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Abstract— Effective monitoring and management applications
on modern distribution networks require a sound network
model and the knowledge of line parameters. Network line
impedances are used, among other things, for state estimation and
protection relay setting. Phasor Measurement Units (PMUs) give
synchronized voltage and current phasor measurements, referred
to a common time reference (coordinated universal time). All
synchrophasor measurements can thus be temporally aligned
and coordinated across the network. This feature, along with
high accuracy and reporting rates, could make PMUs useful
for the evaluation of network parameters. However, instrument
transformer behavior strongly affects parameter estimation ac-
curacy. In this paper, a new PMU-based iterative line parameter
estimation algorithm for distribution networks, which includes
in the estimation model systematic measurement errors, is
presented. This method exploits the simultaneous measurements
given by PMUs on different nodes and branches of the network.
A complete analysis of uncertainty sources is also performed,
allowing the evaluation of estimation uncertainty. Issues related
to operating conditions, topology and measurement uncertainty
are thoroughly discussed and referenced to a realistic model of
a distribution network to show how a full network estimator is
possible.

Index Terms—electric network line parameters, phasor mea-
surement units PMUs, power distribution lines, power system
measurements, voltage and current transducers, weighted least
squares.

I. INTRODUCTION

Phasor Measurement Units (PMUs) are the latest generation
of measurement devices for electric grids, designed to measure
synchronized voltage and current phasors across a network, as
well as their frequencies and corresponding rates of change
[1]. These devices are usually installed for the monitoring of
transmission networks, where they have been a remarkable
improvement over older sensors thanks to the availability of
absolute phase angle measurements and of time-coordinated
and unprecedentedly accurate measurements of the quantities
of interest. Recently, with the advent of PMUs designed
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for distribution systems such as µPMUs [2], synchrophasor
measurements are becoming more useful at distribution level,
which is the focus of this paper.

A PMU can be implemented in a standalone device or
as a software functionality in an IED (Intelligent Electronic
Device) [3], as well as a Virtual Object in a Cloud architecture
[4]. The main characteristics of PMUs are the high reporting
rate and the availability of an absolute time reference for
synchrophasor evaluation. The high reporting rates, compared
with the classical measurement devices in supervisory control
and data acquisition (SCADA) systems, permit the evaluation
of fast phenomena that can occur in the electric grid and an
understanding of the dynamics of the relevant signals. The
absolute time reference, usually obtained from the Global Posi-
tioning System, provides an available and reliable definition of
time to every PMU in a system. This is what is used to evaluate
absolute phase angle. Every measurement is timestamped,
allowing for the correlation of all the measurements available
in a given time instant from PMUs installed across the nodes
of a network.

The data provided by PMUs are collected at Phasor Data
Concentrators and forwarded to the control center to be used
by the target applications [5], [6]. These data can be used
in different contexts for both on-line (state estimation [7]–
[9], voltage stability assessment, etc.) and off-line applications
(post-mortem and statistical analysis, etc.).

PMU measurements can also be used in intelligent systems
that perform network model estimation or validation. In this
context, the accuracy of any measurement device is an im-
portant prerequisite for the overall accuracy of the estimation
results. It is important to mention here, though, that there are
many uncertainty sources that cannot be neglected [10].

It is worth recalling that, in most traditional applications,
network parameter values have been assumed to be known and
equal to nominal values. In many cases, network parameters
have been obtained by means of theoretical calculations and
off-line measurements, using geometry and conductor prop-
erties. Therefore, network parameter values used by the grid
operators may be significantly incorrect [11], with differences
of up to 25-30 % compared to actual values [12].

To face this problem different methods to estimate the
network parameters in transmission systems have been sug-
gested in the scientific literature. Lately, there is growing
interest in the possibility of a real-time estimation based on
the synchronized measurement provided by the PMUs [13]. In
particular, the control center seems to be the ideal context to
exploit the coordinated data given by wide area measurement
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systems for network model estimation.
The use of synchronized phasors to estimate the network

parameters in a transmission line and the effect of instrument
transformers (ITs) were discussed in [14], but without a
robust statistical analysis. In [15] the network parameters for
short transmission lines were estimated using several methods
and considering different load conditions. This made use of
synchronized phasors and included noise and bias errors as
measurement uncertainty. In [16] a different approach was pre-
sented, where bad measurements are identified and removed
before performing the estimation, random errors for the PMU
measurements are applied and the ITs are assumed to be
calibrated. Recently, an alternative method for estimating the
parameters of a transmission network, based on Kalman filter,
was presented in [17]. The methodology takes into account
the uncertainty of PMU measurements, but the transducers
are considered carefully calibrated. In [18] a method of
identifying the transmission network parameters was presented
in which the measurement model considers the uncertainties of
transducers and PMUs as referring to a Gaussian distribution.

Little attention has been paid to parameter estimation in
distribution systems. As mentioned above, PMUs specifically
designed for distribution systems [2] are now available and
the problem has become more topical than ever. In [?], the
feasibility of calculating the impedance of both a transformer
and a line from PMU measurements for distribution networks
(DNs) is investigated, but measurement device and transducer
uncertainties are not included in the model. In [19] line
parameter estimation is performed by means of unsynchro-
nized measurements. Steady-state conditions are assumed and
phase angle errors are neglected. In [20] an optimization-based
procedure is presented to estimate the parameters from voltage
and power measurements, but synchronization or measurement
issues and systematic errors are not considered.

In this context, a technique relying on a PMU monitoring
system and a least square approach was presented in [21],
which sought to estimate line parameters together with the
systematic deviations (mainly from ITs). This technique was
based on a linear approximation of the measurement functions
and errors and results for a small portion of a DN were
reported.

In this paper, a new iterative weighted least squares (WLS)
method that allows dealing with large line parameter devi-
ations is proposed. It allows the simultaneous estimation of
multiple impedances on multiple branches. Systematic errors
in the measurement chain are considered in the algorithm, thus
allowing them to be estimated as well.

Topological and measurement constraints are included, so
that all the information available for each portion of the
network can be exploited.

A full derivation of the measurement model and a meticu-
lous uncertainty evaluation is introduced along with a strategy
to speed up the algorithm based on repeated measurements
and uncertainty modeling.

Equations for the evaluation of the estimation uncertainty
are introduced thus allowing the definition of estimation
bounds.

A detailed investigation of the influence of different con-
straints, changing network conditions and measurement accu-
racies is presented with a model of a real DN and practical
issues with the measurement system are discussed.

II. PROPOSED ESTIMATION ALGORITHM

A. Definition of the Network and Measurement Model

The proposed estimation algorithm relies on a simultaneous
estimation of the network line parameters and of systematic
errors, assumed to be mainly introduced by transducers as
in [21]. A general measurement model can be defined from
typical line models. Fig. 1 shows the single-line π-model for
three connected branches that represent a small portion of a
generic distribution network. Shunt capacitances at both ends
of each line are neglected, as is common in distribution system
modeling (see [22] for a state estimation example).

First, the notation and measurement models will be de-
scribed in the context of a single branch. Then the model
will be extended to present the general algorithm that operates
on multiple branches and can be applied to entire networks.
Considering branch (i, j) of Fig. 1, the monitoring system
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Fig. 1. Network branches model.

includes PMUs that measure the voltage synchrophasors vi(t)
and vj(t) and the branch current synchrophasor iij(t), where
t represents the measurement time as reported in the time-tags
of the data packet sent from the PMUs to the control center
(at least two PMUs or two merging units communicating
with suitable IEDs are needed for each branch). Measurement
timestamp will be generally omitted in the following sections
for the sake of brevity, and specified only when necessary.

At each time instant a set of independent measurements is
collected from the field. Each phasor can be expressed as a
function of its magnitude and phase angle as:

vi = Vie
jφi vj = Vje

jφj iij = Iije
jθij (1)

The measured phasors are affected by both magnitude and
phase angle errors that are introduced both by transducers and
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the PMUs themselves, and can be expressed as functions of the
reference quantities (indicated by a superscript ‘R’) as follows:

vi = (1 + ξi + ξrandomi )V Ri e
j(φR

i +αi+α
random
i )

iij = (1 + ηij + ηrandomij )IRije
j(θRij+ψij+ψrandom

ij )
(2)

For both voltages and currents, the relative magnitude errors
and the phase angle errors are split into two contributions of
a different nature: systematic errors (represented by ξi and ηij
for magnitudes, by αi and ψij for phase-angles) and random
errors (ξrandomi and ηrandomij for magnitudes, αrandomi and
ψrandomij for phase-angles). Similar quantities can be defined
for all the other measured phasors (e.g. vj).

Considering two separate contributions allows the high-
lighting of the different behaviors of multiple uncertainty
sources. In the following, as in [21], the main source of
systematic errors is associated with the transducers and thus
defined by the accuracy class of the instrument transformer
or divider. Random errors are mainly attributed to PMUs, and
thus instrument specifications are used to quantify them. This
assumption is adopted to make the presentation simple (the
attribute “random” in the error notation will be replaced, in
the following, by “PMU”) and the tests of Section III easier to
follow, but it does not exclude that random errors might result
from ITs too. The model in (2) indeed allows considering both
systematic and random errors without loss of generality.

Since magnitude errors introduced by transducers and
PMUs are small (much lower than one), the two error con-
tributions are presented in (2) as additive, neglecting second
order terms obtained by the cascade of two ratio errors.

The relationship linking all the measurements relating to
branch (i, j) (branch voltage drop equation) can be expressed
as:

vRi − vRj = Vi(1− ξi − ξPMU
i )ej(φi−αi−αPMU

i )

− Vj(1− ξj − ξPMU
j )ej(φj−αj−αPMU

j )

= Ziji
R
ij

= (R0
ij(1 + γij) + jX0

ij(1 + βij))

· (1− ηij − ηPMU
ij )Iije

j(θij−ψij−ψPMU
ij ) (3)

where R0
ij and X0

ij are the nominal values of (i, j)-line
resistance and reactance. Parameters γij and βij are the cor-
responding relative deviations from the nominal values, which
will be described in the following as “correction parameters”
for branch (i, j). Equation (3) is obtained under the same
assumption of small ratio errors used in (2) and includes all the
measurement and error quantities together with two unknowns
that need to be estimated to find the impedance of the branch.
This is the first complex equation of the measurement model.

From (3), further simplifications can be obtained by as-
suming small phase angle errors (ψij , ψPMU

ij , αi, αPMU
i , αj ,

and αPMU
j ) and applying the first-order expansion of the

exponentials. This is a reasonable approximation, because ITs
phase displacements are small for all the precision classes
defined in the standard IEC 61869 [23], [24] and modern
non-conventional transducers can have even lower errors, thus
confirming the validity of the assumption. The same holds true

for typical phase-angle deviations of PMUs (in the order of
10−3 rad for steady-state signal conditions).

Equation (3) can then be rewritten as

Vi(cosφi + j sinφi)
[
1− (ξi + ξPMU

i )− j(αi + αPMU
i )

]
− Vj(cosφj + j sinφj)

[
1− (ξj + ξPMU

j )− j(αj + αPMU
j )

]
' Iij(cos θij + j sin θij)

[
R0
ij(1 + γij) + jX0

ij(1 + βij)
]

·
[
1− (ηij + ηPMU

ij )− j(ψij + ψPMU
ij )

]
(4)

and, separating its real and imaginary parts, it follows:

+V ri (1− ξi − ξPMU
i ) + V xi (αi + αPMU

i )

− V rj (1− ξj − ξPMU
j )− V xj (αi + αPMU

i )

' IrijR0
ij(1 + γij)(1− ηij − ηPMU

ij )

+ IxijR
0
ij(1 + γij)(ψij + ψPMU

ij )

+ IrijX
0
ij(1 + βij)(ψij + ψPMU

ij )

− IxijX0
ij(1 + βij)(1− ηij − ηPMU

ij )

(5)

−V ri (αi + αPMU
i ) + V xi (1− ξi − ξPMU

i )

+ V rj (αj + αPMU
j )− V xj (1− ξj − ξPMU

j )

' IrijX0
ij(1 + βij)(1− ηij − ηPMU

ij )

+ IxijX
0
ij(1 + βij)(ψij + ψPMU

ij )

− IrijR0
ij(1 + γij)(ψij + ψPMU

ij )

+ IxijR
0
ij(1 + γij)(1− ηij − ηPMU

ij )

(6)

where V ri , Vi cosφi and V xi , Vi sinφi are, respectively, the
real and imaginary parts of the measured phasor vi (similar
definitions hold for V rj and V xj ), while Irij , Iij cos θij and
Ixij , Iij sin θij are defined for the current. Equations (5) and
(6) represent a non-linear measurement model

yij = hij(xij , eij), (7)

where xij = [ξi, αi, ξj , αj , ηij , ψij , γij , βij ]
T is the state

vector to be estimated, including all systematic errors and
eij = [ξPMU

i , αPMU
i , ξPMU

j , αPMU
j , ηPMU

ij , ψPMU
ij ]T is the vector

of all random contributions. yij represents the equivalent
measurements and hij(·) links errors to known terms (their
definitions can be found in Appendix A).

The relative differences γij and βij of the actual values of
the line parameters with respect to their rated values cannot
be generally considered << 1 in distribution networks, where
these differences can reach maximum values of few tens in
percentage [25], [12], [26], [27]. Therefore the expressions
in (7) (detailed in (A.1) and (A.2)) cannot be linearized. It
is possible to split the second term in (7) to separate the
systematic and random contributions as follows:

yij =

[
yrij
yxij

]
=

[
V ri − V rj −R0

ijI
r
ij +X0

ijI
x
ij

V xi − V xj −X0
ijI

r
ij −R0

ijI
x
ij

]
=

= fij(xij) + εij(γij , βij , eij)

(8)

where fij(·) is the measurement functions vector and εij
represents the equivalent measurements random vector. Details
on their elements are given in Appendix A.

Equation (8) represents the building block of the estimation,
because it defines equivalent measurements for each branch
and for each time instant and separates random contributions.
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To estimate the branch network parameters together with
the systematic errors, multiple PMU measurements of the
same quantities are needed. They introduce several equations
involving the same unknowns and allow for the definition of
an over-determined system of equations as follows:

ytotij =


yrij(t1)
yxij(t1)

...
yrij(tNt

)
yxij(tNt

)

 =

=

 f t1ij (xij)
...

f
tNt
ij (xij)

+

 εt1ij (γij , βij , e
t1
ij )

...
ε
tNt
ij (γij , βij , e

tNt
ij )

 (9)

where Nt is the number of timestamps under consideration.
The multiple PMU measurements corresponding to different

timestamps can be classified into two types. Thanks to the high
PMU reporting rates, the network evolution appears generally
slow with respect to the measurement refresh timescale and
thus it is possible to logically group the measurements into:
measurements corresponding to different network conditions
(different operation points, referred to as “cases” in the
following) and repeated measurements of the same status
(repeated measurements). This distinction will be adopted
in the following sections to better understand the algorithm
behavior.

From a practical viewpoint, this distinction can also be used
to speed up the algorithm: subject to a preliminary check of
the absence of rapid variations, repeating measurements in
rapid succession can allow averaging to introduce equivalent
measurements with higher accuracy for each case. It is pos-
sible to prove that, under the above assumptions on errors,
these measurements can be used in the algorithm allowing
acceleration without loss of accuracy.

The proposed estimator is designed to exploit all the
available information, since the network parameter estimation
process is a hard task that requires a careful definition of the
uncertainty model. For this reason, it is important to use also
prior information on the unknown parameters. A-priori values
for the network correction parameters and for the transducer
errors can be integrated into the algorithm. The former are
zero since nominal values represent the best prior assumption
for network parameters if no further information is given.
The latter are also usually zero for similar reasons, because it
is only the error ranges of the transducers that are typically
known. It is thus possible to add the following constraints:

0 = I2Mij
xij + εpriorij (10)

where 0 is a vector of zeros, I2Mij is the 2Mij × 2Mij

identity matrix and εpriorij is the vector containing prior
knowledge about errors. The dimension of xij , i.e. the number
of unknowns, is 2Mij : two for the impedance and two for
each measurement voltage and current PMU channel relating
to branch (i, j). εpriorij is thus a vector of zero-mean random
errors, the uncertainty of which can be derived from prior in-
formation on maximum deviations of the unknown parameters.

In the following, we assume that we have determined prior
limits on maximum line resistance and reactance errors, as
well as maximum ratio and phase displacement errors for
transducers. When more accurate information is available , it
can be used to redefine the uncertainties in (10) or to redefine
parameters in (3).

B. Multiple Branches

The estimation algorithm is designed to estimate the
impedances of multiple branches in a single process. All the
synchronized measurements from across the network can be
aligned and used to define a single estimation model. The
following model demonstrates the consideration of a number
of different branches:

 ytoti1j1
...

ytotiNbr
jNbr

 =

 f toti1j1
(x)

...
f totiNbr

jNbr
(x)

+

 εtoti1j1(γ,β, e)
...

εtotiNbr
jNbr

(γ,β, e)


(11)

where f totij (x) and εtotij (γ,β, e) indicate, respectively, the
vector of measurement functions and the error vectors for
branch (i, j) at all instants in time. They are written as
functions of the entire vector of unknowns x ,

⋃k=Nbr

k=1 xikjk
(Nbr is the number of involved branches and the union-
of-sets symbol

⋃
stands for a merger of all the variables

of each included branch, of all the random measurement
errors e ,

⋃k=Nbr

k=1 etotikjk =
⋃k=Nbr

k=1

⋃n=Nt

n=1 etnikjk , of γ =
[γi1j1 , · · · , γiNbr

jNbr
]T and of β = [βi1j1 , · · · , βiNbr

jNbr
]T.

The unknowns vector x includes the systematic errors of all
the voltage and current measurements that are common to
adjacent branches. Because the equivalent measurement errors
of connected branches involve common measurements, the
associated random errors are correlated as discussed in next
section.

Besides the voltage drop constraints defined by (11), topo-
logical constraints are present when considering a set of
branches. Two of them are particularly important for distribu-
tion networks: constraints given by injection (or, equivalently,
absorption) nodes and zero injection constraints.

Looking at Fig. 1, it can be seen that the additional
constraint given by the Kirchoff’s current law (KCL) at a node
j is:

ij =
∑
k∈Γj

ijk (12)

where Γj is the set of nodes adjacent to node j and ijk =
−ikj for each branch current. If the injected current phasor
ij is measured, additional equations can be added to those of
(11). The details on the derivation of the constraints given by
(12) are given in Appendix B (see also [21]), but the final
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relationships are:

Irj −
∑
k∈Γj

Irjk = frj (x) + εrj(γ,β, e) = ηjI
r
j − ψjIxj

+
∑
k∈Γj

[
−ηjkIrjk + ψjkI

x
jk

]
+ εrj

(13)

Ixj −
∑
k∈Γj

Ixjk = fxj (x) + εxj (γ,β, e) = ηjI
x
j + ψjI

r
j

+
∑
k∈Γj

[
−ηjkIxjk − ψjkIrjk

]
+ εxj

(14)

where ηj and ψj are the systematic magnitude and phase
angle errors associated with the current injection measurement,
similarly to other current measurements. The two random
errors of the equivalent measurements defined by (13) and
(14) are defined as follows:

εj(γ,β, e) =

[
εrj
εxj

]

=

 ηPMU
j Irj − ψPMU

j Ixj +
∑
k∈Γj

(
−ηPMU

jk Irjk + ψPMU
jk Ixjk

)
ηPMU
j Ixj + ψPMU

j Irj +
∑
k∈Γj

(
−ηPMU

jk Ixjk − ψPMU
jk Irjk

) 
(15)

where the current injection PMU errors have been considered
together with those of branch currents. Every node current
measurement thus gives two additional constraints with two
equivalent measurements that can be added to the global
estimation model.

Similarly, two additional equivalent measurements are ob-
tained when a zero-injection node is considered. The relation-
ships in (13), (14) and (15) are simplified since no injection
measurements are involved. Thus, no additional unknowns
are present and the equivalent measurements link the real
and imaginary current balance at a zero-injection node j to
systematic errors present on the branch measurements. New
couples of equivalent random errors, indicated by subscript
“j − zero”, are defined as follows:

εj−zero(γ,β, e) =

[
εrj−zero
εxj−zero

]

=

 ∑k∈Γj

(
−ηPMU

jk Irjk + ψPMU
jk Ixjk

)
∑
k∈Γj

(
−ηPMU

jk Ixjk − ψPMU
jk Irjk

) 
(16)

When a full set of network branches is involved in the
estimation, all the equations described above can be used to
improve the performance. Prior knowledge about transducers
and impedances can be inserted as was detailed in the single-
branch case. Since multiple cases and repeated measurements
are used, all the constraints have to be defined for each
timestamp and there are then multiple equations like (15) and
(16) to augment the system of (11).

C. Iterative WLS Solution

Once the whole measurement model is defined, the proposed
algorithm relies on an iterative WLS estimation method, which
considers, at each iteration q+1, the linearization of (11), (13)

and (14) around the state estimated from the previous iteration
q. The full system can be expressed as:

y = f(x) + ε (17)

where y includes all the equivalent measurements (relating to
branches, injections and zero injections), f(·) is the nonlinear
measurement functions vector and ε represents all the equiv-
alent measurements random errors.

The aim of the iterative estimation is to achieve x̂ =
arg minx ‖y − f(x)‖Σε

(where ‖·‖Σε
indicates the Maha-

lanobis norm that allows using Σ−1
ε as weighting matrix).

Thus, at iteration q, the following solution is computed:

∆x̂q+1 = x̂q+1 − x̂q =

( df

dxT

∣∣∣∣
x̂q

)T

Σ−1
rq

df

dxT

∣∣∣∣
x̂q

−1

·

(
df

dxT

∣∣∣∣
x̂q

)T

Σ−1
rq rq (18)

where rq = y − f(x̂q) is the qth iteration residual vector and

F(x) ,
df

dxT

∣∣∣∣
x

indicates the Jacobian matrix of f computed at

the generic state x. The iterations stop when ‖∆x̂q+1‖∞ < δ
(for the tests, δ = 10−7 will be used), that is when the state
variations become negligible. The solution of (18) requires the
computation of the gain matrix F(x)TΣ−1

rq F(x) and, thus, of
F(xq) and of the covariance matrix.

As detailed in Appendix A for branch constraints and
in Appendix B for injection constraints, the Jacobian F(x)
can be computed considering the partial derivatives of the
functions fij of (8), frj and fxj of (13), (14) and, with similar
notation, of frj−zero and fxj−zero functions, referred to all
included constraints. The sub-Jacobians Fj and Fj−zero due
to the couples of injection constraints are constant, since the
corresponding functions are linear, while the sub-Jacobian Fi,j
corresponding to voltage drop constraints is state dependent
and, thus, iteration dependent.

Matrix Σrq can be obtained by applying the uncertainty
propagation law to the equivalent measurement errors ex-
pressed as functions of the PMU errors. Excluding the equa-
tions due to prior information, the general expression is:

Σrq = E(x̂q)ΣeET(x̂q) (19)

where E is the Jacobian matrix of the error functions. In
the appendices, the expressions of the errors for each type
of equivalent measurement (voltage-drop, injection and zero-
injection) are reported along with the corresponding subma-
trices of E.

Once the complete measurement system is defined, sets of
measurements relating to different timestamps are considered
to be decorrelated when building the covariance matrix and
prior information is treated as independent from all other
equivalent measurements. When multiple branches are con-
sidered, for a single timestamp t, current injection (and zero-
injection) equations introduce random errors that are correlated
with the errors from the voltage drop equations for all the
branches connected to the corresponding node because the
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same PMU current measurements are involved. This can be
seen from the submatrices of E in the appendices.

The vector of unknown parameters x̂ is finally estimated
along with its covariance matrix:

Σx̂ =

(
F(x̂)T

[
(E(x̂)ΣeE(x̂)T)−1

Σprior

]
F(x̂)

)−1

(20)
where Σprior is the covariance matrix associated with prior
information and the gain matrix of the WLS estimation is
computed using the estimated values.

This algorithm can be applied to collected PMU data either
online or offline. The specific implementation depends on
distribution system operator needs and the available commu-
nication and computation infrastructure.

III. TESTS AND RESULTS

In this section, the impact of different factors on the
estimation accuracy and, in particular, on the accuracy of
network parameters’ estimation is thoroughly investigated by
means of simulations in Matlab 2017 environment. The 102-
node ATLANTIDE Italian rural representative network (ATLN
in the following) is used for these simulations (see Appendix C
and [28]). It includes (see Fig. 2) 7 feeders with 102 medium
voltage (MV) nodes supplied by one high voltage to medium
voltage (HV/MV) substation. It is mostly composed of small-
cross-sectional overhead lines with total length of about 160
km. The overall nominal load (a mix of agricultural, residential
and small industrial customers) is about 20.21 MVA at the
peak. In the following, each branch number is given by the
node number of its end node decreased by one.

F 7

F 5

F 3

F 6

F 2

F 4

F 1

33           34           35               38    52          53

42         44         45          47          48

54      

75         76          78        79          80         82          83         84           85    86

26                    27         28         29         30          43       50         46           49       
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Fig. 2. ATLANTIDE project rural network.

All the tests described in this section consider a coordinated
monitoring infrastructure composed of PMUs (for instance
µPMUs) located at each node and measuring all the node
voltage and branch current synchrophasors. While this would
be prohibitively expensive at present PMU prices, as costs
decrease we expect such a setup to become more and more
realistic and µPMUs to become widespread for different
applications [29]. Currently, different research projects are

ongoing to design low-cost PMUs [30], [31] and the aim is a
pervasive installation in DN [32]. In the tests, every branch is
considered to be monitored by only one PMU, as in previous
sections, and all the measurements are referred to the same
timescale, since PMU time-tags allow alignment. The method
can apply to single branches or to portions of the DN (e.g. the
most important sets of branches), as discussed in Section II.
Its applicability depends on the available PMUs; unobservable
branches (considering also the topology constraints) cannot be
included in the estimation process.

For PMU accuracy, the maximum Total Vector Error (TVE)
under steady-state conditions is set equal to values typically
found in the specifications of commercial PMUs. Voltage and
current magnitudes and phase angle random errors have been
assumed to be uniform variables (due to the lack of additional
a-priori information) with maximum deviations corresponding
to maximum TVE values. For example, when a maximum
TVE of 0.1% is assumed in the following, maximum am-
plitude errors ∆V = 0.1 % and ∆I = 0.1 % are used
for voltage and current synchrophasor measurements, and,
maximum phase-angle errors are set to ∆φ = 0.1 · 10−2

rad (0.1 crad) and ∆θ = 0.1 crad. As described above, the
variances and the weights are chosen according to the assumed
deviations and distributions (σ = ∆/

√
3 holds for all the

considered quantities).
As discussed in previous sections, systematic errors are

assumed to be associated with voltage and current transformers
(VTs and CTs). For the following tests, the maximum errors
for VTs and CTs are chosen according to the precision-class
definitions in the standards IEC 61869 (parts 2 [23], and 3
[24]). Specifically, all transducers are considered to be of Class
0.5, and a 0.5 % maximum ratio error and 0.6 crad maximum
phase displacement is used for VTs. CTs are assumed to
have a maximum ratio error of 0.5 %, while maximum phase
displacement is 0.9 crad (that is the value indicated in [23] for
current magnitudes larger than half the rated value). VT and
CT maximum errors are assumed to be the maximum absolute
values of the parameters ξ, α, η and ψ. The transducer errors
are assumed to be uniformly distributed and thus the standard
deviations are

√
3 times lower than the maxima.

A. Multiple cases

The first factor that plays a key role in the estimation process
is the number and variety of network operating conditions
included in the estimation framework. The following analysis
is performed using the analytical expressions of the estimator
uncertainties, given by the formulas of the variance-covariance
matrix (20) of the WLS algorithm. Fig. 3 reports the standard
deviation, computed from the diagonal elements of (20), of
the estimated correction parameters of the line resistance
and reactance (that is γij and βij) when a single branch is
considered (branch 32 of the ATLN, first branch of the third
feeder) and a −10 % deviation of line parameters is assumed
(meaning γij = −0.1 and βij = −0.1). Since correction
parameters are relative values the standard deviation (std for
brevity) is reported as a percentage in figures and tables for
easier legibility. It is used to show the quality of the estimation
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because it can be used to define the expanded uncertainty
intervals around the estimated values.

Increasing the number of cases considered, which, as indi-
cated in Section II-A, correspond to different network condi-
tions obtained by randomly varying the loads by a maximum
of 50 %, allows an improved impedance estimation, but uncer-
tainty, after a few tens of cases, cannot be significantly reduced
without acting at different levels (e.g. choosing instruments
with higher accuracy).

0 10 20 30 40 50

number of cases

0.5

1

1.5

2

s
td

 [
%

]

resistence

reactance

Fig. 3. Standard deviations of the estimated resistance and reactance correc-
tion parameters with a varying number of operating conditions.

Following a similar approach, results can be obtained with
a fixed number of network conditions by changing the load
variability level among different cases. In Fig. 4 the standard
deviations of γij and βij for the same branch are reported
when 10 cases are considered, and it is clear how larger load
variations lead to improved estimations. Another test, using the
same number of cases, involved changing the overall network
load by proportionally changing all the nominal loads in a
given range (in Fig. 5 the range 60 %− 200 % is considered),
while keeping constant the load variability level among the
cases. As might be expected, heavier loading conditions lead
to larger variability of node and branch power flows, allowing
for operating conditions that are more distinct among cases.

20 25 30 35 40 45 50 55 60
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1

1.5

2
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s
td

 [
%

]

resistence

reactance

Fig. 4. Standard deviations of the estimated resistance and reactance correc-
tion parameters with a varying level of load variability.

In summary, the accuracy of the estimator strongly depends
on the variety of the cases involved, since (as described in Sec-
tion II-A) they add a set of constraints on the unknowns that
incrementally limits their range of variability. Nevertheless,
their impact on accuracy has a lower bound that depends on the
accuracy of the available measurements, as can be seen in Fig.
6, where the standard uncertainty of resistance and reactance
estimation for the same branch is reported with respect to the
PMU accuracy in terms of TVE %.

60 80 100 120 140 160 180 200

network load [%]

0.5

1

1.5

2

s
td

 [
%

]

resistence

reactance

Fig. 5. Standard deviations of the estimated resistance and reactance correc-
tion parameters with a varying level of network load.
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Fig. 6. Standard deviations of the estimated resistance and reactance correc-
tion parameters with a varying accuracy of PMU measurements.

B. Multiple branches

While in previous sections the achievable estimation un-
certainty is investigated on a single-branch basis for analysis
purposes, it is important to assess the performance of the
proposed technique when the impedances of multiple branches
are simultaneously estimated. With this aim, different portions
of the ATLN are simultaneously estimated and the results are
compared with the base case of single-branch estimation. Ten
cases and ten sets of measurements for each case are used,
assuming PMU accuracy is TVE = 0.1 % and parameter
variation of −10 % as above. Table I reports the standard
deviations of the estimated parameters γ (relating to line
resistances) for selected branches of the network belonging
to different feeders. For each reported branch, sets of 1, 2, 3
and 5 branches to which it belongs are considered, showing
that the standard deviations decrease, sometimes only slightly,
when a higher number of branches is considered. The influence
of multiple branches on a straight line, defined as a line
on which a node can be shared only between two branches,
depends on the specific configuration of the branches and on
the connected loads and laterals. But, it decreases when the
additional branches are far from the one under consideration.
The impact is mainly due to the additional constraints on each
branch voltage imposed by the measurements on neighboring
branches.
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TABLE I
STANDARD UNCERTAINTIES OF LINE RESISTANCE CORRECTION

PARAMETER FOR ESTIMATIONS INVOLVING MULTIPLE BRANCHES

Branch Std [%]

number number of involved branches

1 2 3 5

34 2.77 % 2.74 % 2.63 % 2.61 %

70 6.46 % 6.16 % 5.54 % 5.46 %

75 5.79 % 5.41 % 5.06 % 5.06 %

Other important configurations are those corresponding to
single nodes shared between multiple branches. Fig. 7 shows
the percent standard deviations of the resistance and reactance
estimations (two y-axes are used for the sake of clarity) when
branch 1 impedance is estimated by progressively adding
branches to the model. The branches added are those con-
nected to the substation and belonging to different feeders. The
uncertainty decreases with the number of branches considered
and each additional constraint has a different impact on the
estimation.

1 2 3 4 5 6 7

number of involved feeders
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s
td
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]

11
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12

12.5

s
td
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%
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resistance

reactance

Fig. 7. Standard deviations of the estimated resistance and reactance correc-
tion parameters of branch 1 with a varying number of feeders considered.

C. Topology constraints

To investigate the role of the constraints arising when a
set of nodes and branches is considered as a whole for
the estimation process, a discussion of the impact of all
equivalent measurements is presented. Zero injections add the
equality constraints given by the KCL between the measured
currents flowing in the adjacent branches. Their main impact
is therefore on the accuracy of the current measurements
and on the range of variability of the corresponding current
transducers. Table II shows the results (same test conditions
as above) in terms of standard deviations of the resistance and
reactance correction parameters for two connected branches
(32 and 33) when the shared node is a zero-injection node.
It is clear that the additional equality constraint involving
the measured currents positively affects the line impedance
estimation (10 network conditions are considered as before)
and the contribution is larger when a higher number of
repeated measurements is considered. Repeated measurements
or increased measurement accuracies clearly reduce the es-
timation uncertainty but also emphasize the importance of
current-based constraints.

TABLE II
STANDARD UNCERTAINTIES OF LINE RESISTANCE CORRECTION

PARAMETER WITH OR WITHOUT ZERO INJECTION CONSTRAINTS

Branch
number Parameter Number of

meas.
Std [%] Variation

[%]Without
zero

injection
constraints

With
zero

injection
constraints

32

γ
10 0.99 % 0.93 % −6.1 %

100 0.57 % 0.46 % −19.5 %

β
10 1.39 % 1.29 % −7.5 %

100 0.86 % 0.68 % −21.3 %

33

γ
10 1.21 % 1.16 % −4.1 %

100 0.60 % 0.49 % −17.9 %

β
10 1.67 % 1.59 % −5.1 %

100 0.90 % 0.73 % −19.6 %

D. Entire Network

To complete the analysis, it is interesting to show the overall
behavior on an entire network when a full set of Monte Carlo
(MC) simulations is performed. This case is used to show
the possibility of extending the estimation to large portions of
the network, since the algorithm can work on different sets
of branches depending on the available measurement system.
In the following, 10 network conditions and 10 repeated
measurements are used. The network parameters, transducer
errors and, obviously, the measurement errors are randomly
extracted from uniform distributions corresponding to their
accuracy range for 1000 trials. Figures 8(a) and 8(b) show
the root mean square errors (RMSE) in the estimation of
the resistance and reactance, respectively, for all the network
branches when line parameters can randomly vary up to
30 % with respect to nominal values. The plain line indicates
the RMSEs computed on the randomly extracted impedance
values (theoretically they are constant at 17.3 %), while the
crosses show how the uncertainty in the estimation of the
parameters varies from branch to branch, depending on the
different load and topology aspects.

The corresponding average errors are much lower than the
reported RMSE values (from 12 to 883 times, depending on
the considered branch), thus confirming the usefulness also of
the standard deviation to describe the estimation uncertainty.

Some of the branches show a small RMSE reduction with
respect to the random a priori values. This occurs for short
or lateral branches connected to leaves of the network tree,
and, in particular, to lightly loaded branches. As an example,
Fig. 9 shows the RMSE variation with load for the resistance
of branch 18, which has the above characteristics (lateral
and lightly loaded). Repeated tests have been performed by
changing only the rated power of the attached leaf node (node
19). As expected, estimation accuracy increases with the load
(1× to 5× factors are considered in Fig. 9). The estimation
for such lines is tough and would require more accurate
transducers and measurements. Nevertheless, it is important
to highlight that such branches, precisely because of their
particular characteristics, are less relevant for application level
procedures relying on the line parameter knowledge, e.g. for
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Fig. 8. Percent RMSE of the estimated line parameters: a) resistances; b)
reactances.

distribution system state estimation, and thus their estimation
errors are often not crucial.

1 1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 9. Percent RMSE of the estimated line resistance of branch 18 with
increasing load.

To give an idea of the impact of the proposed algorithm,
it is useful to perform direct estimation of the impedance
parameters by means of the measured synchronized voltage
phasors at both end of each line and of the corresponding
current phasor. This is the classic approach to parameter
estimation and it has many issues. For a fair comparison
it has been performed on exactly the same data with the
same number of trials as the above test. To reduce the
variability, each estimation is defined as the average of all
the estimations performed with the measured synchrophasor
set associated with a given timestamp. The lowest RMSE
for branch resistance and reactance are, respectively, 15.66 %

and 18.34 % (for branch 32 and 27, respectively), but there
are many branches showing values above 100% and even far
larger. This is mainly due to systematic errors that are not
considered in the estimation model and can lead to extreme
results, in particular for short and lightly loaded branches.

It can be observed that the proposed algorithm also allows
for the estimation of transducer systematic errors (ξ, θ, η and
ψ parameters), since they are included in the measurement
model. Considering the above test, the amplitude ratio and
phase displacement errors of the VTs can be estimated with
RMSEs values up to 0.04 % and 0.04 crad, respectively. These
values represent the remaining errors and can be compared
with the VT class errors (that are, if expressed in RMS,
0.29 % ' 0.5/

√
3 % and 0.35 crad ' 0.6/

√
3 crad, respec-

tively). CT systematic errors can be estimated with lower
accuracy, but a full investigation of the potentialities of the
method for the estimation of transducers behavior is beyond
the scope of this paper.

Finally, a brief discussion on computation times is reported.
The average number of iterations is 4.0 (2.9 with δ = 10−5)
and the computation time average (obtained under Matlab
environment in a Windows 10 OS notebook equipped with
an Intel i7 2.60 GHz CPU) on the MC trials is 6.879 s on the
whole network and 0.002 s in a single-branch configuration
(branch 32). The adopted accelerated algorithm that exploits
repeated measurements allows a reduction of computation time
in the order of 90 %.

IV. CONCLUSION

This paper has presented an iterative algorithm to simultane-
ously estimate network line parameters on multiple branches
using a PMU-based monitoring system. It has been shown
that it takes account all transducer errors and different un-
certainty sources with a sound uncertainty modelling. It was
shown how multiple measurements gathered from the network
under different conditions are used, thus allowing the method
to simultaneously calculate network parameters on multiple
branches so that relevant network topology constraints can
be added and the measurement system is used to maximum
effect. In future work, the proposed method can be extended
to a three-phase network model using the same approach for
definition of the measurement chain uncertainty.
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APPENDIX A
DERIVATION OF BRANCH MEASUREMENT MODEL

From (5) and (6), using the notation of (7) and (8), it
follows:

yrij ' hrij(xij , eij) = frij(xij) + εrij(γij , βij , eij)

= ξiV
r
i − αiV xi − ξjV rj + αjV

x
j

+ ηij(X
0
ijI

x
ij −R0

ijI
r
ij) + ψij(R

0
ijI

x
ij +X0

ijI
r
ij)

+ ηij(βijX
0
ijI

x
ij − γijR0

ijI
r
ij)

+ ψij(γijR
0
ijI

x
ij + βijX

0
ijI

r
ij)

+ γijR
0
ijI

r
ij − βijX0

ijI
x
ij

+ ξPMU
i V ri − αPMU

i V xi − ξPMU
j V rj + αPMU

j V xj

+ ηPMU
ij (X0

ijI
x
ij −R0

ijI
r
ij) + ψPMU

ij (R0
ijI

x
ij +X0

ijI
r
ij)

+ ηPMU
ij (βijX

0
ijI

x
ij − γijR0

ijI
r
ij)

+ ψPMU
ij (γijR

0
ijI

x
ij + βijX

0
ijI

r
ij) (A.1)

yxij ' hxij(xij , eij) = fxij(xij) + εxij(γij , βij , eij)

= ξiV
x
i + αiV

r
i − ξjV xj − αjV rj

− ηij(X0
ijI

r
ij +R0

ijI
x
ij) + ψij(X

0
ijI

x
ij −R0

ijI
r
ij)

− ηij(γijR0
ijI

x
ij + βijX

0
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ij)

+ ψij(βijX
0
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x
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ijI
r
ij)

+ γijR
0
ijI

x
ij + βijX

0
ijI

r
ij

+ ξPMU
i V xi + αPMU

i V ri − ξPMU
j V xj − αPMU

j V rj

− ηPMU
ij (X0

ijI
r
ij +R0

ijI
x
ij) + ψPMU

ij (X0
ijI

x
ij −R0

ijI
r
ij)

− ηPMU
ij (γijR

0
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x
ij + βijX

0
ijI

r
ij)

+ ψPMU
ij (βijX

0
ijI

x
ij − γijR0

ijI
r
ij) (A.2)

From (A.1) and (A.2), it is possible to see that frij and fxij
are analytic functions thus allowing to compute the Jacobian
matrix Fij (see full page equation (A.3)).

Considering the above expressions, the constraints are given
by yij = fij(xij) + ε(xij , eij). When the iterative algorithm
is applied, its linearization around the temporary solution x̂q

can be considered:

yij − fij(x̂
q)

= Fij(x̂
q)∆x̂q+1 + ε(x̂q, eij) + Gij(eij)∆x̂q+1

= Fij(x̂
q)∆x̂q+1 + Eij(x̂

q)eij + Jij(In ⊗∆x̂q+1)eij
(A.4)

where Eij(x) and Gij(eij) =
dε

dxT are detailed in (A.5)
and (A.6), while n is the number of elements in eij , In is
the identity matrix and ⊗ indicate the Kronecker product. The

last random term of (A.4) follows from
dGij(eij)∆x̂q+1

deT =

dGij(eij)

deT
ij

(In ⊗ ∆x̂q+1)eij when Jij is the constant matrix

derivative of Gij with respect to the PMU random errors
(see [33]). From (A.4), considering that after a few iter-
ations towards convergence ∆x̂q+1 → 0 and thus cross-
multiplications of its elements with the small random errors
can be neglected, the random errors can be approximated
by Eij(x̂

q)eij . From this expression the covariance matrix
directly follows as Eij(x̂

q)Σeij
Eij(x̂

q)T.

APPENDIX B
KCL CONSTRAINTS DERIVATION

From (12), the following relationship holds:

Ije
j(θj−ψj−ψPMU

j )(1− ηj − ηPMU
j )

=
∑
k∈Γj

Ijke
j(θjk−ψjk−ψPMU

jk )(1− ηjk − ηPMU
jk ) (B.1)

From (B.1), by expanding, neglecting cross-multiplications
(small errors assumption), using Eulero’s formula, and sep-
arating real and imaginary parts we get:

Ij cos θj −
∑
k∈Γj

Ijk cos θjk

= (ηj + ηPMU
j )Ij cos θj − (ψj + ψPMU

j )Ij sin θj

− Ijk
∑
k∈Γj

(ηjk + ηPMU
jk ) cos θjk

+ Ijk
∑
k∈Γj

(ψjk + ψPMU
jk ) sin θjk

(B.2)

Ij sin θj −
∑
k∈Γj

Ijk sin θjk

= (ηj + ηPMU
j )Ij sin θj − (ψj + ψPMU

j )Ij cos θj

+ Ijk
∑
k∈Γj

(ηjk + ηPMU
jk ) sin θjk

+ Ijk
∑
k∈Γj

(ψjk + ψPMU
jk ) cos θjk

(B.3)

from which (13) and (14) follow. Similar passages can be
applied for zero-injection constraints. From (13) and (14), the
measurement functions frj and fxj are linear with respect to
the state variables and thus a constant Jacobian follows:

Fj =

[
+Irj −Ixj · · · −Irj,k +Ixj,k · · ·
+Ixj +Irj · · · −Ixj,k −Irj,k · · ·

]
(B.4)

and, considering (13) and (14) with zero injection current
and no additional unknowns, the zero-injection equivalent
measurement functions are linear and lead to the following
constant Jacobian:

Fj−zero =

[
· · · −Irj,k +Ixj,k · · ·
· · · −Ixj,k −Irj,k · · ·

]
(B.5)

Since no network parameters are involved in the KCL the
above Jacobians are constant and do not depend on the
algorithm iteration index.

The covariance matrix of these couples of equivalent mea-
surements is obtained by a first order uncertainty propagation
law as:

Σεj = EjΣejE
T
j (B.6)

and
Σεj−zero

= Ej−zeroΣej−zero
ET
j−zero (B.7)

where ej is the vector including ηPMU
j , ψPMU

j and all the
involved ηPMU

jk and ψPMU
jk of adjacent branch measurements,

while ej−zero is the vector of the involved ηPMU
jk and ψPMU

jk .
Σej

and Σej−zero
are diagonal matrices and their elements

are the variances of all the ηPMU
jk and ψPMU

jk .
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(A.3)

Eij =

[
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ijI
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ijI
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(A.5)

Gij =

[
0 0 0 0 0 0 −ηPMU

ij R0
ijI

r
ij + ψPMU

ij R0
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ij ηPMU
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ij + ψPMU

ij X0
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]
(A.6)

APPENDIX C
ATLANTIDE NETWORK

Table III reports the resistance and reactance parameters per
unit length of the 102-node ATLANTIDE Italian rural network
used for the tests. For space reasons, only the first 5 branches
(Feeder 1) are reported as a sample of the values.

TABLE III
LINE PARAMETERS OF THE ATLANTIDE NETWORK (FEEDER 1)

Branch Resistance Reactance length

number [Ω/km] [Ω/km] [km]

1 0.254 0.126 1.37

2 0.166 0.110 3.07

3 0.517 0.387 0.80

4 0.466 0.349 0.90

5 0.689 0.515 1.33

... ... ... ...
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