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Abstract 

Multi-criteria inventory classification groups similar items in order to facilitate their 

management. Data envelopment analysis (DEA) and its many variants have been used 

extensively for this purpose. However, DEA provides only a ranking and classes are often 

constructed arbitrarily with percentages. This paper introduces DEASort, a variant of DEA 

aimed at sorting problems. In order to avoid unrealistic classification, expertise of decision-

makers is incorporated, providing typical examples of items for each class and giving the 

weights of the criteria with Analytic Hierarchy Process (AHP). This information bounds the 

possible weights and is added as a constraint in the model. DEASort application is illustrated 

using a real case study of a company managing warehouses stocking spare parts. 

Keywords: Inventory, Data Envelopment Analysis, DEA, AHP, Sorting 

 

1. Introduction 

In an organisation, even one of moderate size, there may be thousands of inventory stock 

keeping units (SKUs) that have to be held in a warehouse. As the size of the inventory 

increases, controlling the items requires time and additional expenditure, and thus the use of 

optimised inventory management would lead to significant  savings (van Kampen et al., 

2012). As production and inventory policies are influenced by the characteristics of the 

product, items or SKUs, can be ordered according to their importance (Mohamadghasemi and 

Hadi-Vencheh, 2011), which enables companies to make decisions on production strategies, 

inventory management and customer service for the whole class instead for each item 

separately. Inventory classification using ABC analysis is widely applied by organisations as 

it is simple to understand, easy to use, and often based on only one criterion. However, a 

single classifying criterion such as annual usage value cannot generally represent the whole 

criticality of an item (see Section 2). In addition to this criterion, others such as lead time, 

criticality, commonality, obsolescence, durability, perishability and inventory cost should 

also be considered (Rezaei and Dowlatshahi, 2010). To solve this multi-criteria inventory 
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classification problem, items are first ranked by importance using a multi-criteria ranking 

method such as the analytic hierarchy process (AHP) (Saaty, 1980), ELECTRE (Roy, 1978) 

or data envelopment analysis (DEA) (Charnes et al., 1978), with the Pareto principle (Dickie, 

1951) then applied to assign items into classes. The latter classification method, which is 

based only on a percentage, can be misleading, as an item can be assigned to, for instance, 

class A only to satisfy the proportionality of 20%. This issue has led to the recent emergence 

of studies applying multi-criteria sorting methods that define classes a priori (Chen et al., 

2008; Lolli et al., 2014). However, DEA does not yet have an associated a priori sorting 

technique. This paper presents DEASort, an extension of DEA aimed at sorting items into 

ordered classes. This method makes use of information provided by managers; AHP is used 

to elicit the weights of the criteria, with the possible range defined by the group of experts 

added as a constraint in the model.  

The remainder of the paper is organised as follows: Section 2 briefly reviews the main 

contributions in the literature regarding ABC clustering. Section 3 presents the new DEASort 

methodology. Section 4 illustrates the application and feasibility of DEASort using a real 

case study. It also measures the DEASort robustness by varying the number of reference 

items. It compares the DEASort with other classification approaches and the DEASort and 

the ABC classification from a cost perspective. Section 5 concludes the paper. 

2. Literature review 

Traditionally, ABC analysis divides items into three classes: A (very important), B 

(moderately) and C (least important), based on the Pareto principle (Dickie, 1951). Class A 

items are very few in number (10%), but constitute a relatively large amount of annual usage 

value (70%) and must be controlled tightly and monitored closely. In contrast, class B 

inventory items represent 20% of a company’s business and account for around 20% of 

inventory; finally, class C items are relatively large in number (70%) but constitute a 

relatively small amount of annual usage value (10%). 

Many authors agree that in addition to annual usage value, other criteria are needed for 

classification. In this regard, two main streams have been developed: methods based on 

multi-criteria decision analysis and those based on DEA.   

2.1 MCDA-based approaches 

Flores and Whybark (1986) were the first to propose a bi-criteria matrix approach, 

wherein annual dollar usage is combined with another criterion in a joint-criteria matrix. 
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Although this approach was a first step towards the multi-criteria inventory control (MCIC), 

issues of complexity arise when extended to more criteria in representing a multi-dimensional 

matrix. Furthermore, the weights of all criteria are considered to have the same weight, which 

is not very realistic. Therefore, multi-criteria decision making methods have subsequently 

been developed for MCIC. Flores et al. (1992) applied a weighted sum, where the weights of 

the criteria were calculated with AHP and the scores of each criterion (lead time, costs, 

durability) were simply normalised. Since then, several versions of AHP (Ishizaka and Labib, 

2011; Saaty, 1980) have been applied (Cakir and Canbolat, 2008; Hadi-Vencheh and 

Mohamadghasemi, 2011; Kadziński et al., 2015; Partovi and Burton, 1993; Partovi and 

Hopton, 1994), as well as other MCDA methods such as ELECTRE III (Mendola and Volo, 

2017) and TOPSIS (Bhattacharya et al., 2007). 

Although research into the multi-criteria ranking of items has evolved rapidly, the multi-

criteria sorting of items into classes is in its infancy, with the Pareto principle (Grosfeld-Nir 

et al., 2007) still the most widely used method for classifying items. However, the main 

problem with this sorting rule is that two items with the same or nearly the same score may 

be assigned to two different classes in order to satisfy the Pareto proportions. Moreover, 

products with a high priority could be assigned to class C just because the predetermined 

percentages of classes A and B are already satisfied, while the reverse is also true, with low 

priority items classified as important just to satisfy the percentage of class A. As a result, 

recent research has been undertaken aimed at avoiding these problems. 

In sorting techniques, the classes must be defined a priori. For this purpose, the decision-

maker assigns a number of (real or fictitious) reference items to each class, with the 

thresholds of the classes and other parameters (e.g. criteria weights) then inferred using a 

mathematical program (Chen et al., 2008). Soylu and Akyol (2014) employed UTilités 

Additives DIScriminantes (UTADIS), which is based on the same idea of inferring thresholds 

via a mathematical program. If the decision-maker is unable to classify certain reference 

items, automatic classification can be used, such as the K-means algorithm employed by 

(Lolli et al., 2014). 

2.1. DEA-based approaches 

Ramanathan (2006) proposed the first weighted linear optimisation model aimed at 

addressing the MCIC problem. This method, known as the R-model, aims to offset the impact 

of the subjectivity of MCDA, with weights generated endogenously. This approach is 
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particularly useful for a new database of items, where information regarding the importance 

of each criterion may not be available due to a lack of history. It is worth of pointing out the 

similarities of the R-model with a class of linear programming model used in DEA, since an 

output maximising multiplier DEA model with many outputs and a constant input will reduce 

to the R-model. However, as this model is fully non-compensatory, an item may be 

inappropriately classified in class A if it is the best rated in at least one criterion, even if this 

criterion is of very low importance. To address this shortcoming, constraints must therefore 

be applied to the linear optimisation. Ng (2007) proposed to ask decision-makers for ordinal 

ranking of weights. In the model developed by (Hadi-Vencheh, 2010), the squared sum of the 

weights is normalised as a constraint. As a result, the distance between the weights increases 

and thus the likelihood that low scores for one criterion are ignored decreases. Another way 

in which to decrease the problem of the non-compensatory effect was proposed by (Zhou and 

Fan, 2007), who calculate the most and least favourable weights for each item. Based on 

these weights, good and bad indexes are created, with both indexes then combined in a 

weighted sum, where the decision-maker subjectively defines the weight of the indexes. 

However, Chen (2011) has criticised this approach because only two extreme cases are 

considered and each item has its own set of weights, which makes them less comparable. 

Furthermore, a particular criterion might be neglected by receiving a weight of zero, 

especially if the number of criteria increases. Therefore, he proposed calculating weights for 

all items and using them to evaluate the efficiency of other items; this approach is thus 

referred to as peer-evaluation or cross-evaluation rather than self-evaluation. A second 

objective is to maximise the cross-efficiency of other items. This means that cross-efficiency 

has the advantage of preventing unrealistic weights (i.e. all but one criteria weights are equal 

to zero) because they are diluted due to peer-estimation. Ladhari et al. (2016) combined the 

approaches of Zhou and Fan (2007) and Ng (2007), adopting the ordering of weights 

employed in the latter study and adding these weight constraints to the model developed in 

the former. 

In DEA-based approaches, there is no model available with which to sort items, with 

assignment to classes still performed according to the Pareto principle. In the present paper, 

we introduce an adapted version of DEA aimed at sorting problems and apply it to MCIC. In 

the following section, the new method DEASort is described in detail. 
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3. Methodology 

In our approach, DEASort is combined with AHP, the output of which is used to take into 

account the expertise of the decision-makers in calculating the weights. This weight 

constraint is then added to the DEASort model. The method classifies I items based on J 

criteria by K decision-makers, using the 6 steps described in the following paragraphs: 

Step 1: Normalisation of item scores 

The measured score 𝑣𝑖,𝑗 of each item 𝑖 for each criterion 𝑗 (e.g. frequency of issue, annual 

usage value, etc) is normalised on a 0-1 scale to make them comparable via the following 

expression: 

(1) 𝑣𝑖,𝑗
∗ =

𝑣𝑖,𝑗− min
𝑖=1,…,𝐼

𝑣𝑖,𝑗

max
𝑖=1,…,𝐼

𝑣𝑖,𝑗− min
𝑖=1,…,𝐼

𝑣𝑖,𝑗
 ∀𝑖 = 1, … , 𝐼 

Step 2: Criteria weight evaluation 

Criteria weights are evaluated separately via AHP by 𝐾 decision-makers. For this purpose, 

the 𝐽 criteria are pairwise compared in a matrix on a 1-9 scale, where 1 indicates equal 

importance and 9 extreme importance (Ishizaka and Labib, 2011). Weights are found by 

calculating the eigenvector (Saaty, 1980). 

(2) 𝐴𝑘𝑤𝑘 = 𝜆𝑚𝑎𝑥𝑘
𝑤𝑘 

 Where Ak is the comparison matrix for decision-maker k 

 𝜆𝑚𝑎𝑥𝑘
is the principal eigenvalue for decision-maker k 

 𝑤𝑘  is the vector of weights for decision-maker k. 

As Ak has redundancy of information, the consistency of the entered judgments by the 

decision-maker can be tested using the consistency ratio (CR). 

(3) 𝐶𝑅𝑘 =
𝐶𝐼𝑘

𝑅𝐼
 

 Where 𝐶𝐼𝑘 = (𝜆𝑚𝑎𝑥𝑘
− 𝑛)/(𝑛 − 1) is the consistency index for decision-maker k 

 n is the dimension of the comparison matrix 

 RI is the ratio index. 
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The ratio index (RI) is the average of the consistency index of 500 randomly filled matrixes. 

Saaty (1980) considers that a consistency ratio exceeding 10% may indicate a set of 

judgments that are too inconsistent to be reliable and therefore recommends revising the 

evaluations. 

Step 3: Weight bounding 

In order to limit the range of possible weights, we define a lower and upper bound for each 

weight. 

The lower bound of the weight for criterion 𝑗 is given by the minimum evaluation score 

among 𝐾 experts: 

(4) 𝑤𝐿𝐵𝑗 = min𝑘=1,…,𝐾{𝑤𝑗,𝑘} 

The upper bound of the weight for criterion 𝑗 is given by the maximum evaluation score 

among 𝐾 experts: 

(5) 𝑤𝑈𝐵𝑗 = max𝑘=1,…,𝐾{𝑤𝑗,𝑘} 

Step 4: Calculation of the item priority 

For each specific item 𝑜 under evaluation, the mathematical programme (6) inspired by DEA 

is solved. This method improves on previous models (Section 2.2) by introducing the weight 

constraints, corresponding to the last line of (6), calculated in c). 

(6) max 𝑃𝑜 = ∑ 𝑤𝑜,𝑗𝑣𝑜,𝑗

𝐽

𝑗=1

 

s.t. ∑ 𝑤𝑜𝑗𝑣𝑖,𝑗 ≤ 1𝐽
𝑗=1   𝑖 = 1, … , 𝐼  

𝑤𝑜𝑗 ≥ 0   𝑖 = 1, … , 𝐼 

𝑤𝐿𝐵,𝑗 < 𝑤𝑜𝑗 < 𝑤𝑈𝐵,𝑗   

It is to note that a weight bounding in the model may result in their infeasibility, lead to zero 

or negative priorities. This phenomenon indicates that the weight bounding need to be 

reassessed (Podinovski and Bouzdine-Chameeva, 2013). 

Step 5: Definition of classes 



7 

 

The number of classes must be set and the classes defined. In general, three classes 𝐶𝑐 

corresponding to 𝐶1 = 𝐴, 𝐶2 = 𝐵 and 𝐶3 = 𝐶 are chosen. In order to define these classes 

each expert 𝑘 is asked to select 𝐿 reference items that (s)he knows very well and that belong 

to each class. The item priority 𝑃𝑐𝑘𝑙 is then calculated for each reference item. 

A decision tree (Bishop, 2006) is trained on the reference items, the inputs being the item 

priorities 𝑃𝑐𝑘𝑙 and the outputs being their relative classes. The decision tree uses the Gini’s 

diversity index as a splitting criterion. The number of thresholds is equal to the number of 

classes minus one. The classification tree is able to work with multiple reference items and is 

robust to misclassified reference items. The use of machine learning methodologies into 

inventory management is a recent new area of research (Lolli et al., 2017a; Lolli et al., 

2017b). 

Step 6: Sorting into classes 

Item 𝑧 is assigned to class 𝐶𝐼 that has its threshold 𝑡ℎ𝐼 just below the item priority 𝑃𝑧. 

𝑃𝑧 ≥ 𝑡ℎ1                   ⇒       𝑘 ∈  𝐶1 

𝑡ℎ2 ≤ 𝑃𝑧 ≤ 𝑡ℎ1       ⇒       𝑘 ∈  𝐶2 

… 

𝑃𝑧 < 𝑡ℎ𝑛−1             ⇒       𝑘 ∈  𝐶𝑛 

It is to note that step 2 and 3 are optional. If no a priori information on the weights is known, 

then step 4 can be directly used after step 1 and the last line of (6) removed for the calculation 

of the priority items. 

4. Case study 

4.1. Introduction 

A real-life case study was carried out using the British firm Entec Global Group. This 

company leads the international arena in providing total supply-chain management for 

Maintenance, Repair and Overhaul (MRO) by evaluating, designing and implementing both 

procurement and supply-chain management solutions. Among their core competencies, they 

manage warehouses stocking spare parts for many factories in several countries all over the 

world. Currently, the SKUs are sorted into classes 𝐶𝐴, 𝐶𝐵, 𝐶𝐶 based only on the single 
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criterion of annual usage value, but the managers of the company have recognised that 

classification based on one single criterion is not realistic.  

In the following sub-sections, the implementation of the steps required by DEASort is 

detailed (Section 4.2). Section 4.3 reports the robustness analysis of our proposal through a 

large experimentation by changing the number of reference items. Section 4.4 is devoted to 

compare the classification achieved by DEASort with those achieved both by the standard 

ABC classification on usage value and by the DEA-based approach proposed by Ramanathan 

(2006). Finally, Section 4.5 aims to investigate the inventory cost effects that DEASort does 

exhibit when a specific inventory control system is adopted. 

4.2. Classification with DEASort 

The three following criteria were considered in classifying 200 SKUs in a pilot study: 

− Annual Usage Value (AUV): as given by the product of the unitary purchasing cost 

and the annual demand; 

− Frequency Of Issue per year (FOI): as the number of issues per year. Each issue can 

contain several SKUs; 

− Current Stock Value (CSV): as given by the quantity in stock multiplied by the 

unitary purchasing cost. 

Based on these new criteria, the methodology described in Section 3 was applied as follows: 

 

Step 1: Normalisation of item scores 

The values of the three criteria AUV, FOI and CSV were normalised for each SKU using eq. 

(1), providing 𝑣𝑖,𝐴𝑈𝑉
∗ , 𝑣𝑖,𝐹𝑂𝐼

∗  and 𝑣𝑖,𝐶𝑆𝑉
∗ , respectively. 

Step 2: Criteria weight evaluation 

In order to weight the criteria, a questionnaire was submitted to the two spare parts managers 

of Entec Global Group. They were asked to pairwise compare the importance of the three 

criteria, with the weights derived using the eigenvalue method (2). The results of this process 

are given in Table 1. As this table shows, the ordering of weight importance is identical for 

both managers and the difference in weight values is small. Frequency of issue is the most 

weighted criterion, with its weight more than double that of annual usage value. This 

indicates that the company’s previous classification method based solely on this criterion was 

lacking in precision. 
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The most important criterion was found to be the frequency of issue per year, followed by the 

annual usage value and finally the current stock value. 

Criteria Spare part manager 

1 

Spare part manager 

2 

Difference 

Frequency of issue 0.637 0.722 0.085 

Annual usage value 0.258 0.227 0.031 

Current stock value 0.105 0.051 0.054 

Table 1: Criteria weights estimated by the two spare parts managers 

Step 3: Weight bounding 

The range of weights permissible in DEA for each criterion was obtained by setting the 

lowest (4) and highest (5) values from Table 1. The result of this procedure is displayed in 

Table 2. 

Criteria Lower bound Upper bound 

Frequency of issue 𝑤𝐿𝐵,𝐹𝑂𝐼 = 0.637 𝑤𝑈𝐵,𝐹𝑂𝐼 = 0.722 

Annual usage value 𝑤𝐿𝐵,𝐴𝑈𝑉 = 0.227 𝑤𝑈𝐵,𝐴𝑈𝑉 = 0.258 

Current stock value 𝑤𝐿𝐵,𝐶𝑆𝑉 = 0.051 𝑤𝑈𝐵,𝐶𝑆𝑉 = 0.105 

Table 2: Range of permissible weights 

 

Step 4: Calculation of the item priorities 

Algorithm (6) was implemented in R and the item priority 𝑃𝑘 was calculated for each item. 

Item priority values were not revealed to the spare parts managers at this point. 

Step 5: Definition of classes 

The two spare parts managers selected a typical item for each class; their item priorities are 

listed in Table 3. 

Criteria Spare part manager 1 Spare part manager 2 

Class A 𝑃6 = 0.655 𝑃104 = 0.249 

Class B 𝑃173 = 0.055 𝑃98 = 0.072 

Class C 𝑃78 = 0.036 𝑃116 = 0.026 

Table 3: Typical items and their item priorities 
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This training set (Table 3) was fed into the classification tree algorithm in MATLAB to train 

the decision tree described in Figure 1. 

 

Class 3

Class 2 Class 1

Pz < 0.0456 Pz ≥  0.0456

Pz < 0.161 Pz ≥ 0.161

 

Figure 1: trained decision tree. 

Step 6: Assignment to classes 

Table 4 lists the items assigned to classes A and B, with all remaining items assigned to class 

C (see table in the supplementary materials). Twenty-three items were found to have a score 

above the limiting profile of class A and were therefore assigned to this class. Only fifteen 

items were assigned to class B, with their scores falling between the limiting profiles of class 

A and class B. One hundred and sixty-two items scored below the limiting profile of class B 

and were therefore assigned to class C. 

A B 

Item score item score 

109 0,7298 93 0,1360 

6 0,6555 97 0,1110 

13 0,5560 184 0,0922 

1 0,4821 161 0,0885 

4 0,4312 31 0,0852 

2 0,4270 98 0,0724 

3 0,4266 186 0,0668 

8 0,4245 117 0,0650 

5 0,3905 87 0,0640 

7 0,3835 121 0,0605 

9 0,3801 159 0,0579 

10 0,3745 173 0,0554 

11 0,3664 103 0,0478 

18 0,3572 89 0,0471 

12 0,3277 164 0,0463 

14 0,3117   

19 0,2902   
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20 0,2872   

16 0,2870   

15 0,2775   

17 0,2765   

104 0,2497   

166 0,2143   

Table 4: Items assigned to classes A and B. Reference items are indicated in bold 

4.3. Classification robustness analysis  

In order to evaluate the robustness of the classification, several decisions trees are trained 

with different reference items. The classification of items in the supplementary materials is 

considered as the control set. In total six groups of simulations are carried out with 10,000 

individual classifications per group. 

Each simulation group uses a fixed number of reference items from 1 to 6 per class. The 

reference items are randomly chosen from the subset of items with different priorities. The 

resulting classification is compared with the control classification in the supplementary 

materials, Step 5 reference items are not used for training or comparison. 

The results of each simulation group are used to calculate precision and recall performance 

measures with 95% confidence intervals. Given a class, the precision is computed as the total 

number of correctly classified items divided by the total number of items assigned to that 

class in the simulation. The recall is calculated per class as the number of correctly classified 

items in the class divided by the total number of items correctly belonging to the class. The 

confidence intervals in both cases are computed with the Clopper-Pearson method. Figures 2, 

3 and 4 present the precision performance for class A, B and C respectively while Figures 5, 

6 and 7 present the recall performance for class A, B and C respectively. The solid lines in 

the figures outline the average performance while the dotted lines represent the confidence 

intervals. 
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Figure 2: Class A precision according to the number of reference items. 

Figure 3: Class B precision according to the number of reference items. 
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Figure 4: Class C precision according to the number of reference items. 

Figure 5: Class A recall according to the number of reference items. 
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Figure 6: Class B recall according to the number of reference items.

Figure 7: Class C recall according to the number of reference items. 
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The decision trees achieve both high precision and high recall even with a small number of 

reference items. Their performance increases as the number of reference items per class 

increases. Class B is the only case with a relative low performance, i.e. less than 0.7 precision 

for any number of reference items. This case can be explained by the small number of 

elements in class B compared to class C and by the proximity of class B to class C in the item 

priority space. Figure 8 shows an example of this phenomenon. 

 

Figure 8: On example of simulation with four reference items. 

In Figure 8, the dotted lines are the original reference classification boundaries calculated by 

the decision tree (Figure 1). The obtained classification is represented by the crosses, the 

solid lines are the obtained classification boundaries and the circles are the reference items. 

The obtained division line between class B and C is slightly tilted towards class C. Since 

class B and C are close and class C is densely packed, this shift moves 13 items from class C 

to class B. The relative impact of this error is different for the two classes: class C is large 

and only 8.3% of its items end up in class B, while class B is small and ends up with 40.9% 

of the items classified in B that actually belongs to class C. 
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Figure 9 summarizes the phenomenon previously discussed. The precision of both class B 

and C is computed in different scenarios by moving the decision tree cut point from its 

control state. As expected minor shifts have a far greater impact on class B precision than on 

class C. 

 

Figure 9: Class B (dotted line) and C (solid line) precision by varying the thresholds. 

4.4. Comparison with other classifiers 

In this section, the results obtained using DEASort (Table 4) are compared with both the 

original ABC classification used by Entec Global Group (i.e. based solely on the annual 

usage value) (Table 5) and the classification proposed by (Ramanathan, 2006) (Table 6). 

 ABC classification  
A B C Sum 

DEASort 
A 9 8 6 23 (11.5%) 

B 3 3 9 15 (7.5%) 
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C 0 3 159 162 (81%) 
 Sum 12 (6%) 14 (7%) 174 (87%)  

Table 5: Comparison between DEASort and ABC 

 (Ramanathan, 2006)  
A B C Sum 

DEASort 

A 19 4 0 23 (11.5%) 

B 0 15 0 15 (7.5%) 

C 1 21 140 162 (81%) 
 Sum 20 (10%) 40 (20%) 140 (70%)  

Table 6: Comparison between DEASort and (Ramanathan, 2006) classifier 

Both the traditional ABC and Ramanathan method have a predefined increasing percentage 

of items in each class. By following this exogenous rule, it can have unexpected 

consequences, i.e. more than 20% of the items are critical, some of the critical items end up 

assigned to class B and, as a consequence, some of the class B items are pushed to class C. 

Classification methods based on fixed percentages enhance the classification errors if said 

percentages are not representative of the actual criticality ratios. In contrast, DEASort uses a 

justifiable rule to assign items, and the resulting classes do not necessarily produce an 

increasing item percentage. 

In the DEASort case class A is more populated than class B and class C remains the largest, 

with an item percentage lying between that of the ABC and Ramanathan methods. Six items 

that were assigned to class A using ABC analysis were assigned to class C by DEASort. This 

difference in the two classes is due to the fact that the new approach considers more criteria 

than ABC analysis. One item classified as belonging in class A by the Ramanathan method 

was assigned to class C by DEASort (Table 6). This is due to the fact that the Ramanathan 

method allows the use of any weights for the criteria, which permits an item to achieve the 

highest possible score. In contrast, DEASort constrains weights to a range given by experts. 

4.5. Cost-oriented comparison 

As outlined in Table 5, DEASort and ABC classify 85.5% of the items the same way. A cost-

oriented comparison then is developed to gauge the potential impact of this change. The 

analysis implements a continuous review reorder point policy (s, Q) see (Silver et al., 1998)) 

and measures the mean relative safety stock holding cost and the fill-rate difference for each 

class. Table 7 summarizes the model assumptions. Only the items with positive monthly 

demand (22%) are analysed since it is not possible to implement a data-driven reorder policy 
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for those with null demand. This analysis aims at measuring the potential savings obtained by 

adopting a DEASort approach where such savings can be quantified. 

Measure Value 

Demand relative standard deviation 
𝜎

𝜇
 0.6 

Lead-time 𝐿𝑇 7 [𝑑𝑎𝑦] 

Order cost 𝑐𝑜 2.5 [€] 

Yearly relative holding cost 𝑐ℎ𝑟 0.2 [𝑦𝑒𝑎𝑟−1] 

Cycle service level 𝑐𝑠𝑙 Class A 0.99 

Class B 0.95 

Class C 0.90 

Table 7: Model assumptions. 

For each item the model calculates the parameters of a Gamma distributed lead-time demand 

(since 
𝜎

𝜇
> 0.5 the Gamma is preferred over a Normal distribution): 

(7) 𝑎𝑖 =
𝜇𝑖

2

𝜎𝑖
𝐿𝑇𝑖 

(8) 𝑏𝑖 =
𝜎𝑖

𝜇𝑖
 

The inverse Gamma computes the reorder point for each item and classification (DEASort or 

ABC): 

(9) 𝑠𝑖,𝐴𝐵𝐶 = Γ(𝑐𝑠𝑙𝑖,𝐴𝐵𝐶 , 𝑎𝑖, 𝑏𝑖)
−1

 

The safety stock is calculated as the reorder point minus the average demand during the lead-

time: 

(10) 𝑠𝑠𝑖,𝐴𝐵𝐶 = 𝑠𝑖,𝐴𝐵𝐶 − 𝑎𝑖𝑏𝑖 

The yearly relative holding cost is transformed into a daily holding cost by changing the unit 

measure and multiplying for the item value 𝑝𝑖: 

(11) 𝑐𝑖,ℎ =
𝑐ℎ𝑟𝑝𝑖

365
 

The daily safety stock cost is obtained from the safety stock and the daily holding cost: 
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(12) 𝑐𝑖,𝐴𝐵𝐶,𝑠𝑠 = 𝑐𝑖,ℎ𝑠𝑠𝑖,𝐴𝐵𝐶 

In order to calculate the fill-rate, i.e. the fraction of demand (measured in items) not in 

backorder during a replenishment cycle, the economic order quantity must be computed first 

as follows: 

(13) 𝑒𝑜𝑞𝑖 = √
2𝑐𝑜𝜇𝑖

𝑐𝑖,ℎ
 

The fill-rate is then calculated as: 

(14) 𝑓𝑟𝑖,𝐴𝐵𝐶 = 1 −
𝑎𝑖𝑏𝑖 (1 − Γ(𝑐𝑠𝑙𝑖,𝐴𝐵𝐶 , 𝑎𝑖 + 1, 𝑏𝑖)

−1
) − 𝑟𝑝𝑖,𝐴𝐵𝐶 (1 − Γ(𝑐𝑠𝑙𝑖,𝐴𝐵𝐶 , 𝑎𝑖 , 𝑏𝑖)

−1
)

𝑒𝑜𝑞𝑖
 

At the end of these calculations, the safety stock holding cost and the fill-rate are available 

for each item and classification. These measures are separated by class (A, B or C) and 

classification (DEASort or ABC) and their class average value is computed. For instance, for 

class A they are respectively computed by: 

(15) 𝑐𝐴,𝐴𝐵𝐶,𝑠𝑠 =
∑ 𝑐𝑖,𝐴𝐵𝐶,𝑠𝑠𝑖∈𝐴

|𝐴|
  

(16) 𝑓𝑟𝐴,𝐴𝐵𝐶 =
∑ 𝑓𝑟𝑖,𝐴𝐵𝐶𝑖∈𝐴

|𝐴|
  

Finally, for each class, the relative difference between the DEASort and ABC measures is 

calculated. For class A such a relative difference is give by: 

(17) 𝑓𝑟𝐴,∆ =
𝑓𝑟𝐴,𝐷𝐸𝐴𝑆𝑜𝑟𝑡 − 𝑓𝑟𝐴,𝐴𝐵𝐶

𝑓𝑟𝐴,𝐴𝐵𝐶
 

The results are summarized in Table 8. The DEASort classification reduces the safety stock 

holding cost by more than 40% in each class while its impact on the fill-rate is negligible. 

 𝑓𝑟∆ 𝑐∆,𝑠𝑠 

Class A 8.087 ∙ 10−5 −0,507 

Class B 2.260 ∙ 10−4 −0,467 

Class C 1.107 ∙ 10−4 −0,411 
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Table 8: Mean relative safety stock holding cost and fill-rate difference for each class 

5. Conclusions 

The Multi-Criteria Inventory Classification problem has been receiving increased attention 

from experts, as traditional ABC analysis based on a single criterion may be effective but it is 

not necessarily efficient. This paper addresses the ABC inventory classification problem 

through the MCIC approach and proposes the DEASort methodology to classify a large 

number of items in three classes: A, B and C. Although most studies thus far have evaluated 

the problem within a very general framework, specific industry characteristics may impact on 

the resulting classification. Thus, the new methodology was applied to a real-life case study 

involving the British procurement and logistics firm Entec Global. DEASort, inspired by 

DEA, enables the judgments of spare parts managers and decision-makers to be taken into 

account in different phases, such as in the weighting of criteria and the choice of reference 

items. Moreover, the method is highly useful and effective in solving complex MCIC 

problems involving a large number of criteria. Whereas traditional Data Envelopment 

Analysis has total weight flexibility that many DMUs can take advantage of by assigning to 

some criteria a zero weight, the new methodology constrains the weights within a certain 

range, ensuring that all criteria are considered for each item. Furthermore, DEASort avoids 

fixing the classes percentages. Fixed classes percentages could lead to enhanced classification 

errors if said percentages are not representative of the actual criticality ratios.  

The application of an inventory system to the classes obtained by means of DEASort has led 

to relevant holding cost savings in comparison with the standard ABC classification, i.e. more 

than 40% in each class. Actually, these results are case-sensitive but enforce our beliefs about 

the effectiveness of DEASort in real settings.  

Finally, it is worth to remark that DEASort is a generic classification method, and thus it can 

be easily applied to other sorting problems. 
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