gamberini et al. 2010). Several 

researchers have recommended the use of the non-parametric bootstrapping approach to estimate 

the lead-time demand based on a large number of independent bootstrap replications from available 

data. A recent literature review on bootstrapping forecasting methods in the context of intermittent 

demand is presented in Hasni et al. (2018a). For a comparison between parametric and non-

parametric approaches and a thorough investigation of bootstrapping, the reader can refer to 

Syntetos, Babai, and Gardner (2015), Sillanpää and Liesiö (2018) and Hasni et al. (2018b). Most of 

the above mentioned research has looked at the forecast accuracy of the forecasting methods and 

their inventory performance. A good discussion on the performance measures of intermittent 

demand forecasting methods is presented by Prestwich et al. (2014) and Petropoulos and 

Kourentzes (2015).  

The literature provides a wide set of compound distributions for modelling the intermittent demand 

generation process and computing the parameters of the stock control policies. However, as 

emphasised by Babai, Ladhari, and Lajili (2015), as the data become more erratic the true demand 

size distribution may not comply with any standard theoretical distribution. Two demand generation 

processes are typically carried out. If time is treated as a discrete (integer) variable, demand can be 

assumed to be generated by a Bernoulli process, so that the inter-demand intervals are geometrically 

distributed. Otherwise, the Poisson demand generation is used, which leads to negative 

exponentially distributed intervals. When combining a Bernoulli or a Poisson demand arrival with a 

generic distribution of demand sizes, a compound distribution is obtained. These demand generation 

processes are generally conducted when modelling the re-order policies via statistical analysis. The 

statistical modelling of intermittent demand was conducted by Teunter, Syntetos, and Babai (2010) 

and Babai, Jemai, and Dallery (2011). An empirical goodness-of-fit investigation conducted by 

Syntetos, Babai and Altay (2012) showed the good fit of compound Poisson distributions to 

thousands of spare parts characterised with intermittent demand.  Lengu, Syntetos, and Babai 



(2014) combined issues of distributional assumptions for modelling purposes and item 

classification, while Syntetos and Boylan (2006) focused on the interaction between forecasting and 

stock control. They applied negative binomial distribution to model the demand, and completed a 

factorial experiment by simulating the behaviour of a periodic review system when combined with 

different forecasting methods (simple moving average, simple exponential smoothing, Croston’s 

method, and SBA). 

The proposed inventory model in this paper extends the Teunter, Syntetos, and Babai (2010)’s 

model by accounting for perishable items with fixed lifetimes. We also extend the work of Balugani 

et al. (2017) by conducting a numerical investigation of the inventory model where the demand 

distribution parameters are forecasted. Experimentally, an in-depth statistical validation is carried 

out to measure the method’s performance. 

 

3. Methodology 

In this section, we first present the forecasting and inventory control assumptions considered, 

followed by the proposed inventory replenishment model. 

3.1 Forecasting and inventory control assumptions 

The standard compound Bernoulli intermittent demand model we consider in this study was 

proposed in Croston (1972). The demand 𝑑𝑖 of a period 𝑖 is defined as: 

𝑑𝑖 = {
𝜙(𝑑𝑖, 1)   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   𝑝
0        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  1 − 𝑝

                                                                                               (1) 

where 𝑝 is the probability that a positive demand takes place in a period and 𝜙(𝑑𝑖 , 1) is the 

probability that a positive demand with size 𝑑𝑖 occurs during a single period. More generally, we 

denote by 𝜙(𝑥, 𝑦) the distribution function that a positive demand 𝑥 occurs during 𝑦 periods. The 

model is quite general and, as such, the demand size can assume any positive probability 

distribution, the most common ones being truncated Normal and Gamma. 



Given the model expressed in Equation (1), the Teunter-Syntetos-Babai (2010) model, which is also 

considered in our work, estimates the demand using SBA (Syntetos and Boylan, 2005) as follows: 

�̂�𝑖 = 𝛼 ∙ 𝑧𝑖−1 + (1 − 𝛼) ∙ �̂�𝑖−1                                                                                                            (2) 

𝑖�̂�𝑖 = 𝛼 ∙ 𝑖𝑛𝑖−1 + (1 − 𝛼) ∙ 𝑖�̂�𝑖−1                                                                                                       (3) 

�̂�𝑖 = (1 −
𝛼

2
) ∙

�̂�𝑖

𝑖�̂�𝑖
                                                                                                                               (4) 

where �̂�𝑖 is the estimated size of a positive demand, after the positive demand 𝑧𝑖−1 in period 𝑖 − 1, 

and 𝑖�̂�𝑖 is the estimate inter-arrival between positive demands, calculated from the last inter-arrival 

𝑖𝑛𝑖−1 between positive demands. Both forecasts are used in Equation (4) to produce an estimate of 

the demand �̂�𝑖. Equations (2), (3) and (4) are updated only after a positive demand using the 

smoothing parameter 𝛼 ∈ (0,1) defines how much new data has an effect on the previous estimates. 

From Equation (3), an estimate of the probability 𝑝, denoted by �̂�𝑖, can also be obtained as follows: 

�̂�𝑖 =
1

𝑖�̂�𝑖
                                                                                                                                               (5) 

To compute an expected mean squared error 𝑀𝑆�̂�(𝑧𝑖) for the positive demand, an exponential 

smoother is applied to the squared error, as in Teunter, Syntetos, and Babai (2010): 

𝑀𝑆�̂�(𝑧𝑖) = (1 − 𝛽) ∙ 𝑀𝑆�̂�(𝑧𝑖−1) + 𝛽 ∙ (𝑧𝑖−1 − �̂�𝑖−1)2                                                                    (6) 

where the smoothing parameter 𝛽 ∈ (0,1) does not necessarily equal the smoothing parameter 𝛼. 

As in Teunter, Syntetos, and Babai (2010), the inventory replenishment model considered in this 

study is the periodic order-up-to (T,S) policy where the order-up-to-level S is calculated to satisfy a 

target fill rate service level. 

In the following subsection we propose a solution to calculate the order-up-to-level by taking into 

account the perishability constraint. 



3.2 Development of the inventory replenishment model 

To derive the fill rate expression when considering the perishability constraint, we first present the 

fill rate model that is considered. An order can be placed every 𝑡 periods, collectively defining the 

constant review time, and requires a fixed lead time 𝑙 to arrive, with 𝑙 ≤ 𝑡. At the beginning of a 

review time in this scenario, a stock 𝑠 ≥ 0 is available and an order 𝑜 can be placed. The total 

amount 𝑠 + 𝑜 is expected to cover the demand of 𝑡 periods after the lead time, and a new order can 

in fact be placed only after 𝑡 periods and requires 𝑙 periods to arrive. The performance measure 

associated with this model is the fill rate over the specified 𝑡 periods, defined as the probability of a 

positive demand taking place in one of those periods that is satisfied by 𝑜 + 𝑠 and thus generates no 

stock-out. 

Given a stock 𝑠 and order quantity 𝑜, the fill-rate 𝑓𝑟 is: 

𝑓𝑟 =
1

𝑡
∑ ∑ (𝑖+𝑙−1

𝑘
)𝑝𝑘(1 − 𝑝)𝑖+𝑙−1−𝑘 ∙ 𝛷(𝑜 + 𝑠, 𝑘 + 1)𝑖+𝑙−1

𝑘=0
𝑡
𝑖=1                                                        (7) 

where 𝛷(𝑥, 𝑦) is the cumulative distribution function that a positive demand 𝑥 occurs during 𝑦 

periods while 𝑝 is the probability a period yields a positive demand. 

The replenishment model that takes into account the perishability constraint divides the stock 𝑠 into 

two separate stocks: 

• 𝑠𝑒 the amount of goods that will expire at the end of one of the 𝑡 periods after the lead time 𝑙. 

• 𝑠𝑛𝑒 the amount of goods that will not expire in the given time frame. 

These quantities are updated as in the Teunter, Syntetos, and Babai (2010)’s model at the beginning 

of each period, before the order 𝑜 is placed. The expired stock is discarded and the expiring stock is 

moved from 𝑠𝑛𝑒 to 𝑠𝑒. The stock 𝑠𝑒 is assumed to expire at the end of period 𝑡𝑒, calculated from the 

update period before the lead time, while the ordered quantity 𝑜 is assumed not to expire in the time 

frame. 

Given a hypothetical positive demand 𝑑𝑖 at period 𝑖, two mutually exclusive cases can arise: 



• The period 𝑖 occurs before the expiration date. 

• The period 𝑖 occurs after the expiration date. 

In the first case, the perishability has no effect, thus Equation (7) is used. In the second case 𝑠𝑒 has 

expired and a different Equation is required. As in Section 2.1, given a positive demand 𝑑𝑖 in period 

𝑖 after the lead time 𝑙, all the possible demands in the previous periods ∑ 𝑑𝑘
𝑖+𝑙−1
𝑘=0  must be 

considered. This leads to two scenarios: 

• The demands before the expiration date partially or totally consumed the expiring stock, i.e., 

∑ 𝑑𝑘
𝑡𝑒+𝑙−1
𝑘=0 ≤ 𝑠𝑒. 

• The demands before the expiration date consumed more than the expiring stock, i.e., 𝑠𝑒 <

∑ 𝑑𝑘
𝑡𝑒+𝑙−1
𝑘=0 ≤ 𝑠𝑒 + 𝑠𝑛𝑒 + 𝑜. 

The fill rate 𝑓𝑟𝑖1 of the first scenario is the probability that the demands before 𝑡𝑒 are satisfied by 𝑠𝑒 

and the demands after 𝑡𝑒 including 𝑑 are satisfied by 𝑠𝑛𝑒 + 𝑜: 

𝑓𝑟𝑖1 = ∑ ∑ (𝑡𝑒
𝑘

)𝑔(𝑘, 𝑡𝑒)𝛷(𝑠𝑒 , 𝑘) ∙ (𝑖+𝑙−𝑡𝑒−1
ℎ

)𝑔(ℎ, 𝑖 + 𝑙 − 𝑡𝑒 − 1)𝛷(𝑜 + 𝑠𝑛𝑒 , ℎ + 1)𝑖+𝑙−𝑡𝑒−1
ℎ=0

𝑡𝑒
𝑘=0       (8) 

where: 

𝑔(𝑥, 𝑦) = 𝑝𝑥(1 − 𝑝)𝑦−𝑥                                                                                                                    (9) 

is a notation shortcut for the probability that 𝑥 periods over 𝑦 present a positive demand, and: 

𝛷(𝑥, 0) = 1   ∀𝑥 ≥ 0                                                                                                                       (10) 

as in absence of positive demands no stock out can occur. 

The fill rate 𝑓𝑟𝑖2 of the second scenario is the probability that the demands 𝑑𝑏𝑒 before 𝑡𝑒 are 

satisfied by 𝑜 + 𝑠 and the demands after 𝑡𝑒 including 𝑑𝑖 are satisfied by the remaining stock 𝑜 +

𝑠 − 𝑑𝑏𝑒 with 𝑑𝑏𝑒 > 𝑠𝑒: 

𝑓𝑟𝑖2 = ∑ ∑ ∑ (𝑡𝑒
𝑘

)𝑔(𝑘, 𝑡𝑒)𝜙(𝑑𝑏𝑒 , 𝑘) ∙ (𝑖+𝑙−𝑡𝑒−1
ℎ

)𝑔(ℎ, 𝑖 + 𝑙 − 𝑡𝑒 − 1)𝛷(𝑜 + 𝑠 − 𝑑𝑏𝑒 , ℎ + 1)𝑜+𝑠
𝑑𝑏𝑒=𝑠𝑒+1

𝑖+𝑙−𝑡𝑒−1
ℎ=0

𝑡𝑒
𝑘=1        (11) 



These scenarios are mutually exclusive, thus the fill rate 𝑓𝑟𝑖 of period 𝑖 is: 

𝑓𝑟𝑖 = 𝑓𝑟𝑖1 + 𝑓𝑟𝑖2                                                                                                                              (12) 

The overhaul fill rate 𝑓𝑟 accounts for the individual fill rates of 𝑡 periods after the lead time, as in 

Equation (7): 

𝑓𝑟 =
1

𝑡
∑ 𝑓𝑟𝑖

𝑡
𝑖=1                                                                                                                                  (13) 

This methodology expands that defined at the beginning of this section, by considering a portion 𝑠𝑒 

of the stock as perishable. The calculations above refer to a single expiration date, but similar 

considerations can be applied to address multiple expiration dates in the frame of analysis. 

From a computational perspective, the proposed methodology is more demanding than the original, 

and the calculation of 𝑓𝑟𝑖2 requires an analysis of 𝑜 + 𝑠𝑛𝑒 demands before 𝑡𝑒. This calculation is 

necessary as the last component of Equation 𝑓𝑟𝑖2, defining the probability a demand after 𝑡𝑒 does 

not produce a stock out, and requires the number of units 𝑜 + 𝑠 − 𝑑𝑏𝑒 left in stock. 

3.3 Inventory replenishment model: computational solution 

The model presented in Section 2.2 aims to define the order quantity 𝑜𝑚𝑖𝑛 at the beginning of lead 

time 𝑙. 𝑜𝑚𝑖𝑛 is the minimum order capable of achieving a target fill rate 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡 for 𝑡 periods after 

the lead time 𝑙. In contrast, Equation (13) calculates the fill rate 𝑓𝑟 of 𝑡 periods after the lead time 𝑙 

given a predefined order quantity 𝑜. Equation (13) is not easy to invert, thus no direct equation is 

available to solve the problem at hand. A common solution in the relevant literature involves a 

stepwise search: 

Step 1. Start assuming an order quantity 𝑜 = 0 

Step 2. Calculate 𝑓𝑟 for the value of 𝑜 under analysis. 

Step 3. If 𝑓𝑟 ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡 then stop, 𝑜𝑚𝑖𝑛 = 𝑜. 

Step 4. If 𝑓𝑟 < 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡 then increment 𝑜 by one unit and go to Step 2. 



 

This procedure is feasible if the computational cost for the fill rate calculation is limited. In our case 

such cost is significant and increases with 𝑜, thus the algorithm reactivity decreases as it goes on. 

An alternative procedure, based on the secant method, is proposed to decrease the amount of 

calculations involved. The optimum is formally defined as: 

𝑜𝑚𝑖𝑛 = 𝑖𝑛𝑓{𝑜: 𝑓𝑟(𝑜, 𝑠𝑒 , 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡}                                                                                        (14) 

where 𝑓𝑟(𝑜, 𝑠𝑒 , 𝑠𝑛𝑒) is the fill rate relative to the order quantity 𝑜 and the stocks 𝑠𝑒 and 𝑠𝑛𝑒. 

As for fixed stocks 𝑠𝑒 and 𝑠𝑛𝑒 the fill rate can grow only if 𝑜 increases, Equation (14) can be 

rewritten as: 

𝑓𝑟(𝑜𝑚𝑖𝑛, 𝑠𝑒 , 𝑠𝑛𝑒) = 𝑖𝑛𝑓{𝑓𝑟(𝑜, 𝑠𝑒 , 𝑠𝑛𝑒): 𝑓𝑟(𝑜, 𝑠𝑒 , 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡}                                                 (15) 

Two properties of the fill rate, as calculated in Equation (13), provide two extremes 𝑜𝑠𝑢𝑝  and 𝑜𝑖𝑛𝑓 

to initialize the secant method. This initialization requires no initial calculation of Equation (13) 

itself: 

• Ceteris paribus, a decrease in 𝑠𝑒 reduces 𝑓𝑟. 

• Ceteris paribus, substituting part of 𝑠𝑒 with stock not expiring in 𝑡 increases 𝑓𝑟. 

From these properties, two quantities can be defined: 

𝑓𝑟(𝑜𝑠𝑢𝑝, 0, 𝑠𝑛𝑒) = 𝑖𝑛𝑓{𝑓𝑟(𝑜, 0, 𝑠𝑛𝑒): 𝑓𝑟(𝑜, 0, 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡}                                                     (16) 

𝑓𝑟(𝑜𝑖𝑛𝑓 , 0, 𝑠) = 𝑖𝑛𝑓{𝑓𝑟(𝑜, 0, 𝑠): 𝑓𝑟(𝑜, 0, 𝑠) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡}                                                                (17) 

with the property: 

𝑜𝑖𝑛𝑓 ≤ 𝑜𝑚𝑖𝑛 ≤ 𝑜𝑠𝑢𝑝                                                                                                                         (18) 



In Equation (16), starting from the optimum order quantity as defined in Equation (15), the 

elimination of 𝑠𝑒 reduces 𝑓𝑟. From this point, to achieve 𝑓𝑟(𝑜, 0, 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡 fixed 𝑠𝑛𝑒, the 

order quantity now defined as 𝑜𝑠𝑢𝑝 increases. A similar effect takes place in Equation (17) where 

the expiring stock is fully substituted by non-expiring stock. The substitution increases the fill rate, 

and for this new configuration the initial order quantity is no longer the minimum required to 

achieve 𝑓𝑟(𝑜, 0, 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡. The order quantity now defined as 𝑜𝑖𝑛𝑓 decreases to reach the 

required minimum fill rate. 

Equations (16) and (17) contain no expiring stock, and thus the computationally expensive 

calculations of Section 2.2 are not required. Equation (7) is iteratively applied to define both 𝑜𝑠𝑢𝑝 

and 𝑜𝑖𝑛𝑓. 

To apply the bisection method, the fill rate expressed in Equation (13) is shifted by 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡: 

𝑓𝑟𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 𝑓𝑟 − 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡                                                                                                                (19) 

The fill rate strictly increases, as a function of 𝑜, if 𝑠𝑒 and 𝑠𝑛𝑒 are fixed. If Equation (19) has roots 

in the interval [𝑜𝑖𝑛𝑓 , 𝑜𝑠𝑢𝑝] it has a single root, while if Equation (19) has no roots in the interval 

then 𝑓𝑟(𝑜𝑖𝑛𝑓 , 𝑠𝑒 , 𝑠𝑛𝑒) > 𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡. In this last scenario 𝑜𝑚𝑖𝑛 = 𝑜𝑖𝑛𝑓 and the algorithm terminates 

during the calculation of 𝑓𝑟(𝑜𝑖𝑛𝑓 , 𝑠𝑒 , 𝑠𝑛𝑒) in the first step, as described below. 

Given 𝑜𝑠𝑢𝑝 and 𝑜𝑖𝑛𝑓 the calculation of their fill rate using Equation (13) is required at the beginning 

of the bisection algorithm. This defines the extreme values of 𝑓𝑟𝑠ℎ𝑖𝑓𝑡𝑒𝑑 and makes possible the 

initial secant calculation: 

𝑓𝑟𝑠𝑢𝑝 = 𝑓𝑟(𝑜𝑠𝑢𝑝, 𝑠𝑒 , 𝑠𝑛𝑒)                                                                                                                 (20) 

𝑓𝑟𝑖𝑛𝑓 = 𝑓𝑟(𝑜𝑖𝑛𝑓 , 𝑠𝑒 , 𝑠𝑛𝑒)                                                                                                                  (21) 



During the generation of new 𝑓𝑟𝑠𝑢𝑝 and 𝑓𝑟𝑖𝑛𝑓, and the respective 𝑜𝑖𝑛𝑓 and 𝑜𝑠𝑢𝑝, the algorithm 

operates only on integer values of 𝑜. The new quantity 𝑜 identified by the secant must be 

approximated by the nearest integer. If it falls over the current 𝑜𝑠𝑢𝑝 or under the current 𝑜𝑖𝑛𝑓, the 

value is approximated by ⌊𝑜⌋ and ⌈𝑜⌉ respectively. The algorithm terminates when 𝑓𝑟(𝑜, 𝑠𝑒 , 𝑠𝑛𝑒) =

𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡, when a floor approximation reaches 𝑜𝑚𝑖𝑛 or a ceil approximation reaches 𝑜𝑠𝑢𝑝. In the last 

two scenarios the interval of analysis has unitary length and by construction 𝑜𝑖𝑛𝑓 < 𝑜𝑚𝑖𝑛, thus 

𝑜𝑚𝑖𝑛 = 𝑜𝑠𝑢𝑝. 

 

4. Experimental analysis 

4.1 Probability distribution and estimations 

To calculate Equation (13), both the distribution function 𝜙(𝑥, 𝑦) and the cumulative distribution 

function 𝛷(𝑥, 𝑦) of a positive demand 𝑥 during 𝑦 periods must be known. The probability 𝑝 is also 

required to be known, in which a positive demand occurs during a period. These three components 

of Equation (13) vary across time and must be indirectly forecast from the item time series. As 

suggested in Teunter, Syntetos, and Babai (2010), the positive demand distribution (both 

cumulative and not cumulative) is hard to determine over an arbitrary number of periods, unless the 

multiple periods distribution can be defined from the single period distribution. This experimental 

analysis assumes that the positive demand during a single period follows a negative binomial 

distribution. The sum of independent negative binomial distributions is a negative binomial 

distribution itself, with different parameters depending on the number of random variables added. In 

our case, the number of random variables is the number of periods. The use of a discrete random 

variable, instead of a continuous one as in Teunter, Syntetos, and Babai (2010), is coherent with 

Equation (11) where 𝑑𝑏𝑒 moves through integer values. 

To estimate the single period parameters of the negative binomial distribution, a time series analysis 

is required. The methodology used for this experimental analysis is the same applied in Teunter, 



Syntetos, and Babai (2010). The forecasting technique described in Section 2.1 is applied to define 

�̂�, 𝑧�̂� and 𝑀𝑆�̂�(𝑧𝑖) and the parameter 𝛼 is optimized over the initial warmup periods. From 𝑧�̂� and 

𝑀𝑆�̂�(𝑧𝑖) the negative binomial distribution parameters are derived using the method of moments. 

4.2 Experiment settings 

The experimental analysis consists of two experiments, carried out with different parameters, where 

the proposed methodology is tested on a generated series and compared against the case where the 

standard order-up-to-level (T,S) policy is applied without taking into account the perishability 

constraint. In these simulations both methodologies consume the stock following a FIFO policy, 

which is in line with a fixed number of periods before expiration. 

Intermittent demands following Equation (1) are generated, and their positive demand size follows a 

negative binomial distribution, while the probability 𝑝 that a positive demand occurs is time 

invariant. If the demand size distribution yields a null demand it is still considered a positive 

demand to avoid uncontrolled changes in 𝑝. 

The fixed and variable parameters, varying in each simulation, for experiments 1 and 2 are 

summarized in Table 1. In both experiments the values for 𝑛𝑒 are greater than those for 𝑡 to avoid 

expirations before the end of a single cycle. All the possible combinations of the second set of 

parameters are tested 10 times to assess the method performance in different contexts. 

 

 Parameter Description Value 

Experiment 1 

Fixed parameters 

𝑛𝑤 Number of warm-ups  100 

𝑛𝑝 Number of simulated periods 1000 

𝑡 Periods in a cycle 10 

𝑙 Lead time 5 

Experiment 1 𝑝 Demand probability 0.1, 0.5 



Variable parameters 𝐸(𝑧) Positive demand expected value 10, 20 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

Relative positive demand mean squared error 0.5, 1.4 

𝑛𝑒 Periods before expiration 10, 15 

Experiment 2 

Fixed parameters 

𝑛𝑤 Number of warm-ups  100 

𝑛𝑝 Number of simulated periods 1000 

𝑓𝑟𝑡𝑎𝑟𝑔𝑒𝑡 Fill rate target 0.8 

Experiment 2 

Variable parameters 

𝑝 Demand probability 0.1, 0.5 

𝐸(𝑧) Positive demand expected value 10, 20 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

Relative positive demand mean squared error 0.5, 1.4 

𝑛𝑒 Periods before expiration 20, 25 

𝑡 Periods in a cycle 10, 20 

𝑙 Lead time 2, 5 

Table 1. Fixed and variable parameters for experiments 1 and 2. 

 

The parameters of experiment 1 are designed to cover extreme scenarios: 

• Low intermittence (𝑝 = 0.5) vs. high intermittence (𝑝 = 0.1). 

• Low demand (𝐸(𝑧) = 10) vs. high demand (𝐸(𝑧) = 20). 

• Low lumpiness (
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
= 0.5) vs. high lumpiness (

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
= 1.4). 

• Close expiration date (𝑛𝑒 = 10) vs. distant expiration date (𝑛𝑒 = 15). 

The parameters of experiment 2 are designed to cover a wider range: 

• Low intermittence (𝑝 = 0.5) vs. high intermittence (𝑝 = 0.1). 

• Low demand (𝐸(𝑧) = 10) vs. high demand (𝐸(𝑧) = 20). 



• Low lumpiness (
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
= 0.5) vs. high lumpiness (

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
= 1.4). 

• Distant expiration date (𝑛𝑒 = 20) vs. very distant expiration date (𝑛𝑒 = 25). 

• Short cycle (𝑡 = 10) vs. long cycle (𝑡 = 20). 

• Short lead-time (𝑙 = 2) vs. long lead-time (𝑙 = 5). 

The aim of these experiments was to identify a structure in the algorithms’ behaviour in order to be 

able to define outperforming regions for the two methods. 

The results are collected for each simulation period after the first lead time, when the first order has 

already arrived. Using this precaution, no initial level of backorders and stock is required to make 

the first measurements fair. 

4.3 Performance metrics 

Performance measurements are recorder after each simulation period. If the period presents a 

positive demand, then the total number of positive demand in the simulation is updated. 

Simultaneously, the performance record keeps track of the number of positive demand that have 

been satisfied from the stock, not adding to the backlog. The ratio between these two raw 

measurements is the fill-rate of the simulation 𝑓𝑟𝑠𝑖𝑚. 

At the beginning of each cycle the optimal order quantity 𝑜𝑚𝑖𝑛 is defined. In this context parameters 

𝑠𝑒 or 𝑠𝑛𝑒 cannot be changed and only positive values of 𝑜𝑚𝑖𝑛 are produced. The fill rate is thus set 

to achieve 𝑓𝑟(𝑜𝑚𝑖𝑛, 𝑠𝑒 , 𝑠𝑛𝑒) ≥ 𝑓𝑟𝑜𝑏𝑗. This goal-setting leads to difficulties when comparing 𝑓𝑟𝑠𝑖𝑚 

and 𝑓𝑟𝑜𝑏𝑗 as, by construction, on average 𝑓𝑟𝑠𝑖𝑚 ≥ 𝑓𝑟𝑜𝑏𝑗 thus the difference 𝑓𝑟𝑠𝑖𝑚 − 𝑓𝑟𝑜𝑏𝑗 is 

designed to be ≥ 0. To avoid this unfair comparison the values of 𝑓𝑟(𝑜𝑚𝑖𝑛, 𝑠𝑒 , 𝑠𝑛𝑒) are collected in 

each simulation as they are generated, and their average is compared with 𝑓𝑟𝑠𝑖𝑚 instead of 𝑓𝑟𝑜𝑏𝑗: 

∆𝑓𝑟 = 𝑓𝑟𝑠𝑖𝑚 − 𝑎𝑣𝑔(𝑓𝑟(𝑜𝑚𝑖𝑛, 𝑠𝑒 , 𝑠𝑛𝑒))                                                                                           (22) 

To measure the benefit of using the proposed method rather than the standard method that does not 

take into account perishability, we also calculate  ∆𝑓𝑟𝑁𝑒𝑤, which is expressed using Equation (23). 



Note that by the standard method we mean the order-up-to-level (T,S) inventory policy without 

taking into account the perishability constraint as described in Teunter, Syntetos, and Babai (2010). 

Obviously the standard method is expected to be biased and to underachieve the target fill rate when 

the perishability is not taken into account. This is analysed in the following subsection. 

∆𝑓𝑟𝑁𝑒𝑤 = |∆𝑓𝑟𝑝𝑟| − |∆𝑓𝑟𝑠𝑡|                                                                                                       (23) 

where ∆𝑓𝑟𝑝𝑟 is the ∆𝑓𝑟 of the proposed method and ∆𝑓𝑟𝑠𝑡 is the ∆𝑓𝑟 of the standard (T,S) method. 

4.4 Results 

Tables 2 and 3 summarize the average ∆𝑓𝑟𝑝𝑟, ∆𝑓𝑟𝑠𝑡 and ∆𝑓𝑟𝑁𝑒𝑤 results obtained for each 

combination of parameters. The values for 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 differ from those provided in Section 

4.2 since the negative binomial the generated distribution, used for data generation, requires one of 

its parameters to be a natural number. Not any combination of 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 is allowed and their 

values end up changed when the parameter is rounded. 

𝑝 𝐸(𝑧) √𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

𝑛𝑒 𝑡 𝑙 ∆𝑓𝑟𝑝𝑟 ∆𝑓𝑟𝑠𝑡 ∆𝑓𝑟𝑁𝑒𝑤 

0.1 10.5 0.488 10 10 5 -0.024 -0.289 -0.236 

0.1 10.5 0.488 15 10 5 -0.067 -0.153 -0.047 

0.5 10.5 0.488 10 10 5 -0.023 -0.140 -0.110 

0.5 10.5 0.488 15 10 5 -0.033 -0.064 -0.029 

0.1 18.6 1.027 10 10 5 0.015 -0.242 -0.163 

0.1 18.6 1.027 15 10 5 0.004 -0.088 -0.029 

0.5 18.6 1.027 10 10 5 0.011 -0.130 -0.110 

0.5 18.6 1.027 15 10 5 -0.013 -0.058 -0.028 

0.1 20 0.5 10 10 5 -0.003 -0.238 -0.195 

0.1 20 0.5 15 10 5 -0.020 -0.133 -0.086 



0.5 20 0.5 10 10 5 -0.004 -0.135 -0.112 

0.5 20 0.5 15 10 5 0.008 -0.023 -0.009 

0.1 38.2 1.013 10 10 5 -0.003 -0.230 -0.179 

0.1 38.2 1.013 15 10 5 0.012 -0.068 -0.047 

0.5 38.2 1.013 10 10 5 -0.002 -0.177 -0.153 

0.5 38.2 1.013 15 10 5 -0.008 -0.052 -0.032 

Table 2. Average performance obtained for each combination of parameters in experiment 1. 

 

𝑝 𝐸(𝑧) √𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

𝑛𝑒 𝑡 𝑙 ∆𝑓𝑟𝑝𝑟 ∆𝑓𝑟𝑠𝑡 ∆𝑓𝑟𝑁𝑒𝑤 

0.1 10.5 0.488 20 10 2 -0.045 -0.158 -0.106 

0.1 10.5 0.488 20 10 5 -0.019 -0.139 -0.095 

0.1 10.5 0.488 20 20 2 -0.002 -0.196 -0.143 

0.1 10.5 0.488 20 20 5 -0.009 -0.207 -0.153 

0.1 10.5 0.488 25 10 2 0.016 -0.036 0.004 

0.1 10.5 0.488 25 10 5 -0.011 -0.052 -0.03 

0.1 10.5 0.488 25 20 2 -0.026 -0.168 -0.094 

0.1 10.5 0.488 25 20 5 -0.045 -0.152 -0.089 

0.1 18.6 1.027 20 10 2 0.033 -0.077 -0.024 

0.1 18.6 1.027 20 10 5 0.018 -0.093 -0.058 

0.1 18.6 1.027 20 20 2 -0.004 -0.23 -0.174 

0.1 18.6 1.027 20 20 5 -0.088 -0.259 -0.13 

0.1 18.6 1.027 25 10 2 0.048 0.006 -0.005 

0.1 18.6 1.027 25 10 5 -0.001 -0.057 -0.019 

0.1 18.6 1.027 25 20 2 0.006 -0.143 -0.116 



0.1 18.6 1.027 25 20 5 0.035 -0.088 -0.054 

0.1 20 0.5 20 10 2 -0.007 -0.135 -0.104 

0.1 20 0.5 20 10 5 -0.028 -0.138 -0.097 

0.1 20 0.5 20 20 2 0.01 -0.2 -0.149 

0.1 20 0.5 20 20 5 -0.013 -0.209 -0.158 

0.1 20 0.5 25 10 2 -0.003 -0.053 -0.004 

0.1 20 0.5 25 10 5 -0.039 -0.091 -0.031 

0.1 20 0.5 25 20 2 0 -0.143 -0.093 

0.1 20 0.5 25 20 5 -0.001 -0.114 -0.036 

0.1 38.2 1.013 20 10 2 0.011 -0.121 -0.083 

0.1 38.2 1.013 20 10 5 0.067 -0.052 -0.031 

0.1 38.2 1.013 20 20 2 0.011 -0.193 -0.145 

0.1 38.2 1.013 20 20 5 0.049 -0.184 -0.131 

0.1 38.2 1.013 25 10 2 0.047 0.002 0.001 

0.1 38.2 1.013 25 10 5 0.03 -0.024 0.015 

0.1 38.2 1.013 25 20 2 -0.015 -0.12 -0.09 

0.1 38.2 1.013 25 20 5 -0.007 -0.15 -0.113 

0.5 10.5 0.488 20 10 2 0.007 0.001 -0.001 

0.5 10.5 0.488 20 10 5 -0.011 -0.031 -0.014 

0.5 10.5 0.488 20 20 2 -0.021 -0.102 -0.065 

0.5 10.5 0.488 20 20 5 -0.009 -0.079 -0.051 

0.5 10.5 0.488 25 10 2 -0.019 -0.02 0 

0.5 10.5 0.488 25 10 5 -0.02 -0.024 -0.004 

0.5 10.5 0.488 25 20 2 0.008 -0.019 -0.017 

0.5 10.5 0.488 25 20 5 -0.005 -0.039 -0.022 



0.5 18.6 1.027 20 10 2 0.003 -0.032 -0.02 

0.5 18.6 1.027 20 10 5 0.014 -0.018 -0.015 

0.5 18.6 1.027 20 20 2 -0.015 -0.138 -0.106 

0.5 18.6 1.027 20 20 5 0.003 -0.124 -0.101 

0.5 18.6 1.027 25 10 2 0.023 0.009 0.004 

0.5 18.6 1.027 25 10 5 -0.008 -0.025 0.001 

0.5 18.6 1.027 25 20 2 -0.016 -0.087 -0.041 

0.5 18.6 1.027 25 20 5 0.019 -0.053 -0.035 

0.5 20 0.5 20 10 2 -0.01 -0.022 -0.009 

0.5 20 0.5 20 10 5 0.007 -0.005 -0.006 

0.5 20 0.5 20 20 2 0.005 -0.082 -0.068 

0.5 20 0.5 20 20 5 0.004 -0.067 -0.052 

0.5 20 0.5 25 10 2 -0.003 -0.005 -0.002 

0.5 20 0.5 25 10 5 -0.004 -0.006 0.001 

0.5 20 0.5 25 20 2 0.006 -0.025 -0.011 

0.5 20 0.5 25 20 5 -0.001 -0.036 -0.018 

0.5 38.2 1.013 20 10 2 0.006 -0.03 -0.019 

0.5 38.2 1.013 20 10 5 0.001 -0.056 -0.034 

0.5 38.2 1.013 20 20 2 -0.008 -0.126 -0.094 

0.5 38.2 1.013 20 20 5 0.007 -0.13 -0.101 

0.5 38.2 1.013 25 10 2 -0.005 -0.019 -0.007 

0.5 38.2 1.013 25 10 5 0.002 -0.017 -0.004 

0.5 38.2 1.013 25 20 2 0.018 -0.054 -0.026 

0.5 38.2 1.013 25 20 5 -0.017 -0.093 -0.069 

Table 3. Average performance obtained for each combination of parameters in experiment 2. 



 

The standard (T,S) method is biased, leading to fill-rates that are always lower than the target 

(∆𝑓𝑟𝑠𝑡 < 0) in experiment 1 (Table 2), and lower than the target 93.7% of the times in experiment 2 

(Table 3). In the proposed method, this bias is corrected and, as a result, the ∆𝑓𝑟𝑝𝑟 values are 

affected only by random error and thus characterized by varying signs. On average the new method 

produces a 9.78% fill-rate performance increase for perishable items in experiment 1 and a 5.53% 

increase in experiment 2. 

A linear regression is fitted over the non-averaged simulation results using 𝑝, 𝐸(𝑧), 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 and 𝑛𝑒, 

in the first experiment, and 𝑝, 𝐸(𝑧), 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
, 𝑛𝑒, 𝑡 and 𝑙, in the second experiment, as features to 

separately predict ∆𝑓𝑟 and ∆𝑓𝑟𝑁𝑒𝑤. The values of 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 used as features are obtained 

from the negative binomial distribution parameters used for data generation, they differ from those 

listed in Tables 2 and 3 as one of the distribution parameters must be an integer and is rounded 

when calculated from the original 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
. As a result, 𝐸(𝑧) and 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 are correlated 

(𝑟 = 0.64), while the others are not. The way this issue is handled is outline below. The linear 

regressions coefficients and their t-tests are summarized in Table 4. 

 

 Coefficient Squared error T p-value 

Experiment 1 

∆𝑓𝑟𝑝𝑟 

Intercept -0.021 0.042 -0.490 0.625 

𝑝 0.007 0.035 0.209 0.834 

𝐸(𝑧) 0.000 0.001 0.501 0.617 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

0.033 0.034 0.968 0.334 

𝑛𝑒 -0.002 0.003 -0.744 0.458 



Experiment 1 

∆𝑓𝑟𝑠𝑡 

Intercept -0.520 0.044 -11.752 0.000 

𝑝 0.207 0.037 5.653 0.000 

𝐸(𝑧) 0.000 0.001 0.506 0.614 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

0.020 0.036 0.552 0.582 

𝑛𝑒 0.024 0.003 8.046 0.000 

Experiment 2 

∆𝑓𝑟𝑝𝑟 

Intercept -0.016 0.025 -0.634 0.526 

𝑝 -0.004 0.012 

 

-0.365 0.715 

𝐸(𝑧) 0.000 0.000 1.582 0.114 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

0.021 0.012 1.733 0.084 

𝑛𝑒 0.000 0.001 0.265 0.791 

𝑡 -0.001 0.000 -1.423 0.155 

𝑙 -0.001 0.002 -0.890 0.374 

Experiment 2 

∆𝑓𝑟𝑠𝑡 

Intercept -0.267 0.028 -9.492 0.000 

𝑝 0.189 0.014 13.928 0.000 

𝐸(𝑧) 0.000 0.000 0.612 0.541 

√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 

-0.007 0.013 -0.504 0.614 

𝑛𝑒 0.011 0.001 10.003 0.000 

𝑡 -0.008 0.001 -14.342 0.000 

𝑙 -0.001 0.002 -0.553 0.580 

Table 4. Linear regression coefficients for ∆𝑓𝑟𝑝𝑟 and ∆𝑓𝑟𝑠𝑡 in experiment 1 and 2. 

 



The results of experiment 1 indicate that the performance of the proposed method is not affected by 

the simulation parameters, while experiment 2 shows that 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 together influence 

∆𝑓𝑟𝑝𝑟. The results of experiment 1 are highlighted by the t-tests in Table 4, which show no 

significance (a significant result would yield a p-value lower than 0.05). The correlation between 

𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 could hide a significant model behind non-significant t-tests. Consequently, to 

assess this scenario an F-test was performed which resulted in a non-significant p-value of 0.454. 

The results for experiment 2 are in line with findings from experiment 1. No t-test in experiment 2 

reached a significant p-value, while the F-test in experiment 2 yielded a significant p-value of 

0.005. Performing a PCA on standardized 𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 and re-fitting the regression model 

revealed that those features in combination are the only ones that influence ∆𝑓𝑟𝑝𝑟. The findings of 

experiments 1 and 2 are not inconsistent. In fact the tests in experiment 2 leverage more 

simulations, resulting in a higher power and, as a result, the conclusions drawn from experiment 2 

are more accurate. 

Figure 1 highlights the coherence between experiments 1 and 2 and plots the confidence intervals 

(one std) for 𝑝, 𝐸(𝑧), 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 and 𝑛𝑒 coefficients in experiment 1 (x) and experiment 2 (*). The 

coefficients for the most precise experiment are included in those for the least precise one. 

 



Figure 1. The confidence intervals of the coefficients in experiments 1 and 2. 

 

According to experiment 1 (Table 4), the standard (T,S) is unaffected by demand size or variability 

as the p-values obtained are significantly higher than 0.05. The parameters affecting ∆𝑓𝑟𝑠𝑡, in 

addition to the intercept, are intermittence and periods before expiration. Experiment 2 confirms 

these findings, moreover re-fitting both experiments regression models after a PCA on standardized 

𝐸(𝑧) and 
√𝑀𝑆𝐸(𝑧)

𝐸(𝑧)
 does not highlight any impact of such features over ∆𝑓𝑟𝑠𝑡. The coefficients in 

experiments 1 and 2 are less coherent on their impact on ∆𝑓𝑟𝑠𝑡 than those for ∆𝑓𝑟𝑝𝑟 depicted in 

Figure 1, suggesting more complex phenomena that cannot be defined with a simple linear model. 

As a robustness test, the impact of the intermittent demand assumption on the proposed method is 

measured by re-running experiment 1 while using a SES and erroneously assuming 𝑝 = 1. The 

results are found to be reliant on the intermittence assumption as the ∆𝑓𝑟𝑝𝑟 obtained in this scenario 

is even higher than the ∆𝑓𝑟𝑠𝑡 achieved in experiment 1. 

 



5. Conclusions and further research 

Managing the inventories of perishable items is a key lever that enables inventory costs to be 

reduced by reducing waste, thus increasing the level of customer service. Managing the inventories 

of perishable items becomes a more challenging task when the demand for such items is 

intermittent. This study provides the first attempt in the literature to overcome this challenge. We 

have proposed a new methodology that modifies the standard order-up-to-level (T,S) policy for 

intermittent demand (Teunter, Syntetos, and Babai, 2010), which analytically derives the target fill 

rate for a compound binomial demand generation process in order to take into account the 

perishability constraint as well. We have also proposed an analytical expression of the fill rate under 

the new method, and due to the computational complexity to calculate the fill rate we have 

developed a procedure to obtain the optimal solution. We conducted a simulation experiment to 

analyse the performance of the standard and the proposed methods. 

The results of this study show that when a proportion of the stock is affected by perishability, the 

proposed methodology leads to a considerable benefit by reducing the bias in the fill rate, unlike the 

standard method. The experiments reported in Section 3 demonstrate that the proposed 

methodology bias is only affected by demand size. On the other hand, intermittence, lumpiness, or 

number of periods before expiration do not impact its performance. The standard method is also 

proven to be unaffected by lumpiness, its effectiveness is only dictated by the number of periods 

before expiration and intermittence. From a computational standpoint the new methodology is 

significantly more expensive than the old one, as a combinatorial number of cases must be 

analysed, so practitioners are advised to apply the new methodology to scenarios characterized by 

high intermittence and low demand size. The use of simulation techniques to manage multiple 

expiration dates is also advised, to overcome the difficulty of determining analytical solutions in 

this case, since this can provide reliable results in exchange for a reasonable computational effort. 

Further research efforts are expected to gauge the effectiveness of simulation techniques and 

compare them with the available analytical solutions. Alongside this research avenue, efforts will be 



directed towards the characterization of different compound Bernoulli distributions, with the aim of 

encompassing both integer and continuous positive demand sizes (Syntetos, Babai and Altay, 2012; 

Syntetos, Lengu and Babai, 2013). Other distributions such as Compound Poisson distributions 

(Babai, Jemai and Dallery, 2011 ; Lengu, Syntetos and Babai, 2014) or Compound Erlang 

distributions (Saidan et al., 2013) have also been used to model intermittent demand and can be 

considered in future research. Once this characterization is achieved, comparisons between different 

distributions can take place and the effect of incorrectly selecting the demand size distribution can 

be quantified. The choice of an incorrect demand size distribution could seriously impact the 

performance of the inventory system. Another interesting avenue for further research would be to 

analyse the combined service and cost efficiency of the proposed methodology when compared to 

the standard one. Finally, it would be interesting to empirically show the benefits of the proposed 

model through an empirical investigation with real data, as it has been done in Teunter et al. (2010). 
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