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Gait-Based Diplegia Classification Using LSMT Networks
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Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent
works proposed to use gait analysis for diplegia classification paving the way for automated analysis. A clinically established gait-
based classification system divides diplegic patients into 4 main forms, each one associated with a peculiar walking pattern. In this
work, we apply two different deep learning techniques, namely, multilayer perceptron and recurrent neural networks, to au-
tomatically classify children into the 4 clinical forms. For the analysis, we used a dataset comprising gait data of 174 patients
collected by means of an optoelectronic system.+e measurements describing walking patterns have been processed to extract 27
angular parameters and then used to train both kinds of neural networks. Classification results are comparable with those
provided by experts in 3 out of 4 forms.

1. Introduction

Cerebral palsy (CP) is a group of permanent movement
disorders appearing in early childhood. It is widely con-
sidered as a neurodevelopmental disorder because it affects
the most sensitive period of the development of human
beings. Signs and symptoms of CP vary among people.
Typical symptoms are poor coordination, stiff or weak
muscles, and disturbances affecting perception, vision,
hearing, swallowing, and speaking. Even if symptoms may
get more noticeable over first few years of life, underlying
impairments do not worsen over time.

Treating CP usually requires a multidisciplinary effort by
neurologists, rehabilitation specialists, and therapists for
identifying the best clinical solutions for each patient.
Available treatments include physical therapy, muscle re-
laxants, and functional surgery, and their adoption depends

on the CP class (or more properly form) patients belong to.
To separate children in forms has the scope of assisting in
diagnosis formulation, clinical decision-making, and com-
munication. A form can be conceived as a framework,
shared by different clinicians, able to quickly convey a
clinical snapshot of a child by cross-referring to histories of
other patients with similar motor impairments. +erefore, a
good classification system separates patients into clusters
characterized by sharing comparable prognosis, thus easing
choice of treatments and communication of the expectations
on the autonomy level during child growth [1]. Given the
variety of movement disorders comprised under the CP
umbrella term, multiple classification criteria have been
proposed. On the one hand, when the identification of
muscle tone anomalies together with the type of prevailing
neurological symptom are considered, patients can be
classified as (i) spastic, suffering from constant muscles
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tightness and stiffness; (ii) dyskinetic, associated with in-
ability to control involuntary movements; and (iii) ataxic,
associated with shakiness and lack of coordination.

On the other hand, when the somatic location of pre-
vailing neurological symptom is observed, CP can be dis-
tinguished as (i) tetraplegia affecting all four limbs; (ii)
diplegia, with lower limbs more compromised than upper
ones; (iii) hemiplegia, affecting only one side of the body; and
(iv) monoplegia, influencing a single limb.

Besides the above cited classification criteria, the Gross
Motor Function Classification System (GMFCS [2]) is one of
the most used and useful tool to assess the level of autonomy
of CP patients by addressing their gross motor competence.
Yet, it does not offer any element to infer prognosis neither
to assist clinical decision-making.

In the group of diplegia, with the aim of realizing an
effective classification system, Ferrari et al. proposed moving
the focus of clinical observation on central (top-down)
components of motor organization [3, 4]. Here, top-down
components are intended as the main features of motor
organization spontaneously performed by individuals in
order to find and maintain a safe, stable, and efficient gait. In
particular, these are (i) support reaction to body weight,
i.e., pattern adopted to find and maintain balance, (ii) static
and dynamic fixation mechanisms, i.e., modality of use of
canes, and position and swing of upper limbs, (iii) step-by-
step righting reactions, i.e., trunk and pelvis pendulum and
translation in and out of sagittal plane, (iv) mechanisms of
progression, i.e., choice of fulcra upon which to pivot the
body, and (v) ability to correctly integrate proprioceptive
and perceptive information [3, 5].

Based on this criteria, Ferrari et al. have recognized four
different forms of motor organization separated in terms of
which and how much motor repertoire is accessible to
patients (Table 1). In particular, shifting from form I to IV,
children show a motor repertoire increasingly rich and
adaptive to environment. Form IV is characterized by a high
functioning central nervous system that allows for coping
even with severe peripheral deficits and executing complex
motor activities. Instead, form I presents a low functioning
control system that, even without major peripheral dys-
functions, limits motor performance [3].

+is classification has proved to be effective in easing
clinical assessments, planning treatments, and measuring
their effectiveness [3, 5, 6]. In particular, it has been proved
effective in assisting surgical planning [6] and has been
validated on a group of 67 children suffering from diplegia
[7]. +e results obtained were encouraging and evidenced
that GMFCS levels increased from form I to IV, enhancing
the idea that, inside the umbrella term diplegia, there are
different groups of patients [7]. Furthermore, in a related
work involving a group of 50 patients, it was demonstrated
how this classification can be learned rapidly and present an
excellent interobserver reliability [8]. Generally speaking,
this latter study has evidenced that (i) forms I and IV are the
most easily identifiable; (ii) form III can be identified by
observing the frontal swing of trunk and upper limbs; and
(iii) the main feature of form II, knee flexion in midstance, is
less evident.

Our research work relies on the above findings and
investigates the implementation of a reliable and automatic
system capable of identifying the four forms of spastic di-
plegia as defined in [3, 4]. +e proposed system is based on
deep learning techniques and, consequently, does not in-
volve the extraction of domain-specific features for classi-
fication. +e aim is to provide a contribution to the
validation of this classification by demonstrating that the
four clinical forms are artificially recognizable in the space of
quantitative gait data. Besides, such system may endow
rehabilitation centres with an accurate tool for quickly
confirming diagnosis and for clinical decision-making.

+e remaining part of the manuscript is organized as
follows. In Section 2, related work in the field of diplegia
classification is illustrated. In Section 3, gait analysis is in-
troduced, and sensors and methodologies used for collecting
gait data are described. In Sections 4 and 5, the use of
multilayer perceptron (MLP) and recurrent neural networks
(RNNs) is illustrated. Results are discussed in Section 6.
Section 7 concludes the paper.

2. Related Work

Recent research on automatic classification of CP has been
mostly aimed at discerning between CP patients and
asymptomatic subjects instead of classifying different forms
of the disorder. Furthermore, as far as we know, previous
work mostly used support vector machines [9, 10] and
classical neural networks [11–13].

+e use of SVM as binary classification for the detection
of spastic diplegia has been investigated in [9]. +e proposed
classifier has been trained on a dataset of gaits referring to 88
children affected by spastic diplegia together with a control
group of 68 typically developed children. A six-camera
optoelectronic system has been employed for data acqui-
sition, and raw data have been processed to extract three
distinct features (namely, stride length, cadence, and leg
length). +e accuracy of classification from SVM has been
assessed for different feature sets and kernel functions. In
practice, the best performance results have been obtained
employing stride length and cadence (normalized on the
basis of leg length and age) and selecting a radial basis
function as kernel; more specifically, an overall accuracy of
96.8% has been achieved adopting a 10-fold cross validation.
SVM methods have also been employed in [10] to solve the

Table 1: Diplegia forms defined by Ferrari et al. [4].

Form Main traits

Form I Antepulsion of trunk, toe balancing. Constant
support from canes

Form II Pronounced knee flexion in midstance, loaded knee
behavior, short steps

Form III
Frontal trunk swinging and use of upper limbs to
keep balance, presence of dysperceptive disorders

(fear of falling and of open spaces)

Form IV
Mainly a motor deficit. Increased talipes equinus at
the start of walking. Difficulty to stop immediately the

walking
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problem of spastic hemiplegia classification. In this case, the
binary classificator has been trained using a rich dataset,
referring to more than 900 trials divided into different
classes corresponding to different pathologies.+e data have
been acquired with an optoelectronic system and then
processed to estimate joint kinematics.

A specific type of artificial neural network, known a self-
organizing map (SOM), has been exploited in [11] to learn an
abstract representation of a normal gait pattern from a
dataset of 129 gait cycles acquired from 18 typically de-
veloped subjects. +e method developed for classification is
based on the idea that the degree of motor disorder can be
identified by evaluating the quantisation error (QE) of the
differences between normal and abnormal gait patterns. In
this case, the features used for training the SOM and
computing the QE were three-dimensional joint angles,
moments, and powers.

2.1. A Bayesian Network (BN). Bayesian network has been
employed in [12] to identify patterns underlying gait de-
viations on the basis of gait data acquired from 139 CP
patients. +is approach has offered the relevant advantage of
incorporating clinical expertise as prior knowledge in the
classification method; this has eased the analysis of available
data and has helped identifying clinically relevant re-
lationships. +e prior knowledge of clinical patterns has
been introduced through various iterations, involving a
multidisciplinary team of experts in fields of 3D gait analysis
and CP. It is also worth mentioning that (i) the BN output
consisted of the probabilities of suffering from a specific gait
deviation pattern instead of a single label referring to the
most likely gait pattern; (ii) the trained BN achieved an
average accuracy rate of 88.4% with respect to a gold
standard represented by clinical experts.

2.2. Artificial Neural Networks (ANNs). ANNs have been
shown in [13] to outperform previous logistic regression
approaches in terms of accuracy. +e ANN architecture
described here consisted of one single hidden layer with just
12 neurons, enough to obtain a better score in the receiver
operating characteristic (ROC) plots. +e processed data
included not only simple personal information of patients
(e.g., age and gender) but also data about their heart rate
variability (correlated with the neurodevelopment outcome
during early life). +e ANN has been tested on a dataset
referring to 35 infants diagnosed with central coordination
disturbances, against a control group of 37 asymptomatic
subjects.

2.3. Principal Component Analysis (PCA). PCA has been
applied to gait features extracted from 40 subjects (more
precisely, 20 typically developed subjects and 20 subjects
with spastic diplegia) [14]. +is allowed to identify three
principal components accounting for 61% of total vari-
ability. Moreover, a graphical representation of these
components has been exploited as a classification tool since a

significant distance between typically developed and diplegic
subjects was found in the plots obtained.

In [1], various different studies on children affected by
CP were jointly analysed. In this review study, the consid-
ered tools span from traditional systems for data analysis to
more recent machine learning algorithms, such as SVM
techniques and generalized neural networks.

To conclude, it is worth mentioning that none of the
studies present in literature investigated the problem of
setting up an automatic classification system based on the
criteria proposed in [4].

3. Dataset for Gait Analysis

Gait analysis is the study of human locomotion, augmented
by instrumentation for measuring biomechanics of move-
ments and the activity of muscles. Gait analysis is typically
used to assess individuals whose conditions affect their
ability to walk effectively and safely.

Gait analysis usually takes place in dedicated laboratories
called motion analysis labs (MALs). +e typical equipment
employed in these laboratories is listed in Table 2.

3.1. Data Acquisition Procedure. A set of optoelectronic
markers and electromyographic sensors are applied to the
patient’s skin. +ese markers and sensors allow to acquire
gait kinematics and muscular activities of a patient. +e
complete procedure for the acquisition of gait data by means
of optoelectronic devices and force plates is described in the
gait analysis protocol [15].

3.2. Data Preprocessing. +e dataset processed in this study
consists of 1121 trials (i.e., walks) involving 174 patients
collected in an Italian MAL, namely, the LAMBDA (Lab-
oratorio Analisi delMovimento del Bambino Disabile) of the
hospital Arcispedale S. Maria Nuova hosted in a 12m× 8m
room equipped with a Vicon system of 8 MX+ cameras
(Oxford Metrics Inc., UK). Acquired data were saved in the
coordinate 3D (C3D) format.+is study was approved by the
ethics committee of the Santa-Maria-Nuova hospital on 22/
01/2014. None of the participants had prior knowledge of the
purpose of this study. +e distribution of trials and patients
over the considered four forms is shown in Table 3. It should
be noted that

(i) Patients belonging to form 4 suffer from less severe
symptoms, whereas those belonging to the first two
forms (i.e., forms 1 and 2) are the most hindered

(ii) +e distribution of patients over the forms in this
dataset is uneven mainly due to the uneven clinical
distribution of patients along the four forms [4]

+e measurements comprise 19 markers (Table 4) and
were subsampled by a factor 2 reducing the sampling rate
from 100 frames/sec to 50 frames/sec. +is made the rep-
resentation of patient movements closer to human eye
perception, thus making the automatic classification input
comparable with the one available to clinical experts. +e
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remaining part of data preprocessing consisted of the fol-
lowing tasks:

(1) Identifying the average period T of the sequence of
steps for each patient

(2) Selecting the data associated with an integer number
of steps

(3) Transforming position information into angular
information

(4) Transforming the available data from time to fre-
quency domain and organizing them in sequences

(5) Partitioning the obtained dataset in a training set and
in a test set

Regarding task 1, foot strikes and toe-offs were visually
identified in the virtual environment of the reconstructed
marker positions. Data associated with steps not completely
captured at the beginning or at the end of a given trial were
removed. Parameter T was estimated by dividing the trial
duration by the number of steps it contains.

Task 3 consisted in projecting 3D coordinates of markers
to the three human body’s planes. +en, the projected co-
ordinates were processed to extract 27 scalar angles in each
plane (Table 5), as most of the clinical signs are strongly
related to angular information [4]. Consequently, 81 angles
per frame were generated.

Task 4 involved two subtasks, one concerning the fre-
quency analysis and the other one the acquired sequences.
+e first subtask was inspired by [16], where it is shown that
pathological gait patterns can be discerned from normal
ones exploiting the Fourier analysis; the same approach was
exploited here to separate different forms of diplegia. In
practice, the fast Fourier transform (FFT) algorithm was
applied to a sequence encompassing multiple (say N) steps.
+en, one coefficient every N was extracted from the FFT
output vector, in order to analyze only those harmonics
associated with the fundamental of a single step (independently
from the number of steps performed by the considered
patient). It is also worth mentioning that (i) only the first 20
coefficients selected in this way were preserved (all those
referring to higher frequencies were deemed not mean-
ingful); (ii) the first selected coefficient was not normalized,
whereas all the other ones (each angle and each trial) were
normalized to the amplitude of the fundamental.+e second
subtask, instead, simply gathers sequences of 75 elements
(where each element is composed of 81 3D angles), displaced
by 15 elements and for a maximum of 45 sequences per trial.

Finally, in task 5, the dataset was partitioned (according
to the proportion 0.75 : 0.25) patient-wise for training and
testing, respectively, in each form. Trials referring to the
same patient were not included in both the training and the
test sets. Moreover, since patients belonging to form 1 were
fewer than other forms, their number was artificially dou-
bled by repeating every occurrence in the train set, as shown
in Table 3 (information referring to augmented data is given
in parentheses).

4. Classification with Multilayer
Perceptron Network

We started by implementing a MLP network with a single
layer (i.e., from the case of logistic regression with four
perceptrons) and then adding further layers with a number
of perceptrons evaluated on the basis of the following simple
rules: (i) the first additional layer consists of 32 hidden units;
(ii) any other added layer contains a number of perceptrons
which is twice that of the previous layer. +e best scoring
network is shown in Figure 1.

Table 2: Equipment commonly employed for gait analysis.

Device Description

Optoelectronic
system

Reflecting markers attached to patients in
specific anatomical landmarks allowing to
acquire 3D motion of human segments

Force plate
Force plate placed on the ground to measure
the intensity and direction of the reaction

force to body weight

Electromyography
Skin electrodes capable of acquiring the

electrical signals generated by the
contraction of muscles

Video system
Cameras and other devices employed to
record the movements of a patient in a

walking trial

Table 3: Distribution of patients, trials, and sequences among the
four classes (or forms) of Table 1 before and after data augmen-
tation (in parentheses); the adopted partitioning for training and
test phases is also shown.

Form
Train Test

Patients Trials Seq. Patients Trials Seq.
1 9 47 (94) 1404 (2808) 4 16 664
2 36 183 2720 13 83 1354
3 25 174 1894 9 49 712
4 58 372 3676 20 114 927

Table 4: Body marker IDs and their description.

Identifier Marker position
C7 7th cervical vertebrae
LA Left acromioclavicular joint
RA Right acromioclavicular joint
REP Right lateral elbow epicondyle
LEP Left lateral elbow epicondyle
RUL Right lateral prominence of the ulna
LUL Left lateral prominence of the ulna
RASIS Right anterior superior iliac spine
LASIS Left anterior superior iliac spine
RPSIS Right posterior superior iliac spine
LPSIS Left posterior superior iliac spine
RGT Right prominence of the greater trochanter
LGT Left prominence of the greater trochanter
RLE Right lateral knee epicondyle
LLE Left lateral knee epicondyle
RCA Right upper ridge of the calcaneus posterior surface
LCA Left upper ridge of the calcaneus posterior surface
RFM Right dorsal aspect of first metatarsal head
LFM Left dorsal aspect of first metatarsal head
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Note that a more complex network usually achieves a
better accuracy on the set on which it is trained at the risk,
however, of overfitting it. In fact, on the one hand, the use of
additional layers makes the considered network able to learn
more effectively and more complicated patterns; on the
other hand, the network adapts its weights to reproduce
more and more accurately the training set, thus loosing its
generalisation capability.

To mitigate this issue, i.e., to contrast the potential
overfitting on the training set, a dropout layer was included
[17]. +is randomly turns off a portion of the perceptrons
during the training phase, thus forcing it to use only part of
the available weights in generating its output. Further
dropout layers showed no significant improvements. Other
choices made in the implementation of this classification
network are summarised below.

(i) Categorical cross entropy loss, shown in the following
equation, was employed as a learning function:

L � −
1

N∗M
􏽘

N

n�0
􏽘

M

m�0
yt[n,m]∗ ln yp[n,m]􏼐 􏼑, (1)

where yt[n,m] and yp[n,m] represent the ground truth and
the corresponding output (prediction), respectively, for
the m-th form and the n-th sample (M and N are the
overall number of forms and the overall number of
samples, respectively).

(ii) Adam gradient descent optimiser with default pa-
rameters was adopted for the backpropagation up-
date [18].

5. Classification with Recurrent
Neural Network

Recurrent neural networks have been proposed for analysis
of sequences exhibiting high correlation over time. In the
past years, various architectures, producing different map-
pings between input and output sequences, have been
proposed; while nowadays, the usual choice lies between long
short-term memory (LSTM) and GRU architectures.

+e network we adopted exploits a single LSTM layer
instead of a multilayer approach (the adoption of this strategy
is motivated in the following section), as shown in Figure 2.
+ese choices are related to the possibility of using a back-
propagation logic and of mitigating the overfitting. Note that,
as the number of layers in the network increases, the flow of
gradient during the update phase is reduced by consecutive
dot products [19] and, even if the LSTM contrasts the gradient
vanishing inside each layer, this effect is still produced be-
tween layers. Another implication of the increase of com-
plexity is the overfitting of training set due to the large
number of parameters and lack of training examples [20]. We
have tested this architecture making use of one or two fully
connected LSTM layers over the first one; however, the
simplest solution proved to be the best choice for current task
in terms of generalisation capability (Section 6). Other choices
we made in the implementation of this classification network
are summarised below:

(i) +e fully connected network on top of LSTM layers
is appreciably deeper than the one used in the
previous experiment. +is is related to the adopted
preprocessing step, which generates huge numbers
of sequences from a single data file, allowing to
introduce more layers without the risk of overfitting
the train set.

(ii) Each layer, except the LSTM one, has a ReLU ac-
tivation [21]; however, a tanh activation was selected
for the recurrent layer, since it is the one usually
employed inside an LSTM cell.

(iii) +e categorical cross entropy as described in
equation (1) and an Adam optimiser with default
parameters was used for this network too.

6. Experimental Results

+e performance of the proposed MLP network and RNN
were assessed on a Nvidia GTX-1060 board using Keras [22].
In both cases, the stopping criterion adopted in the training
process takes into account not only the loss on the training
set but also resulting accuracy on both test and train sets. In
our work, an architecture performing better on the test set
was preferred, even if this did not achieve the best score on
the training set. In practice, on the one hand, the training
stage of any MLP network was completed when the loss
dropped below 0.10, but when this condition was not

Table 5: Absolute 3D coordinates have been transformed into 27
three-dimensional angles, as most of the clinical signs of diplegia
are strongly related to angular information.

Marker I Marker II Marker III
LGT LPSIS LLE
LLE LGT LCA
LCA LLE LFM
LEP LA LUL
LEP C7 LUL
LLE LASIS LFM
LA C7 LEP
RGT RPSIS RLE
RLE RGT RCA
RCA RLE RFM
REP RA RUL
REP C7 RUL
RLE RASIS RFM
RA C7 REP
LPSIS LGT RGT
LASIS LGT RGT
LPSIS LLE RLE
C7 LA RA
C7 LEP REP
RPSIS LGT RGT
RASIS LGT RGT
RPSIS LLE RLE
C7 LUL RUL
LASIS C7 LPSIS
RASIS C7 RPSIS
LA LASIS RASIS
RA LASIS RASIS

Journal of Healthcare Engineering 5



achieved in 500 iterations on the full training set, it was
always forced to an end; this stage took approximately 10 s.
On the other hand, the training stage of RNNs was always
ended after 15 iterations since the loss on the train set
quickly dropped below 0.10. For both networks, the batch
size was set to 100 elements, with reshu�e of the training
dataset at the beginning of each epoch; this stage took ap-
proximately 240 s. �e results show the following:

(1) In the MLP case, the network with 256 hidden units
in its �rst layer outperforms all the other MLP
networks; in fact, it achieves an accuracy of about
0.587 on the test trials, whereas all other networks do
not exceed 0.56.

(2) In the LSTM case, over�tting occurs as training
procedure proceeds over the twentieth iteration.
Moreover, the one-level LSTM outperforms all other
options since it achieves an accuracy of about 0.67 on
test sequences, whereas other networks stop at about
0.64.

Further numerical results are listed in Tables 6 and 7,
which show the accuracy scores for the top one (T1) and the
top two (T2) predictions on train and test sets. Both networks
were comparedwith a support vectormachinewith radial basis
kernel function on the test set. Note that, on the one hand, the
accuracy is computed on the basis of the form characterized
by the highest frequency for the considered patient among all
trials available for both networks; on the other hand, in the
MLP case, every trial leads to a prediction used to estimate the
form of the considered patient, whereas in the RNN case,
every sequence contributes to the �nal score.

�ese results show the following:

(1) Predictions are accurate for forms 1, 2, and 4 with
just the top one score

(2) Predictions are unreliable for form 3 even with the
top two scores; this suggests that this form of diplegia
does not have speci�c traits that can be recognized by
the approaches proposed in this paper

(3) �e RNN performs better than the MLP network; in
particular, the former achieves an accuracy of about
0.869 overall on patients, whereas the latter achieves
an accuracy of about 0.804

(4) Both methods outperform the SVM baseline

A deeper understanding of the classi�cation problem is
provided by the confusion matrices shown in Table 8. �e
results show that (i) a RNN provides more accurate pre-
dictions than a MLP network; (ii) the third class (class
number 3 in Table 7) is the most di�cult to classify, being
always confused with the second one and the fourth one in
the top one prediction and heavily mislabelled even in the
top two, in accordance with what was clinically observed in
[8]. It is worth noticing that one of the main traits of this
form is a perceptual impairment [4]; this data of course does
not emerge from the acquired motion data, remaining out of
the knowledge of both networks.

It is worth mentioning, however, that the four forms of
diplegia can partially overlap. Consequently, in practice, it
can be really di�cult to assign some patients to one of the
four forms just using the top one prediction. In this context,
RNN or MLP might also assist in identi�cation of non-
nominal cases characterized by an intermediate score be-
tween two neighbour diplegia forms [8], by assigning a
probability score to each of the four forms.

Input
B × 1620 ReLU ReLU ReLU

Dropout
0.2

ReLU Softmax

256 128 64 32 4

Output
B × 4

Figure 1: Proposed MLP network. Every cell is fully connected with the output of the previous layer through a set of weights (plus a bias)
which are used to compute the new output.

Input
B × 75 × 81

32 tan H

B
×

81

ReLU ReLU ReLU ReLU Softmax

1024 496 64 32 4

Output
B × 4

Figure 2: Architecture of the proposed RNN network. �e network uses a many-to-many layer with L1 < L2 < 1 and a single LSTM layer.
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As a matter of fact, the proposed classifiers perform
better on opposite forms, and this confirms that a classifi-
cation coherent with human observations is possible.
However, as for the intermediate forms are concerned, re-
sults show that the associated behaviours are hard to identify
if a small sized dataset is available; these considerations may
also explain the overfitting of the train set as learning
proceeds, especially for the MLP case.

Finally, it is worth mentioning that, due to the confi-
dentiality of the processed data, the dataset has not been
made public to the community; therefore, a direct com-
parison with other methods is not possible yet. We commit
ourselves to release the full anonymised dataset as soon as this
article will be published.

7. Conclusions

In this manuscript, two methods based on state-of-the-art
deep learning techniques were used to solve a multiclass
classification problem concerning gait data from diplegic
children. More specifically, the proposed methods make use
of MLP network and RNN for discriminating the 4 forms of
diplegia defined in [4]. +e dataset used comprises 1121
trials involving 174 patients and was preprocessed to extract
angular information. Such information was then employed
for training the proposed networks and for assessing their
classification accuracy. Results show that RNNs slightly
outperform MLP for the specific task and are in line with

clinical experts in 3 out of 4 classes. +ese findings provide
contribution to the validation of the classification proposed
in [4] and promote the top-down approach to subclassify
diplegia. Deep learning techniques similar to the ones here
proposed might become a valuable tool in MALs as an
objective reference to assist clinical professionals in the
classification process.
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