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(Italy).

Abstract

We prove the existence and pointwise lower and upper bounds for the fundamental solution of the de-
generate second order partial differential equation related to Geman-Yor stochastic processes, that arise
in models for option pricing theory in finance.

Lower bounds are obtained by using repeatedly an invariant Harnack inequality and by solving an
associated optimal control problem with quadratic cost. Upper bounds are obtained by the fact that the
optimal cost satisfies a specific Hamilton-Jacobi-Bellman equation.
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1. Introduction

A keystone result in the theory of parabolic partial differential equations reads as follows: if Γ =
Γ(x, t, ξ, τ) denotes the fundamental solution of an uniformly parabolic PDE

∂tu(x, t) =

N∑
i,j=1

∂xi
(
aij(x, t)∂xju(x, t)

)
, (x, t) ∈ RN×]0, T ],

then there exist positive constants c−, C−, c+, C+ such that

c−

(t− τ)N/2
exp

(
−C− |x− ξ|

2

t− τ

)
≤ Γ(x, t, ξ, τ) ≤ C+

(t− τ)N/2
exp

(
−c+ |x− ξ|

2

t− τ

)
, (1.1)

for every (x, t), (ξ, τ) ∈ RN×]0, T ] with τ < t. This result has been proved by Aronson [3] for operators
with bounded measurable coefficients aij , following the fundamental works of Nash [49] and Moser [46, 47].
We also refer to the article of Fabes and Strook [25] for divergence form parabolic operators, and to Krylov
and Safonov [35] for non-divergence form operators.

The bounds (1.1) have been extended by many authors to subelliptic operators. We recall in particular,
the Gaussian upper bound proved by Davies in [20], and the upper and lower bounds due to Jerison and
Sánchez-Calle [34], and to Varopoulos, Saloff-Coste and Coulhon [58]. We also recall that Kusuoka and
Stroock in [36] extend (1.1) by probabilistic methods. In this setting, the quantity |x − ξ| appearing in
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(1.1) is replaced by the the Carnot-Carathéodory distance dCC(x, ξ), that is its natural counterpart in
the subelliptic setting. See also [7]. Analogous results have been proved in [23, 12, 19, 15, 39], where
subelliptic parabolic operators with drift are considered. In this case, not even the Carnot-Carathéodory
distance is appropriate to express a bound of the fundamental solution. Actually, the value function

Ψ = Ψ(x, t, ξ, τ) of a suitable optimal control problem substitutes the whole term |x−ξ|2
t−τ .

In this note we extend the method used in [23, 12, 19, 15, 39] to the study of the degenerate parabolic
operator

L u := x∂x
(
a(x, y, t)x∂xu

)
+ x b(x, y, t)∂xu+ x∂yu− ∂tu, (1.2)

with (x, y, t) ∈ R+ × R×]0, T ]. The interest in the operator (1.2) arises in Finance as we consider the
problem of pricing Arithmetic Average Asian Options in the Black & Scholes setting. We refer to the
Black & Scholes [11] and to Merton [44] articles for the seminal works of this theory, and to the books by
Björk [10], Hull [33] and Pascucci [51] for its complete treatment. Section 1.2 of this article describes the
application of our results to the Pricing Theory for Financial Derivatives in the Black & Scholes setting.

The main achievements of this article are bounds analogous to (1.1) for the operator L . Specifically,
we prove the following inequalities for the fundamental solution Γ of L

c−ε
t2

exp
(
−C−Ψ(x, y + εt, t− εt

)
≤ Γ(x, y, t, 1, 0, 0) ≤ C+

ε

t2
exp

(
−c+Ψ(x, y − ε, t+ ε)

)
, (1.3)

for every (x, y, t),∈ R+ × R×]0, T ] with y + εt < 0, where ε ∈ (0, 1) is arbitrary. Here Ψ is the value
function of the following optimal control problem

Ψ(x, y, t) := inf
ω∈L1([0,t])

∫ t

0

ω2(τ)dτ subject to constraint (1.4)

{
q̇1(s) = ω(s)q1(s), q1(0) = x, q1(t) = 1,
q̇2(s) = q1(s), q2(0) = y, q2(t) = 0.

In Theorem 1.3 we will give the precise statement of the bounds for Γ(x, y, t, ξ, η, τ) at any point (x, y, t)
belonging to a specific subset of R+ × R× [0, T ].

To emphasize the application of our main result to the existing literature for the operator L , and to
the corresponding stochastic theory, we note that (1.1) can be alternatively written as

k−Γ−(x, t, ξ, τ) ≤ Γ(x, t, ξ, τ) ≤ k+Γ+(x, t, ξ, τ), (1.5)

where Γ± is the fundamental solution of the heat equation ∂tu = µ±∆u with singularity at ξ, τ , and the
constants k±, µ± only depend on c±, C±. From this point of view, it would be natural to write (1.3) in
terms of the fundamental solution of a suitable constant coefficients operator analogous to L . Actually,
the simplest form of L appears by choosing a ≡ 1, and b ≡ 0:

L0u = x2∂xxu+ x∂xu+ x∂yu− ∂tu, (x, y, t) ∈ R+ × R×]0, T ]. (1.6)

The fundamental solution Γ0 of L0 has been first written by Yor [60] as the transition density of the

process
(
Wt, At

)
t≥0

, where (Wt)t≥0 is a Wiener process and

At =

∫ t

0

exp
(
2Ws

)
ds. (1.7)

As we will see in Section 1.1 (formula (1.19)), the expression of the fundamental solution Γ0 of L0 is
quite involved, and an estimate of the form (1.5) would be hard to handle. On the other hand, our bound
(1.3) applies in particular to Γ0 and provides us with explicit information about it. Moreover, several
authors point out that the explicit representation of the Asian option prices given by Geman and Yor [30]
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is hardly numerically treatable, in particular when pricing Asian options with short maturities or small
volatilities (see [28, 57, 29, 24]).

Concerning the operator L in its general form, we recall that existence and regularity result for the
local transition density were established in the recent article of Lanconelli, Pagliarani and Pascucci [37],
under the assumption that the coefficients a and b belong to some space of Hölder continuous functions.

A further consequence of (1.3) is the following result, again in the spirit of (1.5). By applying (1.3)
to Γ and to the fundamental solutions Γ± of the operators

L ±u = µ±x2∂xxu+ x∂xu+ x∂yu− ∂tu, (x, y, t) ∈ R+ × R×]0, T ], (1.8)

we obtain

k−Γ−
(
x, y + ε(t+ 1), t− ε(t+ 1)

)
≤ Γ(x, y, t, 1, 0, 0)

≤ k+Γ+

(
x, y − ε

1− ε
(t+ 1), t+

ε

1− ε
(t+ 1)

)
,

for every (x, y, t),∈ R+×R×]0, T [ with y+ε(t+1) < 0 and t > ε/(1−ε). This is an important theoretical
result, as it allows us to extend to L any quantitative information we know on the fundamental solution
of L ±. Clearly, the same result holds for the densities of the respective stochastic processes. See more
details in Proposition 1.5.

This article is organized as follows. In Section 1.1 we give the precise statements of our main results.
In Section 1.2 we explain the role which L plays in Mathematical Finance and we give a comparison
between our bounds and similar PDE’s estimates. In Section 2 we recall known results about the operator
L defined in (1.2) and we prove a sharp Harnack inequality for it. In Section 3, we recall some basic
facts of stochastic processes theory, of Malliavin Calculus and we prove the existence of the density p of
the stochastic process

(
Xt, Yt

)
t≥0

associated to L in (1.2). In Section 4 we recall some basic tools of

control theory, we solve the optimal control problem (1.4), and we prove the lower estimate in (1.3). In
Section 5 we prove the upper estimate in (1.3) and the main Theorem 1.3.

1.1. Invariance properties and main results

This section contains the precise statement of our assumptions and our main results. In order to
introduce the geometrical setting useful for the study of L , we recall some properties of L0. Monti and
Pascucci observed in [45] that L0 is invariant with respect to the following group operation on R+ ×R2:

(x0, y0, t0) ◦ (x, y, t) = (x0x, y0 + x0y, t0 + t). (1.9)

Indeed, if we set
v(x, y, t) = u(x0x, y0 + x0y, t0 + t), (1.10)

then L0v = 0 if, and only if L0u = 0. We also note that

G :=
(
R+ × R2, ◦

)
(1.11)

is a Lie group, its identity 1G and the inverse of (x, y, t) are defined as

1G = (1, 0, 0), (x, y, t)−1 =

(
1

x
,−y

x
,−t
)
. (1.12)

Then, in particular, we have

(x0, y0, t0)−1 ◦ (x, y, t) =

(
x

x0
,
y − y0

x0
, t− t0

)
, (1.13)
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so that (1.10) is equivalent to u(x, y, t) = v
(
x
x0
, y−y0

x0
, t− t0

)
.

We now introduce a further notation based on the invariance properties of L0 with respect to G. As
the zero of the group

(
R+ × R2, ◦

)
is (1, 0, 0), in the sequel we use the simplified notation

Γ(x, y, t) := Γ(x, y, t; 1, 0, 0). (1.14)

Then, thanks to the invariance with respect to the left translation of G, we have

x2
0 Γ(x, y, t;x0, y0, t0) = Γ((x0, y0, t0)−1 ◦ (x, y, t); 1, 0, 0) = Γ

(
x

x0
,
y − y0

x0
, t− t0

)
.

Analogously, we denote by Ψ(x, y, t;x0, y0, t0) the function defined in (1.4), with the end point (1, 0)
replaced by (x0, y0), and t replaced by t− t0. Note that, in analogy with (1.14), we have

Ψ(x, y, t) = Ψ(x, y, t; 1, 0, 0).

The definition of Ψ is explicitly written in (4.4) below and is well posed only when t > t0 and y0 > y,
otherwise problem (1.4) has no solution. In this case we agree to set Ψ(x, y, t;x0, y0, t0) = +∞. The
following Proposition states its invariance properties with respect to the operation on G.

Proposition 1.1. For every (x, y, t), (x0, y0, t0) ∈ R+ ×R2, with t0 < t and y0 > y, and for every r > 0
we have

Ψ(x, y, t;x0, y0, t0) = Ψ
(
x
x0
, y−y0

x0
, t− t0

)
; (1.15)

Ψ(x, y, t;x0, y0, t0) = 1
rΨ
(
x, yr ,

t
r ;x0,

y0

r ,
t0
r

)
. (1.16)

In particular, from (1.15) we find

Ψ(x, y, t;x0, y0, t0) = Ψ(rx, ry, t; rx0, ry0, t0),

whereas, rewriting (1.16) with r = t− t0, we obtain

Ψ(x, y, t;x0, y0, t0) = 1
t−t0 Ψ

(
x
x0
, y−y0

(t−t0)x0
, 1
)
.

We assume the following conditions on the coefficients of L . The functions a and b are smooth, and
there exist two positive constants λ,Λ such that

|a(x, y, t)| ≤ Λ, |∂x(xa(x, y, t))| ≤ Λ, |b(x, y, t)| ≤ Λ, |∂x(xb(x, y, t))| ≤ Λ,

a(x, y, t) ≥ λ for every (x, y, t) ∈ R+ × R+×]0, T ].
(1.17)

Remark 1.2. Unlike L0, the operator L is not invariant with respect to the left translation (1.9).
Indeed, as we apply the change of variable (1.10) to a solution u of L u = 0, then v is a solution of
Lz0v = 0, where z0 = (x0, y0, t0) and

Lz0v = x∂x
(
a(x0x, y0 + x0y, t0 + t)x∂xv

)
+ x b(x0x, y0 + x0y, t0 + t)∂xv + x∂yv − ∂tv. (1.18)

However, even if Lz0 does not agree with L , it satisfies the assumption (1.17) with the same constants λ
and Λ used for L . This property will be often used in the sequel and is the basis of the invariant nature
of our bounds (1.24) for the fundamental solution of L .
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The smoothness of the coefficients a and b are needed to prove the existence of a fundamental solution
by using the stochastic theory (see Proposition 3.4 below). On the other hand, we prove upper and lower
bounds for Γ in terms of quantities only depending on the constants λ and Λ appearing in (1.17). In a
future study we plan to combine the bounds (1.3) with, either pure PDEs methods, or with the local
results established in [37], to prove the existence of a fundamental solution of L under weaker regularity
assumptions on a and b.

We next compare our main results with the existing literature. Some results are available for the
operator L0. We quote [61] for an exhaustive presentation of the topic. We mainly refer to Yor’s work
[60] in this paper, where the author writes the density of the process (1.7) as follows:

p(w, y, t) =
e
π2

2t

π
√

2πt
exp

(
−1 + e2w

2y

)
ew

y2
ψ

(
ew

y
, t

)
, (1.19)

where

ψ (z, t) =

∫ ∞
0

e−
ξ2

2t e−z cosh(ξ) sinh (ξ) sin

(
πξ

t

)
dξ. (1.20)

Other works are due by Matsumoto, Geman and Yor [42, 43, 30], Carr and Schröder [14], Bally and
Kohatsu-Higa [5]. The fundamental solution Γ0 of L0 is

Γ0(x, y, t, x0, y0, t0) = 1
2xx0

p
(

1
2 log

(
x0

x

)
, y0−y

2x , t−t02

)
. (1.21)

In Section 3, we recall some known results from the Malliavin Calculus that provide us with the
existence of a fundamental solution of L defined in (1.2). In particular, we prove in Proposition 3.4
that, if the coefficients a and b are smooth and satisfy suitable growth conditions, then the fundamental
solution of L exists and is expressed in terms of the density of a stochastic differential equation of the
form {

dXt = µ(Xt, Yt)Xtdt+ σ(Xt, Yt)XtdWt,

dYt = Xtdt.
(1.22)

For this reason, in our main result we assume the existence of a fundamental solution Γ of L . We prove
uniform bounds for Γ, that only depend on the constants λ and Λ appearing in (1.17), and on the L∞

norms of a, b, ∂x(xa) and ∂x(xb).

The main result of this article is the following

Theorem 1.3. Let Γ be the fundamental solution of L . Then for every (x0, y0, t0), (x, y, t) ∈ R+ ×R×
[0, T ] we have

Γ(x, y, t, x0, y0, t0) = 0 ∀ (x, y, t) ∈ R+ × R2 \
{

]−∞, y0[×]t0, T [
}
. (1.23)

Moreover, for arbitrary ε ∈]0, 1[, there exist two positive constants c−ε , C
+
ε depending on ε, on T and on

the operator L , and two positive constants C−, c+, only depending on the operator L such that

c−ε
x2

0(t− t0)2
exp

(
−C−Ψ(x, y + x0ε(t− t0), t− ε(t− t0);x0, y0, t0)

)
≤

Γ(x, y, t;x0, y0, t0) ≤
C+
ε

x2
0(t− t0)2

exp
(
−c+Ψ(x, y − x0ε, t+ ε;x0, y0, t0)

)
,

(1.24)

for every (x, y, t) ∈ R+×]−∞, y0 − x0ε(t− t0)[×]t0, T ]. Here Ψ is the value function defined in (1.4).

5



If we agree to set exp (−c±Ψ(x, y, t;x0, y0, t0)) = 0 whenever Ψ(x, y, t;x0, y0, t0) = +∞, then (1.24)
holds for every (x0, y0, t0), (x, y, t) ∈ R+ × R× [0, T ].

Clearly, the knowledge of the function Ψ is crucial for the application of our Theorem 1.3. Section
4 of this article is devoted to the study of Ψ. We summarize here some of the quantitative information
about Ψ, that are written in terms of the function g defined as follows

g(r) =


sinh(

√
r)√

r
, r > 0,

1, r = 0,
sin(
√
−r)√
−r , −π2 < r < 0.

(1.25)

Proposition 1.4. For every (x, y, t), (x0, y0, t0) ∈ R+ × R2, with t0 < t and y0 > y, we have Ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

− 4
√
E + 4x1x0

(y0−y1)2 , if E ≥ − π2

t1−t0 ;

Ψ(x1, y1, t1;x0, y0, t0) = E(t1 − t0) + 4(x1+x0)
y0−y1

+ 4
√
E + 4x1x0

(y0−y1)2 , if − 4π2

t1−t0 < E < − π2

t1−t0 .

(1.26)
where

E =
4

(t− t0)2
g−1

(
y0 − y

(t− t0)
√
xx0

)
. (1.27)

Moreover,
Ψ(x, y, t;x0, y0, t0)

4
(t−t0) log2

(
y0−y

(t−t0)
√
xx0

)
+ 4(x0+x)

y0−y

→ 1, as
y0 − y

(t− t0)
√
x0x
→ +∞; (1.28)

Ψ(x, y, t;x0, y0, t0)
4(
√
x+
√
x0)2

y0−y − 4π2

(t−t0)

→ 1, as
y0 − y

(t− t0)
√
x0x
→ 0. (1.29)

The lower bound in Theorem 1.3 is based on a Harnack inequality for positive solutions of L u = 0.
The repeated application of the Harnack inequality, combined with a suitable optimization procedure,
provides us with the lower bound of the fundamental solution. The proof of the upper bound in Theorem
1.3 for Γ exploits the fact that the value function Ψ is a solution of the relevant Hamilton-Jacobi equation.

As a corollary of Theorem 1.3, by applying (1.3) to Γ and to the fundamental solutions Γ± of the
operators (1.8), we obtain the following result. It essentially says that the fundamental solutions of L
and L0 have the same behavior.

Proposition 1.5. For every ε ∈]0, 1[, there exist Γ± in the form (1.8), and positive constants k± such
that

k−Γ−(x, y + x0ε(t− t0 + 1), t− ε(t− t0 + 1);x0, y0, t0) ≤
Γ(x, y, t,x0, y0, t0) ≤

k+Γ+

(
x, y − x0

ε

1− ε
(t− t0 + 1), t+

ε

1− ε
(t− t0 + 1), x0, y0, t0

)
,

for every (x, y, t), (x0, y0, t0) ∈ R+ × R×]0, T ] with y + x0ε(t− t0 + 1) < y0 and t > t0 + ε/(1− ε).

1.2. Applications to Finance

The operator L in (1.2) plays a crucial role in Mathematical Finance, since it occurs in the classical
problem of the Pricing of Arithmetic Average Asian Option. For this reason we briefly recall in this
section some notions and details about the classic Option Pricing Theory. We start with the introduction
of some simple financial derivatives, and after we briefly recall the Black-Sholes Option Pricing Theory.
We refer to the works of Barraquand and Pudet [8], and of Barucci, Polidoro and Vespri [9] for a PDE
approach to the pricing problem for Asian Options.
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An European Put Option is a contract that gives the owner the right to sell an asset at the expiry
date T and at a prescribed price K. A Call Option gives him, instead, the right to buy the same asset
at the date T and at the price K. Clearly, the value of the Option at its expiry date T is given by a
function ϕ(ST ), where St denotes the price of the asset at time t. For instance, the payoff of a call option
is ϕC(ST ) = max (0, ST −K), while the payoff of a put option is ϕP (ST ) = max (0,K − ST ). In their
celebrated article [11], Black & Scholes solve the problem of finding a fair price Z = Zt for this kind of
contract, at every time t, with 0 ≤ t ≤ T . They assume that the price of the underlying asset at time t,
that is denoted by (St)0≤t≤T , is a log-normal stochastic process,

St = S0 exp
((
µ− 1

2σ
2
)
t+ σWt

)
, t ∈ [0, T ], (1.30)

where (Wt)t≥0 denotes a standard Wiener process, µ and σ are given constants. They construct a self-
financing portfolio, that replicates at every time t the value (Zt)0≤t≤T of the Option. The portfolio only
contains an amount of the stock (St)0≤t≤T and an amount of a riskless bond with constant interest rate
r, whose price is Bt = B0 exp(rt). In this setting, Black & Scholes prove that the value Zt = Z(St, t) of
the Option is a solution of the Black & Scholes equation

1
2σ

2S2 ∂
2Z

∂S2
+ r

(
S
∂Z

∂S
− Z

)
+
∂Z

∂t
= 0, (S, t) ∈ R+×]0, T [, (1.31)

with final condition ZT = ϕ(ST ). We refer to Pascucci’s book [51] for an exhaustive and detailed
description of the Black & Scholes theory and of its recent developments.

Path dependent Options are characterized by the fact that their value also depends on some average
of the past price of the stock, that is Zt = Z(St, At, t) for 0 ≤ t ≤ T . For instance, in an Arithmetic
Average Floating Strike Option, the strike price of an option is computed as the average of the stock
price, then its payoff is

ϕC(ST , AT ) = max

(
0, ST −

1

T

∫ T

0

Stdt

)
, ϕP (ST , AT ) = max

(
0,

1

T

∫ T

0

Stdt− ST

)
, (1.32)

while in the Arithmetic Average Fixed Strike Option the payoff is

ϕC(ST , AT ) = max

(
0,

1

T

∫ T

0

Stdt−K

)
, ϕP (ST , AT ) = max

(
0,K − 1

T

∫ T

0

Stdt

)
. (1.33)

When considering Geometric Average Options, the arithmetic average 1
T

∫ T
0
St dt is replaced by exp

(
1
T

∫ T
0

log(St) dt
)

.

We can summarize all the above cases by introducing the average variable (At)0≤t≤T , defined as

At =

∫ t

0

f(Sτ ) dτ, t ∈]0, T [, (1.34)

for some given continuous function f . Following the Black & Scholes approach, we look for the density
of the process (St, At)t>0. We consider the stochastic differential equation of the process (St, Bt, At)t>0,

dSt = µStdt+ σStdWt,

dBt = rBtdt,

dAt = f (St) dt,

(1.35)

we construct the replicating portfolio, and we apply Itô’s formula. We obtain

1
2σ

2S2 ∂
2Z

∂S2
+ f(S)

∂Z

∂A
+ r

(
S
∂Z

∂S
− Z

)
+
∂Z

∂t
= 0 (S,A, t) ∈ R+ × R+×]0, T [, (1.36)
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with final condition ZT = ϕ(ST , AT ).

We also remind that a numerical solution of the pricing problem can be obtained by a Monte Carlo
method based on the Feynman-Kac formula

Z(S,A, t) = EQ
[
e−r(T−t)ϕ(ST , AT )|(St, At) = (S,A)

]
,

where Q is a measure such that the process e−rtZt is a martingale under Q.

When considering Geometric Average Asian Option, we have f(S) = log(S), then the simple change
of variable v (ex, y, T − t) := Z(S,A, t) transforms the PDE (1.36), with its final condition, into the
following Cauchy problem {

1
2σ

2
(
∂2v
∂x2 − ∂v

∂x

)
+ x∂v∂y + r

(
∂v
∂x − v

)
= ∂v

∂t

v(x, y, 0) = ϕ (ex, y) ,

which, in turns, after the change of variable u(x, y, t) := ertv
(
σ√
2
x+

(
1
2σ

2 − r
)
t, y, t

)
, can be written as

follows {
∂2u
∂x2 + x∂u∂y = ∂u

∂t

u(x, y, 0) = ϕ
(
e
σx√

2 , y
)
.

(1.37)

In PDEs theory, the solution of (1.37) is given in terms of its fundamental solution as follows

u(x, y, t) =

∫
R2

Γ(x, y, t, ξ, η, 0)ϕ
(
e
σξ√

2 , η
)
dξdη. (1.38)

The explicit expression of the fundamental solution Γ for the operator in (1.37) is

Γ(x, y, t, ξ, η, τ) =

√
3

2π(t− τ)2
exp

(
− |x− ξ|

2

4(t− τ)
− 3
|y − η + t−τ

2 (x+ ξ)|2

(t− τ)3

)
(1.39)

if t > τ , while Γ(x, y, t, ξ, η, τ) = 0 if t ≤ τ (see [40] and the references therein).

The function f(S) = S appears in (1.36) as we consider Arithmetic Average Asian Option. In this
case the function v(x, y, t) = e−rtZ(x, y, t) is a solution of the following PDE with final condition{

1
2σ

2x2 ∂2v
∂x2 + x∂v∂y + rx ∂v∂x + ∂v

∂t = 0,

v(x, y, T ) = ϕ (x, y) .
(1.40)

This problem can be further simplified by the change of variable

u(x, y, t) = xmem
2tv

(
x,

2y

σ2
, T − 2t

σ2

)
m =

r

σ2
− 1

2

that leads to the Cauchy problem for L0{
L0u = x2 ∂2u

∂x2 + x∂u∂x + x∂u∂y −
∂u
∂t = 0, (x, y, t) ∈ R+ × R+×]0, σ

2

2 T ];

u(x, y, 0) = ϕ(x, y) (x, y, t) ∈ R+ × R+,
(1.41)

whose solution writes as

u(x, y, t) =

∫
R+×R

Γ0(x, y, t, ξ, η, 0)ϕ(ξ, η)dξdη, (1.42)

with Γ0 defined in (1.21).
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The PDE approach adopted in this work allows us to consider more general problems. Among them,
we can consider an option on a basket containing n assets St =

(
S1
t , . . . , S

n
t

)
whose dynamic is

dSjt = Sjtµj(St, At, t) + Sjt

n∑
k=1

σjk(St, At, t)dW
k
t , j = 1, . . . , n, (1.43)

where
(
W 1
t , . . . ,W

n
t

)
t≥0

is a n-dimensional Wiener process and
(
At
)
t≥0

is an average of the assets. In

particular, we can choose

Ajt =

∫ t

0

Sjτdτ, j = 1, . . . , n, or At =

n∑
j=1

∫ t

0

Sjτdτ,

including, for instance, the following ones

L̃1u :=

n∑
j,k=1

xj∂xj
(
ajk(x, y, t)xk∂xku

)
+

n∑
j,k=1

xjbj(x, y, t)∂xju+

n∑
j=1

xj∂yju− ∂tu, (1.44)

with (x, y, t) ∈ (R+)n × Rn×]0, T ], and

L̃2u :=

n∑
j,k=1

xj∂xj
(
ajk(x, y, t)xk∂xku

)
+

n∑
j,k=1

xjbj(x, y, t)∂xju+

n∑
j=1

xj∂yu− ∂tu, (1.45)

with (x, y, t) ∈ (R+)n × R×]0, T ], respectively. In these examples, denoting by σ(x, y, t) the matrix(
σ(x, y, t)

)
j,k=1,...,n

, we have (
ajk(x, y, t)

)
j,k=1,...,n

= 1
2 [σ(x, y, t)σ(x, y, t)∗] .

and the coefficients bij , i, j = 1, . . . , n depend on the coefficients µ1, . . . , µn and on the derivatives of the
ajk. In this work we focus on the simplest one-dimensional case (1.2) for the sake of simplicity.

1.2.1. Comparison with literature

We conclude this introduction with some remarks about our bounds of the fundamental solution. We
first note that the expression of Γ in (1.39) yields much information on the solution u. In particular, it is a
smooth function, then u is smooth as well. Moreover, (1.39) gives us sufficient conditions on the function
ϕ that guarantee the convergence of the integral in (1.38). It is also used to prove the uniqueness of the
solution of (1.37) (see [54, 22, 23]). In the same spirit, our Theorem 1.3 gives conditions on function
ϕ that guarantee the convergence of the integral in (1.42), and the uniqueness of the solution of (1.41)
as well. We also compare our result with the more recent work by Delarue and Menozzi [21], where
operators in the form

L u :=

d∑
j,k=1

ajk(x, t)∂xjxku+

nd∑
j=1

Fj(x, t)∂xju− ∂tu (1.46)

are considered. Here d, n are positive integers,
(
ajk(x, t)

)
j,k=1,...,d

is a symmetric strictly positive matrix

with bounded Hölder continuous coefficients, and F1, . . . , Fnd satisfy suitable assumptions. Delarue and
Menozzi prove bounds for the fundamental solution of L that, in the case d = 1 and n = 2, write in
terms of the function Γ in (1.39), and that of course do not apply to Γ0 in (1.21). The reason is that,
even if L in (1.44) or (1.45) writes in the form (1.46), it does not satisfy the assumption made in [21].
Indeed, following the same notations adopted in [21], our operator L0 writes as above with

F1(x, t) = 0, F2(x, t) = x, σ(x, t) =

(
x
0

)
,
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which are respectively uniformly Lipschitz in t and α-Hölder continuous with respect to x, but the matrix

1
2 [σσ∗](x, t) =

(
x2 0
0 0

)
,

has spectrum which cannot be included in a compact interval. On the other hand, if we apply the
transformation y = log(x) we are led to consider the function

F̄1(y, t) = − 1
2 , F̄2(y, t) = ey, σ̄(y, t) =

(
1
0

)
,

then we lose the Hölder continuity of F̄2 with respect to the space variable y.

2. Degenerate Hypoelliptic Operators

In this section we recall some known results about the regularity theory of linear second order operators
with non-negative characteristic form. We then introduce Harnack type inequalities and Harnack chains.

We consider a general family of differential operators, which of course contains L , but also the
operators defined in (1.44) and (1.45). We set

L̃ u =

m∑
i,j=1

Xi(ai,j(z)Xju) +

m∑
i=1

bi(z)Xiu+ Y, Y := X0 − ∂t, (2.1)

The prototypes of these operator appear when we choose aij = δij and bj = 0:

L̃0 =

m∑
k=1

X2
k + Y, Y := X0 − ∂t, (2.2)

where X0, X1, . . . , Xm are smooth vector fields defined in some open subset Ω of Rn×R. As usual in the
PDEs theory, we identify the directional derivatives with their vector fields. In general, as m < n, the

operator L̃0 is strongly degenerate. However, it may be hypoelliptic according to the following definition

Definition 2.1. We say that L̃0 is hypoelliptic if for every distributional solution u of L̃0u = f in Ω,
we have

u ∈ C∞(Ω) whenever f ∈ C∞(Ω). (2.3)

The Hörmander condition [32] provides us with a simple sufficient condition for the hypoellipticity of

L̃0. It requires the definition of commutator of two vector fields W and Z, acting on u ∈ C∞(Ω) as
[W,Z]u := WZu − ZWu. The notation Lie{X1, . . . , Xm, Y } (x, t) denotes the vector space generate by
the vector fields {X1, . . . , Xm, Y } and by their commutators. The celebrated hypoellipticity result due
to Hörmander states as follows.

Theorem 2.2 (Hörmander [32]). If

Lie {X1, . . . , Xm, Y } (x, t) = Rn × R (2.4)

at every (x, t) ∈ Ω, then L̃0 is hypoelliptic.

Concerning the operator L0 in (1.6), we can easily check that it satisfies the Hörmander condition (2.4).
Indeed, we have

X(x, y, t) = x∂x ∼

 x
0
0

 , Y (x, y, t) = x∂y − ∂t ∼

 0
x
−1

 , [X,Y ](x, y, t) = x∂y ∼

 0
x
0

 . (2.5)
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Then, the vectors X,Y and [X,Y ] form a basis of R3 at every point (x, y, t) ∈ R+×R2. By Hörmander’s
Theorem 2.2, L0 is hypoelliptic in R+×R2 in the sense of Definition 2.1. In PDE’s Theory the regularity
of operators satisfying Hörmander condition is strongly related to a Lie group structure on the underlying
domain. We refer to the seminal works of Folland [26], Folland-Stein [27], Nagel-Stein-Wainger [48].

For the sake of clarity, we now recall the definition of fundamental solution for a hypoelliptic operator
L . With this aim we write L in its divergence form

L u = −X∗(aXu) + (b− a)Xu+ Y u, (2.6)

where X∗u(x, y, t) := −Xu(x, y, t)− u(x, y, t).

Definition 2.3. We say that a function Γ : (R+ × R2) × (R+ × R2) → R is a fundamental solution of
L if:

1. for every (x0, y0, t0) ∈ R+ × R2 the function (x, y, t) 7→ Γ(x, y, t;x0, y0, t0):

i) belongs to L1
loc(R+ × R2) ∩ C∞(R+ × R2 \ {(x0, y0, t0)}),

ii) it is a classical solution of L u = 0 in R+ × R2 \ {(x0, y0, t0)};
2. for every ϕ ∈ Cb(R2) the function

u(x, y, t) =

∫
R+×R

Γ(x, y, t; ξ, η, 0)ϕ(ξ, η)dξ dη,

is a classical solution of the Cauchy problem{
L u = 0, (x, y, t) ∈ R+ × R× R+;
u(x, y, 0) = ϕ(x, y) (x, y, t) ∈ R+ × R.

(2.7)

3. The function Γ∗(x, y, t;x0, y0, t0) := Γ(x0, y0, t0;x, y, t) satisfies 1. and 2. with L replaced by its
formal adjoint

L ∗v := −X∗
(
aXv

)
+X∗

(
(b− a)v

)
− Y v. (2.8)

The main tool in the proof of our asymptotic estimates of the fundamental solution are the Harnack
inequalities and the Harnack chains. In this setting a Harnack chain is defined as follows:

Definition 2.4. Let Ω be an open subset of RN+1. We say that a finite set {z0, z1, ..., zk} ∈ Ω is a
Harnack chain connecting z0 to zk if there exist positive constants C1, ..., Ck such that:

u(zj) ≤ Cju(zj−1), j = 1, ..., k,

for every positive solution u of L̃ u = 0.

Harnack chains have been used by several authors to prove asymptotical lower bounds of the funda-
mental solution of degenerate hypoelliptic operators. See for instance [58, 55, 23, 12, 15, 52]. They have
been also used to prove asymptotic estimates near the boundary for the positive solution of Kolmogorov
operators, see [16, 17]. In the above articles, Harnack chains have been constructed by selecting points

belonging to the trajectories of L̃ -admissible paths, which are defined as follows:

Definition 2.5. An L̃ -admissible path with starting point z0 is a solution of the following Cauchy prob-
lem

γ̇(s) =

m∑
k=1

ωk(s)Xk(γ(s)) + Y (γ(s)), γ(0) = z0 (2.9)

where ω(s) = (ω1(s), . . . , ωm(s)) ∈ Rm, s ≥ 0 and each ωi(s) ∈ L1[0,+∞[.

We next focus on the operator L in (1.2).
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2.1. Harnack inequality and Green function for L

Our construction of Harnack chains for L is based on the following Harnack inequality. Its statement
requires some notation. For any z0 = (x0, y0, t0) ∈ R+ × R2 and r ∈]0, 1[, we set

Hr(z0) =
{

(x, y, t) ∈ R3 : |x− x0| < rx0,−r2 < t− t0 < 0, |y − y0 + x0(t− t0)| < r3x0

}
Sr(z0) =

{
(x, y, t) ∈ R3 : |x− x0| ≤ rx0,−r2 ≤ t− t0 ≤ −

r2

2
, |y − y0 + x0(t− t0)| ≤ r3x0

} (2.10)

Notice that the cylinders defined in (2.10) are the most natural geometric sets which can be defined
taking into account the invariance group (1.9) of L0. Indeed, they are obtained from Hr(1, 0, 0) and
Sr(1, 0, 0), respectively, by using the left translation “◦” in (1.9).

Proposition 2.6. Let z0 ∈ R+ × R2 and r ∈]0, 1/2]. If u is a positive solution of L u = 0 in Hr(z0),
then

u(z) ≤M u(z0)

for every z ∈ Sθr(z0). The two constants θ ∈]0, 1[ and M > 0 only depend on the operator L .

The proof of Proposition 2.6 relies on the Harnack inequality proven by Golse, Imbert, Mouhot, and
Vasseur in [31]. We also refer to [2] for a geometric statement of the Harnack inequality. The operators
K considered in [31] and [2] act on a function u as follows

Ku :=

n∑
j,k=1

∂xj
(
ãjk(x, y, t)∂xku

)
+

n∑
j,k=1

b̃j(x, y, t)∂xju+

n∑
j=1

xj∂yju− ∂tu. (2.11)

Here (x, y, t) ∈ Rn × Rn × R and the coefficients ãjk, b̃j are bounded measurable functions for j, k =
1, . . . , n. Moreover ãjk = ãkj and

n∑
j,k=1

ãjk(x, y, t)ξjξk ≥ λ|ξ|2, for every ξ ∈ Rn, and (x, y, t) ∈ R2n+1. (2.12)

Note that the main structural difference between L and K is in that the coefficients of K are bounded
and satisfy the unform ellipticity condition (2.12), with respect to the variable x ∈ Rn. As the Harnack
inequality is a local result, we will borrow the Harnack inequality for K for the study of the positive
solutions of L u = 0. For the sake of simplicity, we recall the statement of the Harnack inequality proven
in [31] only for n = 1 and with a notation suitable for our operator L .

Let Ω be an open subset of R3. Consider the following operator

Kv = ∂x (ã(x, y, t)∂xv) + b̃(x, y, t)∂xv + x∂yv − ∂tv, (x, y, t) ∈ Ω. (2.13)

Assume that ã and b̃ are bounded measurable functions such that infR3 ã(x, y, t) > 0. Let z0 ∈ Ω, r ∈
]0, 1/2] be such that Hr(z0) ⊆ Ω. Then there exist two positive constants θ and M , only depending on
the operator K, such that

v(z) ≤M v(z0), for every z ∈ Sr(z0), (2.14)

and for every non-negative solution v of Kv = 0 in Ω.

Proof of Proposition 2.6. Let u be a positive solution of L u = 0 in Hr(z0), with r ∈]0, 1/2]. We
first consider the point z0 = (1, 0, 0). With the aim to apply (2.14) to u, we write L in the form (2.13)
by setting

ã(x, y, t) = x2a(x, y, t), b̃(x, y, t) = x (b(x, y, t)− a(x, y, t)) . (2.15)
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In order to deal with bounded coefficients ã and b̃, we modify them out of the cylinder Hr(z0) as follows.
We set

ã(x, y, t) := ϕ2(x)a(x, y, t), b̃(x, y, t) := ϕ(x) (b(x, y, t)− a(x, y, t)) , (2.16)

where

ϕ(x) =

 1/2 for x ∈]0, 1/2],
x for x ∈]1/2, 3/2[,
3/2 for x ∈ [3/2,∞[.

(2.17)

Then, it is easy to check that our assumption (1.17) on L implies the conditions on K for the validity of
(2.14). In particular, our claim is proven for z0 = (1, 0, 0) and for every r ∈]0, 1/2], since in this case L
agrees with K in the cylinder Hr(z0).

An argument similar to that used above would give the proof of Proposition 2.6 with a constant M
that may depend on z0. In order to prove our claim as stated, with M independent on z0, we rely on the
left translation (1.9). As we apply the change of variable (1.10) to a solution u of L u = 0 in Hr(z0), then
v is a solution of Lz0v = 0 in Hr(1, 0, 0) where Lz0 is defined in (1.18). Note that, as we have noticed
in Remark 1.2, Lz0 satisfies assumptions (1.17), with the same constants used for L . In particular, the
Harnack inequality (2.14) holds for v, and implies

u(x, y, t) = v
(
x
x0
, y−y0

x0
, t− t0

)
≤M v(1, 0, 0) = M u(x0, y0, t0),

for every x, y, t ∈ Sr(x0, y0, t0). This concludes the proof. �

As a direct consequence, we obtain the following

Corollary 2.7. If u is a positive solution of L u = 0 in Hr(z0), where 0 < r ≤ 1/2, then

u(z) ≤M u(z0)

for every z in the set

Pr(z0) =
{

(x, y, t) ∈ R3 : 0 < t0 − t ≤ θ2r2,|x− x0| ≤ (t0 − t)
1
2x0,

|y − y0 − (t0 − t)x0| ≤ (t0 − t)
3
2x0

}
.

(2.18)

A crucial ingredient for the proof of our lower bound of the fundamental solution to L is the analogous
lower bound of a Green function G for the operator K defined in (2.13). The existence of a Green function

for K (2.13) has been established by Di Francesco and Polidoro in [23] if the coefficients ãjk, b̃j , j, k =
1, . . . , n are bounded, and Hölder continuous functions, and (2.12) is satisfied. In [23] it is also given a
lower bound for G, in terms of constants depending on the Hölder continuity of the coefficients of K (see
Theorem 4.3 in [23]). Here we give a bound of G where the constants only depend on the dimension n,

on the constant λ in (2.12) and on the L∞ norm of ãjk, b̃j , j, k = 1, . . . , n. We rely on the method used
in [23] and on the upper and lower bounds proven by Lanconelli, Pascucci and Polidoro in [39] (see also
[38]).

We next recall the statement Theorem 1.3 in [39] with the notation used here for the operator K.
Here ΓK denotes the fundamental solution to K, while ΓµK is the fundamental solution to the constant
coefficients operator

Kµ := µ

n∑
j=1

∂xjxj +

d∑
j=1

bjxj∂yj − ∂t.

Assume that the coefficients ãjk, b̃j , j, k = 1, . . . , n of the operator K are bounded measurable functions
and that (2.12) is satisfied. Let I =]T0, T1[ be a bounded interval. Then, there exist four positive constants
µ+, µ−, C+, C− such that

C−Γµ
−

K (x, y, t, ξ, η, τ) ≤ ΓK(x, y, t, ξ, η, τ) ≤ C+Γµ
+

K (x, y, t, ξ, η, τ), (2.19)
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for every (x, y, t), (ξ, η, τ) ∈ R2n+1 with T0 < τ < t < T1. The constants µ−, µ+ depend only on n and
L , while C−, C+ also depend on T1 − T0.

We recall that the explicit expression of Γµ
±

K is known (see, for instance [32] and [40]):

ΓµK(x, y, t, ξ, η, τ) =
3n/2

(2πµ)n(t− τ)2n
exp

(
− 1

4µ

(
|x− ξ|2

t− τ
+ 12

|y − η + (t− τ)(x+ ξ)/2|2

(t− τ)3

))
, (2.20)

for every τ < t and (x, y), (ξ, η) ∈ R2n. We also recall that Γµ
±

K are homogeneous of degree −4n with
respect to the dilation (x, y, t) 7→ (rx, r3y, r2t), that is

Γµ
±

K (rx, r3y, r2t, rξ, r3η, r2τ) =
1

r4n
Γµ
±

K (x, y, t, ξ, η, τ), (2.21)

for every (x, y, t; ξ, η, τ) ∈ R6 and for every positive r.
We next recall the method used in [23] to prove a lower bound for the Green function, in order to

remove the Hölder regularity assumption made on the coefficients of the operator. With this aim, we
introduce here a simplified notation useful for our purpose. We first define a cylinder analogous to Hr(z0),
centered at z0 = (1, 0, 0). For any r, δ ∈]0, 1/2], we set

H0
r (1, 0, 0) =

{
(x, y, t) ∈ R3 : (x−1)2

r2 + |x−1|
r + (y+t)2

r6 < 1, 0 < t < r2
}
,

S0
r,δ(1, 0, 0) =

{
(x, y, t) ∈ R3 : (x−1)2

r2 + |x−1|
r + y2

r6 ≤ δ, t = 0
}
.

(2.22)

Note that H0
r (1, 0, 0) ⊂

{
1−r < x < 1+r

}
. In particular, if we define ã and b̃ according to (2.16) and

(2.17), then K agrees with L in the cylinder H0
r (1, 0, 0). Also note that the geometry of H0

r (1, 0, 0) is
more complicated than the one of H0

r (1, 0, 0). The advantage of this fact is that the the Dirichlet problem
for K in (2.13) is well posed in H0

r (1, 0, 0) .
In Section 4 of [23] it is proven the existence of a Green function Gr : H0

r (1, 0, 0)×H0
r (1, 0, 0)→ [0,+∞[

with the following property: for every f ∈ C∞0 (H0
r (1, 0, 0)), the function

vr(x, y, t) :=

∫
H0
r (1,0,0)

Gr(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ, (2.23)

is a classical solution of the Dirichlet problem{
L u = −f in H0

r (1, 0, 0),

u = 0 in ∂(H0
r (1, 0, 0)) ∩

{
t < T

}
.

(2.24)

The Green function Gr for the cylinder H0
r (1, 0, 0) is defined in [23] as follows:

Gr(x, y, t; ξ, η, τ) = ΓK(x, y, t, ξ, η, τ)− hr(x, y, t, ξ, η, τ), (2.25)

where hr(x, y, t; ξ, η, τ) is the solution to the Dirichlet problem:{
L u = 0 in H0

r (1, 0, 0),

u = ΓK(x, y, t; ξ, η, τ) in ∂(H0
r (1, 0, 0)) ∩

{
t < T

}
.

(2.26)

The following result will be needed in the proof of the lower bound of the fundamental solution.

Lemma 2.8. There exist two positive constants κ and %, only depending on the L∞ norms of ã, b̃, and
on inf ã, such that

Gr(1,−s, s; 1, 0, 0) ≥ κ

s2
, for every s ∈]0, %r2[.
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Proof. Choose any r, δ ∈]0, 1/2], and consider the compact set

Mr(1, 0, 0) := ∂(H0
r (1, 0, 0)) ∩ {0 < t < T} × S0

r,δ(1, 0, 0).

Let (ξ, η, τ) be a point of S0
r,δ(1, 0, 0), and let hr be the solution to (2.26). By the strong maximum

principle we have that hr ≥ 0 and

max
(x,y,t)∈H0

r (1,0,0)
hr(x, y, t) = max

(x,y,t)∈∂(H0
r (1,0,0))∩{0<t<T}

ΓK(x, y, t; ξ, η, τ).

Then, by using (2.19) in the above inequality, We find that

max
(x,y,t)∈H0

r (1,0,0)
hr(x, y, t) ≤ κ̃r, κ̃r := C+ max

(x,y,t)∈Mr(1,0,0)
Γµ

+

K (x, y, t; ξ, η, τ).

We also note that κ̃r = κ̃1

r4 because of (2.21). As a consequence of the above inequalities, of (2.19) and
of the definition (2.25) of Gr we then find

Gr(x, y, t; ξ, η, τ) ≥ C−Γµ
−

K (x, y, t, ξ, η, τ)− κ̃1

r4

for every (ξ, η, τ) ∈ S0
r,δ(1, 0, 0) and (x, y, t) ∈ H0

r (1, 0, 0). In particular,

Gr(1,−s, s; 1, 0, 0) ≥ C−Γµ
−

K (1,−s, s; 1, 0, 0)− κ̃1

r4
=

C−
√

3

2πµ−s2
− κ̃1

r4
, (2.27)

for every s ∈]0, r2[. We eventually choose a positive κ such that κ < C−
√

3
2πµ− and we conclude that there

exist a positive % such that

C−
√

3

4πµ−s2
− κ̃1

r4
>

κ

s2
, for every s ∈]0, %r2[.

This inequality and (2.27) conclude the proof. �

2.2. Harnack chains for L

Any L -admissible path γ(s) = (x(s), y(s), t(s)) for L0 is the solution of the Cauchy problem
ẋ(s) = ω(s)x(s) x(0) = x0,
ẏ(s) = x(s) y(0) = y0,
ṫ(s) = −1, t(0) = t0,

(2.28)

where ω ∈ L1([0, t0 − t]). In this setting, we refer to the function ω as the control of the problem (2.28).
We introduce now a standard definition from control theory, see [1]:

Definition 2.9. (Attainable set). For every z0 ∈ Ω ⊆ R3 the attainable set Az0 from z0 in Ω is

Az0 =
{
z ∈ Ω |there exists a time t̄ ∈ R+ and an L -admissible path

γ : [0, t̄]→ Ω s.t z0 = γ(0), z = γ(t̄)
}
. (2.29)

Proposition 2.10. For every (x0, y0, t0) ∈ R+ × R×]T0, T1[ it holds:

A(x0,y0,t0) =]0,+∞[×]y0,+∞[×]T0, t0[. (2.30)

15



Proof. From (2.28) it plainly follows that

A(x0,y0,t0)(R+ × R×]T0, T1[) ⊆ [0,+∞[×]y0,+∞[×]T0, t0[.

The opposite inclusion will follow from the results given in Section 4.2, where we exhibit an L -admissible
path steering (x0, y0, t0) to any given point (x, y, t) ∈]0,+∞[×]y0,+∞[×]T0, t0[. �

The following result provides us with a bound of any positive solution u of L u = 0 at the end point
γ(t0 − t) of an L -admissible path γ.

Proposition 2.11. There exist four positive constants θ, h, β and M , with θ < 1 and M > 0 , only
depending on the operator L such that the following property holds.

Let T0 < t < t0 < T1 be fixed. Fix (x0, y0) and let ω ∈ L1([t, t0],R) be a control, with γ : [t, t0]→ R3

the corresponding L -admissible path of (2.28) starting from (x0, y0, t0). Denote by (x, y, t) = γ(t0) its
end-point. Then, for every positive solution u : R+ × R×]T0, T1[ of L u = 0 it holds

u(x, y, t) ≤
(
t−T0

t0−T0

)β
M1+

Φ(ω)
h +

4(t0−t)
θ2 u(x0, y0, t0),

where

Φ(ω) =

∫ t0

t

ω2(s) ds. (2.31)

Proof. If ω ∈ L1([t, t0]) \ L2([t, t0]), then our claim reads as u(x, y, t) ≤ +∞, that is clearly true. We
now assume ω ∈ L2([t, t0]). The proof of the proposition is based on the construction of a Harnack chain,
by applying several times Corollary 2.7. We then first fix θ ∈]0, 1[ as in Corollary 2.7, and we also fix the
constant h = 4 log2(3/2).

Step 1. We fix three restrictive assumptions:

• it holds t0 − T0 ≤ 1
4 ;

• the path γ is defined on the time interval [0, t0 − t] with t0 − t ≤ θ2(t0 − T0);

• the function Φ(ω) satisfies Φ(ω) ≤ h.

We first claim that, under such hypotheses, it holds

γ(t+ s) ∈Pr(x0, y0, t0) for every s ∈ [0, t0 − t], (2.32)

with r :=
√
t0 − T0 ≤ 1

2 . Indeed, Hölder inequality implies∣∣∣∣∫ t+s

t

ω(τ)dτ

∣∣∣∣ ≤ √s(∫ t+s

t

ω2(τ)dτ

) 1
2

≤
√
h
√
s ≤ log(1 +

√
s),

for every s ∈ [0, t0 − t] ⊂ [0, 1
4 ]. The last inequality follows from concavity of log(1 + a), that implies

log(1 + a) ≥ 2 log(3/2)a for a ∈ [0, 1/2] and from the definition of h. We then find∣∣∣e∫ t+st
ω(τ)dτ − 1

∣∣∣ ≤ e|∫ t+st
ω(τ)dτ| − 1 ≤

√
s

for every s ∈ [0, t0 − t]. Thus, by integrating the system (2.28), we obtain

|x(s)− x0| ≤
√
sx0, and |y(s)− y0 − sx0| ≤ 2

3s
3
2x0 < s

3
2x0

for every s ∈ [0, t0 − t], and (2.32) is proven. Since Hr(x0, y0, t0) ⊂ R+ × R×]T0, T1[ for the definition of
r, then Corollary 2.7 can be applied, and it holds u(x, y, t) ≤Mu(x0, y0, t0) with M given in Proposition
2.6.
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Step 2. We now remove the three hypotheses of Step 1 and prove the main statement. Consider any
control ω ∈ L2([t, t0]) and the corresponding curve γ(.). Define the sequence of times t < tk < tk−1 <
. . . < t2 < t1 < t0 recursively starting from t0 as follows

tj+1 = max

{
t, tj − θ2/4, tj − θ2(tj − T0), inf

{
s s.t.

∫ tj

s

|ω(τ)|2 dτ ≤ h
}}

. (2.33)

It is easy to prove that such sequence terminates in a finite number of steps, when the lower boundary t
is reached. For simplicity of notation, we denote tk+1 = t.

We now define rj =
√
tj − tj+1/θ , then we note that rj ≤ 1/2 and

Hrj (x(t0 − tj), y(t0 − tj), tj) ⊂ R+ × R× [T0, T1],

by (2.33). Moreover, we clearly have tj− tj+1 ≤ θ2r2
j . By applying Step 1 on the k+ 1 intervals [tj+1, tj ],

it holds
u(x, y, t) ≤M1+ku(x0, y0, t0).

We point out that the points (x(tj), y(tj), tj), j = 1, . . . k + 1, selected on the path γ(.), form a Harnack
chain. Since (2.33) implies

k ≤
∫ t0
t
|ω(τ)|2dτ
h

+ 4
t0 − t
θ2

+
1

| log(1− θ2)|
log
(
t−T0

t0−T0

)
,

this concludes the proof of Proposition 2.11, by setting β := log(M)
| log(1−θ2)| . �

Remark 2.12. Even if L does not write in the form (2.2), the lower bound in Proposition 2.11 basically
depends on γ, that in turns depends on the vector fields X and Y that define L0. This feature depends
on the fact that γ is contained in the set Pr(z0), where the Harnack inequality holds for both operators
L0 and L .

3. Elements of Stochastic theory

This section contains some known results about the theory of diffusion processes we need in this work.
We refer to the monograph of Nualart [50], and Bally [4] for an exhaustive presentation of the topic.

Throughout this section, we denote by C∞l,b(RN ,R) the space of smooth functions with bounded
derivatives of any order. Note that the boundedness of the functions is not required. We denote by
C∞p (RN ) the set of smooth functions f : RN → R such that f and all its partial derivatives have
polynomial growth.

We consider the N -dimensional Markovian diffusion process (Xt)t solution of the SDE:

dXi
t =

d∑
j=1

σij(Xt)dW
j
t + F i(Xt)dt, i = 1, . . . , N, t ≥ 0 (3.1)

where Wt = (W 1
t , . . . ,W

d
t ) is a d-dimensional Brownian motion, (Xt)t≥0 is a stochastic process on a

probability space (Ω,F ,P) endowed with the filtration (Ft)t≥0 generated by (Wt)t≥0 and belonging to
the space L2([0,∞)×Ω;B+ ×F ;λ× P), where λ stands for the Lebesgue measure in RN and B+ is the
Borel σ-algebra. We assume that

F i, σij ∈ C∞l,b(RN ,R) i = 1, ..., N ; j = 1, ..., d.

We denote by Xx
t the solution of the SDE (3.1) with initial condition Xx

0 = x ∈ RN .
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By using the Feynman-Kac representation formula (see for instance Pascucci [51, chap.9]), one can
state that the transition density (whenever it exists) p(x0, t0, x, t) of the N -dimensional process (3.1)
satisfies the Fokker-Planck equation:

d∑
i,j=1

aij(x)∂xixjp(x0, t0, x, t) +

n∑
i=1

Fi(x)∂xip(x0, t0, x, t) + ∂tp(x0, t0, x, t) = 0 (3.2)

where

aij(x) =
1

2

d∑
k=1

σik(x)σjk(x).

Specifically, the function

u(x, t) = E[ϕ(XT )|Xt = x] =

∫
RN

ϕ(ξ)p(ξ, T ;x, t)dξ (3.3)

is a solution of the Cauchy problem for (3.2) with prescribed bounded continuous final condition ϕ.
Moreover, p satisfies the identity

p(x0, t0;x, t) =

∫
RN

p(x0, t0; ξ, τ)p(ξ, τ ;x, t)dξ, t < τ < t0. (3.4)

In the sequel of this section we recall the results of the Stochastic Theory which guarantee the existence
of the transition density p(x0, t0, x, t).

3.1. Elements of Malliavin Calculus

We consider the space of functions H = L2([0, T ],Rd). For each h(t) = (h1(t), ..., hd(t)),∈ H we
introduce the Gaussian random variable:

W (h) =

d∑
j=1

∫ T

0

hj(t)dW j
t .

We denote by S the class of n-dimensional simple functions of Brownian motion of the form:

F = f(W (h1), ...,W (hn)), f ∈ C∞p (Rn,R), h1, ..., hn ∈ H.

For every F ∈ S we define the Malliavin derivative (DtF )t∈[0,T ] of F as the Rd-dimensional (non adapted)
process:

DtF =

n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn)))hi(t).

Each hi(t) = (h1
i (t), ..., h

d
i (t)) has d components and we write Dj

tF for the jth component of DtF ,
j = 1, ..., d. We introduce the Sobolev norm:

‖F‖1,p =
[
E(|F |p) + E

(∣∣DF ∣∣p)]1/p where
∣∣DF ∣∣ =

(∫ T

0

|DtF |2dt

)1/2

. (3.5)

It is possible to show that the operator D : S → Lp(Ω, L2[0, T ]) is closable with respect to the norm
‖ · ‖1,p. We denote by D1,p = Dom(D) its domain, which is the completion of S with respect to the norm
‖ · ‖1,p.
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Let α = (j1, ..., jk) be a multi-index of length k, we define the kth-order derivative as the random
vector on [0, T ]k × Ω with coordinates:

Dα
t1,...,tk

F = Djk
tk
· · ·Dj1

t1F.

We introduce the Sobolev norm:

‖F‖k,p =
[
E(|F |p) +

k∑
j=1

E(|D(j)F |p)
]1/p

(3.6)

where

|D(j)F | =
∑
|α|=j

(∫
[0,T ]k

|Dα
t1,...,tk

F |2dt1 . . . dtk

)1/2

We denote by Dk,p the completion of S with respect to the norm ‖ · ‖k,p and finally we denote by

D∞ =
⋂
k,p≥1

Dk,p.

We introduce now the Malliavin covariance matrix of the random vector F = (F 1, ..., FN ) derivable in
Malliavin sense.

Definition 3.1. Let F = (F 1, . . . , FN ) be a random vector which is derivable in Malliavin sense.
We define the Malliavin Covariance Matrix of the random variable F as follows:

γijF = 〈DF i, DF j〉 =

d∑
k=1

∫ T

0

Dk
sF

i ×Dk
sF

jds i, j = 1, ..., N (3.7)

We say that F is non-degenerate if its Malliavin covariance matrix satisfies

E(|detγF |−p) <∞, ∀p ∈ N, ∀t > 0 (3.8)

The non-degeneracy (3.8) condition is necessary to ensure that the law of the random vector F exists
and is absolutely continuous with respect to the Lebesgue measure. We refer to [50], Chapter 2, for the
following proposition

Proposition 3.2 (Hirch-Bouleau). Let t ∈ [0,+∞) be fixed and let Xt = (X1
t , ..., X

n
t ) a random

variable satisfying (3.1). If each Xi
t ∈ D1,p

loc with p > 1 and if γXt satisfies the non degeneracy condition
(3.8) almost surely, then the law of Xt is absolutely continuous with respect to the Lebesgue measure on
RN , that is

PXt(dx) = pXt(x)dx.

3.2. Malliavin Theorem and Hörmander condition

In this section we recall the Malliavin Theorem for a diffusion process (3.1).

Theorem 3.3 (Malliavin [41]). Consider the n-dimensional diffusion process (3.1) and suppose that
F i, σij ∈ C∞l,b.

i) Then for every t > 0, Xt belongs to D∞ and

‖Xx
t ‖k,p ≤ ck,p(t)(1 + |x|)βk,p (3.9)

where βk,p ∈ N and ck,p(t) is a constant which depends on k, p, t and on the bounds of the derivatives
of b, σ up to order k.
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ii) Suppose that Hörmander condition (2.4) holds true. Then there exist a function Ck,p(t) and some
constants nk,mk ∈ N such that the non-degeneracy condition (3.8) is satisfied. Moreover

‖ (γXxt )−1‖p ≤
Ck,p(t)(1 + |x|)mk

tnk/2
. (3.10)

The function t → Ck,p(t) is increasing. In particular, the right hand side in (3.10) blows up as
t−nk/2 as t→ 0.

iii) Suppose that the Hörmander condition (2.4) holds true and F i, σij ∈ C∞l,b. Then for every t > 0 the
law of Xx

t is absolutely continuous with respect to the Lebesgue measure and the transition density
y 7→ p(y, t;x, t0) is a C∞ function. Moreover, if b, σ are bounded, one has

p(y, t;x, t0) ≤ C0(1 + |x|)m0

tn0/2
exp

(
−D0(t)|y − x|2

t

)
(3.11)

|Dα
y p(y, t;x, t0)| ≤ Cα(1 + |x|)mα

tnα/2
exp

(
−Dα(t)|y − x|2

t

)
(3.12)

where all above constants depend on the step for which Hörmander condition holds true and the
functions C0, D0, Cα, Dα are increasing functions of t.

We now consider the operator L in (1.2), assuming that the coefficients a, b only depend on x, y and
are bounded C∞(R2) functions. We denote by

L = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y) + b(x, y)

)
x∂x + x∂y. (3.13)

and from (3.2) we have that L+ ∂t is the infinitesimal generator of the process{
dXt = µ(Xt, At)Xtdt+ σ(Xt, At)XtdWt

dYt = Xtdt.
(3.14)

with

a(x, y) =
σ2(x, y)

2
, b(x, y) +

σ2(x, y)

2
+ σ(x, y)σx(x, y)x = µ(x, y).

It is simple to show that the process (Xt, Yt)t≥0 belongs to the space C∞l,b(R+ × R), provided that
∂x(xa(x, y)) is bounded. Moreover, the operator (3.13) satisfies the Hörmander Condition, then the
density p of the process (Xt, Yt)t≥0 exists in view of i) and ii) of Theorem 3.3 and Proposition 3.2. Point
iii) of Theorem 3.3 yields the smoothness of p.

The following proposition summarizes the results about the fundamental solution of L we have
obtained in this Section.

Proposition 3.4. Let a = a(x, y), b = b(x, y) ∈ C∞(R+ × R), with a, b and ∂x(xa(x, y, t)) bounded.
Suppose that inf a > 0. Then, there exists a smooth fundamental solution of L . Moreover, for every
(x, y, t), (x0, y0, t0), (ξ, η, τ) belonging to R+ × R2 with t > τ > t0, it holds the following properties

1. Support of Γ:
Γ(x, y, t; ξ, η, τ) = 0 whenever t ≤ τ or y ≥ η; (3.15)

2. Reproduction property:

Γ(x, y, t;x0, y0, t0) =

∫
R+×R

Γ(x, y, t; ξ, η, τ)Γ(ξ, η, τ ;x0, y0, t0)dξdη, (3.16)
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3. Integrals of Γ: ∫
R+×R

Γ(x, y, t; ξ, η, τ)dξdη = 1,

∫
R+×R

Γ(x, y, t; ξ, η, τ)dxdy = C̄; (3.17)

where C̄ is a positive constant depending on t− τ and C̄ → 1 when t→ τ .

Proof. Malliavin Calculus provides us with the existence of a smooth probability density p(x0, y0, t0;x, y, t)
for the process (3.14). By setting

Γ(x, y, t; ξ, η, τ) = p(ξ, η, T − τ, x, y, T − t). (3.18)

it is easy to check that (3.18) defines a smooth Fundamental solution for L in the sense of the Definition
2.3. The relation (3.15) simply follows from (3.14), as the process (Xt)t≥0 is positive. The reproduction
property (3.16) follows from (3.4) and (3.14). Moreover, the first property (3.17) follow from (3.14) and
by the fact that p is the transition probability density of a Markovian process.
In order to prove the second property of (3.17), we consider the adjoint operator L ∗ of L as in (2.8).
Let rewrite L ∗ in the following form

L ∗ = a(x, y)x2∂xx +
(
ax(x, y)x+a(x, y)− b(x, y)

)
x∂x − x∂y+

− (b(x, y)− a(x, y)− xax(x, y)− bx(x, y)) + ∂t.

whose fundamental solution is Γ∗(ξ, η, τ ;x, y, t) with t > τ .

Denote by Γ̃∗(ξ, η, τ ;x, y, t) the fundamental solution of the operator

L̃ ∗ = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y + ∂t. (3.19)

Note that Γ̃∗(ξ, η, τ ;x, y, t) agrees with the probability density of the Stochastic Process:{
dXt = µ∗(Xt, At)Xtdt+ σ(Xt, At)XtdWt, Xτ = ξ
dYt = −Xtdt, Yτ = η.

with

a(x, y) =
σ2(x, y)

2
, −b(x, y) +

σ2(x, y)

2
+ σ(x, y)σx(x, y)x = µ∗(x, y).

Therefore, it follows that: ∫
R+×R

Γ̃∗(ξ, η, τ ;x, y, t)dxdy = 1 (3.20)

Let C2 denote the maximum of the function |b(x, y) − a(x, y) − xax(x, y) − bx(x, y)| and consider the
following operators

L ∗1 = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y + C2 + ∂t (3.21)

L ∗2 = a(x, y)x2∂xx +
(
ax(x, y)x+ a(x, y)− b(x, y)

)
x∂x − x∂y − C2 + ∂t. (3.22)

Observe that the functions Γ∗1(ξ, η, τ ;x, y, t) = e−C2(t−τ)Γ̃∗(ξ, η, τ ;x, y, t) and Γ∗2(ξ, η, τ ;x, y, t) = eC2(t−τ)Γ̃∗(ξ, η, τ ;x, y, t)
are the fundamental solution of L ∗1 v = 0 and L ∗2 v = 0, respectively. Moreover, for every non negative
function g(x, y) continuous and bounded on R+ × R, if we consider

u1(ξ, η, τ) =

∫
R×R2

Γ∗1(ξ, η, τ ;x, y, t)g(x, y)dxdy,

u(ξ, η, τ) =

∫
R×R2

Γ∗(ξ, η, τ ;x, y, t)g(x, y)dxdy,

u2(ξ, η, τ) =

∫
R×R2

Γ∗2(ξ, η, τ ;x, y, t)g(x, y)dxdy,

21



it holds that
L ∗u1(ξ, η, τ) ≤ 0, L ∗u(ξ, η, τ) = 0, L ∗u2(ξ, η, τ) ≥ 0, (3.23)

In view of (3.23) and by using the comparison principle, we obtain:

Γ∗1(ξ, η, τ ;x, y, t) ≤ Γ∗(ξ, η, τ ;x, y, t) ≤ Γ∗2(ξ, η, τ ;x, y, t). (3.24)

The assertion simply follows from the fact that, in view of (3.20), we have∫
R+×R

Γ∗1(ξ, η, τ ;x, y, t)dxdy = e−C2(t−τ),

∫
R+×R

Γ∗2(ξ, η, τ ;x, y, t)dxdy = eC2(t−τ).

and Γ∗(ξ, η, τ ;x, y, t) = Γ(x, y, t; ξ, η, τ). �.

4. The Optimal Control Problem and The Lower Bound

In this section we formulate the control problem suitable to find the optimal lower bound for the
positive solutions of L u = 0. With this aim, we recall that L0 can be written in the form (2.1), as
L0 = X2 + Y , where X and Y are defined in (2.5).

4.1. The Pontryagin Maximum Principle

In this section, we recall the Pontryagin Maximum Principle [56]. We will then apply it to the optimal
control problem (1.4) in Section 4.2, and it will give us optimal lower bounds for the positive solutions of

L u = 0. We use here the notations in the general setting suitable for the study of operators L̃ defined
in (2.1) that include, as a particular case, the one studied in this work.

In this section the time variable t in (x, t) ∈ RN × [0,+∞) is dropped. Let then Ω ⊂ RN be an open
set, F0, F1, . . . , Fm : Ω → RN be smooth vector fields, and the final time T be fixed. We consider the
following optimal control problem:

q̇ = F0(q) +

m∑
i=1

ωiFi(q) , ωi ∈ R ,
∫ T

0

m∑
i=1

ω2
i (t) dt→ min, q(0) = q0, q(T ) = q1. (4.1)

For such optimal control problem, the Pontryagin Maximum Principle provides a first-order condition
for the minimizing controls ω(.) and the corresponding trajectories q(.). We now recall its statement in
the particular case in which variables and controls belong to the Euclidean spaces Rn,Rm, respectively.
For a more general statement on manifolds, see e.g. [1].

Theorem 4.1 (PMP for the problem (4.1)). Consider the minimization problem (4.1), in the class
of Lipschitz continuous curves, where Fi, i = 0, . . . ,m are smooth vector fields on RN and the final time
T is fixed. Consider the map H : RN × RN × R× Rm → R defined by

H(q, λ, p0, ω) :=

〈
λ, F0 +

m∑
i=1

ωiFi(q)

〉
+ p0

m∑
i=1

ω2
i . (4.2)

If the curve q(.) : [0, T ]→ RN corresponding to the control ω(.) : [0, T ]→ Rm is optimal, then there exist
a Lipschitz continuous covector λ(.) : s ∈ [0, T ] 7→ λ(s) ∈ RN and a constant p0 ≤ 0 such that:

• the pair (λ(s), p0) is never vanishing;

• the optimal control ω(s) satisfies

H(q(s), λ(s), p0, ω(s)) = max
ν∈Rm

H(q(s), λ(s), p0, ν);
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• for a.e. s ∈ [0, T ] it holds {
q̇(s) = ∂H

∂λ (q(s), λ(s), p0, ω(s)),

λ̇(s) = −∂H∂q (q(s), λ(s), p0, ω(s)).
(4.3)

The Hamiltonian H∗(q, λ, p0) := maxν∈Rm H(q, λ, p0, ν) is called the maximized Hamiltonian.
Solutions to the system (4.3) are called extremals. When p0 = 0, they are called abnormal ex-

tremals, while when p0 < 0 they are called normal extremals.

Remark 4.2. The original statement [56] of the Pontryagin Maximum Principle provides optimal con-
trols in the space L∞([0, T ],Rm). Instead, we are interested in optimal controls in the larger space
L1([0, T ],Rm). For this reason, we aim to apply a generalized version of the Pontryagin Maximum Prin-
ciple, such as the one stated in [59, Chap. 6]. For our optimal control problem, such generalized version
has a statement completely equivalent to Theorem 4.1.

4.2. Application of the Pontryagin Maximum Principle to the problem (1.4)

In this section we apply the Pontryagin Maximum Principle to our problem (1.4). Note that the
terminal point of the L -admissible path considered in (1.4) is (1, 0, 0), we give here the formulation for
any end-point (x0, y0, t0) ∈ R+ ×R2. In accordance with the notation used for the fundamental solution
of L , we denote the starting point of the path by (x1, y1, t1) ∈ R+ × R2, with t1 > t0.

ẋ(s) = ω(s)x(s)
ẏ(s) = x(s) 0 ≤ s ≤ T ,
ṫ(s) = −1,

(4.4)

(x, y, t)(0) = (x1, y1, t1), (x, y, t)(T ) = (x0, y0, t0).

We first observe that such optimal control problem is invariant on the Lie group R+ ×R2 endowed with
the operation (1.9). We recall that optimal control problems on Lie group with invariant vector fields
satisfy useful invariance properties, that permit to have simpler solutions of the Pontryagin Maximum
Principle, eventually leading to complete synthesis for specific problems, see e.g. [13]. In our specific
problem, it is sufficient to observe the following invariance property for the solution of (4.4). Consider a
control ω( · ) steering (x1, y1, t1) to (x0, y0, t0) with the trajectory (x(s), y(s), t(s)). Then the same control
ω(.) steers (x0, y0, t0)−1 ◦ (x1, y1, t1) to (1, 0, 0). This can be proved by observing that the trajectory
(x0, y0, t0)−1 ◦ (x(s), y(s), t(s)) is a solution of (4.4) with the same control ω(.). Since the cost depends
on the control only, then the two trajectories have the same cost, hence

Ψ(x1, y1, t1;x0, y0, t0) = Ψ((x0, y0, t0)−1 ◦ (x1, y1, t1); 1, 0, 0) (4.5)

As a consequence, we will now fix the final condition (x0, y0, t0) = (1, 0, 0) in the optimal control problem
(4.4), then using the invariance property to solve it with a general initial condition.

The constraint ṫ = −1 implies that L -admissible paths satisfy t(s) = t1− s, hence T = t1− t0. Then,
in the sequel we drop the time variable, we set T := t1 − t0, and we denote

Ψ(x1, y1, t1;x0, y0, t0) = inf
ω∈L1([0,t1−t0])

∫ t1−t0

0

ω2(τ)dτ, (4.6)

where ω ∈ L1([0, t1 − t0]) is such that (4.4) holds true.
For the above reasons, the optimal control problem (4.4), (4.6) now reads as follows:

Ψ(x1, y1, t1; 1, 0, 0) = min
ω∈L1([0,t1])

∫ t1

0

ω2(τ)dτ subject to constraint (4.7)

{
ẋ(s) = ω(s)x(s), x(0) = x1, x(t1) = 1,
ẏ(s) = x(s), y(0) = y1, y(t1) = 0.
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To simplify the notation, in the sequel we agree to set Ψ(x1, y1, t1) := Ψ(x1, y1, t1; 1, 0, 0).
We now solve such problem. As a by-product, we show that we can always steer (x1, y1) to (x0, y0)

in time T , when y1 < y0. This implies that there exists a control ω steering (x1, y1, t1) to γ(t1 − t0) =
(x0, y0, t0), as we stated in the proof of Proposition 2.10.

We now apply the Pontryagin Maximum Principle to problem (4.7). The Hamiltonian of the problem
(4.7) is

H(x, y, λ1, λ2, p0, ω) = λ1xω + λ2x+ p0ω
2, (4.8)

where (λ1, λ2) are the coordinates of the covector λ.
We first remark that Problem (4.7) admits no abnormal extremals. Indeed, assume by contradiction

p0 = 0 in (4.8). Then
H(x, y, λ1, λ2, p0, ω) = λ1xω + λ2x

Recall that x > 0. Hence, the maximization of the Hamiltonian is equivalent to

∂H

∂ω
(x, y, λ1, λ2, p0, ω) = 0 ⇒ λ1(s) = 0, ∀s ∈ [0, t1].

Moreover, using the fact that λ1(s) = 0 for all s ∈ [0, t1], it holds

λ̇1(s) = −∂H
∂x

(x, y, λ1, λ2, p0, ω) = −λ1(s)ω(s)− λ2(s) = 0,

hence λ2(s) = 0 for every s ∈ [0, t1]. We conclude that

(λ1(s), λ2(s), p0) = (0, 0, 0) for every s ∈ [0, t1].

This is in contradiction with the fact that (λ1(s), λ2(s), p0) is always non-vanishing.
Since no abnormal extremals occur, we choose p0 = − 1

2 . We then compute the optimal control as the
unique minimizer of H

(
x, y, λ1, λ2,− 1

2 , ω
)
, that is

ω(s) = λ1(s)x(s), (4.9)

and the maximized Hamiltonian is

H∗(x, y, λ1, λ2, p0) =
1

2
λ2

1x
2 + λ2x. (4.10)

The corresponding Hamiltonian system reads as
ẋ(s) = λ1(s)x2(s)
ẏ(s) = x(s)

λ̇1(s) = −λ2
1(s)x(s)− λ2(s)

λ̇2(s) = 0

(4.11)

In the sequel, we choose the parameters

k := λ1(t1) and c := λ2(t1)

as the final condition for each extremal, that is uniquely determined by being the solution of (4.11) with
final condition (x, y, λ1, λ2)(t1) = (1, 0, k, c). Note that, by the last equation in (4.11), we have λ2(s) = c
for every s ∈ [0, t1]. Furthermore, the value of the Hamiltonian is a constant of motion, fixed by the final
data. From now on, we then fix

E := λ2
1(s)x2(s) + 2λ2(s)x(s) = k2 + 2c. (4.12)
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Moreover, by recalling the explicit expression for the optimal control (4.9) and ẏ = x, we have the
following expression of the cost for extremals:

C(ω( · )) =

∫ t1

0

ω(s)2 ds =

∫ t1

0

λ2
1(s)x2(s) ds =

∫ t1

0

(E − 2cẏ(s)) ds = Et1 + 2cy1. (4.13)

We now describe the explicit solutions to (4.11), as a function of the final value of the Hamiltonian
E = k2 + 2c. For simplicity, we consider the space variable (x, y) only. We have three cases:

1. E = 0: it holds (x(s), y(s)) =
(

4
(k(t1−s)+2)2 ,− 2(t1−s)

k(t1−s)+2

)
;

2. E > 0: it holds

(x(s), y(s)) =

(
E(√

E cosh
(
t1−s

2

√
E
)

+k sinh
(
t1−s

2

√
E
))2 ,

−2 sinh
(
t1−s

2

√
E
)

√
E cosh

(
t1−s

2

√
E
)

+k sinh
(
t1−s

2

√
E
)) ;

3. E < 0: it holds

(x(s), y(s)) =

(
−E(√

−E cos
(
t1−s

2

√
−E
)

+k sin
(
t1−s

2

√
−E
))2 ,

−2 sin
(
t1−s

2

√
−E
)

√
−E cos

(
t1−s

2

√
−E
)

+k sin
(
t1−s

2

√
−E
)),

where the trajectory is defined on the whole time interval s ∈ [0, t1] when E > − π2

T 2 only.

The three cases can be unified by using the function g defined in (1.25) and observing that it always
holds

y(s) = −g
(
E(t1 − s)2

4

)
(t1 − s)

√
x(s). (4.14)

We are now ready to prove the invariance properties of Ψ.

Proof of Proposition 1.1. The proof of (1.15) is a direct consequence of (4.5). In order to prove
(1.16) we introduce another symmetry of the problem. Consider an extremal of (4.7) steering (x, y) to
(1, 0) in time t, with a final covector parametrized by (k, c), hence with Hamiltonian E = k2 + 2c and
cost C = E T + 2cy1. Fix now r > 0: the extremal ending to (1, 0) with final covector (rk, r2c) steers(
x, yr

)
to (1, 0) in time t

r . Moreover, the Hamiltonian is r2E and the cost is r C. The proof is a direct
consequence of the explicit expression of solutions of (4.11). As a consequence, a trajectory parametrized
by (k, c) steering (x, y) to (1, 0) in time t is optimal if and only if the trajectory parametrized by (rk, r2c)
steering

(
x, yr

)
to (1, 0) in time t

r is optimal too. Combining this with (4.5) we get the property

Ψ(x1, y1, t1;x0, y0, t0) = Ψ
(
x1

x0
, y1−y0

x0
, t1 − t0; 1, 0, 0

)
= 1

rΨ
(
x1

x0
, y1−y0

rx0
, t1−t0r ; 1, 0, 0

)
= 1

rΨ
(
x1,

y1

r ,
t1
r ;x0,

y0

r ,
t0
r

)
This proves (1.16). �

In view of (1.15) and (1.16), with no loss of generality, from now on we consider the problem of
steering (x1, y1) to (1, 0) with fixed final time t1 = 2. First observe that, since g is a C∞, strictly
increasing function, from (4.14) we find the unique value for the prime integral E for which it holds
(x(0), y(0)) = (x1, y1), that is

E =
4

t21
g−1

(
− y1

t1
√
x1

)
= g−1

(
− y1

2
√
x1

)
. (4.15)

It also clearly gives the basic relation c = E−k2

2 , hence c is uniquely determined by k. Then, the cost
of the corresponding extremal is

C = 2E + y1(E − k2) = (2 + y1)E − y1k
2. (4.16)

We now compute the value of k by imposing the initial condition on the second component only, i.e.
y(0) = y1. It holds:
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• for y1 = −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector k = −y1+2

y1
and the

optimal cost is C = (y1+2)2

y1
.

• for y1 < −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector

k = −
√
E
(

coth(
√
E)
)
− 2

y1
=

√
Ey2

1 + 4x1 − 2

y1

and the optimal cost is C = 2
Ey1−2x1−2+2

√
4x1+Ey2

1

y1
.

• for y1 > −2
√
x1, the unique extremal satisfying y(0) = y1 has final covector

k = −
√
−E
(

cot(
√
−E)

)
− 2

y1

Since −π2 < E < 0, we find k =

√
Ey2

1+4x1−2

y1
, if −π2/4 ≤ E < 0;

k = −
√
Ey2

1+4x1+2

y1
, if −π2 < E < −π2/4,

and the expression of the optimal cost is C = 2
Ey1−2x1−2+2

√
4x1+Ey2

1

y1
, if −π2/4 ≤ E < 0;

C = 2
Ey1−2x1−2−2

√
4x1+Ey2

1

y1
, if −π2 < E < −π2/4.

In conclusion, we have that the unique extremal satisfying y(0) = y1 has final covector k =

√
Ey2

1+4x1−2

y1
, if E ≥ −π2/4;

k = −
√
Ey2

1+4x1+2

y1
, if −π2 < E < −π2/4,

(4.17)

and the optimal cost is
C = 4

E
2 y1−x1−1+

√
4x1+g−1

(
− y1

2
√
x1

)
y2

1

y1
, if E ≥ −π2/4;

C = 4
E
2 y1−x1−

√
4x1+g−1

(
− y1

2
√
x1

)
y2

1

y1
, if −π2/4 < E < −π2/4.

(4.18)

We are now left to prove that, with the previous choice of k, one also has x(0) = x1 and x(t1) = 1. With
this goal, it is sufficient to observe the following interesting geometric feature of solutions of (4.11): the
quantity λ1(s)x(s) + λ2(s)y(s) is another constant of motion for (4.11), whose value set at s = t1 is k.
Merging this information with (4.12), we have

2cx(s) = E − (k − cy(s))2

for all points (x(s), y(s)) of the solution of (4.11). In other terms, the trajectory (x(s), y(s)) always
belongs to the parabola

x(s) = − c
2
y2(s) + ky(s) + 1.

Then, when the trajectory reaches y(0) = y1 and t1 = 2, it holds

x(0) =
k2 − E

4
y2

1 + ky1 + 1 = x1, (4.19)
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by plugging the explicit expression (4.17) of k.
Summing up, the optimal trajectory steering (x1, y1) to (1, 0) in time t1 = 2 is the unique solution

of (4.11) with final covector (k, k
2−E
2 ), where k and E are given by (4.17) and (4.15). We next prove

Proposition 1.4 by applying the symmetry inverse transformations (1.15) and (1.16).

Proof of Proposition 1.4. By (1.16) with r = t1−t0
2 we find

Ψ(x1, y1, t1;x0, y0, t0) = 2
t1−t0 Ψ

(
x1

x0
, 2(y1−y0)
x0(t0−t1) , 2; 1, 0, 0

)
.

Moreover, the Hamiltonian of the optimal trajectory of (4.11) corresponding to the right hand side of the

above equation is (t1−t0)2

4 E, where E is the Hamiltonian of the optimal trajectory steering (x1, y1, t1) to

(x0, y0, t0). From (4.15) we obtain (t1−t0)2

4 E = g−1
(

y0−y1

(t1−t0)
√
x0x1

)
, that gives (1.27). By using the first

expression in (4.18) of the Ψ
(
x1

x0
, 2(y1−y0)
x0(t1−t0) , 2; 1, 0, 0

)
, we obtain

Ψ(x1, y1, t1;x0, y0, t0) =
2

t1 − t0
4

(
(t1 − t0)2

4

E

2
· 2(y1 − y0)

x0(t0 − t1)
− x1

x0
− 1+

+

√
4
x1

x0
+

(t1 − t0)2

4
E

(
2(y1 − y0)

x0(t1 − t0)

)2
)
x0(t1 − t0)

2(y1 − y0)
,

which, recalling that y0 > y1, agrees with (1.26). The proof of the second one is analogous.

In order to prove (1.28), we claim that, for every ε ∈]0, 1[ there exists a positive Eε such that for
every E > Eε it holds

4

(t1 − t0)2
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
< E <

4

(1− ε)2(t1 − t0)2
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
, (4.20)

where E is the function defined in (4.15). To prove the claim, we fix ε ∈]0, 1[ and we note that

exp((1− ε)x) <
sinh(x)

x
< exp(x), (4.21)

for every sufficiently large positive x. Recalling (1.27), since y0−y1

(t1−t0)
√
x0x1

→ +∞, we consider g(r) in

(1.25) with r > 0. Then, from (4.21) it follows that

exp

(
(1− ε)(t1 − t0)

√
E

2

)
<

y0 − y1

(t1 − t0)
√
x0x1

< exp

(
(t1 − t0)

√
E

2

)
,

for any positive E big enough. This proves (4.20). Moreover, for E big enough, we have, for every
arbitrary ε > 0

0 ≤ 4x1x0

(y0 − y1)2
=

E

sinh2
( (t1−t0)

2

√
E
) < ε. (4.22)

We next consider the value function Ψ as a function of y0−y1

(t1−t0)
√
x1x0

. From the first expression in

(1.26) and (4.22), we obtain the following inequality

Ψ(x1, y1, t1;x0, y0, t0) ≤ 4

(1− ε)2(t1 − t0)
log2

(
y0 − y1

(t0 − t)
√
x0x1

)
+

4(x1 + x0)

y0 − y1

for every E > Eε. On the other hand, modifying if necessary the choice of Eε, we also have

Ψ(x1, y1, t1;x0, y0, t0) ≥ 4(1− ε)2

(t1 − t0)
log2

(
y0 − y1

(t1 − t0)
√
x0x1

)
+

4(x1 + x0)

y0 − y1
− 2ε
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for every E > Eε. This concludes the proof of (1.28).
The proof of (1.29) is easier. It suffices to note that since, y0−y1

(t1−t0)
√
x1x0

→ 0, we consider g(r) in (1.25)

with r < 0, then E → − 4π2

(t1−t0)2 . From the second expression in (1.26) we have

lim
E→− 4π2

(t1−t0)2

Ψ(x1, y1, t1;x0, y0, t0)
4(x1+x0)+4

√
4x1x0

y0−y1
− 4π2

(t1−t0)

= 1.

�

4.3. Lower bound in (1.3)
In this section we give the proof of the lower bound in Theorem 1.3 for a preliminary choice of the

pole z0 = (x0, y0, t0) = (1, 0, 0). We pass to the general case at the end of Section 5. We first prove the
following

Lemma 4.3. There exists two positive constants κ and %, only depending on the L∞ norms of ã, b̃, and
on inf ã, such that

Γ(1,−t, t; 1, 0, 0) ≥ κ

t2
, for every t ∈]0, %/4[.

Proof. We claim that, for every r ∈]0, 1/2] we have

Γ(x, y, t; ξ, η, τ) ≥ Gr(x, y, t; ξ, η, τ),

for every (x, y, t; ξ, η, τ) ∈ H0
r (1, 0, 0)×H0

r (1, 0, 0), where Gr(x, y, t; ξ, η, τ) is the Green function appearing
in (2.23). The proof of Lemma 4.3 then follows from Lemma 2.8.

In order to prove our claim, we fix r ∈]0, 1/2]. For every non-negative f ∈ C∞0 (H0
r (1, 0, 0)) and for

every (x, y, t) ∈ H0
r (1, 0, 0) we set

vf (x, y, t) :=

∫
H0
r (1,0,0)

Gr(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ,

uf (x, y, t) :=

∫
H0
r (1,0,0)

Γ(x, y, t; ξ, η, τ)f(ξ, η, τ)dξ dη dτ.

Both vf and uf are solution of L u = −f in H0
r (1, 0, 0). Moreover uf (x, y, t) ≥ 0 for every (x, y, t) ∈

∂(H0
r (1, 0, 0)) ∩

{
t < r2

}
. From (2.24) and from the comparison principle we then find uf ≥ vf in

H0
r (1, 0, 0). In other words, we have∫

H0
r (1,0,0)

(
Γ(x, y, t; ξ, η, τ)−Gr(x, y, t; ξ, η, τ)

)
f(ξ, η, τ)dξ dη dτ ≥ 0,

for every non-negative f ∈ C∞0 (H0
r (1, 0, 0)) and for every (x, y, t) ∈ H0

r (1, 0, 0). This proves our claim. �

We next state and prove the main result of this section.

Proposition 4.4. Let 0 < ε < 1 be fixed arbitrarily. There exists a positive constant c−ε,T only depending

on the operator L , on ε and on T such that for every (x, y, t) ∈ R+ × R×]0, T ] with y < −εt it holds

Γ (x, y, t; 1, 0, 0) ≥
c−ε,T
t2

exp (−CΨ(x, y + εt, t− εt; 1, 0, 0)) . (4.23)

Proof. Let ε ∈]0, 1[ be fixed, by Proposition 2.11 and Lemma 4.3 we have

Γ(x, y, t; 1, 0, 0) ≥ ε−βM−1− 4(1−ε)t
θ2

−Ψ(x,y,t;1,−εt,εt)
h Γ(1,−εt, εt; 1, 0, 0)

≥ ε−βM−1− 4T
θ2
−Ψ(x,y,t;1,−εt,εt)

h
κ

4(εt)2
, (4.24)

for every (x, y, t) ∈ R+ × R×]0, T ] with y < −εt. This proves (4.23) for (x0, y0, t0) = (1, 0, 0), with

c−ε,T = κ
4ε2+βM

−1− 4T
θ2 .
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5. Upper Bound and Proof of the Main Theorem

In this section we prove the upper bound in (1.3) for the fundamental solution of L . For the scopes
of this section it is more convenient to write L in its divergence form (2.6).

To achieve the proof of Proposition 5.1, we need to introduce some preliminary results on non-negative
weak solutions u to L u = 0 in R+×R×]T0, T1[ and on non-negative weak solutions u to its formal adjoint
L ∗u = 0 in R+ × R×]T0, T1[. For this reason, we consider operators with a zero order term, namely

L1u(x, y, t) = −X∗
(
aXu

)
+ (b− a)Xu+ cu+ Y u. (5.1)

Clearly, L is the particular case of L1 that we obtain with c = 0. With the the same notation, its formal
adjoint L ∗1 is

L ∗1 u(x, y, t) = −X∗
(
aXu

)
−X∗

(
(b− a)u

)
+ cu− Y u. (5.2)

In the sequel we rely on the following assumption

a, b, c, ∂x(xa), ∂x(xb) are bounded and measurable functions. (5.3)

Note that the same condition holds for L ∗1 . The existence of a fundamental solution for L is guaranteed
if we also suppose that the coefficients a, b, c are smooth.

The main result of this section is the following

Proposition 5.1 (Upper Bound). Let T0, T1 be fixed and consider the set R+ × R×]T0, T1[. Let L1

be the operator in (5.1), and Γ(x, y, t; 1, 0, 0) be its fundamental solution. Denote by M1 the L∞-norm of
a(x, y, t) and T = T1 − T0. Then, for every positive ε, there exists a positive constant C+

ε , depending on
the vector fields X,Y , on ε, T and on the L∞-norm of a(x, y, t) such that

Γ(x, y, t; 1, 0, 0) ≤ C+
ε

t2
exp

(
− 1

16M1
Ψ(x, y − ε, t+ ε; 1, 0, 0)

)
(5.4)

for every (x, y, t) ∈ R+×]−∞, 0[×]0, T ].

The proof of Theorem 5.1 is based on a local L∞ a priori estimate for solution of L1u = 0. In order to
state precisely this estimate, we recall some notation. For every (x0, y0, t0) ∈ R+ × R2 and r ∈]0, 1[ we
consider the set Hr(x0, y0, t0) introduced in (2.10).

Proposition 5.2. Let (x0, y0, t0) be any point of R+ × R2, and let r, ρ with 0 < r/2 ≤ ρ < r < 1. Let u
be a non-negative weak solution of L1u(x, y, t) = 0 in Hr(x0, y0, t0) and let u ∈ L2(Hr(x0, y0, t0)). Then

sup
Hρ(x0,y0,t0)

up ≤ c̄

(r − ρ)6

∫
Hr(x0,y0,t0)

up, (5.5)

where the constant c̄ > 0 depends only on L1, p and on the L∞ norm of a, b, c.

The proof of Proposition 5.2 relies on the analogous result proven in [18, Theorem 1.4] for the Kol-
mogorov equation with bounded coefficients. For the sake of simplicity we recall here its statement for a
particular operator strongly related to L1. For every (x0, y0, t0) and r > 0 we denote

H̃r(x0, y0, t0) :=
{

(x, y, t) ∈ R3 | |x− x0| < r, |y − y0 + x0(t− t0)| < r3, −r2 < t− t0 < 0
}
.

Let Ω be an open subset of R3, (x, y, t) ∈ Ω and consider v(x, y, t) a positive weak solution in Ω of the
following equation

∂x(ã(x, y, t)∂xv) + b̃(x, y, t)∂xv + x∂yv + c̃(x, y, t)v − ∂tv = 0. (5.6)
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Assume that ã, b̃ and c̃ are measurable bounded continuous functions such that infΩ ã(x, y, t) > 0. Let

(x0, y0, t0) ∈ Ω and ρ, r such that 0 < r/2 ≤ ρ < r ≤ 1 and H̃r(x0, y0, t0) ⊆ Ω. Then, there exists a

positive constant c depending on the L∞ norm of ã, b̃, c̃ and on p such that

sup
H̃ρ(x0,y0,t0)

vp ≤ c

(r − ρ)6

∫
H̃r(x0,y0,t0)

vp. (5.7)

for every u ∈ Lp(H̃r(x0, y0, t0)).

Proof of Proposition 5.2. We first note that L1u = 0 reads as follows

∂x(x2a(x, y, t)∂xu) + (b(x, y, t)− a(x, y, t))x∂xu+ c(x, y, t)u+ x∂yu− ∂tu = 0 (5.8)

so that it has the form (5.6). Even if coefficents of L1 are unbounded and infR+×R2 x2a = 0, estimate
(5.7) holds on compact cylinders contained in R+ × R2. However, we need to show that the constant c̄
in (5.5) does not depend on (x0, y0, t0) and r.

We first fix (x0, y0, t0) = (1, 0, 0), so that the cylinders Hr(1, 0, 0) and H̃r(1, 0, 0) coincide. We modify
the functions a(x, y, t), b(x, y, t) and c(x, y, t) as we have done in Section 2

ã(x, y, t) = ϕ2(x)a(x, y, t), b̃(x, y, t) = ϕ(x)(b(x, y, t)− a(x, y, t)), c̃(x, y, t) = ϕ(x)c(x, y, t)

where ϕ(x) is the function defined in (2.17). Then the functions ã, b̃ and c̃ are uniformly bounded, inf ã
is strictly positive and (5.7) implies (5.5) if (x0, y0, t0) = (1, 0, 0).

For a general (x0, y0, t0), we consider the function w(x, y, t) := u
(
(x0, y0, t0)◦(x, y, t)

)
and we conclude

the proof by the argument used in the proof of Proposition 2.6. �

We next introduce a result that, combined with Proposition 5.2, provides us with the asymptotic
upper bound of the fundamental solution of L1. We first introduce a suitable cut-off function. Let
choose R > 1 and consider the following function

χR(x, y) = gR(x)hR(y), (x, y) ∈ R+ × R, (5.9)

where

- gR(x) = ϕ
(

log2(x)+1
log2(R)+1

)
;

- ϕ(s) is a continuous function such that ϕ(s) = 1 if s ∈ [0, 1/2] and ϕ(s) = 0 if s ∈ [1,+∞[;

- h(y) is a continuous function such that

• h(y) = 1 if y ∈ [−R,R];

• h(y) = 0 if y ∈]−∞,−R2] ∪ [R2,+∞[;

• h(y) is a C2 spline function with derivative bounded by 2
R2−R , if y ∈ [−R2;−R] ∪ [R,R2].

We first observe that gR(x) 6= 0 only if x ∈ [1/R,R] and

|x∂yχR(x, y)| ≤ x|gR(x)||∂yhR(y)| ≤ 2

R− 1
,

|x∂xχR(x, y)| ≤ x|hR(y)|‖ϕ′‖L∞(R)
2 log(x)

x(log2(R) + 1)
≤ ‖ϕ′‖L∞(R)

2 log(x)

(log2(R) + 1)
.

Therefore

|XχR| ≤ C
logR

log2R+ 1
→ 0 as R→ +∞

|Y χR| ≤ |x∂yχR| ≤
2

R− 1
→ 0 as R→ +∞.

Now we are ready to state the following

30



Proposition 5.3. Let u ∈ L2
(
R+ × R2

)
be a weak solution of L1u = 0, and let Ψ be the value function

of the control problem (4.6). Then there exist two positive constants m,M1 only depending on the L∞

norm of a, b, c, x∂xa, x∂xb, such that∫
R+×R

e−
Ψ(x1,y1,s;x,y,t1)

8M1
−mt1u2(x, y, t1)dx dy ≤

∫
R+×R

e−
Ψ(x1,y1,s;x,y,t0)

8M1
−mt0u2(x, y, t0)dx dy, (5.10)

for every t0, t1 with t0 < t1, and (x1, y1, s) ∈ R+ × R×]t1,+∞[.

Proof. Fix (x1, y1, t1) ∈ R+ × R2, and t0 < t1, and recall that, for any (x0, y0, t0) ∈ R3, in view of
(4.6) the function (x, y, t) 7→ Ψ(x0, y0, t0;x, y, t) is a classical solution of the Hamilton-Jacobi-Bellman
equation (see [6])

YΨ +
1

4
(XΨ)2 = 0.

We set v(x, y, t) := 1
16M1

Ψ(x0, y0, t0;x, y, t) where M1 is the L∞-norm of a. Then v satisfies

Y v + 4M1(Xv)2 = 0. (5.11)

We prove (5.10) by showing that

lim
R→+∞

∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 ≤ 0, (5.12)

where χR is the cut-off function introduced above and the constant m will be specified in the sequel. Let
u be a positive solution of L1 in the domain R+ × R× [t0, t1]. We note that∫

R+×R×[t0,t1]

x∂y
(
χ2
Re
−2v−mtu2

)
= 0

since the function χR(x, y) has compact support in R+ × R. Therefore we obtain∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 = −

∫
R+×R×[t0,t1]

Y
(
χ2
Re
−2v−mtu2

)
=

=

∫
R+×R×[t0,t1]

e−2v−mtu2
(
−Y
(
χ2
R

)
+ 2χ2

RY v −mχ2
R

)
− 2

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtuY u. (5.13)

We first focus on the last term of (5.13). By using the fact that u is weak solution of L1u = 0 one gets

A := −2

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtuY u = −2

∫
R+×R×[t0,t1]

aX
(
χ2
Re
−2v−mtu

)
Xu+

2

∫
R+×R×[t0,t1]

(
χ2
Re
−2v−mtu

)
(b− a)Xu+ 2

∫
R+×R×[t0,t1]

cχ2
Re
−2v−mtu2 =: A1 +A2 +A3. (5.14)

Consider the first term in (5.14) and compute the derivatives

A1 = −2

∫
R+×R×[t0,t1]

aX
(
χ2
Re
−2v−mtu

)
Xu = −4

∫
R+×R×[t0,t1]

aχRe
−2v−mtuXuXχR+

4

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mtuXuXv − 2

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mt(Xu)2 =: B1 +B2 +B3. (5.15)

By using Young inequality, it follows

B1 = −4

∫
R+×R×[t0,t1]

aχRe
−2v−mtuXuXχR ≤ 4

∫
R+×R×[t0,t1]

aχRe
−2v−mt |Xu| |uXχR| ≤∫

R+×R×[t0,t1]

aχ2
Re
−2v−mt(Xu)2 + 4

∫
R+×R×[t0,t1]

ae−2v−mtu2(XχR)2 =: C1 + C2, (5.16)

31



Merging the inequalities (5.15) and (5.16), since B3 = −2C1, we conclude

A1 = −
∫
R+×R×[t0,t1]

aχ2
Re
−2v−mt(Xu)2 +B2 + C2 ≤

4

∫
R+×R×[t0,t1]

aχ2
Re
−2v−mtu2(Xv)2 + C2 ≤ 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2 + C2. (5.17)

Now consider the second term in (5.14). Start from integration by parts formula

A2 = 2

∫
R+×R×[t0,t1]

uX∗
(
(b− a)

(
χ2
Re
−2v−mtu

))
.

Reminding that X∗ = −X − 1, similarly to (5.15), (5.16) and (5.17) we have

A2 ≤ −
∫
R+×R×[t0,t1]

(b− a)χ2
Re
−2v−mtu2 + 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2+

1

4M1

∫
R+×R×[t0,t1]

(b− a)2χ2
Re
−2v−mtu2 +

∫
R+×R×[t0,t1]

X
(
χ2
R

)
e−2v−mtu2+∫

R+×R×[t0,t1]

X(b− a)χ2
Re
−2v−mtu2 ≤ 4M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2+∫

R+×R×[t0,t1]

X
(
χ2
R

)
e−2v−mtu2 +

3

4
m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2. (5.18)

by setting

m := 4 max
{

1
4M1
‖(b− a)2‖L∞(R+×R×[t0,t1]), ‖X(b− a)‖L∞(R+×R×[t0,t1]),

2‖c‖L∞(R+×R×[t0,t1]), ‖b− a‖L∞(R+×R×[t0,t1])

}
. (5.19)

Going back to (5.14), combining (5.17), (5.18) and

A3 ≤
1

4
m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2,

we have

A ≤ 8M1

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2(Xv)2 + 4

∫
R+×R×[t0,t1]

ae−2v−mtu2(XχR)2+∫
R+×R×[t0,t1]

X(χ2
R)e−2v−mtu2 +m

∫
R+×R×[t0,t1]

χ2
Re
−2v−mtu2. (5.20)

Merging (5.20) with (5.14) ad (5.13) we conclude that∫
R+×R×[t0,t1]

d

dt
χ2
Re
−2v−mtu2 ≤ 2

∫
R+×R×[t0,t1]

(
χ2
Re
−2v−mtu2

)[
Y v + 4M1(Xv)2

]
+∫

R+×R×[t0,t1]

(
e−2v−mtu2

)(
− Y

(
χ2
R

)
+ 4a(XχR)2 +X

(
χ2
R

))
.

The first integral is zero since v satisfies the Hamilton-Jacobi-Bellman equation (5.11), and (5.10) simply
follows by letting R→ +∞. �

The next Lemma is crucial to prove Theorem 5.1.
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Lemma 5.4. Let ε be a fixed positive constants. Then there exists a constant cε > 0, only depending on
L1 and ε such that

u2
(
1, 0, t/2

)
≤ cε

∫
R+×R

e−
1

8M Ψ
(

1,−ε, t2 +ε,ξ,η,0
)
u2(ξ, η, 0)dξdη (5.21)

for every non-negative weak solution u of L1u = 0 in R+ × R×]T0, T1[.

Proof. Let ε > 0 be fixed and let r ∈]0, 1[ be such that r3 < ε. By Proposition 5.2, with p = 2, we have

u2
(
1, 0, t/2

)
≤ sup
H−
r/2

(
1,0,t/2

)u2(ξ, η, τ) ≤ c

(r/2)6

∫
Hr

(
1,0,t/2

) u2(ξ, η, τ)dξdηdτ (5.22)

for every t ∈]T0, T1[. Multiply and divide the integrand of the above inequality by the quantity

e
1

8M1
Ψ
(

1,−ε, t2 +ε;ξ,η,τ
)

+mτ
. (5.23)

Note that, as r3 < ε, the function (ξ, η, τ) 7→ Ψ
(
1,−ε, t2 + ε; ξ, η, τ

)
is well defined, continuous and

bounded in the set Hr/2

(
1, 0, t/2

)
.

Therefore, we denote by Cε the maximum of the function in (5.23) in the set Hr/2

(
1, 0, t/2

)
, which is

uniform with respect to t ∈]T0, T1[. We then find

u2
(
1, 0, t/2

)
≤ c

(r/2)6
· Cε

∫
Hr

(
1,0,t/2

) e− 1
8M1

Ψ
(

1,−ε, t2 +ε;ξ,η,τ
)
−mτ

u2(ξ, η, τ)dξdηdτ

≤ c

(r/2)6
· Cε

∫ t/2

t/2−r2

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t2 +ε;ξ,η,τ
)
−mτ

u2(ξ, η, τ)dξdηdτ

(by Proposition 5.3, with t0 = 0 and t1 = τ)

≤ c

(r/2)6
· Cε

∫ t/2

t/2−r2

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t2 +ε;ξ,η,0
)
u2(ξ, η, 0)dξdη

≤ c

(r/2)6
· Cε

∫
R+×R

e
− 1

8M1
Ψ
(

1,−ε, t2 +ε;ξ,η,0
)
u2(ξ, η, 0)dξdη.

which gives (5.21) by setting cε := c
(r/2)6 · Cε. �

We finally introduce a last result we need to prove Proposition 5.1. The following Proposition is a
direct consequence of Proposition 5.2 and involves the fundamental solution Γ of L .

Proposition 5.5. Let Γ be a fundamental solution of L1 and fix (x, y, t), (x0, y0, t0) in R+ × R2 with
y < y0 and T0 ≤ t0 < t ≤ T1. Define T = T1 − T0. Then, there exist a positive constant CT depending
on the operator L1 and on T such that the following upper bounds hold for Γ

i) Γ(x, y, t;x0, y0, t0) ≤ CT
(t−t0)2 ;

ii)
∫
R+×R Γ2(x, y, t;x0, y0, t0)dx0dy0 ≤ CT

(t−t0)2 ;

Proof. We only prove i), since ii) is its direct consequence reminding that∫
R+×R

Γ(x, y, t;x0, y0, t0)dx0dy0 = 1.
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We first fix 0 < t− t0 < 1 and, by using Proposition 5.2, we have

Γ(x, y, t;x0, y0, t0) ≤ sup
H√

t−t0/2
(x,y,t)

Γ(·, ·, ·;x0, y0, t0)

≤ C̄

(t− t0)3

∫
H√

t−t0
(x,y,t)

Γ(ξ, η, τ ;x0, y0, t0)dξdηdτ

≤ C̄

(t− t0)3

∫ t

t−(t−t0)

dτ

∫
R+×R

Γ(ξ, η, τ ;x0, y0, t0)dξdη =
C̄

(t− t0)2
(5.24)

since
∫
R+×R Γ(ξ, η, τ ;x0, y0, t0)dξdη is finite in view of (3.17). If t − t0 ≥ 1 we set ν = t−t0

T < 1, and
starting from the reproduction property we have

Γ(x, y, t;x0, y0, t0) =

∫
R+×R

Γ(x, y, t; ξ, η, t0 + ν)Γ(ξ, η, t0 + ν;x0, y0, t0)dξdη

≤ CT
(t− t0)2

∫
R+×R

Γ(x, y, t; ξ, η, t0 + ν)dξdη ≤ CT
(t− t0)2

by (5.24) where CT = C̄ T 2 and
∫
R+×R Γ(x, y, t; ξ, η, t0 + ν)dξdη = 1. �

We are now ready to prove the main proposition of this Section.

Proof of Proposition 5.1. Let ε > 0 be fixed and let Γ(x, y, t; 1, 0, 0) be the fundamental solution
of L1 and (x, y, t) ∈ R+×]−∞, 0[×]T0, T1[. We define

D1 =
{

(ξ, η) ∈ R+ × R− | Ψ
(
x, y − ε, t+ ε/2, ξ, η, t/2

)
≤ Ψ(ξ, η, t/2; 1, 0,−ε/2)

}
,

D2 =
{

(ξ, η) ∈ R+ × R− |Ψ(x, y − ε, t+ ε/2, ξ, η, t/2) > Ψ(ξ, η, t/2; 1, 0,−ε/2)
}
,

Starting from the reproduction property of Γ

Γ(x, y, t; 1, 0, 0) =

∫
R+×R−

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη

=

∫
D1

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη+

+

∫
D2

Γ(x, t, y; ξ, η, t/2)Γ(ξ, η, t/2, 1, 0, 0)dξdη

≤ CT
t2

(∫
D1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη

) 1
2

+

(∫
D2

Γ2(x, y, t; ξ, η, t/2)dξdη

) 1
2


where T = T1 − T0 and the last inequality follows from Hölder inequality and (5.24).
We now introduce the sets

D̃1 =
{

(ξ, η) ∈ R+ × R− | Ψ
(
x, y − ε, t+ ε/2, 1, 0,−ε/2

)
≤ 2Ψ(ξ, η, t/2, 1, 0,−ε/2)

}
,

D̃2 =
{

(ξ, η) ∈ R+ × R− | Ψ(x, y − ε, t+ ε/2, 1, 0,−ε/2) ≤ 2Ψ(x, y − ε, t+ ε/2; ξ, η, t/2)
}
,

and we note that D1 ⊆ D̃1 and D2 ⊆ D̃2 as a consequence of the triangular inequality of the value
function:

Ψ(x0, y0, t0;x, y, t) ≤ Ψ(x0, y0, t0; ξ, η, τ) + Ψ(ξ, η, τ ;x, y, t)

for arbitrary points (x0, y0, t0), (ξ, η, τ), (x, y, t) belonging to R+ × R×]T0, T1[ with y > η > y0 and
T0 ≤ t < τ < t0 ≤ T1. Hence

Γ(x, y, t; 1, 0, 0) ≤ CT
t2

(∫
D̃1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη

) 1
2

+

(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

) 1
2
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We now claim that:

∫
D̃1

Γ2(ξ, η, t/2, 1, 0, 0)dξdη ≤ cεe
− 1

16M1
Ψ(x,y−ε,t+ε/2;1,0,−ε/2)

(5.25)∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη ≤ cεe
− 1

16M1
Ψ(x,y−ε,t+ε/2;1,0,−ε/2)

(5.26)

where cε is a positive constant depending on L and ε. We first prove (5.26) and we define the functions

v(z, w, s) =

∫
D̃2

Γ(z, w, s; ξ, η, t/2)Γ(x, y, t; ξ, η, t/2)dξdη, u(z, w, s) = v((x, y, t/2) ◦ (z, w, s))

We further note that the functions u and v satisfy the following properties:

i) v(z, w, s) is a solution of L1v(z, w, s) = 0 in R+ × R × [t/2, T1[. Then u(z, w, s) is a solution of
L1z̄u(z, w, s) = 0 in R+ × R×]0, T1[ where z̄ = (x, y, t/2) and

L1z̄u(z, w, s) = z∂z
(
a(xz, y + xw, t/2 + s)z∂zu

)
+ z b(xz, y + xw, t/2 + s)∂zu+

+z∂wu+ c(xz, y + xw, t/2 + s)u− ∂tu. (5.27)

ii) the function v satisfies the initial condition v(z, w, t/2) = Γ(x, y, t; z, w, t/2)1D̃2
(z, w);

iii) it holds u(1, 0, t/2) =
∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη.

where 1D̃2
(z, w) denotes the characteristic function of the set D̃2. In virtue of Lemma 5.4 we have

u2
(
1, 0, t/2

)
≤ cε

∫
R+×R

e−
1

8M1
Ψ
(

1,−ε, t2 +ε/2,z,w,0
)
u2(z, w, 0)dzdw

By observing that Ψ
(
1,−ε, t2 + ε/2, z, w, 0

)
= Ψ

(
x, y − ε, t + ε/2;x, y, t/2) ◦ (z, w, 0)

)
, by the change of

variable (ξ, η, t/2) = (x, y, t/2) ◦ (z, w, 0) and by properties ii) and iii), we get(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

)2

= u2
(
1, 0, t/2

)
≤ cε

∫
D̃2

e−
1

8M1
Ψ
(
x,y−ε,t+ε/2;ξ,η,t/2

)
Γ2(x, y, t; ξ, η, t/2)dξdη

We finally obtain (5.26) by recalling the definition of D̃2(∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

)2

≤ cεe−
1

16M1
Ψ
(
x,y−ε,t+ε/2,1,0,−ε/2

) ∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη

and the result immediately follows by dividing by
∫
D̃2

Γ2(x, y, t; ξ, η, t/2)dξdη and by recalling that

Ψ
(
x, y − ε, t+ ε/2, 1, 0,−ε/2

)
= Ψ

(
x, y − ε, t+ ε, 1, 0, 0)

The proof of inequality (5.25) is analogous to (5.26). Indeed, consider the function

v2(z, w, s) =

∫
D̃1

Γ(ξ, η, t/2; z, w, s)Γ(ξ, η, t/2; 1, 0, 0)dξdη,

which is a non-negative solution to L ∗1 v2 = 0 with final data v2(z, w, t/2) = Γ(z, w, t/2; 1, 0, 0) if (z, w) ∈
D̃1 and v2(z, w, t/2) = 0 if (z, w) /∈ D̃1. Notice that the coefficients of L ∗1 satisfy the same assumptions
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(1.17) and (5.3) made on L1, then all the properties shown for the function (x, y, t) 7→ Γ(x, y, t; ξ, η, τ)
and used to prove (5.26), also hold for (x, y, t) 7→ Γ(ξ, η, τ ;x, y, t) (which is the fundamental solution of
L ∗1 u = 0) and they can be used to prove (5.25). This proves the claim. �

We are now ready to prove the main result of our article.

Proof of Theorem 1.3. Let Γ(x, y, t;x0, y0, t0) denote the fundamental solution of L in (1.2) and
(x, y, t), (x0, y0, t0) in R+ × R × [0, T ] with y < y0 and t > t0. If (x0, y0, t0) = (1, 0, 0), the lower bound
of Γ follows from Proposition 4.4, whereas the upper bound follows from Proposition 5.1. For a general
choice of z0 = (x0, y0, t0) it suffices to note that the function

Γz0(x, y, t; 1, 0, 0) = x2
0 Γ((x0, y0, t0) ◦ (x, y, t);x0, y0, t0) (5.28)

is the fundamental solution of the operator Lz0 defined in (1.18), with singularity at (1, 0, 0). As noticed
in Remark 1.2, it satisfies assumptions (1.17) with the same constants λ used for L , then (4.23) and
(5.4) applies to Γz0 . If one consider the lower estimates, we find

Γ((x0, y0, t0) ◦ (x, y, t);x0, y0, t0) ≥
c−ε,T
x2

0t
2

exp
(
−C−Ψ(x, y, t; 1,−εt, εt)

)
,

that can be written equivalently as follows

Γ((x, y, t;x0, y0, t0) ≥
c−ε,T

x2
0(t− t0)2

exp
(
−C−Ψ((x0, y0, t0)−1 ◦ (x, y, t); 1,−ε(t− t0), ε(t− t0))

)
.

The conclusion follows by applying the invariance property (4.5) of Ψ:

Ψ((x0, y0, t0)−1◦(x, y, t); 1,−ε(t− t0), ε(t− t0))= Ψ(x, y, t; (x0, y0, t0)◦(1,−ε(t− t0), ε(t− t0)))

= Ψ(x, y, t;x0, y0 − ε(t− t0)x0, t0 + ε(t− t0))

= Ψ(x, y + ε(t− t0)x0, t− ε(t− t0);x0, y0, t0).

The proof of the upper bound is analogous. �
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