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Abstract: Mesenchymal stem cells (MSCs) are considered as primary candidates for cell-based therapies
due to their multiple effects in regenerative medicine. Pre-conditioning of MSCs under physiological
conditions—such as hypoxia, three-dimensional environments, and dynamic cultivation—prior to
transplantation proved to optimize their therapeutic efficiency. When cultivated as three-dimensional
aggregates or spheroids, MSCs display increased angiogenic, anti-inflammatory, and immunomodulatory
effects as well as improved stemness and survival rates after transplantation, and cultivation under
dynamic conditions can increase their viability, proliferation, and paracrine effects, alike. Only few studies
reported to date, however, have utilized dynamic conditions for three-dimensional aggregate cultivation
of MSCs. Still, the integration of dynamic bioreactor systems, such as spinner flasks or stirred tank
reactors might pave the way for a robust, scalable bulk expansion of MSC aggregates or MSC-derived
extracellular vesicles. This review summarizes recent insights into the therapeutic potential of MSC
aggregate cultivation and focuses on dynamic generation and cultivation techniques of MSC aggregates.

Keywords: mesenchymal stem cells; aggregates; spheroids; dynamic cultivation; bioreactor cultivation;
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1. Therapeutic Relevance of Mesenchymal Stem Cells

In the field of regenerative medicine, mesenchymal stem cells (MSCs) are considered primary
candidates for cellular therapies and tissue engineering. They can be harvested from a variety of tissues,
such as bone marrow, adipose tissue, or umbilical cords. Minimal criteria for the characterization of
human MSCs defined in a position paper by the International Society for Cellular Therapies (ISCT)
comprise plastic adherence, trilineage differentiation (adipogenic, chondrogenic, osteogenic), as well as
a specific surface marker expression profile (CD105+, CD73+, CD90+, CD14−, CD19−, CD34−, CD45−

and HLADR−) [1]. Although MSCs might display similar properties across different species this
review considers only results from research on human MSCs.

The regenerative potential of MSCs is not limited to their ability to differentiate into adipocytes,
chondrocytes, and osteoblasts, as indicated by a number of studies reporting MSC differentiation
into neurons [2], cardiomyocytes [3], and corneal epithelial cells [4] along with effects related to
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injury repair, such as migration to injury sites [5,6], angiogenesis [7] and anti-scarring effects [8].
MSCs display immunomodulatory and anti-inflammatory properties mediated by cellular cross talk [9]
or by secretion of trophic factors, such as transforming growth factor-β (TGF-β), IL-6, prostaglandin
E2 (PGE2), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), fibroblast growth
factor (FGF), epidermal growth factor (EGF), stromal cell-derived factor 1 (SCDF-1), and vascular
endothelial growth factor (VEGF) [10,11]. MSCs have been applied in a number of clinical trials with
promising results for the treatment of graft-versus-host disease (GvHD), myocardial injuries, as well as
bone and cartilage defects [12], and further investigations were conducted in the context of pulmonary
disease, ischemic stroke, liver disease, and diabetes [13,14].

Stem Cell-Derived Extracellular Vesicles

It is generally recognized that MSCs exert their therapeutic effects via the secretion of paracrine
factors and stimulation of host cells rather than via direct engraftment and cell replacement, and there is
increasing evidence for the significance of MSC-derived extracellular vesicles (EVs) in this context [15,16].
EVs are small phospholipid vesicles released from a wide variety of cell types, which are commonly
classified into exosomes (30–100 nm; intraluminal vesicles originating from multivesicular bodies),
microvesicles (100–1000 nm, released from the plasma membrane), and apoptotic bodies (1–5 µm)
according to their biogenesis and size. Exosomes preferentially expose molecules related to endosomal
trafficking, such as tetraspanins (CD9, CD63, and CD81) or Alix, while microvesicles are enriched with
surface markers derived from their parent cells, such as CD73 and CD90 for MSC-derived EVs. However,
as there are considerable overlaps in both, size and marker profiles of exosomes and microvesicles, and
their precise separation is not yet technically feasible, the use of the collective term “extracellular vesicles”
has been recommended by the International Society for Extracellular Vesicles (ISEV) [17].

EVs are central mediators in a number of physiological processes, including intercellular
communication, cell signaling, and maintenance of tissue homeostasis, but also in pathological settings,
such as inflammation and cancer. They can be internalized by a variety of cell types and transfer
bioactive molecules (e.g., cytokines, growth factors, as well as coding and regulatory genomic material,
such as mRNA, miRNA, siRNA, piRNA) to their recipient cells [18]. The structure of EVs protects their
cargo from enzymatic degradation, and the presence of membrane proteins enables tailored delivery
to their target cells [19]. Additionally, the solubility, local availability, and bioactivity of specific factors
can be enhanced by their association with EV membranes [20].

The functional consequences of EV-mediated transfer of bioactive molecules include the induction,
amplification, and regulation of immune responses, which has sparked considerable interest in the
application of EVs as therapeutic agents [21]. In fact, MSC-derived EVs have been shown to recapitulate
the ability of their parent cells to deliver signals related to immune regulation [22,23]. In vitro data
indicate that (1) MSC-derived EVs can target a range of adaptive and innate immune cells [24], that
(2) EVs from different MSC sources employ different immunomodulatory mechanisms [25] and can
have different effects on their target cells [15,26], and that (3) MSC-derived EVs may mediate both,
immunosuppressive properties and enhanced immune responses [27]. While these findings show that
MSC-derived EVs can recapitulate the ability of their parent cells to deliver signals related to immune
regulation [22,23], several studies have provided evidence that MSC-derived EVs do not fully reflect
the effects exerted by their parent cells [28–30]. These diverging findings may at least partially result
from different experimental approaches, such as different culture conditions of MSCs, isolation, and
standardization of MSC-derived EV populations, as well as variable in vitro co-culture conditions,
highlighting the requirement for standardized protocols [17]. The tissue source, the isolation, as well
as the culture conditions can indeed influence the biological activity of MSC-derived EVs, as recently
reviewed [14]. As an example, proteomic analysis of EVs from bone marrow-derived MSCs revealed
significantly increased expression of proteins associated with angiogenic signaling under ischemic
conditions [31] and hypoxic preconditioning enhanced the release of EVs enriched in miRNAs involved
in wound healing [32].
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In addition to the in vitro data, a number of studies have investigated the therapeutic effects of
MSC-derived EVs in vivo using animal disease models of myocardial infarction, stroke, kidney failure,
and liver fibrosis, as summarized in [33]. A recent review of controlled trials using MSC-derived
EVs concluded that their administration to animals was safe and could contribute to improved organ
function following injury [34]. Two clinical studies in humans using MSC-derived EVs have been
reported so far. In the first case, a patient suffering from steroid refractory GvHD was successfully
treated with MSC-derived EVs. Although it remains unclear which fraction or components of the EV
preparation were responsible for the anti-inflammatory effects, the study suggests that MSC-derived
EVs modulated the response of patients’ immune cells [35]. In the second study, patients suffering from
chronic kidney disease and administered twice with cord-blood MSC-derived EVs showed improved
kidney function and beneficial modulation of inflammatory markers, i.e., increase of TGF-β1 and IL-10
and decrease of TNF-α levels in response to treatment [36].

This suggests that MSC-derived EVs could represent an alternative to whole cell therapies.
They may have a superior safety profile as compared to whole cells, and due to their size in
the nanometer range, injected EVs can circulate through capillaries without entrapment by filter
organs [37] and can cross biological barriers [38]. Their perceived capacity to survive and retain their
activity during storage further supports MSC-derived EVs as a promising alternative tool for cell-free
therapies [39–41]. As products of viable active stem cells, MSC-derived EVs are classified as “biological
medicinal products”, but aspects such as information on the active substances and the mechanism of
action are still not fully elucidated. Based on the criteria for “high risk medicinal products” (HRMPs)
classification, such as lack of knowledge on the mechanisms of action, no clear understanding of the
target, and limited relevance of animal models, EV-based therapeutics might be categorized as such,
leading to the demand of strict pre-clinical safety tests. To this purpose, the ISEV has discussed aspects
concerning safety and regulatory matters to be taken into account for clinical application or medicinal
manufacturing, pointing out that, as allogenic EVs are routinely transfused within blood products and
there is little evidence on adverse effects and as the response to previous treatments with autologous
and allogenic MSCs has been positive, MSC-EVs should not be considered as HRMPs [42].

2. 3D Aggregate Cultivation of MSCs

While biological, chemical, physical, and mechanical cues can profoundly influence cellular
characteristics, commonly used MSC cultivation conditions, such as 2D cultivation on plastic surfaces
under static conditions are far from representing the physiological environment of these cells. To reflect
physiological conditions in vitro, cells can either be cultivated on 3D matrices or in a scaffold-free
manner as cellular aggregates, often referred to as spheroids. While the general term ‘aggregate’
describes any multicellular entity of condensed cells, the term ‘spheroid’ refers to spherical cellular
aggregates. In embryonic stem cell research, where aggregate cultivation has been used since decades,
it is also referred to as organoid culture [43].

The dynamics of spheroid formation comprises three stages. Cadherin-cadherin interaction and
integrin binding to extracellular matrix (ECM) proteins mediate first cell-cell contacts to form loose
cellular aggregates. This is followed by a delay period of reorganization in which cell aggregates pause
in compaction. In the third stage, strong interaction of cadherins is a major factor for the morphological
transition from loose cellular aggregates to compact spheroids [44] (Figure 1).

While MSC aggregate cultivation has mainly been conducted in the context of chondrogenic
differentiation, it is increasingly used to study cellular behavior under 3D conditions to more closely
resemble a physiological setting [45]. Cellular behavior in tissues is determined by diffusive mass transfer,
causing gradients of oxygen, nutrients, metabolic waste products, and paracrine mediators [46], which is
not appropriately reflected in 2D cultivation. Moreover, MSCs cultivated as aggregates experience a
different strain and rigidity during cultivation and adapt their adhesion behavior and phenotype [47]
accordingly, potentially resulting in increased immunomodulatory, anti-inflammatory, and angiogenic
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effects. Due to this increased angiogenic and vasculogenic potential, MSC aggregates might be used as
vascularization units and can be considered as building blocks for tissue engineering [48,49].

While there are a number of reviews on the characteristics of MSC aggregates [47,50–53], the impact
of dynamic cultivation on both, MSC aggregates and EVs released from these aggregates remains
to be summarized. As physiological pre-conditioning strategies including a 3D environment and
dynamic cultivation under hypoxic conditions have been shown to optimize the therapeutic potential of
MSCs [50], they may enhance the effects of MSC-derived EVs, but this hypothesis remains to be tested.
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Figure 1. Three-step aggregation process: during the first phase of cell aggregation, cadherin–cadherin
interactions and integrin binding to extracellular matrix proteins mediate the first cell–cell contacts.
After a delay period of reorganization, aggregate compaction is mediated by cadherins.

3. Therapeutic Potential of Aggregate Cultivation

Compared to 2D monolayer cultivation, scaffold-free aggregate cultivation of cells improves their
biological properties, resulting in increased cell viability, proliferation, and differentiation, as well as in
physiologically relevant metabolism, phenotype, and genotype [20]. For MSC aggregates, in particular,
enhanced anti-inflammatory [54], angiogenic, and tissue regenerative effects [55] as well as enhanced
differentiation [56], maintenance of stem cell properties and delayed replicative senescence were
observed [55,57]. This shift to a more physiological cellular behavior is not only relevant for clinical
application, but can also enhance the significance of in vitro models. The following section highlights
the therapeutic potential of MSC aggregate cultivation with respect to (1) angiogenic properties,
(2) anti-inflammatory properties, (3) immunomodulatory characteristics, (4) stemness, and (5) cell
survival and anti-apoptotic properties (Figure 1).

3.1. Angiogenic Properties

MSCs cultivated as aggregates exhibit increased angiogenic properties. Human MSC aggregates
showed improved therapeutic efficacy for ischemia treatment through increased angiogenic factor secretion
which has been attributed to the hypoxic environment inside the aggregates [58]. HGF, VEGF, and FGF-2
levels were 20- to 145-fold higher in medium conditioned with MSC aggregates, as compared to medium
from MSCs cultivated in 2D monolayers. Recent studies not only report an improvement in terms of
paracrine effects, but also functional improvement through increased neovascularization [59,60], wound
healing [60], tube formation, and migration of fibroblasts into a wounded area [61].

3.2. Anti-Inflammatory and Immunomodulatory Effects

Furthermore, MSC aggregates display immunosuppressive effects. Secretion of TNF-α from
macrophages decreased in co-culture with MSC aggregates as compared to co-cultivation with a 2D
MSC monolayer [54,62]. The secretion of PGE2 [63], HGF [54,63–65], and TGF-β [62] which are known to
suppress pro-inflammatory markers and direct stimulated macrophages towards an anti-inflammatory
phenotype increased upon MSC aggregate cultivation. Likewise, anti-inflammatory factors, such as
TNF-α-stimulated gene protein TSG-6 which is known to counteract TNF-α and IL-1 inflammation,
were elevated [54]. Furthermore, MSC aggregates suppressed inflammation in a mouse model of
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zymosan-induced peritonitis [54] and reduced acute kidney injury in a rat ischemia–reperfusion
model [66]. The expression of anti-inflammatory and immunomodulatory factors, however, can be
further increased by optimizing the microenvironment via the spheroid size, oxygen tension, and
inflammatory stimulus [67].

3.3. Stemness

During 2D monolayer cultivation, MSCs may undergo aging, loss of clonogenicity, or spontaneous
differentiation [68,69]. For clinical application however, it is crucial to maintain the stemness of MSCs
during in vitro cultivation. Compared to 2D cultivation, MSC aggregates display increased expression
of the pluripotency marker genes Nanog, Sox2, and Oct4 [70,71]. miRNAs—namely miR-489, miR-370,
and miR-433—which are related to the maintenance of a quiescent adult stem cell state, were highly
expressed in MSC aggregates [70], and an increased clonogenicity was observed after aggregate
cultivation [70,71]. In a following study, delayed replicative senescence of aggregate-derived MSCs
was observed in comparison to monolayer-derived MSCs [55].

3.4. Cell Survival and Anti-Apoptotic Effects

The survival of cells after transplantation plays an important role in the therapeutic outcome.
As an example, more than 85% of systemically injected MSCs were found in the precapillaries [37].
MSCs cultivated as aggregates displayed better survival in ischemic conditions [72] and higher
resistance to oxidative stress-induced apoptosis [73]. Additionally, the pro-apoptotic molecule Bax was
downregulated, while the anti-apoptotic molecule Bcl-2 was upregulated in MSC aggregates [57,72],
which might contribute to the overall post-transplantation survival of MSCs.

4. Generation of MSC Aggregates

To generate aggregates, MSC adhesion to tissue culture plates must be avoided. Methods for the
generation of aggregates from a single cell suspension can be classified into cluster-based self-assembly
and collision-based assembly [74]. Cluster-based self-assembly is a process in a static environment
where cells are prevented from attaching to a surface and thus come in contact with each other to form
aggregates. In contrast, collision-based assembly takes place in a dynamic environment, where cells
collide upon centrifugation or mixing of a single cell suspension (Figure 2).
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4.1. Static Cluster-Based Self-Assembly

In cluster-based self-assembly, single cells are separated into compartments and undergo the
typical three-step process of aggregate formation as shown in Figure 1. Hanging drop cultivation may
be the most common cluster-based self-assembly method [49,75,76]. Specialized cell culture plates
allow formation of hanging drops from a single cell suspension with subsequent formation of cell
aggregates. Beside its labor intensity, the only drawback of this method is that medium changes are
challenging and prone to error or destruction of aggregates or the hanging drops. To overcome this
limitation, automated [77], robot assisted [78] and microfluidic based [79] high-throughput hanging
drop cultivation systems have been developed recently.

Cell culture plates with ultralow adhesive surfaces can be used to generate aggregates,
as well [56,62,75]. This method is also referred to as ‘liquid overlay’ method. On flat bottom plates,
cells form aggregates of heterogeneous size and shape, whereas aggregate shape and size can be very
well controlled in round-shaped cavities, such as round bottom multiwell plates. Based on this principle,
different kinds of microwell arrays made from micropatterned agarose [80], polydimethylsiloxane
(PDMS) [81] or polyethylene glycol (PEG) hydrogels [82] have been developed to generate large
quantities of uniformly sized and shaped aggregates in a cost-effective manner. Other modifications,
such as thermally responsive surfaces [83] or polycationic chitosan membranes [71,84], have also
been applied to form aggregates. These methods yielded viable aggregates, although heterogeneous
in shape and size. Microfluidic systems were also used to generate size controlled aggregates [85].
As an example double-emulsion droplets were used to generate picoliter-sized bioreactors for the
self-assembly of MSC spheroids [86]. External forces such as magnetic force [87], electric field [88],
or ultrasound wave traps [89] to concentrate cells for aggregation are not as common, and only
magnetic force has been used for the aggregation of MSCs so far [90,91].

4.2. Dynamic Collision-Based Assembly

Methods for dynamic, collision-based assembly of MSC aggregates include forced aggregation by
centrifugation [92] or mixing mediated by shaker platforms [75,93], spinner flasks [56,59], rotating wall
vessels (RWVs) [56], and stirred tank reactors (STRs) [94]. Aggregation by centrifugation has mainly been
used for chondrogenic differentiation of MSCs [95] and is also known as pellet or micromass culture.
Collision-based assembly by mixing was observed with a seeding density of as low as 2× 104 cells/mL in
spinner flasks and RWVs [56], with 1× 105 cells/mL in a STR [94] and led to randomly sized spheroids,
whereas mixing in ultralow adhesive multiwell plates on a shaker platform [75] and compression by
centrifugation [92] yielded aggregates with narrower size and homogeneous shape distribution.

5. Dynamic Cultivation of Aggregates

The therapeutic effects of MSCs, MSC conditioned medium, or MSC-derived EVs have been shown
to support regeneration after organ and tissue injury. In vitro pre-conditioning strategies can enhance
survival, engraftment, and paracrine properties of MSCs and, therefore, optimize their therapeutic
potential [50]. Specifically, dynamic cultivation conditions, such as fluid flow have substantial impact
on cellular behavior (Figure 3). Increased proliferation, viability, differentiation potential but also
paracrine effects were observed in perfusion bioreactors, on horizontal or orbital shaking platforms,
or in stirred systems, such as spinner flasks or stirred tank reactors [96–98]. However, only a few
studies have harnessed dynamic conditions for the generation and cultivation of MSC aggregates
(Table 1), as dynamic cultivation aggregates do not necessarily need to be generated by dynamic
collision-based assembly. Studies report formation by centrifugation [92], in hanging drops [75],
in ultralow adhesive multiwell plates [75], or in a microwell array [82] followed by cultivation in a
dynamic cultivation system, such as shaker platforms [75,82,92,93], in spinner flasks [56,59], RWV [56],
or STR [94]. In microwell arrays, all seeded cells are involved in the formation of aggregates, thus the
size and cell number per aggregate can be precisely controlled.
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Table 1. Comparison of different studies reporting on dynamic cultivation conditions for the cultivation of MSC aggregates.

Ref. Cultivation System Cells Per
Spheroid

Initial Cell
Density (c/mL)

Rotation
(rpm)

Duration
(days)

Surface
Marker

Differentiation
Capacity Effects Aggregate Size (µm)

[56] SF and cultivation in
spinner flask random 2 × 104 30 7 ~ A↑, O↑ (compared to

2D static)

Hypoxia-linked genes ↑,
changes in ECM

organization, IL24↑
56–135 (avrg. 99)

[56]
SF and cultivation in

rotating wall
vessel bioreactor

random 2 × 104 15 7 ~ A↑, O↑ (compared to
2D static) 18–44 (avrg. 32)

[75] SF and cultivation on
orbital shaker random 5 × 104 95 Aborted after

3 days - - Multi aggregation

[75]

Formation in hanging
drop, cultivation in

suspension on
orbital shaker

5000 2.5 × 105 95 Aborted after
3 days - - Multi aggregation

[75]
96-well plate on orbital

shaker followed by
static cultivation

1–2 × 104 0.6–1.3 × 105 95
2 dynamic

followed by
21 static

- O↑ (compared
to control) Col1, Col3, OPN, BMP-2↑ 200

[59] SF and cultivation in
spinner flask random 6 × 105 70 3 ~ -

Anti-apoptotic, angiogenic
factors, preservation of

ECM, enhanced survival
after transplantation

100–350

[92]
Formation by

centrifugation followed
by orbital shaker

300/600/1000 1.8–6 × 106 45 21 - A↑, O↑ (compared to
2D static)

Active proliferation in the
center of the spheroid,
undifferentiated up to

16 days,

157/100/177 (day 7)

[93]
SF and cultivation in

shaker flask on
horizontal shaker

random 1 × 105 80 7 ~
A, C, O (dissociated

cells in 2D static after
3D dynamic)

Active proliferation in the
center of the spheroid, up

to 6-fold expansion
-

[94] SF and cultivation in
stirred tank bioreactor random 1 × 105 600 6 ~

A, C, O (dissociated
cells in 2D static after

3D dynamic)
Approx. 2-fold expansion -

[82] Microwell array on
orbital shaker 400 5 × 105

cells/array
30 7 - - No proliferation, EV

production ↑ 150

SF: spontaneous formation of aggregates, A: adipogenic differentiation, C: chondrogenic differentiation, O: osteogenic differentiation, decrease: ↓, increase: ↑, comparable to 2D: ~,
not measured: -.
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gradients of nutrients and waste products, aggregates cultivated under static conditions are usually
structured in three layers: a necrotic core in the center, a quiescent viable zone of non-proliferative
cells, and an outer layer with proliferating cells. In contrast, dynamic cultivation conditions result in a
viable core and active proliferation throughout the aggregate. Cells from these aggregates maintain
their phenotype, proliferation capacity, and display an increased production of EVs.

5.1. Proliferation and Viability

Under static conditions, a necrotic core develops with time due to oxygen, nutrition, and waste
product gradients along the diameter of an aggregate, and thus aggregates cultivated under static
conditions have not been reported to exceed approximately 500 µm in diameter [99,100]. Interestingly,
none of the studies on dynamic cultivation of MSC aggregates reported a necrotic core inside the
aggregates. In contrast, two studies reported active proliferation at the core of the aggregates [92,93],
and an up to six-fold expansion of cells was observed [93,94]. Increased convection in dynamic
cultivation seems to improve oxygen and nutrient supply and to inhibit the formation of gradients.
In contrast, Cha et al. observed active proliferation only in 3D static conditions whereas in 3D dynamic
conditions cells seemed to rest, although they were more active in terms of EV production [82].
The different cellular behavior might not only be owed to different aggregate formation and cultivation
techniques but also to different media compositions. High expansion was observed in optimized
serum-free [93] or platelet lysate supplemented [94] medium, whereas less or no proliferation was
observed using fetal bovine serum-containing medium [82].

5.2. Stemness

Mechanical stimulation by shear forces during dynamic cultivation can trigger spontaneous
differentiation of MSCs and thus compromise their stemness. Therefore, surface marker expression
and differentiation capacity of MSCs have been evaluated in previous studies after dynamic aggregate
cultivation. None of the studies analyzing surface marker expression according to the guidelines of
the ISCT found alterations of the phenotype [56,59,93,94]. However, during aggregate formation and
cellular reorganization mesenchymal stem cell markers seemed to be altered [56,82]. When cells were
cultivated for an extended period as aggregates or were dissociated after 3D dynamic cultivation and
cultivated again in 2D models, cells expressed a typical MSC phenotype. Also, MSC aggregates were
kept in an undifferentiated state over a period of 16 days on a shaker platform at 45 rpm [92] and for a
period of 6 days at 600 rpm in a STR with an average shear stress of 0.2 Pa [94]. Thus, aggregate formation
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might shield the inner cell mass from shear forces and helps to avoid spontaneous differentiation.
Regarding differentiation capacity all studies that either differentiated MSC aggregates [56,75,92] or
differentiated MSCs after 3D dynamic cultivation [93,94] observed robust trilineage differentiation as
analyzed by histological stainings and/or gene expression. The studies testing differentiation of MSC
aggregates against 2D static observed increased adipogenic and osteogenic differentiation [56,75,93].
However, it remains unclear if the cultivation under 3D dynamic conditions increases the differentiation
potential in comparison to 3D static cultivation.

5.3. Therapeutic Potential

In the context of therapeutic potential, a direct comparison between dynamic and static cultivation
of 3D aggregates would be of interest since until now the gene regulation of 3D dynamic cultivated
cells was only compared to 2D static cultivation. The study observed 710 genes that were differently
expressed (277 downregulated and 433 upregulated genes). The most differently expressed genes
were classified under (1) biological adhesion, structural molecule activity, and ECM which pointed to
changes in the cytoskeleton; (2) developmental process which affected numerous secreted factors like
IL-24; and (3) hypoxia related genes [56]. Also, the secretion of angiogenic factors like VEGF, HGF,
and HGF-2 was significantly increased in an ischemic limb model after dynamic cultivation when
cells were grafted as spheroids compared to dissociated cells [59]. The same study observed a higher
survival rate after transplantation. Furthermore, the production of EVs was strongly increased during
dynamic aggregate cultivation compared to static aggregates [82] and cytokine levels in these EVs
was significantly higher. These findings suggest that dynamic cultivation of MSC aggregates might
increase the therapeutic potential of MSCs or of MSC-derived EVs.

6. Concluding Remarks

Only few studies so far have addressed dynamic cultivation of MSC aggregates and since different
techniques for the generation and cultivation were used, results are diverse and not directly comparable.
Moreover, until now only Cha et al. specifically compared 3D static to 3D dynamic cultivation of MSC
aggregates [82]. However, existing reports on the dynamic cultivation of MSC aggregates highlight the
maintenance of stemness, improved differentiation capacity, and to some extent active proliferation of
cells (Figure 3).

The dynamic cultivation of MSC aggregates might be a suitable strategy to develop a passage-free
expansion system. Since convection reduces oxygen, nutrient and waste gradients along the diameter
of aggregates, larger viable aggregates without necrotic cells in their core can be generated under
dynamic conditions. Currently, the growth rate is not competitive to microcarrier-based expansion
systems [101,102]. Up to now, however, no study has investigated the cellular growth in dynamically
cultivated MSC aggregates for more than seven days, thus after optimization MSC aggregates might
be a viable option for in vitro expansion. Interestingly, up to six-fold expansion of MSCs was observed
within seven days with a medium optimized for dynamic aggregate cultivation of MSCs [93] indicating
further optimization potential.

Also, defined starting conditions in terms of uniform aggregate shape, size, and cell number are
needed in future studies. As more manufacturers offer ready-to-use micropatterned multiwell plates
that do not need additional centrifugation steps or rinsing agents, this might be the best option to
generate lager numbers of uniform spheroids at low cost and a minimum of time.

Next to relevant biological implications and advantages of the 3D culture, the large number
of clinical studies (>700 from www.clinicaltrials.gov) based on MSC demand for novel conditions
where cells may be cultured in a more cost-effective manner. This could allow the reduction of MSC
manufacturing costs, contributing to the progress towards larger phase III studies and, ultimately, to a
wider diffusion of their therapeutic potential.

Although more studies on the direct comparison of 3D static to 3D dynamic cultivation of MSC
aggregates are needed, the upregulation of hypoxic genes which results in increased angiogenesis,

www.clinicaltrials.gov


Bioengineering 2018, 5, 48 10 of 15

the upregulation of the cancer suppressing cytokine IL-24, and the increased EV production found
in dynamically cultivated MSC aggregates may be promising for future clinical application. Due to
this high therapeutic potential, the large-scale production of MSC-EVs and their standardization is
becoming a crucial issue for clinical translation [103–105].
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