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Abstract. Here we introduce an approximated differentiable renderer
to refine a 6-DoF pose prediction using only 2D alignment information.
To this end, a two-branched convolutional encoder network is employed
to jointly estimate the object class and its 6-DoF pose in the scene.
We then propose a new formulation of an approximated differentiable
renderer to re-project the 3D object on the image according to its pre-
dicted pose; in this way the alignment error between the observed and
the re-projected object silhouette can be measured. Since the renderer is
differentiable, it is possible to back-propagate through it to correct the
estimated pose at test time in an online learning fashion. Eventually we
show how to leverage the classification branch to profitably re-project a
representative model of the predicted class (i.e. a medoid) instead. Each
object in the scene is processed independently and novel viewpoints in
which both objects arrangement and mutual pose are preserved can be
rendered.

Differentiable renderer code is available at:
https://github.com/ndrplz/tensorflow-mesh-renderer.

Keywords: 6-DoF pose estimation · Differentiable rendering

1 Introduction

Inferring the six degrees of freedom (6-DoF) pose (3D rotations + 3D transla-
tions) of an object given a single RGB image is extremely challenging. Indeed,
this process underlies a deep knowledge of the object itself and of the 3D world
that is not easy to distill from a single frame; the kind of object, its 3D shape
and the possible 3D transformation that leads to visually plausible outputs must
be inferred jointly.
In this work, we show how an approximate differentiable renderer can be ex-
ploited to refine the 6-DoF pose estimation prediction using only 2D silhouette
information. Keeping the object volume fixed we can back-propagate to the sec-
ond renderer input, namely the object pose (see Fig. 1). We demonstrate that
this differentiable block can be stacked on a 6-DoF pose estimator to significantly
refine the estimated pose using only the 2D alignment information between the
input object mask and the rendered silhouette. Leaving aside camera intrinsics,
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Fig. 1. The overall proposed framework. A deep convolutional encoder is fed with
the object mask and predicts both the object’s class and 6-DoF pose. By means of a
differentiable renderer the predicted cluster medoid can be projected back according
to the predicted pose, adding a further online alignment supervision w.r.t. the input
mask.

a renderer can be generally thought as a black-box with two inputs and one out-
put. The renderer takes as input (i) a given representation of the 3D object (e.g.
voxels, mesh etc.) and (ii) the 6-DoF pose of the object w.r.t. the camera and
produces the 2D image of the object or, as in our setting, solely its silhouette.
Typically a rendering algorithm includes many non-differentiable operations (e.g.
rounding, hard assignments etc.); it thus cannot be used in a deep learning ar-
chitecture as it would break the back-propagation chain. Nonetheless, in the
context of 3D volume estimation recent works [18,47,24,14,41] have been pro-
posed which exploit approximated differentiable renderers to back-propagate the
loss to the first renderer input, namely the 3D representation of the object, but
leaving fixed the set of possible camera poses.

Since we rely on an fixed 3D model of the object we can abandon the redun-
dant and expensive voxel representation in favor of meshes, which are lightweight
and better tailored to represent 3D models [34]. Also, in contrast w.r.t. previous
works, the rendering pipeline is implemented via a rastering algorithm, signif-
icantly faster than the conventional ray-tracing approach. Eventually, to solve
the issue that true 3D model of the object is not usually known at test time, we
indicate as a viable solution to perform coarse-grained classification and use a
representative 3D model of the object category (e.g. a cluster medoid) instead.
We experimentally demonstrate that the proposed pipeline is able to correct the
estimated pose effectively even when using surrogate models.

2 Related Works

Beyond all doubt, the ImageNet [10] dataset has been the essential ingredient
to many recent advances, since for the first time enough data were available
for training very large (deep) models which in turn shook many benchmarks
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[33,16,30,6]. More recently the large-scale database of synthetic models ShapeNet
[5] dataset is having an analogous impact on the 3D community, showing that,
in presence of enough data, 3D geometry and deep learning can be integrated
successfully [37,46,7,36,22,2]. One of the areas in which this marriage is being
fertile the most is the one of estimating the 3D shape of an object given an
image, or to generate novel views of the same object.
Indeed, pre deep learning methods [4,15,20,42,29,35] often need multiple views
at test time and rely on the assumption that descriptors can be matched across
views [13,1], handling poorly self-occlusions, lack of texture [32] and large view-
point changes [25]. Conversely, more recent works [37,46,7,36,22,2] are built upon
powerful deep learning models trained on virtually infinite synthetic data ren-
dered from ShapeNet [5]. From a high level perspective, we can distinguish
methods that learn an implicit representation of object pose and volume and
then decode it by means of another deep network [38,11,7,48] from methods
that infer from the image a valid 3D representation (e.g. voxel-based) that can
be re-projected by means of a differentiable renderer [47,41,14,44] to eventu-
ally measure its consistency w.r.t. the input image. Works leveraging the latter
approach are strictly related to our proposed method in that they all found
different ways to back-propagate through the renderer in order to correct the
predicted object volume. Yan et al [47], Gadelha et al [14] and Wiles et al [44]
take inspiration from the spatial transformer network [18] in the way the pre-
dicted volume is sampled to produce the output silhouette, even though they
differ in the way the contribution of each voxel is counted for each line of sight.
Rendering process proposed in Rezende et al [31] has to be trained via REIN-
FORCE [45] since it is not differentiable. Tulsiani et al [41] frame the rendering
phase in a probabilistic setting and define ray potential to enforce consistency.
Our method differs substantially from all these works in several features. First,
we keep the volume fixed and backpropagate through the renderer to correct
the object pose, while the aforementioned works project the predicted 3D vol-
ume from a pre-defined set of poses (e.g. 24 azimuthal angles 0◦, 15◦, . . . 345◦

around y-axis) and backpropagate the alignment error to correct the volume.
Furthermore, while all these works use ray-tracing algorithm for rendering, our
work is the first to propose a differentiable raster-based renderer. Eventually, all
mentioned works represent the volume using voxels, which is inefficient and re-
dundant since almost all valuable information is in the surface [34], while we use
its natural parametrization by vertices and faces, i.e. the mesh. Convolutional
neural networks (CNNs) have demonstrated analogous effectiveness in the task
of object pose estimation, traditionally framed as a Perspective-n-Points (PnP)
correspondence problem between the 3D world points and their 2D projections
in the image [21,26]. With respect to descriptor-based methods [8,9,25], modern
methods relying on CNNs [23,37,40] can solve ambiguities and handle occluded
keypoints thanks to their high representational power and composite field of
view, and have shown impressive results in specific tasks such as the one of
human pose estimation [27,43,39,49]. Building upon this success, recent meth-
ods [50,28] combine CNN-extracted keypoints and deformable shape models in
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Fig. 2. Architecture of the encoder network. Visual features are extracted from the
input image by means of 2D convolutions (first three layers have 5x5 kernel, last two
have 3x3 kernel. All convolutional layers have stride 2 and are followed by leaky ReLu
non-linearities). The flattened feature vector is fed to two fully connected branch, which
estimate the object class and pose respectively.

a unique optimization framework to jointly estimate the object pose and shape.
Differently from all these works, here we propose a substantially new method
to integrate the object shape and pose estimation and model fitting in a unique
end-to-end differentiable framework. To the best of our knowledge, this is the
first work in which a differentiable renderer is used to correct the 6-DoF object
pose estimation just by back-propagating 2D information on silhouette align-
ment error.

3 Model Description

Given a single RGB image in which one or more objects of interest has already
been segmented, we train a deep convolutional encoder to predict the class and
the 6-DoF pose (rotation and translation) of each object w.r.t the camera. We
then exploit an approximate renderer to re-project the silhouette of object on the
image according to the pose predicted by the encoder. As the true object mod-
els are not available at test time, for re-projection a representative object (i.e.
medoid) of the predicted class is used. Also, since the rendering phase is approx-
imated with a differentiable function, we can not only measure the alignment
error w.r.t. the input object mask, but also back-propagate it to the encoder
weights. Eventually, this allows us to fine-tune the encoder online optimizing
just the alignment error. Our overall architecture is depicted in Fig. 1. In what
follows both the encoder and the renderer models are detailed.

3.1 Encoder

The deep convolutional encoder network is schematized in Fig. 2. The first part of
the network is dedicated to feature extraction and it is shared by the classification
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and the pose estimation branch. The network has been designed inspired by [38]
which showed favorable results in a related task. Features extracted are then
used by two fully-connected independent branches to infer the object class and
the camera pose respectively. All layers but the last are followed by leaky ReLu
activation with α = 0.2. Differently from most of the literature [47,14,44] we do
not quantize the pose space into a discrete set of pre-defined poses to ease the
task. Conversely, given a rotation matrix R3×3 and a translation vector t3×1 we
regress the object pose

P3×4 =
[
R t

]
(1)

by optimizing the mean square error between the predicted and the true pose:

L(X ,Yp, θ) =
1

N

∑
i

||yi − fp(xi, θ)||2 xi ∈ X , yi ∈ Yp (2)

where X is the set of RGB images, Yp is the set of true P3×4 pose matrices and
fp(xi, θ) is the pose predicted by the encoder for example xi according to its
weights θ. From a technical standpoint, for each X, Y, Z axis the encoder re-
gresses the cosine of the Euler rotation angle and the respective translation. The
output roto-translation matrix is then composed following Euler ZYX conven-
tion: in this way predicted matrices are guaranteed to be always geometrically
consistent. For the classification branch we instead optimize the following cate-
gorical cross-entropy function:

L(X ,Yc, θ) = − 1

N

∑
i

yi log fc(xi, θ) (3)

where xi ∈ X is an input RGB image, fc(xi, θ) is the encoder predicted distribu-
tion over possible clusters for example xi and yi in the true one-hot distribution
for example xi.

3.2 Differentiable Renderer

To measure the reliability of the predicted 6-DoF pose and to be able to correct
it at test time, we design a fully differentiable renderer for re-projecting the
silhouette of the 3D model on the image according to the predicted object pose.
This allows to refine the estimated pose by back-propagating the alignment error
between the 2D silhouettes. To the best of our knowledge, it is the first time that
a fully-differentiable raster-based renderer is used to this purpose. Differently
from concurrent works such as [47], our rendering process starts from the raw
mesh triangles and not from a 3D voxel representation. While the latter is easier
to predict by a neural network since it has a static shape, its footprint scales with
the cube of the resolution and forces to use ray-tracing techniques to render the
final image, known to be slow and harder to parallelize. Despite rastering does
not allow for photo-realistic shaded images, as it does not imply light sources
rays tracing, it is still well suited for all tasks which require the object shape
silhouette from different point of views as in our case.
Our renderer is composed of two main parts:
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– A rastering algorithm, which applies the predicted camera to the 3D triangles
meshes to obtain 2D projected floating point coordinates of the corners;

– An in/out test to determine which projected points lie inside the triangles,
i.e. which triangles must be filled.

While the first step is fully differentiable, a naive implementation of the latter
exploits boolean masks to select the pixels to be filled, which eventually breaks
the backpropagation through the network. Inspired by [18], we employed a spatial
transformation to assign a value to each pixel based on a relation between its
coordinates and those of the triangles corners. While a boolean mask represents
hard membership, this approach assigns each pixels a continuous value, thus
applying a soft (differentiable) membership. From a more technical standpoint,
given all triangles T which compose the mesh of current model, we project the
3D triangle vertices V3D as follows:[

V2D
1

]
=

x/zy/z
1

 = K3×3P
−1
3×4

[
V3D

1

]
(4)

where K3x3 is the camera calibration matrix and P−13×4.

Then, defined as E(i) = [(v1, v0), (v2, v1), (v0, v2)] the three edges of the i-
th projected triangle, the renderer’s output for pixel in location (u, v) can be
computed as:

gu,v =

T∑
i

Fnorm

 E(i)∏
(vj ,vk)

max

(∣∣∣∣ vj − vkvj − (u, v)

∣∣∣∣ ∣∣∣∣v1 − v0v2 − v1

∣∣∣∣ , 0)
 , (u, v) ∈ H ×W

where Fnorm(x) = tanh
x−min(x)

max(x)−min(x)
(5)

and H,W indicate the image height and width in pixels. We refer the reader
to Fig. 3 for a better intuition of Equation 5. It is worth noticing that the i-th

Fig. 3. Exemplification of the approximated rastering process. First each triangle com-
posing the mesh is projected in the 2D image (a) using Eq. 4. The determinant product
inside the max of Eq. 5 selects the points which lie on the left side of each edge of the
triangle (b), (c), (d). The product of these three terms gives an approximated yet
differentiable rendering of the triangle’s silhouette (e).



6-DoF Object Pose Estimation through Differentiable Rasterization 7

triangle contributes to the output only if all the three determinant products are
positive, meaning that (u, v) point lies on the left side of all three triangle edges
i.e. it is inside the triangle.

4 Experiments

4.1 Dataset

We train our model on ShapeNetCore(v2) [5] dataset, which comprises more
than 50K unique 3D models from 55 distinct man-made objects. We focus in
particular on the car synset since it is one of the most populated category with
7497 different 3D CAD vehicle models. Each model is stored in .obj format along
with its materials and textures: dimensions, number of vertices and details vary
greatly from one model another.

Data collection To collect the data, we first load a random model on the
origin t = (0, 0, 0) of our reference system. We then create a camera in location
t = (x, y, z). While on xy plane the location is randomly sampled in a qx × qy
grid, we keep fixed z = k under the assumption that the camera is mounted
somewhere at height k on a moving agent (e.g. an unmanned vehicle). We then
force the camera to point an empty object e that is randomly sampled at z = 0
and x, y sampled as above in a ex × ey grid: in this way we make the object to
appear translated in the camera image. Eventually, the camera image is dumped
along with the camera pose to constitute an example xi. We refer the reader to
Fig. 4 to get a better insight into the procedure. Data collection details: In our
experiments we set qx = qy = 10 and k = 1.5, which is the average height
of a European vehicle. For the empty object we set ex = ey = 3. Models are
standardized s.t. the major dimension has length 6. For each cluster, the models
are split with ratio 0.6-0.2-0.2 into train, validation and test set respectively.
Medoids are expected to be known at test-time and do not belong to any of
the splits. Models are rendered using Blender CYCLES engine [3] to maximize
photo-realism.

Selecting the representative 3D model Since the true 3D object model is
hardly available at test time, we want to verify if a surrogate 3D model can be
instead successfully employed for the rendering process. Analogously to Du et al
[12] we distinguish three main vehicle clusters, namely i) Sedan passenger cars,
ii) Sport-utility vehicles (SUV, which are also passenger cars but have off-road
features like raised ground clearance) and iii) Cargo vehicles such as trucks and
ambulances. Aligned CAD models for the three clusters are depicted in Fig. 4(c).
Following Tatarchenko et al [38] we selected the representative model for each
cluster, by extracting and comparing the HOG descriptors from two standard
rendered views of each CAD model (i.e. frontal and side). Eventually we compute
the L2 distance between descriptors and for each cluster we retain the cluster
medoid, i.e. the model with the least average distance from all the others.
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Fig. 4. On the left is depicted how all camera poses predicted by the encoder indepen-
dently for each object (a) can be roto-translated to a common origin to reconstruct
the overall scene (b), also in Fig. 7. On the right, the average silhouette of vehicles
belonging to sedan, SUV and cargo is shown (c). For each cluster all 3D meshes are
overlaid before taking the snapshot from the side view; the high overlap highlights the
low intra-cluster variance.

4.2 Model Evaluation

Metrics The encoder ability to estimate the 3D pose of the object is measured
by means of geodesic distance between predicted and true rotation matrix [40,17]
as:

∆(Rtrue,Rpred) =
|| log(RT

trueRpred)||F√
2

(6)

where ||A||F =
√∑

i,j |aij |2 indicates the Frobenius norm. In particular, we re-

port the median value of the aforementioned distance over all predictions in test
set as Median Viewpoint Error (MVE). We also report the percentage of exam-
ples in which the pose rotation error is smaller than π/6 as Accπ

6
. To measure

the re-projection alignment error we instead rely on mean intersection over union

(mIoU) metric defined over the N test examples as 1
N

∑
i
Si∩S̃i
Si∪S̃i

i = 1, . . . , N :

where Si is the ground truth silhouette and S̃i = g(fp(xi), fc(xi),K) is the ren-
derer output given the predicted object pose, cluster and camera intrinsics K.

Model performance To prove the effectiveness of the proposed method we
first train the 6-DoF pose estimation network alone to jointly estimate the object
class and its 6-DoF pose. In this way, we get a baseline to measure the succes-
sive contribute of the prediction refinement through our differentiable rendering
module. State-of-the-art results on test set reported in Table 1(first row) indicate
this to be already a strong baseline. The prediction refinement module is then
plugged-in, and the evaluation is repeated. For each example, the medoid of the
predicted class is rendered according to the predicted pose, back-propagating the
alignment error between the true and the rendered silhouette for 30 optimization
steps. Results of this analysis are reported in Table 1(second row) and indicate
a huge performance gain (20%) obtainable by maximizing the 2D alignment be-
tween object masks.
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Table 1. Table summarizing model performance. It is worth noticing that none of the
metrics in the table are explicitly optimized during refinement. Results of concurrent
works on the vehicle class are shown for reference, despite the task of [40,37] is only
viewpoint estimation (not 6-DoF pose) and all are trained on different dataset.

Model Accuracy ↑ mIoU ↑MVE ↓ Accπ
6
↑

encoder 0.89 0.59 5.7 0.86
encoder+refinement 0.89 0.72 4.5 0.90

Pavlakos et al [28] - - 6.9 -
Tulsiani and Malik [40] - - 9.1 0.89
Su et al [37] - - 6.0 0.88

The significant improvement in all the metrics, despite none of these is optimized
explicitly, suggests that the proposed differentiable rendering module is a viable
solution for refining the predicted 6-DoF even at test time, requiring minimal
information (i.e. only the object mask). The process of prediction refinement
can be appreciated in Fig. 5.

Renderer ablation study We measure, at first, the impact of rendering res-
olution on the optimization process by refining the object 6-DoF estimated pose
using different rendering resolutions. Results reported in Table 2 show that work-
ing at higher resolution is definitely helpful while very-low resolution are hardly
beneficial, if not detrimental, for the optimization process. This supports the
need to abandon the voxel-based representation, whose computational footprint
increases with the cube of resolution. We then compare our renderer with the
publicly available implementation of Perspective Transformer Network (PTN)
by Yan et al [47]. Results are shown in Fig. 6(a). Since PTN relies on a fixed
32x32x32 voxel representation, rendering at higher resolution hardly changes
the output’s fidelity w.r.t. the true silhouette. Conversely, our mesh-based ren-
derer is able to effectively take advantage of the higher resolution. Comparing

Fig. 5. Online refinement of the estimated pose; We overlay in red the predicted sil-
houette for each optimization step. Despite the initial estimate (t=0) was noticeably
wrong, the 6-DoF object pose is gradually corrected using only 2D silhouette alignment
information.
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Table 2. Gains obtained in pose estimation using different rendering resolutions. In-
creasing the resolution used for rendering the silhouette is much beneficial to the opti-
mization process. Conversely, for very low resolution this phase is hardly helpful.

Renderer Resolution ∆ IoU ↑ ∆ Viewpoint Error ↓ ∆ Translation Error ↓
16x16 +0.00 +0.15 +0.02
32x32 +0.03 -0.26 +0.00
64x64 +0.05 -0.57 +0.00
128x128 +0.11 -1.03 -0.01
256x256 +0.13 -1.29 -0.03

(a) (b) (c)

Fig. 6. (a) Intersection over union between rendered silhouette and the ground truth
one for both our renderer and Perspective Transformer Networks (PTN) [47], at dif-
ferent rendering resolutions. (b) Rendering time for different image (and PTN voxel)
resolutions. (c) Average viewpoint error improvement for different number of optimiza-
tion steps. See text for details.

our rendering time with PTN [47] in Fig. 6(b), we see that PTN scores favorably
only for very-low voxel and image resolutions, while as resolution increases the
PTN rendering time increases exponentially due to the voxel-based representa-
tion. Eventually, in Fig. 6(c) we show that our average viewpoint error continues
to decrease along with the number of refinement optimization steps.

Training details Encoder is trained until convergence with batch size=64 and
ADAM optimizer with learning rate 10−5 (other hyper-parameters as suggested
in the original paper [19]). Batch size is decreased to 20 and learning rate to 10−6

during renderer fine-tuning. We find useful dropout (p = 0.5) after all dense lay-
ers and L2 weight decay over feature extraction for regularization purposes.

5 Conclusions

In this work we introduce a 6-DoF pose estimation framework which allows an
online refinement of the predicted pose from minimal 2D information (i.e. the
object mask). A fully differentiable raster-based renderer is developed for re-
projecting the object silhouette on the image according to the predicted 6-DoF
pose: this allows to correct the predicted pose by simply back-propagating the
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Fig. 7. Qualitative results for multiple object scenes. Since all predicted poses lie in
the same reference system (see Fig. 4), different views of the scene can be produced
by means of any rendering engine. It is worth noticing that each object has been
substituted by the representative model for its predicted class.

alignment error between the observed and the rendered silhouette. Experimental
results indicate i) the overall effectiveness of the online optimization phase, ii)
that proxy representative models can be profitably used in place of the true
ones in case these are not available and iii) the benefit of working in higher
resolution, well-handled by our raster-based renderer but hardly managed by
concurrent ray-tracing, voxel-based algorithms.
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