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Abstract: The basic Harris’s lot size model dates back to 1913 (Harris, 1913), hence one century from its publication 
has been recently celebrated. Starting from the seminal work of Harris, a wide plethora of contributors has faced with 
the lot-sizing problem for fitting the basic model of the economic order quantity to several environments. In fact, the 
three key parameters constituting the basic model, i.e. the demand rate, the ordering costs, and the inventory holding 
costs, have been widely explored in order to relax the assumptions of the original model. However, to the best of the 
authors’ knowledge, the liaison between holding costs and warehouse management has not been completely addressed. 
The holding costs have been early considered for simplicity as primarily given by the cost of capital, and thus dependent 
solely on the average inventory on stock. Conversely, by including a more detailed supply chain costs contribution, the 
economic order quantity calculus appears depending on a recursive calculus process and on the storage assignment 
policy. In fact, different approaches of warehouse management, e.g. shared and dedicated storage, lead to highly 
variable distances to be covered for performing the missions. This leads to a total cost function, and consequently to 
optimum lot sizes, that are affected by the warehouse management. In this paper, this relationship has been made 
explicit in order to evaluate an optimal order quantity taking into account storage assignment policies.  

Keywords: Inventory Management; Economic Order Quantity; Storage Assignment Policy.  

 

1. Introduction 

Ford Whitman Harris founded the inventory management 
in 1913, when he first calculated the economic order 
quantity (EOQ). In the original form the EOQ minimizes 
the overall inventory management cost (CT), usually 
assumed over an annual time horizon, taking into account 
the purchase/production cost (CAA), the cost of placing 
orders (CAEO) and the inventory holding cost (CAMS). 
The Harris model introduced the well-known management 
style defined to pull, which requires a continuous control of 
the item availability; it is dedicated to logistic scenarios 
characterized by steady state demand, with oscillations that 
are negligible if compared to the average value, and of high 
value like what characterizes mass distribution products.  

The Harris model also observes the following hypotheses: 
the purchase/production cost is constant as regard to the 
order quantity as well as the unit cost of placing orders; item 
replenishments take place in a single solution and the order 
quantity does not affect any supplier performances so that 
safety stocks do not belong to the problem.  

Without considering CAA, the general equation of CT 
enables finding the economic order quantity through the 
balance between CAEO and CAMS.  

Starting from the seminal work of Harris, a wide plethora 
of contributors has faced with the lot sizing problem for 
fitting the basic model of the EOQ to real environments.  
For a review, readers can refer to Andriolo et al. (2014), 
who adopted an original classification framework for 
reviewing 219 papers on the EOQ concepts. Given the 
relevance of the inventory management, it is not surprising 

that the lot-sizing problem has received a great attention 
from researchers and practitioners. In fact, the reviews on 
this research topic, as well as the review of the reviews (i.e. 
tertiary study) of Glock et al. (2014), showed the 
outstanding amount of contributions on the lot-sizing 
problem. Despite the early introduction of the EOQ model, 
Andriolo et al. (2014) underlined that the most part of the 
219 reviewed papers has been published in the last years, 
reinforcing by this way the belief that this topic is relevant 
in current enterprises.  

Without loss of generality, all the EOQ models proposed in 
literature may be analysed along three constituting key 
parameters: i) the demand rate; ii) the unitary ordering cost; 
iii) and the unitary holding cost. It is remarkable that the 
unitary purchasing/production cost is not taken into 
account in the original EOQ model because it is considered 
constant over time and thus it does not affect the optimal 
solution. 

With regard to the demand rate, the basic model assumes a 
deterministic and constant demand rate, hence attaining a 
static solution. These two assumptions have been relaxed 
over time by several authors through different perspectives. 
The first deterministic lot-sizing approach allowing time-
varying demand has been proposed by Wagner and Whitin 
(1958), who introduced an optimizing algorithm for 
establishing the best lot sizes over a predefined planning 
horizon. They revised the basic deterministic EOQ model 
by means of a dynamic programming approach, with time-
varying and deterministic demand and costs. With the same 
hypothesis, Silver and Meal (1973) introduced the first well-
known heuristic on the basis of the average cost for solving 
the dynamic lot-sizing problem, with the advantage of 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/195755548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


XXIII Summer School “Francesco Turco” – Industrial Systems Engineering  

reaching a near-optimal solution with a lower time 
consumption. Other models dealing with deterministic 
demand have been proposed up to the last years for gaining 
a well-fitting representation of real features both of 
purchasing and of production processes. Quantity 
discounts (e.g. Taleizadeh and Pentico, 2013), goods 
perishability (e.g. Önal et al., 2015), imperfect quality (e.g. 
Khan et al., 2014), and finite production rate (e.g. 
Grubbström, 2014) represent some of the most stressed 
topics for alternative formulations of EOQ models for 
deterministic demand. 

Also stochastic demand has been tackled by a large amount 
of authors. The canonical stochastic single-period lot-sizing 
model is the newsvendor problem, whose name derives 
from the decision of how many newspapers the vendor 
should buy for the incoming day, when shortage and 
overage costs are known. The fractile solution of the 
newsvendor problem has been explicitly provided by 
Whitin (1953), but stochastic models are out of scope. 

The second constituting key parameter, i.e. the unitary 
ordering cost leading to CAEO, can be exactly determined; 
this depends on the number of orders which, in turns, 
depends on the expected demand over the time horizon, 
on the quantity to be ordered, and on the unit cost of 
placing orders.  

Conversely, the third constituting key parameter (i.e. the 
inventory holding cost, CAMS) requires a more detailed 
formulation as being the focus of our proposal; in the 
standard formulation, it considers the annual physical and 
figurative depreciation of inventories by means of the 
annual stock-keeping rate (im), which multiplies the value of 
the average stock (namely the average on hand quantity); 
that is to say, im can be defined as the portion of the value 
of inventory that is lost, on average and along the 
established time horizon, due to all the costs that are 
consequent to the decision to make inventories. Harris 
(1913) considers inventory holding costs deriving from 
capital interest and physical storage costs, and assigns a 
constant value to the annual stock-keeping rate im = 10% 
€/€y. From Harris (1913) to Andriolo et al. (2014), passing 
through Azzi et al. (2014), the inventory holding costs are 
evaluated as a percentage of the cost of the item, supposing 
that a large proportion is represented by the cost of capital. 
The assumption that the holding cost is a linear function of 
the length of time over which the item is stored has been 
used by the most of the authors in order to simplify the 
total cost modelling. Total cost formulations addressing 
holding costs non-linear with respect to time, as well as to 
the quantity ordered, appeared in recent contributions (e.g. 
Alfares and Ghaithan 2016 and San-José et al., 2016). 

Nevertheless, the breakdown and the increasingly 
accounting of logistic costs thanks to the growing 
contribution of information and traceability systems allows 
a more accurate assessment of annual stock-keeping rate. 
In fact, as several authors have stated, some cost items to 
be included into inventory costs are related to the value of 
inventory, others to physical properties, such as handling, 
controlling, warehousing, and so on, often named “out-of-
pocket holding costs” (Azzi et al., 2014). The breakdown 
of holding costs has been already performed by other 

authors (e.g. Torkul et al., 2016), under the hypotheses that 
warehousing costs are independent from the stock level. 
This is the assumption that our work intends to relax.      

The calculation of the economic order quantity is therefore 
recursive because the average stock is itself a function of 
the quantity to be ordered, and can be better analysed 
considering how the costs of the supply chain are formed, 
and in particular those of handling and storage. The latter 
depend significantly on the storage assignment strategies. 
Furthermore, it is not possible to define them exhaustively 
without analysing the entire inventory holding dynamics 
simultaneously. Two storage assignment strategies criteria 
are usually applied. On the one hand, it is usual to make 
warehouse space dedicated to each item (dedicated 
storage); the assigning rules allocate items to warehouse 
locations, far from the point from which the pick-up 
mission originates, on the base of a decreasing and 
expected probability with which the items will be requested. 
On the other hand, it is possible to share the space, 
allocating items where it is allowed (shared storage). In this 
case the probability of visiting each warehouse location is 
constant and, consequently, the application of any material 
handling strategies is useless.  

The above mentioned storage assignment strategies have 
opposite features and performances which depend on 
boundary conditions, most of all on item mass flows. 
Hence, a general rule cannot be defined. While the 
dedicated storage assignment enables implementing 
optimal material handling strategies, minimizing the 
single/dual command time cycle, the same assignment 
strategy requires a greater warehouse space mitigating 
considerably the former advantages deriving from the 
allocation based on the probability of picking.  

This paper therefore attempts to improve the calculation of 
the economic order quantity taking into account the 
contribution of storage assignment strategies on the stock-
keeping rate and how this modifies the quantities to be 
ordered.  

2. Methodology 

Let be: 

𝑄: order quantity [u] or [u/order]; 

𝐷: annual demand [u/y]; 

𝐾: cost of placing one order [€] or [€/order]; 

𝑐: unit purchase/production cost per item [€/u];  

ℎ: unit stock holding cost per item per year, including 
interest and depreciation in stock [€/uy]. Harris (Harris, 
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1913) defined the unit charge for interest and depreciation 
on stock [$/u] by means of the following equation: 

𝐼 =
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where: 

i was defined as an interest rate which takes into account 
the annual capital interest and stock depreciation; 

A is the average stock; 

S is the setup cost; 

h=i·c (not defined in the original notation of Harris’ work), 
can be defined as the component of the annual charge for 
interest and depreciation on stock;  

I·D, which depends on the inventory holding; hereinafter it 
will be named unit inventory holding cost [€/(uy)]; 

EOQ: optimal order quantity; [u] or [u/order] 

CQ: annual inventory management cost; [€/y] 

The well-known Harris’ square root equation is based on 
the assumptions that the demand rate is known and 
constant, backorders are not allowed, and replenishments 
are instantaneous.  

Under these assumptions, the annual inventory 
management cost can be defined as follows: 

𝐶𝑇 = ቀ
௛ொ

ଶ
ቁ +
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ொ
+ 𝑐𝐷 [€/y]   (2) 

The annual inventory management cost is a continuous 
convex function of the order quantity; it can be 
differentiated to minimize the total cost. This operation 
leads to the well-known square root formula: 

𝐸𝑂𝑄 = ට
ଶ௄

௛
   [u] or [u/order]   (3) 

Equation 3 is constituted by three key parameters: the unit 
inventory holding cost h, the order placement cost K and 
the demand rate D. Inventory holding costs are usually 
defined as the cost of holding inventory for one year.  

Obviously, Harris took for granted that a good 
approximation for the aggregate costs should be an annual 
interest percentage charged on the value of the average 
physical level. Despite the vast amount of literature on lot 
sizing developed during the last 100 years, the major part 
of contributions has been concerned with a total cost 
function definition from an economic point of view,  
following Harris' basic approach which makes use of a 
direct costing method and fixes the annual stock keeping 
rate.  

Here we aim to relax this latter assumption assessing how 
the economic order quantity depends on the assignment 
policies. The economic order quantity, in the original 

Harris’ formulation, minimizes the total and annual cost of 
ownership (CT), according to the following equation: 

𝐶𝑇(𝑄) = 𝐶𝐴𝐴(𝑄) + 𝐶𝐴𝐸𝑂(𝑄) + 𝐶𝐴𝑀𝑆(𝑄)  (4) 

The inventory holding cost can be, in turn, modelled by 
means of the following product: 

𝐶𝐴𝑀𝑆(𝑄) = 𝑖௠ 𝑐 𝐺௠     (5) 

where: 

c is the item purchase cost, which does not change with the 
ordered quantity Q (i.e. discount not allowed), Gm is the 
average on hand quantity, and im assumes the general 
meaning of stock-keeping rate.  

The unit purchase cost c, the average on hand quantity, Gm, 
and the inventory dynamics from which it derives, do not 
depend on the assumed storage assignment policy. On the 
contrary, the stock-keeping rate im can be calculated by 
means of the following general equation: 

𝑖௠ = 𝑖௣ + ∑ 𝐶௜/𝑅௠௜      (6) 

where:  

ip is the capital interest which captures the figurative nature 
of inventory cost in term of working capital;  

Rm is the economic value of the average on hand quantity, 
usually evaluated by the product 𝑅௠ = 𝑐 𝐺௠;  

∑ 𝐶௜  ௜  counts the relevant annual supply chain costs among 
which it is possible to cite the following: the annual cost of 
in-transit inventories (CAST) the annual cost of material 
handling (CAHM), the annual cost of items storage (CAS), 
the annual cost of material depreciation (CAD), the annual 
cost of item obsolescence (CAO), the annual cost of the 
process Quality assurance (CAQ), and the annual cost of 
the logistic distribution system (CSD). 

Hereinafter we consider not negligible the annual cost of 
material handling and the annual cost of items storage. The 
latter is evaluated as follows: 

𝐶𝐴𝑆 = 𝑐௦௧௢௖௞𝑂௠      (7) 

where:  

cstock is the annual storage cost per location, [€/slot·y];  

Om is the average number of warehouse locations involved 
in the item storage dynamics and depends on the applied 
assignment policy; it corresponds with the EOQ when the 
dedicated storage policy is applied while the same number Om 
is equal to EOQ/2 in case of shared storage policy. The annual 
cost of material handling can be modelled by means of the 
following notation: 

𝐶𝐴𝐻𝑀 = 𝑐௠௢௩𝑃𝐴 + 𝑐௦𝑁௣    (8) 

where: 

cmov is the specific handling cost, [€/m];  

PA is the expected mileage which depends on the assumed 
storage assignment policy. This variable cannot be 
evaluated without considering the whole warehouse 
dynamics: 
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𝑃𝐴 = 𝑁௣𝑑(∙)      (9) 

where: 

d(.) is the distance between the origin of material handling 
cycles (i/o; figures 1-2) and the mass centre of the storage 
locations (CoM, figures 1-2) which are assigned to each 
item.  

The distance d(.) depends also on the storage assignment 
policy;  cs is the setup cost of the average material-handling 
mission; Np is the expected number of retrieval material 
handing missions. Hereinafter we assume the annual 
demand D as the sum of customer orders with discrete unit 
of load ordered quantity and the material handling is 
managed according to order picking rules (a retrieval mission 
is dedicated to each customer order).  

 

Fig.1 Warehouse model of the dedicated storage 
assignment policy. 

 

Fig.2 Warehouse model of the shared storage 
assignment policy (unsteady state item location). 

 

According to the previous assumptions (Equations 6-9), 
the annual stock keeping rate can be written according to 
the following model: 

𝑖௠ = 𝑖௣ +
ൣ௖ೞ೟೚೎ೖை೘ା௖೘೚ೡே೛ௗ(∙)ା௖ೞே೛൧
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                  (10) 

𝐸𝑂𝑄 = ට(
ଶ஽௄

௖ೌ௜೘
)                    (11) 

The system of equations (10) and (11) shows the implicit 
link between stock-keeping rate and economic order 
quantity. Furthermore, the simulation of the material 
handling dynamics of all the items in stock is required in 
order to assess material handling and storage costs for each 
storage assignment scenario, and thus to evaluate the 
optimal quantities to be ordered. 

3. Experimental analysis 

The system of equations (10) and (11) was applied as regard 
to a case simple study involving the inventory management 
of N=10 items. 

Table 1 shows the structure of the MS Excel® spreadsheet 
model, which was ad hoc codified. The model enable the 
simulation of the following variables:  

1. annual mass flows per item (Di); Di can be simulated 
according to a specific Pareto curve, fitting a particular 
logistic scenario; the Pareto index shows which share of 
annual mass demand, Do, is generated by a certain 
share of items.  
For example, let 𝐷𝑜 = ∑ 𝐷𝑖ே

ଵ  be the annual demand, 
an 80-20 Pareto index implies that a little share of items 
(20%) causes a great share of annual mass flow (80%); 
on the other hand, a 20-20 Pareto index implies that all 
items are requested with the same probability. 

2.  inventory holding costs which consider the capital 
interest, the storage and material handling costs, 
depending on the application of the above mentioned 
assignment policies (shared storage or dedicated storage). As 
regard to the dedicated storage assignment policy, item 
allocation is performed assigning a location to a 
material as far from the origin point of material 
handling cycles (i/o) as the probability to enter the same 
location decreases. Item allocation is performed 
according to the IAi access index, which is defined as 
the probability to enter each dedicated storage location: 

𝐼𝐴௜ = 𝑁𝑃௜/𝑂௜                  (12) 

where NPi is the number of material handling cycles per 
item, and Oi is the average number of locations which the 
applied assignment policy requests. 

The following further assumptions are defined: material 
handling involves only single command cycles dedicated to 
each customer order (order picking condition); a unit time 
differs each warehouse location from the next one; item 
mass flows are constant and the contribution of safety 
stocks, as regard to the inventory management, is 
negligible.  

The assignment policy based on materials duration of stay is 
not simulated because it is optimal only when the system is 
perfectly balanced (a perfectly balanced system is 
characterized by the equality of the incoming and outgoing 
flows, for each item and each class of expected duration of 
stay); it is too far from real field conditions which are always 
affected by demand and supplying uncertainties. 

Tab.1 Main results of the simulation process (only item 1 and 
10 behaviours are reported; uol: warehouse unit of load). 

  Item  
Variable Symbol 1 .. 10 um 

Annual demand Di 4.000,0 .. 7,8 uol/y 

Cost of placing order K 100 .. 100 €/or 

Item cost ca 1000 .. 1000 €/uol 

Capital interest ip 10,0% .. 10,0% €/€y 
Annual stock keeping 
rate im 50,5% 

.. 
35,1% €/€y 

i/o

d2

di

d(.)

itemi

CoM

item2

d1

item1 itemN

dN-1

dN

EOQ1 EOQ2

itemN-1

EOQi EOQN-1 EOQN

1
2 EOQ2

itemN-1 itemN

d(.)

i/o

1
2 EOQN

itemi

1
2 EOQN-1

1
2 EOQ1

item2

1
2 EOQi

item1

CoM
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Economic order 
quantity EOQ 40 

.. 
2 uol/or 

On hand quantity Gm 20 .. 1 uol 
Annual storage cost per 
location cstock 100 

.. 
100 €/uol y 

Specific material 
handling cost  Cmov 0,05 

.. 
0,05 €/m 

Annual storage cost 
(dedicated storage 
policy) CASDED 4000 

.. 

200 €/y 
Stock keeping rate 
(dedicated storage 
policy) icas-DED 20,0% 

.. 

20,0% €/€y 
Annual storage cost 
(shared storage policy) CASSHA 2000,0 

.. 
100,0 €/y 

Stock keeping rate 
(shared storage policy) icas-SHA 11,4% 

.. 
6,7% €/€y 

Access index IA 100,0 .. 3,9 mov/uol 
Simulated material 
handling distance d(·) 20,5 

.. 
129,5 m 

Annual material 
handling cost (dedicated 
storage policy) CAHMDED 4100 

.. 

50,59 €/y 
Annual material 
handling rate (dedicated 
storage policy) imovDED 20,5% 

.. 

5,1% €/€y 
Annual material 
handling cost (shared 
storage policy) CAHMSHA 7800,00 

.. 

15,23 €/y 
Annual material 
handling rate (shared 
storage policy) imovSHA 44,6% 

.. 

1,0% €/€y 

 

3.1 Findings 

Figure 3 shows the annual inventory management cost 
which is realized after applying the dedicated (DED) or shared 
(SHA) storage assignment policy. The case study, under the 
latter assignment policies (DED-H, SHA-H), is also 
evaluated taking into account a fixed stock keeping rate 
im=0,10 €/€y - as suggested by Harris’ in his original work 
- and without performing the circular computing process 
above proposed which enables to consider the material 
handling and the storage costs contribution. The shared 
storage assignment policy (SHA) minimizes operations 
costs if compared with the dedicated storage one (DED). 
Table 2 shows the comparison between inventory 
management costs resulting after the application of the 
above-mentioned strategies to each demand scenario.  

The DED assignment policy appears optimal only when 
the demand mass flow is highly focused (Pareto index equal 
to 80-20). This is due to the greater warehouse space that 
this policy requires: the trade-off between inventory 
holding and material handling costs is optimal only and if 

the reduction of the material handling costs overtakes the 
increasing of inventory holding costs. 

 
Fig.3 Annual and overall inventory management cost CT 
(DED: dedicated storage assignment policy; SHA: shared 
assignment policy and random item allocation; DED-H: 
dedicated storage assignment policy; item allocation by 
means of access index AIi; Harris’ economic order quantity; 
SHA-H: shared storage assignment policy; renadom items 
allocation; Harris’ economic order quantity ) 

Tab.2 Inventory management cost comparison. 

CT=(CTDED - CTSHA)/CTDED 
   Item   
Pareto index 1 2 3 4 5 
80-20 19% -24% -29% -32% -34% 
70-20 25% -20% -27% -31% -33% 
60-20 28% -17% -25% -31% -34% 
50-20 29% -13% -24% -30% -36% 
40-20 25% -10% -22% -29% -34% 
30-20 20% -6% -19% -28% -32% 
20-20 13% -4% -15% -24% -32% 
   Item   
Pareto index 6 7 8 9 10 
80-20 -36% -35% -37% -37% -37% 
70-20 -36% -39% -41% -40% -41% 
60-20 -37% -39% -42% -42% -45% 
50-20 -38% -40% -42% -46% -47% 
40-20 -38% -42% -43% -47% -47% 
30-20 -37% -41% -45% -47% -50% 
20-20 -37% -40% -45% -49% -51% 

Figure 4 highlights significantly how much the economic 
order quantity depends on the logistic boundary conditions 
as the distribution of the mass flows among the ten 
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inventories and on the way in which the management costs 
are accounted. 

 
Fig.4 Item 1 economic order quantity per assignment policy. 

 

4. Conclusions 

The paper attempts to deepen the method of calculating 
the Harris’ economic order quantity, taking into account a 
more detailed assessment of the annual stock keeping rate 
which depends on physical, figurative and most of all 
management styles as well as the storage assignment 
policies; the topic is of particular interest because it aims to 
take into account all costs associated with supply chain 
management that are generated once the decision of 
holding inventories is made.  

The recursive procedure proposed enables a better 
definition of the optimal order quantity to be purchased 
and sheds new light on storage assignment policies and 
relevant performances. 

Despite the limited nature of the case study considered, the 
application appears to be suitable for further and easy 
extensions to the management of a wider range of items 
and to model demand and supplying uncertainties. 
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