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Abstract. In this contribution, a simple and effective discrete element model based on rigid 
blocks and elastic interfaces with fixed contact topology, originally introduced for modeling 
regular masonry panels, is extended to the case of random masonry by introducing a pertur-
bation parameter able to vary the width of each block. The proposed model is then able to 
better reproduce the microstructural behavior of historical masonry, that is characterized by 
dry or weak mortar joints between strong blocks, and, in particular, that is characterized by 
blocks often arranged irregularly. 
The hypothesis of rigid blocks, together with fixed contact topology between blocks due to the 
small displacements assumption, allows adopting an efficient solution method based on the 
determination of the stiffness matrix of the masonry assemblage. In this case, the stiffness ma-
trix is able to account for the irregular block arrangement and, similarly to the case of regu-
lar masonry, the stiffness matrix is based on local joint stiffness, given that the contact actions 
along the joints are function of the relative displacements between adjacent blocks and the 
corresponding interface stiffness. 
Several numerical tests varying the random perturbation parameter are performed in order to 
evaluate the influence of randomness on masonry specimen behavior with respect to the regu-
lar case. Particular attention is given to the dynamic field by performing out-of-plane modal 
analysis of masonry panels. 
Furthermore, a homogenization procedure is applied to the random masonry and a numerical 
evaluation of the scatter between the discrete models and a 2D Reissner-Mindlin plate model 
is performed for varying perturbation parameter and for increasing heterogeneity parameter. 
As expected, when the number of heterogeneities in the structure is large enough, the average 
response of the random discrete model converges to an asymptotic response. 
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1 INTRODUCTION 
As well known in the community of architects and civil engineers, the assessment of ma-

sonry structural behavior is of particular interest, given that masonry constructions are one of
the most widespread type of traditional building in Europe and in Italy in particular. Moreo-
ver, recurring seismic events represent one of the main causes of collapse for this category of
buildings, with in- and out-of-plane collapse mechanisms that need to be evaluated and pre-
vented. The literature dedicated to the assessment of masonry at different scale levels by
means of analytic and numeric models is huge [1,2]. On one hand, refined models are able to
investigate the local behavior of masonry at a small scale level, but modeling and computa-
tional difficulties may arise when entire buildings or building portions need to be studied. On
the other hand, continuous models are able to study masonry structures as a whole, accounting
for average material mechanical properties based on single constituent characteristics, but
they are unable to evaluate local behavior governed by material microstructure or by architec-
tural details.
Considering historical masonry, real case studies are often characterized by walls having
blocks arranged irregularly. The literature dedicated to this aspect is present [3-8], but most of
the existing analytical and numerical models are dedicated to the case of regular masonry. Re-
fined numerical models such as the discrete ones [9] are able to study the behavior of inde-
pendent (distinct) elements in contact with several neighbors, then they are able to represent
the mechanical properties of historical masonry, that is characterized by weak and small joints
with respect to strong and well-sized blocks, allowing to assume that damage occurs more
frequently along joints. Furthermore, random arrangement can be taken into account without
varying significantly the complexity of the discrete system and the consequent computational
effort of the numerical analysis.
Here, a simple and effective discrete model, originally introduced for studying regular mason-
ry in the elastic field subject to in- and out-of-plane loads [10], already extended to the field
of material nonlinearity [11], is extended to the case of random or quasi-periodic masonry by
introducing a perturbation parameter able to vary the width of each block. For this purpose,
the work of one of the authors [6] is considered and improved, given that the hypothesis of
fixed contact topology between blocks, together with the hypothesis small displacements, al-
low to adopt an efficient solution method based on the determination of the stiffness matrix of
the masonry assemblage, that is extended to the case of random masonry.. Attention is devot-
ed to the out-of-plane behavior, given that out-of-plane vibrating frequencies and collapse
mechanisms can be activated more easily than in-plane ones. As well known, masonry behav-
ior is nonlinear even at low stress levels, hence the proposed model is also able to account for
material nonlinearity, by assuming a Mohr-Coulomb yield criterion for restraining interface
actions [11], as it has been done by authors also with a combined finite-discrete element code
[12]. However, this aspect is not investigated in this work.
Numerical tests on rectangular masonry specimens with several types of random and regular
arrangements ('running' and 'stack' bond) are performed, by also considering blocks arranged
with intermediate dimension along panel length ('head' bond). Modal analyses are carried on
in order to evaluate the influence of blocks arrangement on frequencies and modal shapes of
masonry panels. Furthermore, a homogenized 2D Reissner-Mindlin plate model identified
from the discrete system is adopted for comparing results obtained with the discrete model.
Moreover, the heterogeneity parameter represented by block standard size with respect to
specimen dimensions is increased and, as expected, when the number of heterogeneities in the
structure is large enough, the average response of the random discrete model converges to an
asymptotic response.
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2 DISCRETE RANDOM MODEL 

2.1 Geometric random model 
In order to describe the random model, a regular one following the standard 'running bond' 

texture is considered for first. It is characterized by a generic block Bi,j in contact with six sur-
rounding blocks by means of six interfaces, where j can assume any integer value and i is 
such as i + j is always even. Neighboring blocks and the corresponding interfaces are identi-
fied as 1 2,i k j kB + +  and 1 2,k kS , respectively, with coefficients k1, k2 defined as follows in clock-
wise direction (Fig. 1a): 

 1 2( , ) {( 1, 1), ( 1, 1), ( 2,0), ( 1, 1), ( 1, 1), ( 2,0)}k k ∈ − − + − + + + − + −  (1) 

Block dimensions are: width b, height a, and thickness t. Then, horizontal interface length 
is equal to block half width b/2 and vertical interface length is equal to block height a. A 3D 
Cartesian coordinate system y1y2y3 is introduced. Blocks are considered as rigid bodies, 
whereas the elastic and inelastic behavior of the system is lumped at interface or joint level, 
with dry or mortar joints modeled as elastic-plastic interfaces and considering plane stress hy-
pothesis. 
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Figure 1: Representative elementary volumes (REVs) for masonry: (a) regular REV; (b) REV with perturbed 

block width. 

The random discrete model introduced by Cecchi and Sab [6] is adopted, then all blocks 
keep the same height a, whereas block width b is subject to the effect of perturbation parame-
ters that modify the horizontal position of vertical interfaces, but that keep six surrounding 
blocks around the generic one. The position of Bi,j center is yi,j = i (b/2) e1 + j a e2, then, the 
coordinates of the center of a vertical interface between two adjacent blocks Bi-2,j

 and Bi,j are: 
zi,j = (i + k1/2) (b/2) e1 + (j + k2/2) a e2. The random model is introduced by defining a random 
parameter in horizontal direction p in order to vary the horizontal position of vertical interfac-
es between two adjacent blocks (Fig. 1b) as follows: 

 , , ,
1 1(1 / 2 )( / 2)i j i j i j

p p X b= + −z z e . (2) 

where Xi,j is the realization of a uniform random variable defined on [0 1] and 0 ≤ p < 1. 
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Then, the new horizontal positions of two consecutive vertical interfaces, ,i j
pz  and 2,i j

p
+z , al-

low to define the position of the new block center ,i j
py  and the new block width bi,j. It is worth

noting that the random model chosen maintains the original block contact topology, character-
ized by six neighboring blocks around Bi,j, by simply varying the length of the four horizontal
contact surfaces around the block. Furthermore, the sum of the new block width along a ge-
neric course j still gives the initial width of the masonry assemblage: Σi bi,j = Lj = L (see the
following Fig. 2b, e with panels having random arrangement).
The displacement of a generic block with a random position is given by the block centre
translation and by the block rigid rotation with respect to its centre as follows:

,, , ,
1 1,1 3 2

, , , , , , , ,
2 3 1 2 2,

, ,, ,
2 13 3 3,

0 ω ω
( ) ( ) ω 0 ω

ω ω 0

i ji j i j i j
p

i j i j i j i j i j i j i j i j
p p

i j i ji j i j
p

y yu
u y y
u y y

⎧ ⎫−⎧ ⎫ ⎡ ⎤−
⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪= + − = + − −⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩ ⎭

u y u Ω y y . (3)

Vector , , , , , , ,
1 2 3 1 2 3{ ω ω ω }i j i j i j i j i j i j i j Tu u u=q  collects displacement components of Bi,j, given by

three translations and three rotations with respect to the coordinate system.

2.2 Mechanic model 
As previously stated, model deformability and damage are considered at interface level on-

ly. Interfaces are assumed to have an elastic-perfectly plastic behavior. Following the notation
of previous authors contributions, each interface may be identified by integers k1,k2, connect-
ing blocks Bi,j and 1 2,i k j kB + +  [10]. Elastic behavior is given by interface stiffness that allows to
define interface actions as function of block relative displacements. For instance, relative dis-
placements 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,

1 2 3 1 2 3{ }k k k k k k k k k k k k k k Td d d δ δ δ=d  are three relative translations and three
relative rotations between two adjacent blocks, that may be defined as functions of global
block displacements: 1 2 1 2 1 2, , ,k k k k k k=d H q , by means of a 'compatibility matrix' 1 2,k kH  [13]. This
matrix collects distances between block centers as follows:

1 2, ,k k −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

I D I D
H

0 I 0 I

2

1

2 1

0 0
1 0 0 .
2

0

dy
dy

dy dy

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

D (4a,b)

Where I is the 3x3 identity matrix and D varies for each couple of adjacent blocks, accounting
for the random block positions. Interface actions 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , , ,

1 2 3 1 2 3{ }k k k k k k k k k k k k k k Tf f f m m m=f
are obtained by integrating interface normal and shear stresses over the contact area 1 2,k kS ,
leading to a normal and two shear forces and to a torsion and two bending moments, depend-
ing on interface orientation. For instance, in case of a vertical interface, normal force is f2 = fn

and shear forces are f1 and f3, leading to an overall shear action 2 2 2
1 3( )sf f f= + ; moreover,

bending moments are m1, m3, and torsion is m2. Interface elastic behavior is represented by
interface normal and shear stiffness kn and ks, that characterize the linear relationship between
interface relative displacements and actions: 1 2 1 2 1 2 1 2 1 2 1 2, , , , , ,( )k k k k k k k k k k k k= =f Κ d Κ A d , with

diag{ }s n s n s nk k k k k k=K  and 1 2 3diag{ }S S S I I I=A  for a horizontal interface. Such stiff-
ness values may be related to actual mortar elastic modulus and Poisson ratio EM, νM, together
with joint thickness e in case of mortar joints [10], whereas in case of dry joints, a fictitious
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mortar material may be defined. Furthermore, interface stiffness values account also for con-
tact surface area, moment of inertia and polar inertia. Assembling interface matrices in terms
of block displacements by means of compatibility matrices, the stiffness matrix of the whole
masonry assemblage is obtained and the problem of a masonry panel subject to external forc-
es Fext may be statically solved: panel panel ext=Κ q F .
Interface plastic behavior is activated when actions reach their corresponding elastic limits,
that are based on a tension strength and Mohr-Coulomb yield criterion and, in particular, that
account for possible combined effects. All these aspects and further details related to interface
elastic limits may be found in the work of Orduña and Lourenço [14] and in a recent contribu-
tion proposed by authors [11]. When actions reach the corresponding elastic limits, the corre-
sponding stiffness values are set equal to zero. Then, interface stiffness matrix and the
stiffness matrix of the whole masonry assemblage are updated together with interface actions
and an incremental analysis accounting for decreasing structural stiffness can be performed,
following the common procedures adopted for nonlinear analysis with finite elements ac-
counting for material nonlinearity.

2.3 Dynamic and modal analysis 
The equation of motion of the discrete system representing a masonry panel or assemblage

is given as follows:
2 2( / ) .panel panel panel extt∂ ∂ + =M q K q F (5)

Where Mpanel is the mass matrix of the panel collecting block mass and polar inertias with re-
spect to coordinate axis. Assuming ρ for the volumetric weight of the blocks, in this case mass
and inertias have to account for the random masonry pattern, hence to the random block width
bi,j. For instance, block mass is  mi,j = ρ (bi,j a t) and block polar inertias are

, 2 2
1 ( ) /12i jJ m a t= + , , , 2 2

2 [( ) ] /12i j i jJ m b t= + , , , 2 2
3 [( ) ] /12i j i jJ m b a= + .

In case of a large number of degrees of freedom involved in the problem due to a large num-
ber of blocks, a dynamic solution with statically applied loads (or dynamic loads) should be
preferred instead of determining the stiffness matrix of the assemblage. Moreover, setting Fext

= 0, a standard eigenvalue problem is obtained ( 2det[ η ] 0pan lpanel e− =K M ) and the vibrating
frequencies λi = ηi/(2π) of the assemblage are determined, together with the corresponding
modal shapes and mass participation factors. It is worth noting that common discrete model
codes are not able to perform modal analysis, since they do not determine the stiffness matrix
of the discrete assemblage.

3 HOMOGENIZED REISSNER-MINDLIN PLATE MODEL 
Discrete Element model is compared with a homogenized plate model, in which masonry

is described as an equivalent continuum obtained by means of analytical homogenization pro-
cedure. The hypothesis of rigid blocks connected by elastic mortar interfaces is assumed. An
orthotropic Reissner-Mindlin plate is adopted in order to account for the shear effects in the
continuous model equivalent to masonry [10,15]. The better performance of a Reissner-
Mindlin plate with respect to a Love-Kirchhoff plate has been already investigated by authors
for simply supported plates equivalent to masonry panels [16].
The homogenized model is not able to represent a casual random pattern, but it is able to ac-
count for a fixed perturbation parameter over the entire specimen. For instance, it is able to
model a 'stack bond' pattern with aligned vertical joints [6], that may be obtained with the
random discrete model by setting, for instance, p = 0.99, and that is expected to represent a
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lower bound of the random behavior, due to its larger out-of-plane deformability given by a
very small engagement between blocks.
Four masonry patterns are considered: running bond, stack bond, head running bond and head
stack bond. The last two cases are characterized by an actual block width equal to one half of
original width b. Flexural homogenized constants for running bond R

ijklD , R
ijF  and for stack

bond S
ijklD , S

ijF , where i,j,k,l = 1,2, are obtained in an analytical form with reference to the
works [10,17,18]. Assuming 'K  and ''K  as the bulk and shear moduli of mortar joints, the
analytical expressions of homogenized moduli in the case of running bond and head running
bond are:

2 2

1111 1122

4 ' '' ''
4

, 0,
12

4

v v v

R R
h v

e b e b eK K t K b
a a a a atD D

e e
a b

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦= = (6a,b)
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2

11 22
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K bt K b t K atF F
e ae e

= + = (8a,b)

While in case of stack bond and head stack bond are defined as:
3

1111 1122
' , 0,

12
S S

v
t KD D

e
b

= = (9a,b)

2 2 2 2
3

2222 1212

( ) ( )' , '' ,
12 48
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h h v

e ea t b tt K t a bD D K
e e e
a a b

+ + +
= = (10a,b)

11 22
'' '', .S S
v h

K bt K atF F
e e

= = (11a,b)

4 NUMERICAL TESTS 
A set of numerical tests is performed in order to evaluate the effectiveness of the random

discrete model in representing the behavior of masonry panels with random texture, with re-
spect to several regular cases. Random block arrangement is considered by applying the ran-
domness in vertical interface positions, starting from a 'running bond' pattern, characterized
by the following block dimensions: b = 250 mm, a = 55 mm, s = 120 mm, and with a density
ρ = 1800 kg/m3. Joint thickness is assumed equal to 1 mm both for horizontal and vertical in-
terfaces, and mortar elastic modulus and Poisson ratio are EM = 1 GPa and νM = 0.2. A rectan-
gular masonry panel having n1 = 6 blocks along horizontal direction and n2 = 16 blocks along
vertical direction is considered (Fig. 2a). Then, panel width L is equal to 1.56 m, whereas
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panel height H turns out to be equal to 1.04 m. Assuming these overall dimensions fixed, a
'head running bond' pattern is also considered, with n1 = 12 blocks having b = 120 mm (Fig.
2d). Starting from these regular cases, two generic random patterns are then introduced by
varying vertical interface positions with a random parameter p for each interface (Fig. 2b and
e shows two specimens generated casually); then, assuming p = 0.99 for all interfaces, panels
with vertically aligned interfaces ('stack bond') are also considered (Fig. 2c and f).
Focusing on the actual random cases (Fig. 2b and e), it must be pointed out that at least ten
different specimens are casually generated and studied, in order to evaluate the average effect
of the randomness, but also to highlight the cases with larger differences with respect to the
regular ones.

a b c

d e f

Figure 2: Rectangular masonry panel having (a) running bond, (b) random running bond, (c) stack bond, (d) head
running bond, (e) random head bond, (f) head stack bond.

4.1 Modal analysis with discrete model 
Modal analyses are performed on the six masonry panel types showed in Fig. 2 and having

fixed base. Results obtained with the discrete model are showed in Figs. 3 and 5 in terms of
modal shapes and frequencies. First and second modal shapes are always a flexural out-of-
plane one in vertical direction and a torsional one, independently on blocks arrangement. The
third modal shapes are flexural out-of-plane with two half-waves only for specimens obtained
from the running bond texture and, similarly, the fourth modal shapes are characterized only
by an in-plane flexural deformation. Considering specimens with regular and random head
bond texture, the third modal shapes are flexural with a double-curved shape and the fourth
modal shapes are flexural with two half waves in vertical direction. It is worth noting that the
frequencies of the flexural modal shapes, with one and two half-waves, are not affected by
random arrangement, given that a flexural out-of-plane mode involves only the deformation
of horizontal interfaces, together with the interface stiffness in vertical direction, that depends
on vertical relative distances between blocks. On the other hand, the torsional modal shapes
are strictly affected by block arrangement and block size and, more generally, by the number
and the position of vertical interfaces. The head stack bond case (Fig. 2f) is characterized by
the lowest frequency, with a value about 34% smaller than the frequency of the running bond
case, whereas the running stack bond case (Fig. 2c) is characterized by a reduction close to
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14%. For instance, the effect of the decreasing blocks engagement starting from the running
bond case, increasing the perturbation parameter p, is showed in Fig. 4 for torsional frequency,
together with similar information for the in-plane flexural mode, characterized by frequencies
at least 4% smaller than those of the regular case.
However, both stack bond cases represent lower bounds that are never reached by any one of
the random specimens generated casually; in fact, average frequencies obtained with random
running and head bond textures are slightly smaller than the corresponding ones obtained with
the regular textures, as it is showed by the values in the second column of Figs. 3 and 5, that
are closer to the values of the first column, rather than those of the third one, with values at
least 1-2% smaller than those obtained with regular textures.

running bond random running bond stack bond

39.13 Hz 39.13 Hz 39.13 Hz

110.49 Hz 109.09 Hz 95.27 Hz

233.59 Hz 233.41 Hz 233.62 Hz

249.11 Hz 247.75 Hz 240.83 Hz

Figure 3: First four modal shapes and corresponding frequencies for masonry panels with regular and random
textures obtained starting from the 'running bond' one. Block thickness is not represented for simplicity.
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Figure 4: Differences between frequencies related to the first three modal shapes for specimens starting from a 

running bond regular texture and increasing the perturbation parameter. 
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Figure 5: First four modal shapes and corresponding frequencies for masonry panels with regular and random 
textures obtained starting from the 'head bond' one. Block thickness is not represented for simplicity. 

2513



D. Baraldi, E. Reccia and A. Cecchi

4.2 Modal analysis with homogenized model 
Modal analysis are carried on also by means of a homogenized Reissner-Mindlin plate

model. Panels are modeled with quadrilateral shell elements. The use of a FE model is justi-
fied by the fact that analytical solutions in closed form for modal analysis is available only in
the specific case of plate supported on the four sides [16]. Running bond, stack bond, head
running bond and head stack bond patterns are considered and the corresponding homoge-
nized flexural and shear moduli are listed in Table 1, whereas Fig. 6 shows the modal shapes
and the relative frequencies obtained for the four patterns and the rectangular panel (1.66 x
1.04) m2 already studied with the discrete model.
As in the case of DEM, first and second modal shapes are always a flexural out-of-plane one
in vertical direction and a torsional one, independently on blocks arrangement. Instead, look-
ing at subsequent modal shapes, head bond and head stack bond patterns are characterized by
a third double-curved flexural modal shape with a smaller frequency with respect to the flex-
ural modal shape with two half-waves, that assumes the same value for the four patterns con-
sidered and appears as the third modal shape for running and stack running bond cases. The
in-plane flexural modal shape appears as the fourth one for the running bond case only.

homogenized
flexural and shear moduli 

running
bond

stack
bond

head
running bond

head
stack bond

D1111 50730 26050 15910 12500
D1122 0 0 0 0
D2222 5731 5731 5731 5731
D1212 11750 3757 3934 3134
F11 22250 10420 7727 5000
F22 2292 2292 2292 2292

Table 1: Elastic parameters of the homogeneous material equivalent to the four masonry patterns.

The scatter between frequencies obtained with homogenized and discrete models is evalu-
ated for increasing the number of heterogeneities n1 = L/b, keeping fixed panel and block in-
plane dimension ratios, together with panel and block thickness. Attention is paid to the first -
flexural- and second -torsional- modal shapes (Figs. 7 and 8). With a small number of blocks
n1 = 3, the homogenized model is not able to follow the behavior of the discrete one, and dif-
ferences are generally large, close to 20-30% or more for all the patterns considered and both
modal shapes. Increasing the number of blocks, differences generally decrease; however, the
flexural modal shapes are all characterized by differences close to 15%, independently on the
masonry pattern, i.e. block engagement, given that such a modal shape is mainly governed by
horizontal interfaces and, consequently, by D2222 homogenized modulus that is the same for
the four cases considered. Torsional modal shapes turn out to be very close to those obtained
with the discrete model if small blocks typical of head and head stack bond patterns are mod-
eled, given that differences are close to 8-9%, but also in case of a running bond pattern.
Stack bond pattern, instead, is characterized by frequencies quite far from the corresponding
ones obtained with discrete models.
It is worth noting that, increasing the number of blocks, the computational effort needed for
performing analysis with the homogeneous model do not vary, since the same mesh refine-
ment should be adopted, whereas the discrete model is characterized by an increasing compu-
tational effort that limits the maximum number of blocks that can be considered and may
require to consider out-of-plane degrees of freedom independently from the in-plane ones.
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Figure 6: First four modal shapes and corresponding frequencies for masonry panels different textures modelled 
with homogenized plate finite elements. 
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Figure 7: Differences for the first (squares) and the second (triangles) frequencies obtained with the continuous 
model, with respect to discrete model results, increasing the number of heterogeneities. 
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Figure 8: Differences for the first (squares) and the second (triangles) frequencies obtained with the continuous
model, with respect to discrete model results, increasing the number of heterogeneities.

5 CONCLUSIONS 

• The proposed discrete model turns out to be fast, simple and effective for performing
modal analysis of masonry specimens characterized by quasi-periodic patterns with ran-
dom position of vertical interfaces. The discrete model is able to generate automatically a
set of casual random patterns in order to evaluate the average effects on the overall be-
havior of masonry panels; moreover, the matrix solution approach allows to perform
modal analysis that are usually not performed by common discrete model codes.

• Considering masonry panels modeled with discrete elements, the random position of ver-
tical interfaces do not influence significantly out-of-plane frequency and modal shapes
with respect to the regular cases; only stack bond textures are characterized by a large
torsional deformability that leads to decreasing frequencies for increasing the perturba-
tion parameter p.

• Homogenized panels modeled with Reissner-Mindlin plate elements turn out to slightly
converge to the corresponding discrete ones for increasing the number of heterogeneities.
As expected, flexural modal shapes turn out to be not influenced by random patterns.
However, only head bond and head stack bond patterns turn out to have the same tor-
sional behavior of the discrete model, thanks to the larger number of blocks.

• The homogenized model is able to account for the different block arrangement in bend-
ing and shear stiffness parameters, but it is unable to account for the local torsional iner-
tia during the determination of the mass matrix. For this aspect, homogenized model
converges to the discrete one more slowly with respect to simple static analysis, where
only stiffness parameters are involved [16].

• The discrete model is stiffer than the homogenized one and it is more suitable for study-
ing masonry with actual thin joints with respect to block dimensions. However, for in-
creasing panel size, discrete model is characterized by an increasing number of degrees
of freedom that require a larger computational effort with respect to the homogenized
model, that turns out to be simpler and faster, given that the same FE mesh refinement
may be adopted for increasing panel size.

• Further developments of this work will regard pushover and dynamic analysis of speci-
mens with random texture, in order to evaluate the influence of randomness on collapse
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mechanisms and ultimate loads, also accounting for randomness in vertical direction by 
varying the height of each course of blocks, as it has been recently done by authors for 
the in-plane case [19]. 

• Further developments of this work will regard the study of actual 3D specimens such as 
small buildings or building portions with orthogonal walls, slabs, roofs and openings. 
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