
Connected Components Labeling on DRAGs:
Implementation and Reproducibility Notes

Federico Bolelli, Michele Cancilla, Lorenzo Baraldi, and Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10, Modena MO 41125, Italy
{name.surname}@unimore.it

Abstract. In this paper we describe the algorithmic implementation de-
tails of “Connected Components Labeling on DRAGs” (Directed Rooted
Acyclic Graphs), studying the influence of parameters on the results.
Moreover, a detailed description of how to install, setup and use YAC-
CLAB (Yet Another Connected Components LAbeling Benchmark) to
test DRAG is provided.

1 Introduction

Connected Components Labeling (CCL) is one of the fundamental operations
in Computer Vision and Image Processing. With the labeling procedure, all
objects in a binary image are labeled with unique values, typically integer num-
bers. In the last few decades many novel proposals for CCL appeared, and only
some of them were compared on the same data and with the same implementa-
tion [3,11,14]. Therefore, the benchmarking framework Yet Another Connected
Components LAbeling Benchmark (YACCLAB in short) has been developed,
aiming to provide the fairest possible evaluation of CCL algorithms [10,15].

The performance evaluation task is not as easy as it may seem, as there
are several aspects that could influence an algorithm. However, since CCL is a
well-defined problem, admitting a unique solution, the key elements influencing
the “speed” of an algorithm can be reduced to: the data on which tests are
performed, the quality of the implementations, the hardware capabilities, and
last but not least, the code optimization provided by the compiler.

For these reasons, the YACCLAB benchmark is based on two fundamen-
tal traits which aim at guaranteeing the reproducibility of the claims made by
research papers:

(i) A public dataset of binary images that covers different application scenar-
ios, ranging from text analysis to video surveillance.

(ii) A set of open-source C++ algorithms implementations, on which anyone can
contribute to, with extensions or improvements.

The results obtained with YACCLAB may vary when the computer architec-
ture or the compiler change, but being the code publicly available, anyone can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/195753834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II

test the provided algorithms on his own setting, choosing the one which suits
his needs best, and verify any claim found in literature.

Following this line of work, in this paper we describe the algorithmic and im-
plementation details of a recently developed CCL algorithm, “Connected Com-
ponent Labeling on DRAGs” (Directed Rooted Acyclic Graphs) [7], focusing on
its integration with YACCLAB and on the installation procedure. A detailed
analysis of parameters influence on the result is also provided.

The source code of the aforementioned algorithm is located at [1], whereas
the benchmarking suite can be found at [4].

2 How to test DRAG with YACCLAB

To correctly install and run YACCLAB the following packages, libraries and
utilities are required:

– CMake 3.0.0 or higher (https://cmake.org);
– OpenCV 3.0 or higher (http://opencv.org),
– Gnuplot (http://www.gnuplot.info);
– C++11 compiler.

The installation procedure requires the following steps:

– Clone the GitHub repository [4];
– Install the software using CMake, which should automatically find OpenCV

path, whether correctly installed on your OS, download the YACCLAB
dataset, and create a C++ project for the selected compiler;

– Set the configuration file config.yaml placed in the installation folder and
select the desired tests;

– Open the project, compile and run it.

There are six different tests available: correctness tests are an initial valida-
tion of the algorithms; average tests run algorithms on every image of a dataset,
reporting for each method the average run-time; average with steps separates
the labeling time of each scan, and that required to allocate/deallocate data
structures; density and granularity use synthetic images to evaluate the perfor-
mance of different approaches in terms of scalability on the number of pixels,
foreground density and pattern granularity; memory tests report an indication
on the expected number of memory accesses required by an algorithm on a ref-
erence dataset.

YACCLAB stores average results in three different formats: a plain text file,
histogram charts, either in color and in gray-scale, and a LATEX table, which can
be directly included in research papers. If an algorithm employs multiple scans,
results will display time spent in each of them separately, producing a stacked
histogram chart as output.

All the algorithms included in YACCLAB employ a base interface and im-
plement the following virtual methods:

https://cmake.org
http://opencv.org
http://www.gnuplot.info


III

– PerformLabeling: includes the whole algorithm code and it is necessary to
perform average, density, granularity and size tests;

– PerformLabelingWithSteps: implements the algorithm, dividing it in steps
(i.e. alloc/dealloc, first scan and second scan for those which have two
scans, or all scan for the others) in order to evaluate every step separately;

– PerformLabelingMem: is an implementation of the algorithm that traces the
number of memory accesses whenever they occur.

The Union-Find strategy is independent from the CCL one, therefore all
CCL algorithms invoke a templated Union-Find implementation. YACCLAB is
then able to compare each algorithm (but those for which the labels solver is
built-in) with four different labels solving strategies: standard Union-Find (UF),
Union-Find with Path Compression (UFPC) [21], Interleaved Rem’s algorithm
with splicing (RemSP) [12] and Three Table Array (TTA) [16]. This standard-
ization reduces the code variability, allowing to separate the Union-Find data
structures from the ones of CCL algorithms, and provides fairer comparisons
without negatively impacting the execution time.

The NULL labeling, also referred as NULL, defines a lower bound limit for the
execution time of CCL algorithms on a given machine and a reference dataset. As
the name suggests, the NULL algorithm does not provide the correct connected
components of an image, but only copies the pixels from the input image into
the output one. This “algorithm” allows to identify the minimum time required
for allocating the memory of the output image, reading the input image and
writing the output one. In this way, all the algorithms can be compared in terms
of how costly the additional operations required are.

3 Experiments Reproducibility

The DRAG algorithm was tested on an Intel Core i7-4770 CPU @ 3.40GHz
(4×32 KB L1 cache, 4×256 KB L2 cache, and 8 MB of L3 cache) with Linux
OS and GCC 7.2.0 compiler enabling the -O3 and -m32 flags.

The impact of the labels solver on the overall performance is typically limited
for most algorithms, so we only reported results obtained with the UFPC solver
on the state-of-the-art algorithms.

The DRAG performance have been compared on six different datasets: a
collection of histological images [13] with an average amount of 1.21 million
pixels to analyze and 484 components to label (Medical), fingerprint images [20],
collected by using low-cost optical sensors or synthetically generated, with an
average of 809 components to label (Fingerprints), high resolution historical
document images [6,8,9] with more than 15000 components and a low foreground
density (XDOCS), a dataset for people detection [5], tracking, action analysis
and trajectory analysis with very low foreground density and few components to
identify (3DPeS), a selection of documents [2,18,19] collected and scanned using
a wide variety of equipment over time with a resolution varying from 150 to 300
DPI (Tobacco800), and a large set of standard resolution natural images [17]
taken from Flickr (MirFlickr).



IV

In order to execute the same experiments reported in [7] the perform, algo-
rithms, and average datasets fields in the configuration file must be set as
follows:

perform: {correctness: true, average: true, average_with_steps: false,
density: false, granularity: false, memory: false}

algorithms: [SAUF_UFPC, BBDT_UFPC, DRAG_UFPC, CTB_UFPC, PRED_UFPC, CT,
labeling_NULL]

average_datasets: ["mirflickr", "fingerprints", "xdocs", "tobacco800",
"3dpes", "medical"]

Average tests were repeated 10 times (setting the tests number.average

in the configuration file), and for each image the minimum execution time was
considered. The use of minimum is justified by the fact that, in theory, an al-
gorithm on a specific environment will always require the same time to execute.
This time was computable in exact way on non multitasking single core pro-
cessors (8086, 80286). Nowadays, too many unpredictable things could occur in
background, independently with respect to the specific algorithm. Anyway, an
algorithm cannot use less than the required clock cycles, so the best way to get
the “real” execution time is to use the minimum value over multiple runs. The
probability of having a higher execution time is then equal for all algorithms.
For that reason, taking the minimum is the only way to get reproducible results
from one execution of the benchmark to another on the same environment.

4 Conclusion

This paper describes how to setup the YACCLAB project to reproduce the result
reported in [7]. The processor model –and in particular the cache sizes–, the RAM
speed and the background tasks will influence the execution time. Nevertheless,
the algorithms relative performance should remain extremely similar. Changing
the OS or the compiler is instead likely to heavily influence the outcome.

References

1. The DRAG Algorithm. https://github.com/prittt/YACCLAB/blob/master/

include/labeling_bolelli_2018.h, accessed on 13-March-2019
2. Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The Complex Doc-

ument Image Processing (CDIP) Test Collection Project. Illinois Institute of Tech-
nology (2006)

3. Allegretti, S., Bolelli, F., Cancilla, M., Grana, C.: Optimizing GPU-Based Con-
nected Components Labeling Algorithms. In: Third IEEE International Conference
on Image Processing, Applications and Systems (IPAS) (2018)

4. The YACCLAB Project. https://github.com/prittt/YACCLAB, accessed on 13-
March-2019

5. Baltieri, D., Vezzani, R., Cucchiara, R.: 3DPeS: 3D People Dataset for Surveillance
and Forensics. In: Proceedings of the 2011 joint ACM workshop on Human gesture
and behavior understanding. pp. 59–64. ACM (2011)

https://github.com/prittt/YACCLAB/blob/master/include/labeling_bolelli_2018.h
https://github.com/prittt/YACCLAB/blob/master/include/labeling_bolelli_2018.h
https://github.com/prittt/YACCLAB


V

6. Bolelli, F.: Indexing of Historical Document Images: Ad Hoc Dewarping Technique
for Handwritten Text. In: 13th Italian Research Conference on Digital Libraries
(2017)

7. Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected Components Labeling
on DRAGs. In: 24th International Conference on Pattern Recognition (Aug 2018)

8. Bolelli, F., Borghi, G., Grana, C.: Historical Handwritten Text Images Word Spot-
ting Through Sliding Window HOG Features. In: 19th International Conference
on Image Analysis and Processing (2017)

9. Bolelli, F., Borghi, G., Grana, C.: XDOCS: An Application to Index Historical
Documents. In: 14th Italian Research Conference on Digital Libraries. pp. 151–
162. Springer (2018)

10. Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Toward reliable experiments on the
performance of Connected Components Labeling algorithms. Journal of Real-Time
Image Processing pp. 1–16 (2018)

11. Bolelli, F., Cancilla, M., Grana, C.: Two More Strategies to Speed Up Connected
Components Labeling Algorithms. In: 19th International Conference on Image
Analysis and Processing. pp. 48–58 (2017)

12. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Englewood Cliffs, N.J
(1976)

13. Dong, F., Irshad, H., Oh, E.Y., Lerwill, M.F., Brachtel, E.F., Jones, N.C.,
Knoblauch, N.W., Montaser-Kouhsari, L., Johnson, N.B., Rao, L.K., et al.: Com-
putational Pathology to Discriminate Benign from Malignant Intraductal Prolifer-
ations of the Breast. PloS one 9(12) (2014)

14. Grana, C., Baraldi, L., Bolelli, F.: Optimized Connected Components Labeling
with Pixel Prediction. In: Advanced Concepts for Intelligent Vision Systems. pp.
431–440 (2016)

15. Grana, C., Bolelli, F., Baraldi, L., Vezzani, R.: YACCLAB - Yet Another Con-
nected Components Labeling Benchmark. In: 23rd International Conference on
Pattern Recognition. pp. 3109–3114 (2016)

16. He, L., Chao, Y., Suzuki, K.: A Linear-Time Two-Scan Labeling Algorithm. In:
International Conference on Image Processing. vol. 5, pp. 241–244 (2007)

17. Huiskes, M.J., Lew, M.S.: The MIR Flickr Retrieval Evaluation. In: MIR ’08: Pro-
ceedings of the 2008 ACM International Conference on Multimedia Information
Retrieval. ACM, New York, NY, USA (2008)

18. Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building
a Test Collection for Complex Document Information Processing. In: Proceedings
of the 29th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval. pp. 665–666. ACM (2006)

19. The Legacy Tobacco Document Library (LTDL). University of California, San
Francisco (2007)

20. Maltoni, D., Maio, D., Jain, A., Prabhakar, S.: Handbook of Fingerprint Recogni-
tion. Springer Science & Business Media (2009)

21. Wu, K., Otoo, E., Suzuki, K.: Two Strategies to Speed up Connected Compo-
nent Labeling Algorithms. Tech. Rep. LBNL-59102, Lawrence Berkeley National
Laboratory (2005)


	Connected Components Labeling on DRAGs: Implementation and Reproducibility Notes

