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Abstract: 

In this paper we replicate the Diebold and Yilmaz (2012) study on the connectedness of the 

Commodity market and three other financial markets: the stock market, the bond market, and 

the FX market.  We show that both the row and the column normalization schemes of the 

Generalized Forecast Error Variance Decomposition, suggested by the authors, lead to 

inaccurate measures of net contribution to risk transmission, in terms of ranking and sign. We 

show that, considering data generating processes characterized by different degrees of 

comovement and persistence, a scalar based normalization of the Generalized Forecast Error 

Variance Decomposition yields consistent (free of sign and ranking errors) net spillovers. 
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1   Introduction 

 

A normalization scheme is a set of one or more constraints to be imposed on a matrix such that the 

resulting scaled version will satisfy certain conditions. Equilibration, i.e. scaling a matrix such that its 

rows or columns sum to one is one of the most common normalization schemes. A normalization scheme 

is adopted either for estimation purposes or simply for interpretative purposes.  

The aim of this paper is threefold. First we provide a review of the most common normalization schemes 

used in different financial applications, with a particular focus on forecast error variance decomposition. 

In fact, the implementation of the generalized forecast error variance decomposition yields a variance 

decomposition table that has to be normalized for interpretative purposes.  

Second, we suggest a scalar based normalization scheme overcoming the limits of the traditional row-

normalization scheme, used in Diebold and Yilmaz (2012)1. The advantages and disadvantages of the 

normalization schemes are assessed through simulation, using data characterized by different degrees 

of comovement and persistence.  

Third, we replicate the analysis in Diebold and Yilmaz (2012) in order to show how results change (in 

terms of net spillovers) as the normalization scheme changes. The results of the paper are intended to 

be useful not only for deriving spillovers measures, but also in any other field where a matrix 

normalization scheme is adopted, such as network analysis or spatial econometrics.  

The structure of the paper is as follows. In Section 2 we provide an overview of the methodology 

suggested by Diebold and Yilmaz (2012) to construct a network graph and, in particular, indices of 

connectedness.  In Section 3 we review the most common normalization schemes used in various fields. 

Section 4 highlights how persistence and comovement among the series affect the results of the spillover 

analysis based on different normalization schemes. Section 5 replicates the study by Diebold and Yilmaz 

(2012). The final section concludes. 

 

2. Networks and connectedness 

Networks are usually represented in graphs, where nodes and edges are graphically displayed. A 

weighted network is a network that allows for weights on the edges in order to represent stronger or 

weaker connections between nodes, while direct networks are networks that allow for asymmetries.  

One example of a weighted and direct network (also varying across forecast horizons) is the forecast 

error variance decomposition (FEVD).  

                                                        
1  Diebold and Yilmaz (2009) is the first study to compute a total spillover index based on the forecast error variance 
decomposition (FEVD) by using the Cholesky decomposition of the VAR residuals covariance matrix. It is well known that the 
Cholesky decomposition is sensitive to the variable ordering. Klobner and Wagner (2013) provide an algorithm for swiftly 
calculating the spillover index’s maximum and minimum over all renumerations. 



Forecast error variance decomposition is a standard econometric tool used in multivariate time series 

analysis to assess the contribution in terms of forecast error variance of each variable due to a shock to 

any of the other variables. Consider a covariance stationary VAR(p) with k endogenous variables: 

 

 𝑥𝑥𝑡𝑡 = 𝐴𝐴1𝑥𝑥𝑡𝑡−1 + ⋯+ 𝐴𝐴𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 (1) 

 

where 𝜀𝜀𝑡𝑡  are i.i.d. disturbances with contemporaneous covariance matrix Σ . In order to derive the 

moving average representation of the VAR(p), we rewrite (1) as a first order system: 
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which can be written in compact form: 
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A  is the  kp×kp companion matrix. Then, using the selection matrix 
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which has k rows and kp columns (and the first k rows and columns are given by the identify 
matrix  I ),  
 
we obtain the k×k  moving average coefficient matrix Ψh : 
 

'
___
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h

h =Ψ             (4) 
 

Given a set of k endogenous variables, Diebold and Yilmaz (2012; 2014) use the Pesaran and Shin (1998) 

“generalized” approach (GFEVD) that allows shocks to be correlated (which is insensitive to variable 

ordering,)  to obtain the element in row i and column j of  the connectedness matrix proxied by FEVD. 

More specifically, the contribution of the j-th shock to the h step ahead forecast error variance of the i-

th endogenous series is computed as follows: 

 

 
𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔 =

𝜎𝜎𝑖𝑖𝑖𝑖−1 ∑ �𝑒𝑒𝑖𝑖′𝛹𝛹𝑙𝑙Σ 𝑒𝑒𝑖𝑖�
2ℎ−1

𝑙𝑙=0

∑ �𝑒𝑒𝑖𝑖′𝛹𝛹𝑙𝑙Σ 𝛹𝛹𝑙𝑙′𝑒𝑒𝑖𝑖�ℎ−1
𝑙𝑙=0

 (5) 

 

where σjj the standard deviation of the disturbance of the jth equation,and ei is the selection vector with 

one as the ith element and zeros otherwise. 



Due to the non-orthogonality of shocks, the sum of the contributions to the forecast error variance (i.e. 

the row sum) is not equal to one2. The authors, therefore, propose a row-normalization of the values of 

the variance decomposition in equation (5), in order to interpret its elements as variance shares: 

 
𝜃𝜃�𝑖𝑖𝑖𝑖
𝑔𝑔 =

𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔

∑ 𝜃𝜃𝑖𝑖𝑖𝑖
𝑔𝑔𝑘𝑘

𝑖𝑖=1
 (6) 

They also mention the equivalency between this row-normalization scheme and the alternative column-

normalization scheme (see Section 3).  

Diebold and Yilmaz (2014) rely on the absolute value of net pairwise spillovers when graphing the 

network, which is obtained from generalized forecast error variance decomposition. Therefore in this 

case, the network graph depends on the chosen normalization scheme for the GFEVD.  Moreover, the 

summary descriptive statistics of the network are given by the directional connectedness indices. In 

particular, the directional spillover received by each market from all the other markets (FROM others) 

is computed as the off-diagonal row sum; the spillover transmitted by each market to all the other 

markets (TO others) is computed as the off-diagonal column sum. A measure of net contribution (NET) 

of each market is obtained as the difference between the directional spillovers TO others and FROM 

others. In this way we are able to distinguish markets that are net donors from those that are net 

receivers in terms of risk transmission.  

Consequently, not only the network graph, but also the summary statistics described by the directional 

connectedness indices depend on the chosen normalization scheme for the GFEVD. Given the critical 

role of the normalization scheme, in the next section we review the different normalization schemes 

proposed in the literature.  

 

 

3.    Normalization schemes 
 

In this section, we review the most used normalization schemes in GFEVD and spatial regression models. 

While GFEVD, allowing for the construction of weighed directed network, relies mainly on row 

normalization, spatial regression models, mainly used to obtain weighed networks, allowing only for 

symmetric linkages, rely on other normalization schemes. More specifically, consider a standard 

generalised spatial autoregressive model of order p, or simply SAR(p) model: 

 

 𝑢𝑢 = � 𝜙𝜙ℎ𝑊𝑊ℎ𝑢𝑢 + 𝜀𝜀
𝑝𝑝

ℎ=1
 (7) 

                                                        
2 The moving average coefficients necessary to computed the spillover indices are obtained through the 
estimation of a traditional VAR in Diebold and Yilmaz (2012). Cipollini et al. (2017) and Fengler et al. 
(2018) obtain the moving average coefficients through the estimation of a fractionally integrated VAR 
and of a multivariate GARCH, respectively. 



 

Where 𝑊𝑊 = (𝑤𝑤𝑖𝑖,𝑖𝑖) for 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘  is the spatial weight matrix and  𝜙𝜙ℎ are autoregressive parameters. 

Equivalently, we can rewrite equation (7) as follows: 

 
𝑢𝑢 =  �𝐼𝐼𝑁𝑁 −� 𝜙𝜙ℎ𝑊𝑊ℎ

𝑝𝑝

ℎ=1
�
−1
𝜀𝜀 (8) 

We recall, in the following, the different normalization schemes of the spatial weight matrix W  

used in the literature to make �𝐼𝐼𝑁𝑁 − ∑ 𝜙𝜙ℎ𝑊𝑊ℎ
𝑝𝑝
ℎ=1 �  non-singular. These schemes can be applied also 

to GFEVD. 

 

3.1   Row normalization 

 Given a (𝑘𝑘 × 𝑘𝑘) unscaled matrix 𝑊𝑊∗ = (𝑤𝑤𝑖𝑖𝑖𝑖∗ ), we can obtain the corresponding row-stochastic matrix 

𝑊𝑊 = �𝑤𝑤𝑖𝑖𝑖𝑖� by row-normalizing 𝑊𝑊∗ such that: 

 
𝑤𝑤𝑖𝑖𝑖𝑖 =

𝑤𝑤𝑖𝑖𝑖𝑖∗

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∗𝑘𝑘
𝑖𝑖=1

  (9) 

The resulting matrix W has row sums equal to one. However, row normalization is not a restrictive task 

since the same result can be achieved by constraining the parameter space of the autoregressive 

parameters 𝜙𝜙ℎ (Caporin and Paruolo (2015)); as a result, the normalization task would be absorbed by 

the AR parameter through scaling.  

Moreover, this normalization is useful in interpreting spatial weight matrices, whose elements can be 

thought of as a fraction of all spatial influence. This interpretative advantage also applies for a forecast 

error variance decomposition that does not rely on Cholesky factorization (or any other identifying 

scheme of structural VAR models) so that the matrix coefficients can be interpreted as variance shares. 

This is the normalization scheme proposed by Diebold and Yilmaz (2012) when using the generalized 

forecast error variance decomposition. However, this scheme also has certain drawbacks: by scaling the 

elements of each row by the corresponding row sum, the order of magnitude is preserved only by row.  

 

3.2   Column normalization 

This scheme is specular to the row-normalization scheme described above. The only difference is that 

the normalization is done by column: in this case only the columns sum to one. The critical issues 

concerning the row-normalization scheme apply also in this case. Note that for the variance 

decomposition Diebold and Yilmaz (2012) suggest this normalization scheme as an alternative to row 

normalization.   

 
 

 

 



3.3   Max row normalization 

In this normalization scheme, the normalization factor is a scalar equal to the maximum row sum of the 

unscaled matrix W*, then the scaled matrix is obtained as 𝑊𝑊 = 𝑊𝑊∗/𝑘𝑘 where: 

 𝑘𝑘 = max(𝑟𝑟1, … , 𝑟𝑟𝑘𝑘) (10) 

and: 

 
 𝑟𝑟𝑖𝑖 =  � 𝑤𝑤𝑖𝑖𝑖𝑖∗

𝑘𝑘

𝑖𝑖=1
 (11) 

where 𝑤𝑤𝑖𝑖𝑖𝑖∗   is the element in row i and column j of the unscaled matrix 𝑊𝑊∗. This scheme is characterized 

by a single normalization factor instead of the 𝑘𝑘 factors of the row normalization scheme (one for each 

row). As a result, it preserves the magnitude relation among the elements of rows and columns and 

column and row values can therefore be safely compared. Moreover, it allows for a comparison between 

different rows and column sums, making it possible to distinguish between stronger or weaker 

influences.  As argued by Billio et al. (2016) it is also possible to normalize by the maximum row sum 

over time in order to compare spatial weight matrices in different time periods while preserving a 

reasonable magnitude of autoregressive parameters. 

 

3.4   Max column normalization 

This scheme is specular to the max row normalization described above: the only difference is that the 

scalar is equal to the maximum column sum of the unscaled matrix W*. The same advantages of the max 

row normalization apply. 

 

3.5   Spectral radius normalization 

Let W* be the (𝑘𝑘 × 𝑘𝑘) positive unscaled matrix and let { 𝜆𝜆1, … , 𝜆𝜆𝑘𝑘} be the eigenvalues of W*. The spectral 

radius is the maximum eigenvalue (in modul), formally: 

 𝜏𝜏 = 𝑚𝑚𝑚𝑚𝑥𝑥{|𝜆𝜆1|, |𝜆𝜆|2, … , |𝜆𝜆|𝑘𝑘} (12) 

The scalar normalization factor is set equal to the spectral radius and the scaled matrix 𝑊𝑊 is therefore 

obtained as follows: 

 𝑊𝑊 = 𝑊𝑊∗/𝜏𝜏 (13) 

Under the Perron and Frobenius theorem, the spectral radius satisfies the following inequalities: 

 𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖  � 𝑤𝑤𝑖𝑖𝑖𝑖 ≤ 𝜏𝜏 ≤
𝑁𝑁

𝑖𝑖=1
𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖� 𝑤𝑤𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 (14) 

As a result, some row sums and column sums exceed unity, while others can be less than one. This 

normalization scheme therefore has one main drawback: the elements can no longer be interpreted as 

fractions of the overall influence (e.g. the sum by row and by column). 

Nevertheless, this normalization scheme is widely used in spatial econometrics: in fact, following LeSage 

and Pace (2010) a matrix 𝑊𝑊∗ can be transformed to have maximum eigenvalue equal to one using 𝑊𝑊 =

𝑊𝑊∗ 𝑚𝑚𝑚𝑚𝑥𝑥(𝜆𝜆𝑊𝑊∗), and this is a desirable property because it constrains the autoregressive parameter to 



have maximum possible value equal to one. In particular, Keleijan and Prucha (2010) show that 

�𝐼𝐼𝑁𝑁 − ∑ 𝜙𝜙ℎ𝑊𝑊ℎ
𝑝𝑝
ℎ=1 � is non-singular for all the values of the parameter space in the interval (−1 ;  1).  

 

 

4   Comparison of the normalization schemes in GFEVD  

In this section, we show how the normalization schemes reviewed in section 3 affect the GFEVD, by 

using data generating processes characterized by different degrees of comovement and persistence. The 

review of different normalization schemes in section 3 shows that row normalization has interpretative 

limits and, in this framework, leads to misspecified spillover measures. In particular: 

 

- If the normalization is carried out by row, the column sum is not necessarily equal to one. As a 

result, while FROM directional spillovers can be interpreted as a fraction of the total variance 

received via spillovers, TO directional spillovers lack this kind of interpretation (some column 

sums are above unity, while some others are beyond unity). 

- Normalization by row implies that the order of magnitude of the entries of the variance 

decomposition table is preserved only by row. As a result, NET spillovers are obtained as the 

difference between two values incomparable in magnitude. 
 

We now show that the values of the spillover measures are sensitive to this normalization choice, 

leading to misspecifed measures of net contribution (NET). We consider four cases: a) LL (Low 

Persistence; Low Comovement); b) LH (Low Persistence; High Comovement); c) HL (High Persistence; 

Low Comovement); d) HH (High Persistence; High Comovement), according to the different setup of the 

VAR model described in eq. (1). We set the number of endogenous variables, k, equal to five. The model 

configurations differ for the coefficient matrices in the lag operator A(L) and of the covariance matrix 

Σ = 𝑃𝑃 𝑃𝑃′. In particular, the Low Comovement case is defined by using a lower triangular matrix 𝑃𝑃 set 

as follows: 

 

 

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎡
0.10 0 0
0.15 0.15 0
0.20
0.25
0.30

0.20
0.25
0.30

0.20
0.25
0.30

     

0 0
0 0
0

0.25
0.30

0
0

0.30⎦
⎥
⎥
⎥
⎤
 (15) 

 

while the High Comovement case is defined by using the following lower triangular matrix 𝑃𝑃: 

 

𝑃𝑃 =

⎣
⎢
⎢
⎢
⎡
0.40 0 0
0.45 0.45 0
0.50
0.55
0.60

0.50
0.55
0.60

0.50
0.55
0.60

     

0 0
0 0
0

0.55
0.60

0
0

0.60⎦
⎥
⎥
⎥
⎤
 (16) 

 



where a scalar equal to 0.3 has been added to all nonzero entries of matrix P in equation (15). 

In this way, the resulting variance-covariance matrix has higher variance and covariance 

entries and, thus, higher comovements, while maintaining the underlying correlation between 

the endogenous variables the same. 

To ensure a stationary VAR(p) (e.g. with roots of the characteristic polynomial A(L) outside the unit 

circle) characterised by Low Persistence, we consider a VAR(2) with coefficient matrices A1 and A2 with 

values equal to 0.05. A stationary VAR(p) characterised by High Persistence is a restricted VAR(22) 

given by the parsimonious Vector HAR representation with coefficient matrices 

𝐴𝐴(𝑑𝑑),𝐴𝐴(𝑤𝑤),𝐴𝐴(𝑚𝑚) described as follows: 𝐴𝐴(𝑑𝑑) with values equal to 0.05, 𝐴𝐴(𝑤𝑤) with values equal to -0.02 and 

𝐴𝐴(𝑚𝑚) with values equal to 0.013. 

Consequently, we compute the generalized forecast error variance decomposition as defined by 

equation (5) and we obtain the measures of NET contribution. Formally, the non-normalized NET 

spillovers for the forecast horizon ℎ, which are taken as benchmark, are obtained as follows: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(ℎ) = 𝐷𝐷𝐷𝐷  →
𝑔𝑔 (ℎ) − 𝐷𝐷𝐷𝐷→ 

𝑔𝑔 (ℎ) (17) 

where: 

 𝐷𝐷𝐷𝐷 →
𝑔𝑔 (ℎ) = � 𝜃𝜃𝑖𝑖𝑖𝑖

𝑔𝑔
𝐾𝐾

𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

     ;     𝐷𝐷𝐷𝐷→ 
𝑔𝑔 (ℎ) = � 𝜃𝜃𝑖𝑖𝑖𝑖

𝑔𝑔
𝐾𝐾

𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

           (18) 

where 𝐷𝐷𝐷𝐷 →
𝑔𝑔  denotes the non-normalized directional spillover transmitted by the market 𝑖𝑖 to all other 

markets 𝑖𝑖 (named TO others), while 𝐷𝐷𝐷𝐷→ 
𝑔𝑔  denotes the non-normalized directional spillover received by 

market 𝑖𝑖 from all the other markets 𝑖𝑖 (named FROM others). Second, we compute the  𝑁𝑁𝑁𝑁𝑁𝑁�������� spillovers 

obtained from the forecast error variance decomposition normalized by the different schemes: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝚤𝚤�������(ℎ) = 𝐷𝐷𝐷𝐷 →
𝑔𝑔�������(ℎ) − 𝐷𝐷𝐷𝐷→ 

𝑔𝑔�������(ℎ) (19) 

where the over bar denotes the normalized spillovers. These normalized measures are compared to the 

benchmark spillovers in equation (5). The comparison is intended to assess the reliability of the 

different normalization schemes both in terms of order of ranking (to assess which market is the largest 

net contributor to the total connectedness) and in terms of sign (to distinguish net donors from net 

receivers). 

 

 

 

 

                                                        
 3 In the Vector HAR model the matrices 𝐴𝐴(𝑑𝑑) , 𝐴𝐴(𝑤𝑤)  and 𝐴𝐴(𝑚𝑚)  are coefficient matrices associated with the three 
terms of daily, weekly and monthly partial volatility components, respectively. In particular, the Vector HAR model 
can be written as follows: 

𝑥𝑥𝑡𝑡
(𝑑𝑑) = 𝑐𝑐 + 𝜙𝜙(𝑑𝑑)𝑥𝑥𝑡𝑡−1

(𝑑𝑑) + 𝜙𝜙(𝑤𝑤)𝑥𝑥𝑡𝑡−1
(𝑤𝑤) + 𝜙𝜙(𝑚𝑚)𝑥𝑥𝑡𝑡−1

(𝑚𝑚) + 𝜀𝜀𝑡𝑡  

where 𝑥𝑥𝑡𝑡  are daily volatilities, while the terms representing the weekly and monthly volatilities are obtained as 
the arithmetic average of the daily volatilities recorded in the last week and the last month, respectively. 



4.1    Results based on population parameters 

 

In this section we cast light on how the choice of the normalization scheme can affect the ranking and 

the sign of the NET spillovers, by means of an introductory example. Moreover, in order to show how 

the spillover tables change for different forecast horizons, two different horizons are reported: the two-

day horizon is reported in the upper panel of every Table, while the lower panel contains the ten-day 

forecast horizon. 

For this introductory example we report the results based on the population parameters for the “High 

Persistence, High Comovement” scenario, which is the most illuminating one. Table 1 shows the 

spillover table based on the non-normalized forecast error variance decomposition which is taken as a 

benchmark. Tables 2 to 6 show the same spillover table after applying the different normalization 

schemes outlined in Section 3  (Table 2 for row normalization, Table 3 for column normalization, Table 

4 for normalization by spectral radius, Table 5 for normalization by maximum row sum, Table 6 for 

normalization by maximum column sum). These Tables show the directional spillover received from 

others (FROM others), the directional spillover received from others including own (FROM others 

including own), the directional spillover transmitted to others (TO others), the directional spillover 

transmitted to others including own (TO others including own), and the net contribution (NET) defined 

as the difference between the directional spillover transmitted TO others and the directional spillover 

received FROM others for each variable 𝑉𝑉𝑖𝑖 for 𝑖𝑖 = 1, … ,5 . The tables also show the sign of the NET 

spillover (NET sign): negative if the market is the net receiver and positive if the market is the net donor, 

and the ranking of the NET spillover from the highest to the lowest (NET ranking).  

In Table 2 we show the standard row-normalization scheme proposed by Diebold and Yilmaz (2012) 

which has the interpretative advantage that the directional spillovers received FROM others including 

own sum to one, and as a result each element of the forecast error variance decomposition matrix can 

be interpreted as a variance share (by row). For example, in the upper panel variable 2 receives the most 

from variable 3 (0.219), and the least from variable 5 (0.140). Moreover, variable 1 represents the 

market least affected by the others (FROM others=0.653), while variable 3 represents the market most 

affected by the others (FROM others=0.705).  

On the contrary in Table 3 all the columns (TO others including own) sum to one: each element of the 

forecast error variance decomposition matrix can be interpreted as the fraction of total variance 

transmitted. For example, in the upper panel of Table 3 variable 2 gives the least to variable 5 (0.131), 

and the most to variable 3 (0.216). Moreover, variable 3 represents the market that transmits the most 

to the others (TO others=0.714), while variable 1 represents the market that transmits the least to 

others (TO others=0.592). In the case of the column normalization, the focus is on how much one 

variable (market or country) affects the system. Despite the neat interpretation, the row normalization 

or column normalization schemes affect the NET spillovers, which may have the opposite sign and the 

wrong ranking if compared to the non-normalized ones. In fact, the first variable in the column 



normalization scheme (Table 3) is misconceived as the net donor, while it is a net receiver in the non-

normalized case (Table 1), whereas variables 3 and 4 are mistakenly considered as net receivers instead 

of net donors, as apparent in Table 1.  The same happens in the row normalization scheme (Table 2): 

for example, variable 2 is misconceived as net donor in the two-day forecast horizon, while it is a net 

receiver in the non-normalized case (Table 1). As a result, also there is a change in the ranking of the 

variables (ranging from the one giving the most to the system, that is the major net donor and has rank 

1, to the variable receiving the most from the system, which is the major net receiver and has rank 5). 

For example in the non-normalized case the variable transmitting the most to the system is variable 5 

(for both forecast horizons), but in the row-normalized case it emerges that the variable transmitting 

the most to the system is variable 3 for the two-day forecast horizon and variable 4 for the ten-day 

horizon.  

Tables 4 to 6 show the scalar-normalization cases. The scalar factors applied are: the spectral radius 

(Table 4), the maximum row sum (Table 5) and the maximum column sum (Table 6). In the spectral 

radius normalization, it is not possible to interpret each element of the forecast error variance 

decomposition matrix as variance shares by column, or by row. In fact, the sum by row and by column 

(FROM others including own and TO others including own) can attain values higher or lower than 1, 

given the mathematical property of the maximum eigenvalue described in eq. (16). Despite the lack of 

interpretability in terms of variance shares, all the net spillovers maintain the correct sign after 

normalization and the correct ranking as in the non-normalized case.  

It may be noted that in the maximum row sum normalization scheme in Table 5 and in the maximum 

column sum normalization scheme in Table 6, the only values which sum to one are those in the row 

with the maximum sum (the third row in both Panels of Table 5) and those in the column with the 

maximum sum (column 3 for Panel A and column 4 for Panel B of in Table 6), respectively. Only for these 

values is it possible to give a percentage interpretation: in Table 5 it may be seen that for h=2 variable 

3 receives 70.5% FROM others, while variable 3 in Table 6 Panel A transmits 71.4% TO others.  

In conclusion, it may be stated that the max row sum and max col sum normalization are slightly better 

than the spectral radius since they can preserve the ranking and the sign of the spillovers and, at least 

for one variable, they can preserve their interpretation as variance share.  

As Tables 2 to 6 focus on the normalization issue for only the high correlated and high persistence 

scenario, in Table 7 and Table 8 we show the results based on population parameters for all the other 

scenarios: by looking at the sign of the net spillovers (Table 7) it is clear that the row-normalization 

scheme performs fairly well with no errors in sign for the horizon H=2 and only one error in sign in each 

of the high-correlated scenarios: on the contrary in each scenario the column normalization produces 

from 1 to 3 errors in sign. By looking at the ranking errors in Table 8, what emerges is that both the row 

normalization and the column normalization scheme affect the ranking in most cases. On the other hand, 

any scalar normalization scheme does not affect the ranking. 

 



4.2   Results based on simulation  

 

In order to account for the role played by parameter estimation on the rank and sign of net spillovers, 

we simulate a multivariate dynamic system, using the DGP given by eq. (1). The shocks 𝜀𝜀𝑡𝑡 are given by 

𝑃𝑃 𝜂𝜂𝑡𝑡, where 𝜂𝜂𝑡𝑡 are iid Gaussian and orthogonal innovations with unit variance. In order to assess the 

reliability of the different normalization schemes in preserving the order of magnitude and the sign of 

net contributions (NET spillovers) obtained from the generalized forecast error variance 

decomposition, the simulation experiment involves the following steps: 

1) Five artificial data series (where the time series dimension is equal to 500) are obtained by simulating 

either the VAR(2) (in the case of Low Persistence) or the restricted VAR(22)  (in the case of High 

Persistence) with Gaussian innovations. The coefficient matrices for the lags and the lower triangular 

matrices 𝑃𝑃 aiming at capturing the different degrees of contemporaneous comovement are those used 

in section 5. 

2) For each replication, we estimate the model parameters by OLS, obtaining the impulse-responses for 

the forecast horizons ℎ = 2, ℎ = 10  and computing the corresponding generalized forecast error 

variance decomposition as defined in eq. (5).  

After obtaining the simulated datasets, we compare the non-normalized matrix 𝑊𝑊∗  (e.g. the non-

normalized variance decomposition table for a given forecast horizon) and the five normalized matrices 

𝑊𝑊 (e.g. the normalized variance decomposition table for a given forecast horizon) in terms of sign and 

ranking errors. 

First, we measure the number of errors in the sign of the net spillovers. Errors are counted when the 

net spillover obtained from the normalized matrix has a sign opposite to that of the net spillover 

obtained from the non-normalized matrix. The total number of possible errors is 5000 for each scenario 

(5 variables times 1000 simulations for each scenario).  

Second, we measure the errors in the ranking. Errors are counted when the ranking of the net spillovers 

obtained from the normalized matrix is different from that of the non-normalized matrix. The total 

number of possible errors is 1000 for each scenario (one ranking times 1000 simulations for each 

scenario). Results are shown in Table 9 for sign errors and in Table 10 for ranking errors.  

Table 9 shows that over a total number of 5000 possible errors for each scenario (5 variables times 

1000 simulations for each scenario), the row normalization performs much better than the column 

normalization for each scenario: in fact, for H=2 (H=10) the average number of errors in sign is about 

354 (169) for the row-normalization scheme and about 2525 (1997) for the column normalization 

scheme. This result is surprising since the row normalization and column normalization schemes should 

theoretically be equal. In both normalization schemes, the number of errors increases with the degree 

of comovement. On the contrary, the sum of errors in sign in the low persistence scenarios is slightly 

higher than the sum of the same errors in the high persistence scenarios for both forecast horizons. 



Moreover, as shown in Table 10, the row-normalization proposed by Diebold and Yilmaz (2012) and the 

alternative column normalization schemes affect the ranking of the spillovers more than 850 times out 

of 1000 for H=2 and more than 950 times out of 1000 for H=10 (with the sole exception of the row 

normalization scheme in the high persistence scenarios). 

To conclude, even if the row normalization scheme and the column normalization scheme allow for a 

better interpretation of the values of the generalized forecast error variance decomposition, there is a 

need to be cautious in interpreting the resulting net spillovers that should discriminate markets which 

are net donors from those which are net receivers. On the contrary, any scalar normalization scheme 

(by maximum eigenvalue, maximum row sum or maximum column sum) will outperform the traditional 

normalization schemes, preserving the ranking and the sign of the NET spillovers. As a result, we suggest 

using a scalar normalization scheme to derive the correct measures of net contribution. Among the 

scalar normalization schemes, the maximum row sum or the maximum column sum are preferred to the 

spectral radius since they allow for a better interpretation of how much one variable receives or 

transmits in terms of percentage values.  

 

 

5   Replication of Diebold and Yilmaz (2012)  

In order to shed further light on the normalization issue in obtaining reliable spillover measures we 

replicate the original paper of Diebold and Yilmaz (2012) to see whether results would have changed if 

a scalar normalization were applied. Therefore we compute the 10-days-ahead generalized forecast 

error variance decomposition, on a VAR of order 4, by using the same daily data as in Diebold and Yilmaz 

(2012). The data consists of range based volatilities of the S&P 500 (stock market), the 10 years 

Treasury bond yield (bond market), the New York Board of Trade US dollar index futures (FX market) 

and the Dow Jones UBS Commodity index (commodity market), recorded from January 25, 1999 to 

January 29, 2010. Full sample results are presented in Table 11.  

Panel I corresponds to Table 2 in the Diebold and Yilmaz (2012) paper (variance decomposition by using 

row normalization) while Panel II displays the variance decomposition by using scalar normalization 

(the max row sum). By comparing the NET spillovers in Panels I and II, we can see that the stock market 

turns out to be a net donor while all the others variables are net receivers of volatility spillovers during 

the entire period. As a result there are no sign errors in Diebold and Yilmaz (2012), even if the row-

normalization scheme is used in place of the max row sum one. However, we can detect some ranking 

errors. If we concentrate on the bond market, it turns out to have received less volatility spillovers than 

the commodity market if the row-normalization scheme is used, as in Diebold and Yilmaz (2012). 

However, if we use scalar normalization, as in Panel II, we can see that the result is the opposite: the 

bond market turns out to have received more volatility spillovers than the commodity market. As a 

result we have a ranking error if the row-normalization scheme is used. This result is not surprising: 

since Diebold and Yilmaz (2012) consider four distinct asset classes and use a short-order VAR(p) 



model, the results of their application can be “classified” in our “low-persistence, low-comovement” case 

that, in fact, recorded the lowest number of sign errors. On the contrary, from our simulation results, it 

is evident that ranking errors are frequent in data of any degree of comovement and persistence.  

 

 

6   Concluding remarks 

 

In this study we replicate the full sample results of Diebold and Yilmaz (2012) applied to range based 

volatilities of the Dow Jones UBS Commodity index and of three other financial markets:  the S&P 500 

(stock market), the 10 years Treasury bond yield (bond market), the New York Board of Trade US dollar 

index futures (FX market).  Moreover, we show that the net spillover indices used to assess the net 

contribution of one market to systemic risk are sensitive to the normalization scheme. In particular, the 

row normalization scheme of the Generalized Forecast Error Variance Decomposition suggested by 

Diebold and Yilmaz (2012), although allowing for a better interpretation (as variance shares) of the 

results, may fail to establish whether the market is a net risk transmitter or net risk receiver. Moreover, 

it is also unable to assess the degree to which a single market influences all the others in net absolute 

terms. The column normalization scheme, suggested by Diebold and Yilmaz (2012), suffers from the 

same drawbacks. As a result, we suggest using a scalar normalization scheme (as in Caloia et al. 2018) 

to avoid the misspecification of results. Among the scalar normalization schemes, the maximum row 

sum or the maximum column sum schemes are preferable to the spectral radius since they allow for a 

better interpretation of how much one variable receives or transmits in terms of percentage values. 

 
Acknowledgements.  
The authors gratefully acknowledge financial support from FAR2017 project ” The role of Asymmetry and 
Kolmogorov equations in financial Risk Modelling (ARM)”, from Fondazione Cassa di Risparmio di Modena, for the 
project 2015.0333 “Volatility and higher order moments: new measures and indices of financial connectedness” 
and from the FAR2015 project “A SKEWness index for Europe (EU-SKEW)”. The usual disclaimer applies. 
 
 
 
  



References: 
 
 

Billio, M., Caporin, M., Frattarolo L. & Pelizzon, L. (2016). Networks in risk spillovers, a multivariate 

GARCH perspective. Working Paper, Department of Economics, Cà Foscari University of Venice. 

Caporin, M. & Paruolo, P. (2015). Proximity structured multivariate volatility models. Econometric 

Reviews, 34(5) p. 559-593 . 

Caloia, F.G., Cipollini, A. & Muzzioli, S. (2018). Symmetric semi-volatility spillover effects in EMU stock 

markets. International Review of Financial Analysis, 57, p. 221-230. 

Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with 

application to global equity markets. Economic Journal,  119(534), p. 158–171. 

Diebold, F. X., & Yilmaz, K. (2012). Better to Give than to Receive: Predictive Directional Measurements 

of Volatility Spillovers. International Journal of Forecasting,  28 (1), p. 57-66. 

Diebold, F. X., & Yilmaz, K. (2014). On the Network Topology of Variance Decompositions: Measuring 

the Connectedness of Financial Firms. Journal of Econometrics, 182(1), p. 119-134. 

Fengler, M.R., & Herwartz, H. (2018).  Measuring Spot Variance Spillovers when (Co)variances are 

Time-varying – The Case of Multivariate GARCH Models. Oxford Bulletin of Economics and 

Statistics, 80(1), p. 135-159. 

Keleijan, H. H. & Prucha, I. R. (2010). Specification and estimation of spatial autoregressive model with 

autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1), p. 53-67. 

Keiler, S. & Eder, A. (2013). CDS spreads and systemic risk: a spatial econometric approach. Discussion 

Paper 01/2013, Deutsche Bundesbank. 

Klobner, S. & Wagner, S. (2013). Exploring all VAR orderings for calculating spillovers? Yes, we can!-A 

note on Diebold and Yilmaz (2009). Journal of Applied Econometrics, 29, p. 172-179. 

LeSage, J. & Pace, R. K. (2010). Introduction to Spatial Econometrics. Chapman and Hall/CRC. 

Pesaran, H. & Shin, Y. (1998). Generalized Impulse Response in Linear Multivariate Models. Economic 

Letters, 58, p. 17-29. 

  



 

Table 1. Spillover Table based on the non-normalized variance decomposition table (VDT). 

 
Note. This figure shows the spillover Table based on the non-normalized generalized forecast error 
variance decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). The 
Table shows the directional spillover received from others (FROM others), the directional spillover 
received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking based 
on the value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 2. Spillover Table based on the row-normalized variance decomposition table (VDT). 

 
Note. This figure shows the spillover Table based on the row-normalized generalized forecast error 
variance decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). The 
Table reports the directional spillover received from others (FROM others), the directional spillover 
received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking based 
on the value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 

 

 

 

 

 



 

 

Table 3: Spillover Table based on the column-normalized variance decomposition table (VDT). 

 
Note. This figure shows the spillover Table based on the column-normalized generalized forecast error 
variance decomposition, which is displayed in the central frame. Results refer to the HH scenario (high-
persistent and high-correlated series) and to the forecast horizon h=2 (Panel A) and h=10 (Panel B). The 
Table shows the directional spillover received from others (FROM others), the directional spillover 
received from others including own (FROM others (including own)) the directional spillover 
transmitted to others (TO others), the directional spillover transmitted to others including own (TO 
others (including own)) and the net contribution (NET) defined as the difference between the 
directional spillover transmitted TO others and the directional spillover received FROM others for 
variable Vi, i=1,…, 5. The bottom lines report for each variable the sign of the NET spillover (NET sign): 
negative if the variable is a net receiver and positive if the variable is a net donor, and the ranking based 
on the value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 



 
 
Table 4: Spillover Table based on the variance decomposition table (VDT) normalized by the 
spectral radius. 

 
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the spectral radius, which is displayed in the central frame. Results refer 
to the HH scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 (Panel 
A) and h=10 (Panel B). The Table shows the directional spillover received from others (FROM others), 
the directional spillover received from others including own (FROM others (including own)) the 
directional spillover transmitted to others (TO others), the directional spillover transmitted to others 
including own (TO others (including own)) and the net contribution (NET) defined as the difference 
between the directional spillover transmitted TO others and the directional spillover received FROM 
others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the NET spillover 
(NET sign): negative if the variable is a net receiver and positive if the variable is a net donor, and the 
ranking based on the value of the NET spillover from the highest to the lowest (NET ranking). 
 
 
 
 
 
 
 
 
 
 



 
 
Table 5: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum row sum. 

 
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the maximum row sum, which is displayed in the central frame. Results 
refer to the HH scenario (high-persistent and high-correlated series) and to the forecast horizon h=2 
(Panel A) and h=10 (Panel B). The Table shows the directional spillover received from others (FROM 
others), the directional spillover received from others including own (FROM others (including own)) 
the directional spillover transmitted to others (TO others), the directional spillover transmitted to 
others including own (TO others (including own)) and the net contribution (NET) defined as the 
difference between the directional spillover transmitted TO others and the directional spillover 
received FROM others for variable Vi, i=1,…, 5. The bottom lines show for each variable the sign of the 
NET spillover (NET sign): negative if the variable is a net receiver and positive if the variable is a net 
donor, and the ranking based on the value of the NET spillover from the highest to the lowest (NET 
ranking). 
 
 
 
 
 
 
 
 
 
 



 
 
Table 6: Spillover Table based on the variance decomposition table (VDT) normalized by the 
maximum column sum. 

 
Note. This figure shows the spillover Table based on the generalized forecast error variance 
decomposition normalized by the maximum column sum, which is displayed in the central frame. 
Results refer to the HH scenario (high-persistent and high-correlated series) and to the forecast horizon 
h=2 (Panel A) and h=10 (Panel B). The Table shows the directional spillover received from others 
(FROM others), the directional spillover received from others including own (FROM others (including 
own)) the directional spillover transmitted to others (TO others), the directional spillover transmitted 
to others including own (TO others (including own)) and the net contribution (NET) defined as the 
difference between the directional spillover transmitted TO others and the directional spillover 
received FROM others for variable Vi, i=1,…, 5. The bottom lines report for each variable the sign of the 
NET spillover (NET sign): negative if the variable is a net receiver and positive if the variable is a net 
donor, and the ranking based on the value of the NET spillover from the highest to the lowest (NET 
ranking). 
 
 
 
 
 
 
 
 
 



 
 
 
 
Table 7: Errors in sign (using population parameters). 

 
Note. The Table shows the number of errors in sign for each scenario (L.L. , L.H. , H.L. , H.H. , where L.L. 
= low persistence low comovement, L.H.=low persistence high comovement, H.L.=high persistence low 
comovement, H.H.=high persistence high comovement). Results refer to the forecast horizon h=2 (panel 
A) and h=10 (Panel B). Errors are counted when the net spillover obtained from the normalized matrix 
has a sign opposite to the one of the net spillover obtained from the non-normalized matrix. The total 
number of possible errors is 5 for each scenario. 
 
 

 

 

Table 8: Errors in ranking (using population parameters). 

 
Note. The Table shows the number of errors in ranking for each scenario (L.L. , L.H. , H.L. , H.H. , where 
L.L. = low persistence low comovement, L.H.=low persistence high comovement, H.L.=high persistence 
low comovement, H.H.=high persistence high comovement). Results refer to the forecast horizon h=2 
(panel A) and h=10 (Panel B). Errors are counted when the ranking of the net spillovers obtained from 
the normalized matrix is different from that of the non-normalized matrix. The total number of possible 
errors is 1 for each scenario. 
 



 

 

Table 9: Errors in sign (using simulations). 

 
Note. The Table shows the number of errors in sign for each scenario (L.L. , L.H. , H.L. , H.H. , where L.L. 
= low persistence low comovement, L.H.=low persistence high comovement, H.L.=high persistence low 
comovement, H.H.=high persistence high comovement). Results refer to the forecast horizon H=2 (panel 
A) and H=10 (Panel B). Errors are counted when the net spillover obtained from the normalized matrix 
has a sign opposite to the one of the net spillover obtained from the non-normalized matrix. The total 
number of possible errors is 5000 for each scenario (5 variables times 1000 simulations for each 
scenario). 
 

 

 

 

Table 10: Errors in ranking (using simulations). 

 
Note. The Table shows the number of errors in ranking for each scenario (L.L. , L.H. , H.L. , H.H. , where 
L.L. = low persistence low comovement, L.H.=low persistence high comovement, H.L.=high persistence 
low comovement, H.H.=high persistence high comovement). Results refer to the forecast horizon H=2 
(panel A) and H=10 (Panel B). Errors are counted when the ranking of the net spillovers obtained from 
the normalized matrix is different from the one of the non-normalized matrix. The total number of 
possible errors is 1000 for each scenario (one ranking times 1000 simulations for each scenario). 
  



Table 11: Comparison with the results in Diebold and Yilmaz (2012)  

 
Note. This Table shows the spillover based on the generalized forecast error variance decomposition 
normalized by row (Panel A), as in Diebold and Yilmaz (2012), and normalized by the maximum row 
sum (Panel B). Results refer to the 10-days-ahead forecast horizon.  
 
 


