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ABSTRACT 
 

The main objective of my thesis is to illustrate the potential of computational 

modeling techniques in determining decisive protein-protein interactions and protein-

ligand interactions of two relevant macromolecular biological systems associated to 

human diseases. Computational tools such as homology modeling, molecular docking, 

molecular dynamics simulations and the developed protocols implemented for the 

preparation, simulation and analysis of each biological system are presented. The first 

contribution is the simulation of modeling of protein-peptide-protein complexes 

related to adaptive immune system and multiple sclerosis disease. Investigation of 

molecular similarity between self-peptide and two microbial peptides for the 

complexes with respect to molecular recognition mechanism is presented.   

 The second contribution is the investigation of protein-ligand interactions of 

biological systems associated to Alzheimer’s disease. Computational results are 

compared with experiments to evidence the origin and degree of selective inhibition 

displayed by 2-Phenylbenzofurans ligands against butyrylcholinesterase (BChE) 

protein. The final contribution is on the application of a priori knowledge gathered on 

protein-ligand interactions in designing ligands with specific structural modifications 

that display an improved inhibitory activity against BChE protein. In conclusion, 

therapeutical perspectives and application of hybrid computational approaches to 

design and develop of potential drugs are discussed. 
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1. Introduction 
 
Proteins are long molecular chains that our cells need to function properly. The term 

“Protein” was derived from the Greek word “Prota”, meaning “of primary 

importance”, which was introduced by Jons Jakob Berzelius in the year 1838. 

Proteins are biological macromolecules1,2 made from building blocks of twenty amino 

acids and make up about 42% of the dry weight of our bodies. For instance, the 

protein collagen holds our muscles, skin, and bones together, that accounts up about a 

quarter of total protein in our body, and all of our cells and even blood are packed 

with protein molecules. Amino acids are organic compounds formed by amine (-NH2) 

and carboxyl (-COOH) functional groups, along with a side chain (R group), which is 

specific to each amino acid1 (Fig. 1).  

 

 
Figure 1. Two-dimensional structure representation of an amino acid.  

 

Protein structure can be classified into four different aspects based on different of 

covalent structure and folding patterns (Fig. 2), namely primary, secondary, tertiary, 

and quaternary structure. A linear chain of amino acid residues is called a polypeptide 
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and sequence of amino acids that make up a polypeptide chain is the primary 

structure, while regular and repeated patterns of folding (two most common folding 

patterns are the alpha helix and the beta sheet) of the protein backbone form the 

secondary structure. The overall folding of the entire polypeptide chain into a specific 

three-dimensional shape (compact, globular shape) is referred as protein tertiary 

structure. Finally, the quaternary structure is the way in which the different subunits 

(more than one polypeptide chain) are packed together to form the overall structure of 

the protein3.  

 

 
Figure. 2 Four aspects of protein structure. (a) Primary (b) Secondary (c) Tertiary (d) 

Quaternary.  

 

Proteins need to physically interact with each other, in order to accomplish their 

biological functions. Protein folding into one or more specific spatial conformations is 

driven by a number of non-covalent interactions such hydrogen bonding, ionic 

interactions, Van der Waals forces, and hydrophobic packing2. To understand the 

functions of proteins at a molecular level, it is often necessary to determine their 

three-dimensional (3D) structure4. Experimental techniques such as X-ray 

crystallography5, nuclear magnetic resonance (NMR) spectroscopy6 and dual 



 3 

polarisation interferometry7 have been employed to determine the structure of 

proteins. 

 

1.1 Protein–Protein interactions (PPIs) 
 
PPIs are of pivotal importance in the molecular recognition, signaling and regulation 

in biological systems8. The relevance of these complex networks of interactions has 

been widely recognized in many subjects as biology, immunology and medicine and 

drawn considerable attention for designing drugs of the future9.  Dysfunction in 

protein interactions can cause diseases, for instance aberrant interactions can lead to 

the accumulation of protein aggregates, which result in a number of 

neurodegenerative diseases10,11. The nature of interactions between the proteins 

depends not just on their shape but also on their chemical properties, positive and 

negative charged amino acids are attracted to each other12. These physical properties 

allow proteins to interact in specific ways. The stability and specificity of protein 

interactions are highly dependent on the presence of electrostatic interactions, salt 

bridges, hydrogen bonds and hydrophobic attractions. PPIs are dynamic in nature and 

can been classified into diverse types ranging from transient or permanent obligate 

interactions to obligate interactions13-15. The interaction between the proteins is 

facilitated through their respective interfaces and the structural; physicochemical 

properties vary across different protein-protein interfaces13,16. The residues that 

contribute significantly to the free energy of binding are called “hot spots”17,18(Fig. 3). 
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Figure 3. Interaction at protein-protein interface. Hot spot residues at the interface are 

shown as blue (positive charged) and in red (negative charged) spheres.   

 

These hot spots are also considered as potential drug targets, to interfere with the 

biological binding process at protein-protein interface19,20.  Identification of hot spot 

in the protein interfaces is possible, for instance using alanine scanning mutagenesis 

experiments18, wherein a variation in binding energy by at least 2 kcal/mol upon 

mutation is used as a criterion to label the residue as hot spot. However, scarce 

experimental data available in literature have opened way for computational 

techniques to predict PPIs21. The majority of computational techniques can be 

classified as simulation-based and machine-learning based ones. In my thesis, I will 

present molecular docking22 and molecular dynamics (MD) simulations23 approaches 

to model the forces governing the interaction of the proteins and estimate the strength 

of these interactions. 

 

1.2 Protein-ligand interaction (PLIs)  
PLI is a molecular recognition process of biological macromolecules (proteins) 

interacting with various small molecules (biological ligands, drugs, activators, 

inhibitors), typically with a high specificity and affinity to form a specific complex24. 

PLI thus constitutes the basis of almost all the processes in living organisms. PLIs 

also play a vital role in inhibition of enzymes, which are related to diseases such as 

Alzheimer’s disease25,26. A detailed understanding of the protein-ligand interactions 

(Fig. 4) is therefore central to understanding biology at the molecular level. The 

driving forces of various interactions and energy exchanges among the protein and 

ligand determine their association and binding characteristics27. Gibbs binding free 

energy (G) can be parsed into the enthalpy and entropy contributions with the 

following equation28,29: 

∆! = ∆! − !∆!  !"#$%&'( 1  

where ∆H and ∆S are change in enthalpy and entropy, respectively, of the system 

upon ligand binding, and T is the temperature in Kelvin.  
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Figure 4. Cartoon representation of Protein-Ligand Interaction. 

 

Enthalpy is a measure of the total energy of a thermodynamic system. In a binding 

process, ∆H, or the binding enthalpy, reflects the change in total energy of the system 

upon ligand binding to the protein. The binding enthalpy in a non-strict sense is 

generally treated as the changes in energy resulting from the formations of non-

covalent interactions (Fig. 4) at the binding interface. Entropy is viewed as a measure 

of the disorder or randomness in atoms and molecules in a system. The protein–ligand 

binding can occur spontaneously only when the change of the system free energy is 

negative, which is determined jointly by two thermodynamic quantities, enthalpy and 

entropy. An interesting phenomenon is “enthalpy-entropy compensation”,30 wherein 

the free energy of binding is maintained constant or modulated by complementary 

changes of enthalpy and entropy. This phenomenon has been confirmed from analysis 

of calorimetric data for protein–ligand binding in many biological systems31. Among 

three major models, lock and key, induced-fit and conformational selection have been 

proposed to explain the protein-ligand binding mechanisms27,32. Depending on the site 

of inhibition in the enzymes the ligands (molecules) are classified as competitive, 

mixed-type or non-competitive ones.  

Experimental techniques such as X-ray crystallography, NMR and cryo-electron 

microscopy (Noble prize in Chemistry 2017) provide atomic-resolution or near-

atomic-resolution structures of the unbound proteins and the protein–ligand 

complexes.  Experiments such as ligand binding assay techniques33, isothermal 

titration calorimetry28,34 and surface plasmon resonance35 have been employed to 

measure protein–ligand binding affinity. Even tough, experimental techniques allows 

us to investigate thermodynamic profiles for protein-ligand complex, the procedures 
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for determination of binding affinity are laborious, time-consuming, and expensive. 

Moreover, modern rational drug design strategy usually involves screening of 

databases containing millions of compounds to find the lead molecules36,37. In this 

scenario, computational approaches have enormous potential in providing insights in 

facilitating the interpretation of the existing experimental data and also direct the 

design of new experiments. Thus, providing insights into underlying biological 

processes and functions. Indeed, structure-based computational approaches are 

valuable tool in all aspects of investigating protein-ligand binding interactions. 

In this thesis, the suitability of employing computational approaches to investigate 

protein-protein interactions and protein-ligand interactions in biological complexes 

important to human diseases will be presented. The reliability of computational 

methods for investigating protein-protein binding characteristics, protein-ligand 

binding affinity, and validation with available experimental approaches and their 

advantages, disadvantages, and challenges will be discussed and examined. 

 

The thesis is organized in the following manner: 

♣ Chapter 2 — Computational Methodology 

♣ Chapter 3 — Molecular insight into protein-peptide-protein complexes found 

in a patient suffering from Multiple Sclerosis disease 

♣ Chapter 4 — 2-Phenylbenzofuran ligands as selective butyrylcholinesterase 

protein inhibitors 

♣ Chapter 5 —New 2-Phenylbenzofuran ligands with an improved inhibitory 

selectivity against BChE protein 

♣ Chapter 6— concluding remarks and future perspective 
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2. Methods 
 
2.1 Homology Modeling  
 
Technological incrementation in DNA sequencing methodology has resulted in an 

enormous, and ever- growing, number of protein sequences. At the same time, the 

number of experimentally determined protein structures has lagged increasingly 

behind, owing to the inherently slower, more resource intensive, and less-predictable 

nature of these experiments. Determination of three-dimensional protein structure by 

experimental methods such as X-ray crystallography or NMR spectroscopy is time 

consuming, laborious and an expensive process. Currently, there are 138,840 (access 

date 24 October 2017) experimental protein structures deposited in the Protein Data 

Bank (www.wwpdb.org)38, while there are 500,000 (access date 24 October 2017) 

protein sequences freely accessible at Uniprot databsase (www.unitprot.org)39. The 

“structure knowledge gap” between the huge number of protein sequences and small 

number of known structures has hampered the widespread use of structure-based 

approaches in life science research21.  

Template based homology modeling techniques40 is the method of choice to generate 

a reliable 3D model of a protein from its amino acid sequence as notably shown in 

several meetings of the bi-annual critical assessment of techniques for protein 

structure prediction (CASP). Homology modeling involves searching the 

conformation space by minimally disturbing those existing experimentally solved 

protein structures. The method is based on the fact that structural conformation of a 

protein is more highly conserved than its amino acid sequence, and that small or 

medium changes in sequence normally result in little variation in the 3D structure.  
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Figure 5. Homology Modeling Protocol 

 

The process of homology modeling steps has been depicted in Fig. 5. These steps are 

repeated until suitable models were built.  The quality of models generated depends 

on sequence similarity with the template structure and is directly linked with the 

identity between template and target sequences. A general accepted rule is that 

models built over 50% sequence similarities are accurate enough for drug discovery 

applications, while those between 25 and 50% identities can be helpful in designing of 

mutagenesis experiments and those in between 10 and 25% are tentative at 

superlative. 

In the present work, Modeller software41, Swiss-model webserver42 were used as tools 

to build reasonable 3D structures of protein. 

 

2.2 Molecular Docking 
 
Molecular docking is a multidimensional optimization problem that has become an 

increasingly important tool for drug discovery22. Molecular docking programs 

perform a search algorithm in which the conformation of the ligand is evaluated 

recursively until the convergence to the minimum energy is reached. Finally, an 

affinity scoring function, ΔG (in kcal/mol), is employed to rank the candidate poses as 
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the sum of the electrostatic and Van der Waals energies. The driving forces for these 

specific interactions in biological systems aim toward complementarities between the 

shape and electrostatics of the binding site surfaces and the ligand or substrate.  

Knowledge of potential ligand binding site before docking processes significantly 

increases the docking efficiency. It is also possible to obtain information about the 

sites by comparison of the target protein with a family of proteins sharing a similar 

function or with proteins co-crystallized with other ligands. However, in the absence 

of knowledge about the binding sites, cavity detection programs can be utilized to 

identify putative active sites within proteins. In general, protein-ligand docking 

strategies can be performed either considering the protein as “rigid” or “flexible”. To 

date 60 different docking tools and programs have been developed for both academic 

and commercial needs, such as AUTODOCK43, GOLD44, and GLIDE45, which allow 

rigid and partial flexibility of the receptor and full flexibility for the ligand. Flexibility 

of the ligand and receptor is computationally cumbersome to include in the docking 

experiments. A successful docking run is considered if the binding of a ligand into its 

active site results closer to the known protein-ligand complex structure.  

 
Figure 6. Protein-protein docking methodology development (reproduced from 

reference46) 

 

Protein-Protein Docking. 3D structure determination of a protein-protein complex, 

generally, is challenging and more difficult to determine experimentally than the 

structure of an individual protein. In Fig. 6, docking protocol for generating protein-

protein complex from the known individual protein structure is shown. Proper ways to 
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accommodate flexibility in the docking simulations without increasing the 

computational effort too much is one of the most important issues in the development 

of new methodologies at the moment.  

 

2.3 Molecular Dynamics Simulations 
 
Molecular Dynamics (MD) simulation is a technique founded upon the basic 

principles of classical mechanics that provide a dynamical picture of the individual 

particles of the system at a microscopic level47. Temporal configurations of the 

molecular system can be generated using this technique by integrating Newton’s law 

of motion. The result is a trajectory, which contains the microscopic time evolution of 

the system in the phase space. From the trajectory generated, one can compute the 

dynamical properties such as absorption spectra, rate constants and transport 

properties. Further, on combining MD with statistical mechanics as a mean of 

sampling, one can compute equilibrium properties such as average thermodynamics 

quantities, structure, and free energies along the reaction path seen as a union of all 

possible states of the system.  

The interaction between the atoms in a complex system can be described using an 

empirical force-field, which is a mathematical expression describing the dependence 

of the energy of a system on the coordinates of its particles. The potential function 

V(r) from which the forces used in MD are derived depends on the atomic coordinates 

V(r) has the following expression: 

! ! = 1
2

!"#$%
!!(! − !!)! +  1

2
!"#$%&

!!(! − !!)!  

+ !!
!"!!"#$%&

1+ cos !" − !

+ 4!!,!
!≉!

!!,!
!!,!

!"
−  !!,!

!!,!

!
 

!"#$ !
 + !!!!

!!!!,! !≉!!"#$ !
        (!". 2) 

 

In equation 2, the first three represents the bonded interactions (bonds, angles, 

dihedrals), while the fourth term describes Leonard-Jones (LJ) potential and the last 

term is the columbic (electrostatic) interaction48.  
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These interactions are modeled using the two-body approximation, which does not 

explicitly account for the polarization effects. The parameters used in equation 2 are 

typically obtained from quantum chemical calculations and experimental data (e.g. 

crystallographic data, spectroscopic data, etc). The popular sets of force fields used 

for MD simulations49 of proteins are AMBER50, GROMOS51, CHARMM52 and 

OPLS53.  

 

 
Figure 7. MD Simulation of a molecule in solvent 

 

To mimic the real biological systems, MD simulations of the protein are always 

performed in presence of the solvent. The description of the solvent (water for most of 

the biologically interesting systems) can be explicit or implicit. In the first case 

solvent molecules with a full atomistic force field description are added in the 

simulation box at the experimental density. In the implicit solvent description the 

solvent is treated as a dielectric medium in which the system is embedded. This is 

clearly a more approximated description but it is also computationally much more 

efficient since in many practical cases the solvent constitutes the majority of the 

atoms. In the thesis the solvent is treated in an explicit manner.  

To avoid artifacts near the border of the simulation box (Fig. 7) periodic boundary 

conditions (PBC) are employed in MD simulations. In this scheme, short-range non-

bonded interactions are calculated using the minimal image convention (only the 

nearest replica is considered). Typically a cut-off radius (Rc) is used for LJ 
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interactions of the order of 10 Å. To avoid interactions between a particle and its 

periodic image each box side must be larger than 2Rc. 

Molecular dynamics can be performed in different statistical ensembles. In the micro-

canonical (NVE) ensemble, total number of atoms N, the volume V (of the unit cell) 

are kept constant. Generally, if the simulation system is sufficiently large, the small 

part of it may be considered as a canonical system. For large NVE systems the 

fluctuations in temperature are small, and it may be considered approximately 

constant. However, there are situations in which temperature must be kept constant, 

and therefore for these classes of problems MD must reproduce an isothermal 

ensemble, such as canonical NVT ensemble, in which the number of atoms N, 

volume, and temperature are constant. The temperature T, in contrast to the number of 

particles N and volume V, is an intensive parameter. In my thesis, I used NPT 

ensemble, which is an extension of NVT ensemble, where pressure and temperature 

are kept constant. The NPT ensemble is extensively used for comparison of MD 

simulations with experiments. As most experimental measurements are usually made 

under conditions, which include a fixed pressure P, temperature T, and number of 

atoms N (constant-NPT ensemble).  
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3. Dynamical footprint of 
cross-reactivity in a 
human autoimmune T-
cell receptor 

 
Multiple Sclerosis (MS) is a chronic inflammatory and degenerative disease of the 

central nervous system affecting more than 2.5 million people worldwide54,55. MS 

involves an abnormal response of the human body’s immune system directed against 

brain and spinal cord, triggered, in genetically susceptible individuals, by a 

combination of one or more environmental factors. Pathogen derived and self-antigen 

presentation by major histocompatibility complex (MHC) is a critical step for T 

lymphocyte triggering and subsequent immune response, whose failure could lead to 

initiate specific autoimmune diseases. 

 

Peripheral T-cell receptors (TCR’s) are commonly educated to recognize a 

maximum of pathogen-derived epitopes while ignoring self-antigens. However, there 

are also cases in which some TCRs are able to recognize self-antigens, thus initiating 

an autoimmune response. The term TCR cross-reactivity is associated exactly to the 

recognition of many different peptide antigens presented by the MHC of an 

individual.  

 

In a study published in Nature Communications56, the authors isolated an autoimmune 

Hy.1.B11 TCR from a relapsing-remitting MS patient. In their work, the structural 
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basis of cross-reactivity displayed by human Hy.1.B11 TCR between MBP and two 

microbial peptides was investigated. Their study did reveal a common tilted TCR 

binding topology onto the peptide-MHC surface and pointed out a dominant 

involvement of complimentary determining region (CDR) in TCR cross-reactivity and 

thus providing strong indication about the role of local molecular configurations in the 

activation of cross-reactivity. However, an exclusively static conceptual framework 

can be hardly thought to enable a satisfactory understanding of the complex 

mechanisms underlying cross-reactivity.  

 

In this scenario, our computational molecular dynamics (MD) simulations 

performed on these structures can provide the necessary atomistic level description on 

dynamic changes of TCR in the presence of peptide-MHC complex, which could be 

useful to understand better engagement of TCR.  

 

In this chapter, we present first report of involvement of a small number of 

structurally and energetically important hot spots that provides new insights into the 

dynamical basis of Hy.1.B11 TCR cross-reactivity.  This approach can be useful is 

designing truly personalized immunotherapeutic peptides. This work has been 

published57 in Scientific Reports of Nature Publishing group.  
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3.1 Abstract 
 
The present work focuses on the dynamical aspects of cross-reactivity between 

myelin based protein (MBP) self-peptide and two microbial peptides (UL15, PMM) 

for Hy.1B11 T-cell receptor (TCR). This same TCR was isolated from a patient 

suffering from multiple sclerosis (MS). The study aims at highlighting the chemical 

interactions underlying recognition mechanisms between TCR and the peptides 

presented by Major Histocompatibility Complex (MHC) proteins, which form a 

crucial component in adaptive immune response against foreign antigens. Since the 

ability of a TCR to recognize different peptide antigens presented by MHC depends 

on its cross-reactivity, we used molecular dynamics methods to obtain atomistic detail 

on TCR-peptide-MHC complexes. Our results show how the dynamical basis of 

Hy.1B11 TCR’s cross-reactivity is rooted in a similar bridging interaction pattern 

across the TCR-peptide-MHC interface. Our simulations confirm the importance of 

TCR CDR3α E98 residue interaction with MHC and a predominant role of P6 peptide 

residue in MHC binding affinity. Altogether, our study provides energetic and 

dynamical insights into factors governing peptide recognition by the cross-reactive 

Hy.1B11 TCR, found in MS patient. 

 

3.2 Introduction 
 

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the 

central nervous system58, affecting more than 2.5 million people worldwide59. MS 

exhibits a heterogeneous geographical pattern affecting populations across the globe. 

In particular, it is more common far from the equator and shows latitude gradient60. 

MS involves an abnormal response of the human body’s immune system directed 

against brain and spinal cord. In particular, the immune system attacks myelin, i.e. the 

protective substance covering and insulating nerve fibers. The disease owes its name 

exactly to the sclerosis formed by damaged myelin61. Damage, or destruction, of any 

part of the myelin sheath or nerve fibers cause the distortion, or interruption, of the 

nerve impulses that travel to and from brain and spinal cord. Eventually, nerve fibers 

themselves can deteriorate or suffer from permanent damage. A wide variety of 

symptoms determined by the location of lesions within the central nervous system can 

arise62, ranging from loss of sensitivity and changes in sensation to pain, muscle 
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weakness, difficulty in moving and sight and speech problems63. Overall, the exact 

cause of MS disorder still remains elusive64, with the disease linked to both genetic65,66 

and environmental67,68 factors. Experimental and clinical studies have provided 

evidence reinforcing the hypothesis that immune mechanisms are involved in the 

pathogenesis of inflammatory demyelination in MS64,69. In fact, the exact antigen that 

immune system cells are sensitized to attack has not been recognized yet, and this 

leads many experts to consider MS as an “immune-mediated” process, rather than an 

“autoimmune” disease. Nevertheless, multiple findings identified the human 

leukocyte antigen (HLA) class II system as the main genetic determinant region 

related to MS65,70,71. An important role of autoreactive T lymphocytes in the initiation 

and perpetuation of disease has also been suggested59,72. 

T-cells form a subset of lymphocytes, critical for providing an adaptive immune 

response against invading pathogens73. In particular, the T-cell receptor (TCR) at the 

surface of T lymphocytes is a complex of integral membrane proteins that participates 

in the activation of T-cells in response to an antigen74. Stimulation of TCR is triggered 

after recognition of antigenic peptides presented by the major histocompatibility 

complex (MHC), corresponding to HLA in humans, located on the surface of antigen-

presenting cells75. A successful TCR engagement initiates positive and negative 

cascades leading to T-cell activation, differentiation, proliferation and, finally, to a 

specific immune response to the invading pathogen76,77. 

Peripheral T-cells are commonly trained to recognize a widest set of pathogen-derived 

epitopes while ignoring self-antigens75. However, there are also cases in which some 

TCRs escape this selection and are able to recognize self-antigens, thus initiating an 

autoimmune response and becoming self-reactive78. The term TCR cross-reactivity is 

associated exactly to the recognition of many different peptide antigens presented by 

the HLA of an individual79-81. The three-complementarity determining region (CDR) 

loops of the α and β chains present in TCR facilitate the recognition of peptide-HLA-

II complex (Figure 1)56. Majority of contacts with the bound peptide involve CDR3 

rather than CDR1 and CDR282. 
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Figure 8. Peptide cross-reactivity of Hy.1B11 TCR. (a) Structure of TCR-MBP-

HLA-DQ1-with HLA-DQ1 complex: in red TCR Vα; in pink TCR Vβ; MBP peptide 

in green; HLA-DQ1α in grey; HLA-DQ1β in light blue.  (b) Complementary 

determining regions (CDR’s) of TCR. (c) HLA-DQ1 peptide binding groove with the 

three peptides and their pockets. (d,e,f) Peptides structures with residues named using 

single letter nomenclature: MBP in green; PMM in red and UL15 in black, and the 

pockets P1, P4, P6 and P9 are indicated in blue.  

 

 

Many experimental studies have shown the importance of TCR cross-reactivity in 

initiating adaptive immune response83-85. However, a direct correlation between TCR 

binding affinity86-88 and potency of T-cell activation has not been proved, and the 

overall process is still poorly understood89. Multiple mechanisms of T-cell receptor 

cross-reactivity have been proposed on the basis of the solved three-dimensional 

structures for the tri-molecular complex TCR-peptide-HLA90. Specifically, induced 

fit91, differential TCR docking79, structural degeneracy92, molecular mimicry83,93, and 

antigen-dependent tuning of peptide-HLA flexibility84, were proposed. Around twenty 

three-dimensional structures for the TCR-peptide-MHC-II complex structures have 

been determined providing structural insights into MHC restriction75. In a previous 

study, investigators isolated an autoimmune Hy.1.B11 TCR from a MS patient94. This 

TCR was initially found to be specific for myelin basic protein (MBP) peptide bound 
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to the HLA-DQ1 (DQA1*0102-DQB1*0502) class II protein. However, it has been 

observed that the same Human Hy.1.B11 T-cell clone is not only activated by MBP, 

but also by other distinct microbial peptides95. The structural basis of cross-reactivity 

displayed by human Hy.1.B11 TCR between MBP and microbial peptides from UL15 

terminase protein of Herpes simplex virus and phosphomannomustase protein of 

Pseudomonas aeruginosa has been recently investigated56. The crystallographic 

structures of these complexes revealed a common tilted TCR binding topology onto 

the peptide-MHC surface, pointing out a dominant involvement of CDR3α residues 

towards both self and microbial peptide. This aspect clarified the docking geometry 

and static interaction picture between TCR and peptide-MHC molecule, providing 

strong indication about the role of local molecular configurations in cross-reactivity. 

However, an exclusively static conceptual framework can be hardly thought to allow 

a satisfactory understanding of the complex mechanisms underlying cross-reactivity. 

Accurate dynamical information is needed as well to unveil the role of atomic and 

molecular motion in the involvement of CDR residues. 

Computational molecular dynamics (MD) simulations can provide the necessary finite 

temperature atomistic level description dynamic changes of TCR in the presence of 

peptide-MHC complex, which could be useful to understand better engagement of 

TCR by the immune system. MD simulations have been already employed to 

investigate, for instance, the dynamics of tri-molecular TCR-peptide-MHC-I 

complexes, with either altered/different peptides96-98, or different MHC’s99 or 

different TCR’s100. Yet, until date only one computational study has been performed 

on the TCR-peptide-MHC-II complex101, wherein the authors investigated the 

energetic and flexibility properties of the complex with a native peptide as well as for 

twelve mutations introduced in the peptide.   

In this chapter, we present MD simulations of the three tri-molecular complexes 

relevant to observed TCR cross-reactivity in a MS patient. To further probe the role of 

peptide-MHC complex dynamics in TCR cross-reactivity, we performed additional 

simulation of three peptide-MHC complexes in the absence of TCR structure. 

Our simulations highlight the important energetic role of CDR3α TCR loop in binding 

to HLA-DQ1-peptide complexes; in particular the key contribution to peptide 

recognition by CDR3α E98, a residue that is conserved in the three tri-molecular 

complexes. Furthermore, we found a new interaction between another TCR loop 
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CDR2β D55 residue and HLA-DQ1α K39 residue, located outside the peptide-

binding groove, to constitute a conserved anchor point for docking TCR on to MHC 

class II protein. Altogether, these results explain the dynamical basis for cross-

reactivity between the MBP self-peptide and the two microbial peptides for Hy.1B11 

TCR.  

 

3.3 Results 
 
For the three peptides (MBP, UL15, PMM), we performed TCR-pMHC MD 

simulations and pMHC MD simulations, each 110 ns in length. The convergence of 

MD simulations was estimated using a novel Good-Turing statistical approach102.   

Molecular interactions of TCR with HLA-DQ1 bound peptides. The persistent H-

bond interaction evaluated between the HLA-DQ1 bound peptide residues and TCR 

residues survived for than 60% of the MD simulations. H-bond interactions of TCR 

with MBP and the two microbial peptides (UL15, PMM) were characterized by a 

unique pattern of pair-wise contact between CDR3 Vα E98 and pocket 5 (P5) K8/R8 

of the peptide complexes (Fig. 9). A marked difference in H-bond interaction pattern 

between the self and microbial peptide complexes was observed. In the two microbial 

peptide complexes, the same peptide residue K8/R8 (Fig. 8e-f) shared a common 

interaction pattern with CDR3β D97 residue. While, a specific pair-wise contact 

between fourth hyper variable loop V4β residue E69 and R14 of MBP peptide 

complex was observed (Fig. 9b).  
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Figure 9. Hydrogen bond interaction TCR and peptide residues. (a) H-bond 

duration between TCR-peptide residues in %. (b) Interaction picture between TCR 

and MBP peptide.  

 

Persistent stacking interactions considered between the TCR and peptide residues, 

survived for more than 40% of MD simulations. CDR3α F95 residue formed a 

persistent stacking interaction with the P3 (Phe6) PMM peptide residue and with the 

P2 (His5) MBP peptide residue, respectively. However, in the UL15 peptide complex 

no persistent stacking interaction involving CDR3α F95 was noted. 

Interactions of TCR with HLA-DQ1. The residues of TCR/HLA-DQ1 complex (Fig. 

10a) were selected to perform dihedral angle principal component analysis103 (dPCA) 

for the three complexes on the 5500 snapshots extracted from MD simulation 

trajectory. The dihedral angles of TCR-MHC residues were projected onto the first 

two principal components (PC) for each trajectory snapshot from MD simulations for 

the three complexes (Fig. 10b). Each point in the plot (Fig. 10b) represents a specific 

configuration explored by the TCR-MHC complex during MD simulations. Projection 

of dihedral angle fluctuations along the first two principal components in three 

peptide complexes (UL15, PMM, MBP, Fig. 10b), suggested a more limited phase 

space exploration in the microbial peptide complexes with respect to MBP complex. 
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Figure 10.  dPCA on the TCR-MHC class II for the three molecular complex 

systems. (a) TCR residues α-chain (24:104) in red and β-chain (24:103) in magenta; 

HLA-DQ1 α-chain (5:76) in blue and β-chain (7:90) in grey. (b) The two dimensional 

point maps correspond to projection of dihedral angles (phi, psi) fluctuations (from 

MD simulation trajectory) on the plane defined by first two principal components: (i) 

black: UL15, (ii) red: PMM and (iii) Green: MBP peptide complexes. Superposition 

of (c) TCR Vα and Vβ domains and (d) HLA-DQ1 α1 and β1 domains, for the three-

peptide complexes.  

 

 

For further investigation, we performed cluster analysis (see Methods) and identified 

the most populated configurations in the three complexes and subsequently obtained 

their corresponding representative structures. The difference between the 

representative TCR-MHC configurations in the microbial peptide complexes to that in 
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the MBP peptide complex case was evaluated by calculating the RMSD values (Table 

1).  

 

Table 1. RMSD and buried surface area (BSA) calculations.  RMSD values for Vα, 

Vβ chains of TCR (column 2, column 3) and α1, β1 chains (column 4, column 5) of 

HLA-DQ1. In column 6, we report accessible surface area values evaluated on MD 

simulation trajectory. The RMSD fluctuation values are reported with respect to MBP 

peptide complex as reference (REF).  

 

RMSD 
(backbone) 

 

TCR HLA-DQ1 Accessible 
surface 

area 
(Å2) 

Vα-chain Vβ-chain Total α1-chain β1-chain Total 

UL15  1.3 Å 1.3 Å 1.6 Å 1.6 Å 1.4 Å 1.8 Å 1655±63 

PMM  1.1 Å 1.4 Å 1.9 Å 1.2 Å 1.4 Å 1.6 Å 1704±64 

MBP REF REF REF REF REF REF 1702±63 

 

 

We found the TCR-MHC class II structures in microbial peptide complexes and MBP 

complex to overlap quite nicely (Fig. 10c-d) with an RMSD difference less than 2 Å. 

This observation is consistent with comparable buried surface area values in the three 

complexes (Table 1).  

Persistent hydrogen bonded interactions between the TCR and HLA-DQ1 residues are 

reported in Table 2. We found both conserved and non-conserved interactions 

between the MBP peptide and two microbial peptide complexes. Overall, we found a 

higher number of interactions between the TCR residues and DQ1 α1 helix residues, 

while peptide specific TCR interactions with DQ1 β1 helix residue was noted only for 

the microbial peptide complexes.  
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Table 2.  Hydrogen bonded interactions between TCR and HLA-DQ1. Conserved 

interacting pairs are highlighted in bold, with the total number of interactions in (). 

TCR – MHC UL15 PMM MBP 

Vα-DQ1 α1 E98-R61 (3)  E98-R61 (4) E98-R61 (2) 

- - E98-Q57 (1) 

- - K99-Q57 (1) 

Vβ-DQ1 α1 D55-K39 (2) D55-K39 (1)  D55-K39 (2) 

E69-K75 (2) Q48-H68 (1) D54-K39 (3) 

Vα-DQ1 β1 - R51-E66 (4) - 

- R51-E69 (2) - 

Vβ -DQ1 β1 G26-Y60 (1) - - 

 

 

Remarkably, the titled orientation of TCR limits its interactions with DQ1 β1 helix 

residues. Moreover, CDR2β loop overlays the central portion of DQ1 α1 helix and Vβ 

D55 residue involved in H-bond interaction with DQ1 α1 residue K39 located outside 

the peptide-binding groove (Table 2, Fig. 11). 

 

 

Figure 11.  Conserved TCR-MHC contacts. H-bond interactions and placement of 

CDR2β loop over DQ1 α-helix. The participating residues are boxed, and H-bond is 

denoted by dashed line.  
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HLA-DQ1 interactions with bound peptides in the TCR complex. We analysed 

MD simulation trajectory for the three TCR-pMHC complexes and report only the 

persistent H-bond interactions observed between the peptide-MHC pairs (Fig. 12). In 

general, we found DQ1 α-chain residues (Fig. 12a) to display a predominant 

involvement in H-bond interactions with the peptide residues. This observation 

derives higher number of interacting pairs with respect to that of β-chain (Fig. 12b). 

Even tough the two microbial peptides are quite different in their sequence from MBP 

peptide, the majority of the H-bond interactions between MHC residues and specific 

positioned peptide residues was conserved.  

 

 

Figure 12. Hydrogen bonded interactions between peptide and HLA-DQ1 

residues. In (a) peptide-DQ1α interacting pairs, and in (b) peptide-DQ1β interacting 

pairs.   

 

 

Subsequently, we also analysed persistent stacking104 interactions between the peptide 

residues and the two chains of MHC protein. A conserved pair-wise stacking contact 

between DQ1 α-chain residue R61 and pocket 3 of the peptide cases was observed. 

On the other hand, we also found peptide-specific stacking interaction pattern 

involving DQ1 β-chain residues. 
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Table 3.  Stacking interaction (pep-MHC) evaluation and configuration entropy 

calculations. 

 Stacking interaction Configurational Entropy 
(J/molK) 

 Peptide - DQ α Peptide-DQ β HLA-DQ1 TCR-MHC 

UL15 F6(CD1)-R61(NE) F10(CD1):Y47(CD1) 5672 8687 

PMM F6(CD1)-R61(NE) R13(NE)-P56(CD) 
R13(NE)-Y60(CD1) 

5965 8890 

MBP F6(CD1)-R61(NE) H5(CG)-R77(NE) 
H5(CG)-H81(CG) 

P13(CD)-Y60(CD1) 

5839 8877 

 

 

Entropy and interaction energy estimation. Configurational entropy105 values 

calculated for HLA-DQ1 peptide binding groove residues and for the TCR-MHC 

components respectively, showed highest value for the microbial peptide PMM 

complex, while the self-peptide MBP complex displayed an intermediate value. The 

calculated interaction energy of TCR with peptide-DQ1 complexes showed highest 

value for DQ1/MBP than DQ1/PMM and DQ1/UL5 cases (Fig. 13a). A similar trend 

was also noted by better binding affinity (higher interaction energy value) of MBP 

peptide for TCR (-206 kcal/mol), compared with the two microbial peptide cases (-

125 kcal/mol). However, observing binding affinity of peptides for DQ1 alone, we 

found the lowest interaction energy value for MBP complex (Fig. 13b). 

HLA-DQ1 peptide binding groove width fluctuation in TCR simulations. To 

probe the importance of binding groove flexibility at a local level description, we 

dissected the groove into four regions106 (D1-D4, Fig. 13c). The center of mass 

distance variation between the DQ1 α-chain and β-chain residues was selected as a 

parameter to monitor the distance fluctuations in these four regions.  
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Figure 13. Interaction energy plots and HLA-DQ1 groove width analysis. (a-b) 

Interaction energy corresponds to non-bonded energy values comprising of Van der 

Waals and electrostatic energy between: (a) TCR and pep-MHC and in (b) peptide 

and MHC. (c) Dissection into four regions D1 to D4, (d) center of mass distance 

variation in the four different regions, MBP complex in green, UL15 complex in red 

and PMM complex in orange.  

 

 

In region D1, the distance profile distribution is quite similar for the MBP and PMM 

peptide bound cases, while it is slightly left shifted in the UL15 peptide bound case 

(Fig. 13d). In region D2, we note a broader distribution for the MBP case; while a 

narrow distribution in the microbial peptide cases and left shifted peak distribution 

was noted in the UL15 peptide case. In region D3, we note a perfect overlap this time 

between MBP and UL15 peptide cases, while a broader and right shifted distribution 

in the PMM peptide case. In region D4, we note a left shifted distance peak 

distribution for the MBP case, with respect to the two microbial peptide cases. 
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Moreover, we observed region D4 to be very flexible for the PMM bound case, with 

fluctuation in the range 12-16 Å. Overall, we found MHC binding groove displayed 

higher flexibility in PMM bound case, in particular in the regions D3 and D4. This 

finding is consistent with a higher value of configurational entropy observed (Table 3) 

for the MHC binding groove in the PMM bound case.   

Comparative study for p-MHC complex simulations without TCR.  To address 

the role of peptide/HLA-DQ1 complex dynamics in T-cell receptor crossreactivity we 

performed additional simulations without TCR and compared the results with 

simulations performed with the TCR. The average interaction energy values 

calculated from MD simulations suggested a better peptide-MHC binding in 

simulations performed without the TCR (Fig. 14a).   

 

 

Figure 14. HLA-DQ1 binding groove analysis in the presence and absence of 

TCR.  In (a) peptide-HLA-DQ1 interaction energy corresponds to non-bonded energy 

values comprising of Van der Waals and electrostatic energy (b) HLA-DQ1 peptide 

binding groove SASA. In (c) and (d) average distance values in region D2 and D3 of 

the HLA-DQ1 binding groove.  
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Furthermore, the average solvent accessible surface area (SASA)107 values of HLA-

DQ1 binding groove showed an increased value in all three peptide cases for TCR 

free simulation cases (Fig. 14b). The maximum increase in average value of SASA 

(~15%) was noted in MBP peptide complex. Binding groove width analysis on a local 

scale was performed in the absence and presence of TCR on the MD simulations 

trajectories. We found significant variation in average distance values in the regions 

D2 (Fig. 14c) and D3 (Fig. 14d) in all the three-peptide complexes. In region D2 (Fig. 

14c) we found that groove width increases when not bound to TCR, in the UL15 and 

MBP peptide complexes. However, for all the peptide cases, in region D3 we note the 

groove to be slightly narrow in the absence of TCR (Fig. 14d). Only in the MBP 

peptide case, we observed an opening (~1.5 Å) of HLA-DQ1 region D4 when not 

bound to TCR (Fig. 15). 

 

 
Figure 15. Region D4 distance probability plot for MBP bound MHC binding groove. 

 

 

To understand better the differences noted in the binding groove dynamics between 

the TCR bound and unbound cases, we examined the peptide-MHC interaction 

network (Table 4). In all the peptide complex cases, we note a striking absence of H-

bond interaction between DQ1 αR61 and P6 peptide residue in the simulations 

performed without TCR. On the other hand, we observed a novel H-bond interaction 
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for the unbound TCR simulations between DQ1 βE66 and P5 peptide residue, in all 

the peptide complexes. Overall, we found an increase (~6-8%) in the HLA-DQ1 

binding groove entropy values in the TCR unbound cases, suggesting a much more 

flexible binding groove in the absence of TCR.  

 

 

3.4 Discussion and Conclusions  
 

The objective of our study has been to provide dynamical insight into Hy.1B11 TCR 

crossreactivity between MBP self-peptide and two microbial peptides while bound to 

HLA-DQ1 complex. To address this issue, we performed molecular dynamics 

simulations on available experimental atomistic model of Hy.1B11 TCR from a 

patient with relapsing-remitting MS disease. The central role of TCRs is to recognize 

the peptide presented by MHC molecules and provide an immune protection against 

foreign peptides108. 

 

Table 4. Peptide-MHC hydrogen bonded interactions and entropy evaluation in 

the presence and absence of TCR. (a) H-bond interactions absent in TCR-unbound 

simulations with respect to TCR–bound. (b) New interactions in unbound-TCR 

simulations. (c) MHC binding groove entropy analysis; an increase is reported in % 

with respect to TCR simulations.  

 UL15 PMM MBP 

a. Absent H-bond interactions in simulations without TCR 

DQ1 α-residues  αR61—D9 (P6) 
αC8—V7 (P4) 
αN11—D9 (P6) 
 

αR61—D9 (P6) 
 

αR61—N9 (P6) 
αH68—T12 (P9) 
αN62—F7 (P4) 
 

DQ1 β-residues βY37—Q12 (P9) 
βS74—R8 (P5) 
 

- βY9—N9 (P6) 
βH30—N9 (P6) 
 

b. New H-bond interactions in simulations without TCR 

DQ1 α-residues αY77—Q12 (P9) 
 

- αC8—F7 (P4) 
 

DQ1 β-residues βE66—R8 (P5) 
 

βE66—R8 (P5) βE66—K8 (P5) 
 

c. Configurational entropy (J/molK) 

HLA-DQ1 6068 (7%↑) 6308 (6%↑) 6339 (8%↑) 
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It is interesting to note that the total number of possible peptides of 14-mer length that 

can be constructed from the 20 amino acids are of order ~1018. Without entering in the 

details of the peptide and complex structural constraints, even assuming only a very 

low percentage of this peptide repertoire to bind to MHC class II molecules, the 

possible number of peptides is still many order of magnitude greater than the 

theoretical number of possible TCRs in humans (~108). Thus, the bandwidth of TCR 

cross-reactivity is inevitable to compensate this disparity and to provide an immune 

cover for vast number of peptide-MHC complexes109. TCR cross-reactivity can have 

both positive and negative implications. On one hand, a positive implication can be 

providing polyclonal recognition of peptide-MHC molecules, thus providing immune 

cover against pathogens that escapes recognition. While, on other hand, a negative 

consequence can be for causing autoimmune diseases109.  

Previous crystallographic studies of two human TCR’s92,110 from MS patients, 

displayed between them a different binding geometry to the peptide-MHC complex, 

but a common CDR footprint displaced towards the N-terminal of the bound MBP 

peptide. In our study, the Hy.1B11 TCR structure not only displays a different binding 

geometry with respect to these human TCR structures, but also a different CDR 

footprint. In particular, with CDR2β loop to overlay onto the central portion of HLA-

DQ1 α-helix (Fig. 11) and CDR3α, CDR3β chains positioned towards the center 

portion of peptide binding groove.  

 

 
Figure 16. Interaction Energy plot. Comparison of interaction energy values 

between TCR and MBP-MHC residues for WT and CDR3α E98A mutant TCR 

simulations. 
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Our MD simulations confirmed the energetic role of CDR3α E98 residue94 in 

interaction with the P5 (Lys/Arg) peptide segment (Fig. 9). Mutation of CDR3α 

residue E98 to alanine (A98) resulted in a significant reduction in interaction energy 

value (Fig. 16) between TCR and MBP-MHC residues with respect to wild-type case. 

These observations are consistent with previous experimental data, wherein alanine 

substitution of P5 resulted in a complete loss of activity and CDR3α E98A mutation 

was particularly severe to HLA-DQ1 peptide binding56. Previous structural 

investigation of Hy.1B11 TCR for HLA-DQ1-peptide (MBP, UL15, PMM) 

complexes56 suggested a dominant role of CDR3α F95 residue for recognition of both 

self-peptide (MBP) and microbial peptides (UL15, PMM). No such predominant role 

is observed from our MD simulations. However, we do observe persistent stacking 

interactions between CDR3α F95 and with peptide pockets P2 and P3 in the MBP and 

PMM peptide cases, respectively.   

Recent experimental study85 investigated the TCR-peptide-MHC cross-reactivity for 

nine peptides with limited sequence similarity and noted a consistent TCR-MHC 

interaction mode in all peptide complexes. With a similar strategy, we investigated 

how the TCR-MHC docking configurations changed during MD simulations by 

dPCA analysis and also evaluated the interaction mode for the three cross-reactive 

peptide complexes. Notably, the three different peptide complexes superimposed 

neatly (Fig. 10c-d, within a RMSD difference of 2.0 Å) and displayed similar values 

of total buried surface area, obtained from MD simulations (Table 1). Specifically, 

about MHC class II system one must consider that the peptide-binding groove is quite 

well characterized in literature and one can expect only local rearrangements in bound 

peptide conformations. Therefore, no drastic difference in the global conformation 

between the three-peptide complexes is expected with respect to the starting crystal 

structures.  

Moreover, a common interaction picture (Fig. 11) was noted in the peptide 

complexes, mediated through TCR Vα domain, in which CDR3α E98 formed H-

bonds to R61 of HLA-DQ1α and through Vβ domain, in which CDR2β D55 formed 

H-bonds to K39 of HLA-DQ1α (Table 2). Indeed, surface plasmon resonance (SPR) 

experiments showed CDR3α E98-DQ1α R61 interaction to be energetically the most 

important interaction between the Hy.1B11 TCR and HLA-DQ1 residues56.  
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An energetic picture of cross-reactive Hy.1B11 TCR was obtained by performing 

interaction energy calculations to estimate the binding affinity of TCR for three DQ1-

peptide complexes (Fig. 13a). MD simulations provided best interaction energy value 

of Hy.1B11 TCR for DQ1/MBP complex, than DQ1/PMM and DQ1/UL15 

complexes. This trend in TCR binding affinity for DQ1-peptide complexes is in 

perfect agreement with SPR experiments56, which showed Hy.1B11 TCR higher 

binding affinity for DQ1-MBP complex. Furthermore, the same experiments showed 

the lower TCR affinity for the DQ1-microbial peptide complexes to be partially 

compensated by higher value of binding affinity of PMM and UL15 for DQ1, 

compared with the MBP peptide. To address the same, we evaluated the interaction 

energy values of DQ1 for MBP, UL15 and PMM peptides (Fig. 13b). Our data 

correlated well with the experimental data. Thus, supporting the importance of an 

energetic balance between both TCR affinity for DQ1-peptide and DQ1 affinity for 

peptide in Hy.1B11 TCR cross-reactivity. With the unique exception of P5, all other 

key anchor (pockets) peptide residues, contributed to the DQ1-peptide binding 

affinity (Fig. 12, Table 3). In spite of different anchor residues between the microbial 

peptides and MBP self-peptide, we note conserved interaction with DQ1 residues. 

Interestingly, the conserved peptide residue (Phe) at P3 position formed persistent 

stacking interaction with DQ1 residue αR61 (Table 3). The predominant role of 

peptide residue at P6 position in H-bond interaction with both α-chain (Fig. 12a) and 

β-chain residues (Fig. 12b) of DQ1 binding groove was observed. The two microbial 

peptides shared a common peptide residue (aspartic acid) at P6 position, different 

from asparagine residue in MBP. This difference at P6 position was reflected by a 

lesser persistent interaction between asparagine residue in MBP and residues Y9 and 

H30 of DQ1 β-chain (Fig. 12b), consistent with lower binding DQ1 affinity of MBP. 

The local fluctuations of the binding grove in the four regions highlighted similarity 

in width fluctuation between self-peptide MBP and the microbial peptides: in region 

D1 involving UL15, while in region D2 with PMM (Fig. 13b). A wider and flexible 

regions D3 and D4 in the PMM complex resulted in an overall higher value of 

entropy (Table 3).  

To understand the role of peptide-MHC dynamics in Hy.1B11 TCR cross-reactivity, 

we performed additional simulations of the peptide-MHC complexes without the 

TCR. In the simulations without TCR, we observed an overall increase (6-8%) in 
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HLA-DQ1 binding groove flexibility (Table 4), and the trend in local MHC width 

fluctuations to be inverted between regions D2 and D3. A slight but a significant 

difference in peptide-DQ1 binding affinity (Fig. 14a) and an increase in solvent 

accessible surface area (Fig. 14b) was observed. Interestingly, in the simulations 

without TCR, we note absence of a conserved H-bond interaction between peptide 

residue at position P6 and residue R61 of DQ1 α-chain, and a new interaction 

between peptide residue at position P5 and residue E66 of DQ1 β-chain, in the three 

peptide-MHC complexes (Table 4). These observations confirm the role of TCR in 

bridging interaction between peptide position P6 and residue R61 of DQ1 α-chain. It 

is important to mention that in the TCR simulations, peptide residue at position P5 

was the one involved in interactions with TCR residues. In summary, we found the 

presence of TCR to have an important impact on both local and global level 

description of peptide-MHC interactions.  

In conclusions, using MD simulations, we identified a bridging interaction involving 

CDR3α (E98) − DQ1α (R61) − peptide (P6) as an energetic hot spot on the TCR-

peptide-MHC interface that contributes to Hy.1B11 TCR cross-reactivity (Fig. 17). 

We further identified a structurally relevant new H-bond interaction between CDR2β 

D55 and DQ1α K39 to constitute a key anchor point for interaction of TCR on to the 

MHC class II. Our findings confirm the energetic role of CDR3α residue E98 in 

Hy.1B11 TCR cross-reactivity. 

 

 

Figure 17. Bridging interaction across TCR-MHC-peptide interface determining 

Hy.1B11 TCR cross-reactivity. H-bond interactions are represented with dashed 

lines. 
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Altogether, using MD simulations we were able to identify involvement of a small 

number of structurally and energetically important hot spots that provide dynamical 

insights into Hy.1B11 TCR cross-reactivity. 

 

3.5 Methods 
 

Model preparation. In the current study, we chose the available X-ray structures of 

the tri-molecular TCR-peptide-MHC-II complexes for the two microbial peptides 

UL15 (PDB id: 4MAY), PMM (PDB id: 4GRL) and one self-peptide MBP (PDB id: 

3PL6) complex. The tri-molecular structures consisted of same Hy.1B11 TCR, same 

HLA-DQ1 protein complexed alternatively with the three peptides under investigation 

(Fig. 9). HLA-DQ1 protein is a heterodimer composed of two chains: α 

(DQA1*0102) and β (DQB1*0502); and the peptide-binding groove is formed from 

two non-covalently linked subunits of α1 (5-90 residues) and β1 (5-90 residues) 

chains. The missing hydrogen atoms in the X-ray structures of the three TCR-peptide-

MHC-II complexes were built using psfgen package of VMD software111. Each of the 

trimolecular complex system was then immersed in a water box, and subsequently 

counter-ions were added in order to have a neutral system. Details about the 

simulation box size and the total number of atoms for each of the systems are 

presented in Table 5.  

 

Table 5. MD simulation of peptide-MHC complexes with and without Hy.1B11 

TCR. We report total number of atoms and simulation box size in each of the system 

investigated.  

Peptide – MHC 

complex 

With Hy.1B11 TCR Without Hy.1B11 TCR 

Total atoms Box-size Total atoms Box-size 

MBP-HLA-DQ1 184164 [113 111 162] 48465 [79 67 107] 

PMM-HLA-DQ1 184122 [113 111 162] 48450 [79 67 107] 

UL15-HLA-DQ1 184151 [113 111 162] 48479 [79 67 107] 
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TIP3P112 parameters for water molecules and Charmm-27 force-field parameters for 

the proteins and peptides were used. Correct protonation state was assigned to all the 

protein and peptide residues using Propka software113. For TCR-unbound peptide-

MHC complexes, we removed the TCR structure from the tri-molecular complex and 

performed MD simulations of only the peptide-MHC complexes. For simulations of 

peptide-MHC complex, we chose the chains corresponding to peptide and MHC 

molecules from the solved crystal structure. We performed simulations both 

with/without TCR for the three systems. Each system was energy minimized and 

slowly heated to 310 K in steps of 30 K with initial positional constraints of 50 

kcal/(mol Å2) on carbon alpha atoms. Subsequently, positional constrains was slowly 

released in steps of 10 kcal/(mol Å2). Molecular dynamic simulation of 110 ns was 

performed in NPT ensemble with T=310 K, and 1 atm pressure. Further simulation 

protocol details have been described in our previous works114,115. All-atom molecular 

dynamics (MD) simulations were performed employing NAMD116 software package 

on 64 processors cluster. 

Simulation analysis. MD trajectory of a total simulation time 110 ns, for each 

complex under investigation, was used for analysis. The stability of protein-peptide-

protein complexes and peptide-protein complexes was evaluated by calculating the 

root mean square deviation (RMSD) values for the C-alpha atoms of residues during 

MD simulations (Fig. 18).  

 

 
Figure 18. RMSD plot of C-alpha atoms for TCR-pep-MHC complexes.  
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To estimate convergence of our MD simulations, we employed a novel Good-Turing 

statistical approach proposed recently by Koukos and Glykos102. This method allows 

estimating the probability distribution of unobserved configurations, 

punobserved(RMSD), as a function of the RMSD distance between unobserved and 

observed molecular configurations in MD simulations (Fig. 19). 

 

 
Figure 19. Good-Turing convergence test. Probabilityunobserved (RMSD) as a 

function of RMSD distance. For TCR bound MBP-MHC complex at different 

simulation time lengths. 

 

 

The hydrogen bonded (H-bond) interaction between peptide-protein or protein-protein 

residues pairs was calculated using a geometrical criterion, with a donor-acceptor 

cutoff distance of 3.1 Å and donor-hydrogen-acceptor cut-off angle 130 degree. H-

bonds present for at least 20% of trajectory time length are reported. The aromatic 

stacking interaction between the residues pairs was calculated using EUCB 

software117 with following geometrical criteria: – maximum dihedral angle cut-off 

parameters between the planar/ring side chains of 30° – centroid distance cut-off 

between side chains 5.0 Å – persistence simulation time 20%.   

The interaction energy between the two selected groups of atoms (for instance, 

between the peptide residues and HLA-DQ1 residues) was calculated by evaluating 
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the non-bonded energy values comprising of Van der Waals and electrostatic energy, 

using the energy plugin of Namd software116. A cutoff distance of 12 Å was used for 

non-bonded interactions and for the electrostatic interaction we also adopted the 

particle mesh Ewald scheme118. The interaction energy scheme adopted in our 

calculations provides only a rough estimate in terms of enthalpic contributions to 

binding, as solvent effects are not included. Thus, interaction energy values obtained 

can be used only for the ranking the different systems based on their energy values.  

Configurational entropy calculations using the quasi-harmonic approximation 

scheme105 were performed to investigate differences in protein flexibility and stability 

between the different protein-peptide complexes. From 110 ns MD simulation 

trajectory of each system, we extracted 5500 extracted structures, and configurational 

entropy estimate was done by evaluating the covariance matrices of atomic 

fluctuations of selected residues, within a routine of CARMA software119.  

Dihedral angles principal component analysis (dPCA) was performed on selected 

TCR and MHC class II binding site residues on MD simulation trajectory using 

CARMA software119. This resulted is a matrix containing the values of the top three 

principal components for each and every structure recorded in the trajectory. To 

perform cluster analysis, the method incorporated within the CARMA software uses a 

peak-picking algorithm that is applied to three-dimensional density distributions of 

the principal components derived from the MD trajectory. The classification of 

different clusters is done automatically using the density distribution threshold that 

can explain at least 80% of the original principal component map's variance. Each 

classified clusters, represents a different number of structures (from the trajectory) 

that have values for their principal components corresponding to the specific point of 

the principal component plane. Cluster 1 corresponds to the most populated cluster 

with highest number of structures (from MD trajectory). A major limitation of this 

methodology it that it does not comprehensively assign each frame of a trajectory to a 

cluster. Indeed, the algorithm aims at efficiently identifying the most prominent 

molecular conformations.  

 

 

 

 

 



 38 

  



 39 

 
 

4. 2-Phenylbenzofuran 
ligands as selective 
butyrylcholinesterase 
protein inhibitors 

 
Alzheimer’s Disease (AD) is an irreversible progressive neurodegenerative brain 

disorder affecting more than 44 million people with partly understood 

pathophysiology120. An accepted treatment strategy is to restore the levels of 

acetylcholine by inhibiting cholinesterase enzymes, such as butyrylcholinesterase 

(BChE) and acetylcholinesterase (AChE).Benzofuran scaffold has drawn 

considerable attention over the last few years, with many studies investigating 

their inhibitory activity towards the above-mentioned enzymes.  

In this chapter, inhibition activity of a series of 16 2-phenylbezonfurans 

compounds towards these enzymes is presented.  The inhibitory activity (IC50) of 

the 16 compounds was evaluated against BChE enzyme was compared with the 

reference compound galantamine. To better understand the enzyme inhibition 

mechanisms, in relation to the substituents and their positions in our compounds, 

molecular modeling studies were also performed. The best inhibitory activity for 

the compound with a hydroxyl substituent in the 2-pheynl ring and chlorine atom 

at position 7 of benzofuran moiety. 

Overall, biological assays and MD simulations results were integrated to 

highlight the molecular basis of the selective BChE inhibition by the benzofuran 

scaffold. This work has been published in Bioorganic Medicinal Chemistry 

Letters121. 
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4.1 Abstract 
 

A series of 2-phenylbenzofurans compounds were designed, synthetized and 

evaluated as cholinesterase inhibitors against Alzheimer’s disease (AD). Methoxy 

and hydroxy substituents were introduced in the 2-phenyl ring, whereas the 

position 5 and 7 in the benzofuran moiety was not substituted or substituted with 

methyl, bromine and chlorine atoms. The activities of each compound were 

evaluated towards both acetylcholinesterase (AChE) and butyrylcholinesterase 

(BChE) enzymes. The biological assay experiments showed that most of the 

compounds displayed a clearly selective inhibition for BChE, while a weak or no 

effect toward AChE was detected. Among these benzofuran derivatives, 

compound 16 exhibited the highest BChE inhibition with an IC50 value of 30.3 

µM. Lineweaver-Burk plot and molecular modeling studies revealed that 

compound 16 was a mixed-type inhibitor, binding to both catalytic active (CAS) 

and peripheral anionic sites (PAS) of BChE. Moreover, the same compound 

exerts antioxidant activity and resulted to be non-cytotoxic towards motor-neuron 

cells. Furthermore, we employed molecular dynamic simulations to provide 

information on enzyme dynamics and interaction energies between the 

aforementioned ligands and both cholinesterase enzymes. In particular, the 

simulations revealed that compound 16 binds to both the CAS and the PAS of 

BChE and displayed the best interaction energy value, in agreement with our 

experimental data. 

 

 

4.2 Introduction 
 

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder which 

is characterized by progressive memory loss and a wide range of cognitive 

impairments122. Although the precise cause of AD is not completely known, there 

are some factors that seem to play a significant role in the pathogenesis of AD, 

such as: deficit of acetylcholine (ACh), presence of amyloid-β deposits, τ-protein 
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aggregation, oxidative stress and metal ions imbalance. Among these distinct 

research approaches, the cholinergic hypothesis has been examined more 

extensively. In fact, low levels of ACh appear to be a critical element in the 

development of cognitive and neurodegenerative disorders in AD patients123. 

Accordingly, one strategy in AD treatment is to restore the levels of ACh by 

inhibiting acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase 

(BChE, EC 3.1.1.8) which are mainly responsible for ACh hydrolysis. These 

enzymes belong to the superfamily of α/β-hydrolase fold proteins and are able to 

hydrolyse ACh with different efficiencies124. They are encoded by two distinct 

human genes and display 65% homology in their amino acid sequences.  These 

two proteins also show a great similarity in both their tertiary structure and their 

overall architecture of active sites125,126. Both AChE and BChE have indeed a 

primarily hydrophobic active gorge into which ACh diffuses and is cleaved.  

Ligand binding specificity between the two enzymes, have been related to 

differences in the residue’s structural arrangement which lead to the active site 

located near the bottom of a deep and narrow gorge (Figure 20, Table 6). The 

gorge is characterised by (i) a peripheral site at the entrance, (ii) an oxyanion 

hole, (iii) a choline-binding site located within the entrance, and (iv) the active 

site constituted by an acyl pocket buried near the catalytic triad.  

 
Figure 20. Enzymes under investigation. (A) Equine serum BChE (B) 

Electrophorus electricus AChE. The residues lining the gorge of the two enzymes are 

shown. The conserved residues between the two are shown in red (licorice 

representation) and non-conserved in green. The catalytic triad residues are shown in 

ball-stick representation. 
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In fact, structural analysis had revealed that these enzymes have two major 

substrate-binding sites. One is a peripheral anionic site (PAS) at the entrance of 

the gorge, acting as a regulatory site; the other is the catalytic anionic site (CAS), 

which is located in the bottom of the gorge and is assigned to a Ser-His-Glu 

catalytic triad127.  

 

 

Table 6. Key residues lining the gorge site of the two Cholinesterase’s (ChE). 

The non-conserved residues of BChE with respect to AChE are highlighted in 

bold. Non-conserved ChE’s residues in human are shown in red. 
 

 Equine serum  

BChE 

Electrophorus electricus  

AChE 

Catalytically active site S198, E325, H438 S203, E334, H447 

Peripheral Site N68, Q119, V277 

(A277), D70, Y332 

Y72, Y124, W286 

D74, Y341 

Acyl Pocket  L286, V288, F329 F295, F297, F338 

Wall of Gorge Y114, Y128, W231 

W430, Y440 

Y119, Y133, W236 

W439, Y449 

Oxyanion hole G116, G117, A199 G120, G121, A204 

Choline binding site W82, A328 W86, Y337 

 

 

AChE and BChE appear to be simultaneously active in the synaptic hydrolysis of 

ACh, terminating its neurotransmitter action, and co-regulating levels of ACh128. 

AChE has a very high catalytic efficiency for ACh hydrolysis and is mainly found 

in cholinergic synapses, while BChE has lower efficiency and is widely 

distributed in tissues and plasma. In the healthy brain, AChE predominates and 

BChE is considered to play a minor role in regulating ACh levels. On the 
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contrary, BChE activity increases in the temporal cortex and hippocampus during 

the development of AD, while at the same time AChE activity decreases129. 

Since AD is characterized by a forebrain cholinergic neuron loss and a 

progressive decline in ACh, a possible therapeutic strategy involves the use of 

cholinesterases inhibitors to restore the neurotransmitter level and thus alleviate 

AD symptoms130-132. These inhibitory molecules may act by binding the CAS site 

(competitive mechanism) or PAS (non-competitive mechanism) or may exert a 

dual binding enzyme inhibition – acting as mixed-type inhibitors133. Moreover, 

since the oxidative stress may be a risk factor for the initiation and progression of 

AD, drugs with both antioxidant and inhibitory actions, might be useful for either 

the prevention or the treatment of AD. 

The benzofuran (oxygen heterocycle) is a common moiety found in many 

biologically active natural and therapeutic products and thus represents a very 

important pharmacophore134. It is present in many medicinally important 

compounds that show biological activity, including anticancer and anti-

inflammatory properties135. Benzofuran scaffold has drawn considerable attention 

over the last few years due to its profound physiological and chemotherapeutic 

properties136. Some benzofuran derivatives are also known as MAO and 5-

lipoxygenase inhibitors, antagonists of the angiotensin II receptor, blood 

coagulation factor Xa inhibitors, ligands of adenosine A1 receptor and so forth137. 

Recent studies have also investigated their inhibitory activity towards AChE138. 

 

 
Figure 21. 2-Phenylbenzofuran derivatives with functional groups R, R1 and R2. 
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In Fig. 21, the complete list of 16 2-pheynl compounds which were synthesized 

and differ with each other in either of their functional groups at position R, R1 

and R2. The activity of all the synthetized compounds was first evaluated at 

compound concentration of 100 µM (Table 7). As observed, only compounds 9 

and 11 exert a very weak inhibitory activity towards AChE, while all the 

compounds, except for 2 and 10, inhibit BChE activity with a varying efficiency. 

In particular, compounds 12, 14 and 16 show the highest inhibition percentages 

and the lowest IC50 values. 

 

 

Table 7. Cholinesterase inhibitory activity of compound 1, 2, 8-16. 

 

Compound 
% Inhibition at 100 µM IC50 (µM) 

AChE BChE BChE 

1 - 6 > 100 

2 - - > 100 

8  - 5 > 100 

9  4 12 > 100 

10  - - > 100 

11  4.8 19 > 100 

12  - 58 77 ± 6.7 

13  - 16.6 > 100 

14  - 54 82.5 ± 7.1 

15  - 15 > 100 

16  - 77 30.3 ± 1.9 

Galantamine 28.29 ± 2.12 
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4.3 Results and Discussion 
 

The series of 2-phenylbezonfurans compounds (Fig. 21) used in this study are 

composed by: (i) benzofuran moiety with substituents at position 5, 7 (R, R1) and 

(ii) 2-phenyl ring with substituent at position para (R2). The biological assays 

showed that compounds 12, 14 and 16 displayed high BChE inhibition (> 50%). 

As already observed, these compounds share the same substituents (Fig. 21) R 

(H) and R2 (OH), but differ in R1 (Met, Br, Cl respectively). Both chlorinated 

benzofurans 15 (R = Cl; R2 = OH) and 8 (R1 = Cl; R2 = OMe), resulted in low 

values of BChE inhibition (Table 2). To understand the impact of substitutions 

(benzofuran moiety and 2-phenyl ring) on enzyme inhibition ability, compounds 

8, 15 and 16 were selected for molecular dynamics simulations. Compound 16 

showed the best inhibition activity with compound 15 differing at chlorine 

position and compound 8 differing at para position with respect to compound 16 

(see Fig. 22).  

 

 
Figure 22. Three compounds selected for Molecular modeling investigation. 

 

Molecular docking results showed that the three compounds were able to interact 

with CAS residues in BChE, and with PAS in AChE. The three compounds 

displayed very similar docking energies (~6-7 kcal/mol) in both cases. To 

investigate the structural and dynamical aspects upon ligand binding it is 

necessary to perform molecular dynamics simulations. For this purpose, we 

simulated the two enzymes for 50 ns in the free and ligand bound configurations. 

The systems stability was monitored during MD simulations by evaluating the 

root mean square deviation (RMSD) values for the backbone atoms of the two 

enzymes (Fig. 23). After a careful analysis of the MD trajectories, we found the 

interaction sites of the two enzymes in complex with the ligands to be stable, also 

noted from the low RMSD ligand fluctuations (< 0.5 Å).  
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Figure 23. Root mean square deviation of complex systems under investigation. 

 

Enzyme dynamics in presence of the three compounds (8, 15, 16) was 

investigated by evaluating dynamic cross-correlation map for carbon-alpha atoms, 

calculated on 500 snapshots extracted from 50 ns MD trajectories using Prody 

software139. A clear difference is observed in the enzyme ligand complex 

dynamics between compound 16 and compound 15 (Fig. 24). 

 

 
Figure 24. Cross-Correlated motions of equine serum BChE bound to the 

three compounds. In (A) compound 16 (B) compound 15 and (C) compound 8. 

Positive correlations are indicated in red and negative correlations in blue. In (B) 

and (C); with boxed regions represent those displaying better positive correlation 

(red) and better negative correlation (blue) with respect to compound 16.  
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Changing chlorine from position 7 (R1) to position 5 (R) (switching compound 

from 16 to 15) has a significant effect on enzyme dynamics (Fig. 24) in at least 

three regions, as shown by the increased negative correlation. On the other hand, 

only changing the substituent R2 (compound 8 and 16) results in a very little 

difference in enzyme dynamics. Overall, these results suggest that substitution in 

positions 7 for benzofurans compounds play an important role in enzyme 

dynamics.  

We also estimated the binding strength by evaluating the interaction energy 

between the enzyme residues and the compound (Table 8). 

 

 

Table 8. Interaction energy and buried surface area (BSA) evaluation. 

BChE with VDW* 

(kcal/mol) 

Elec.** 

(kcal/mol) 

Total energy 

(kcal/mol) 

BSA 

(in %) 

compound 16 -22.4 -26.5 -48.9 75 

compound 15 -10.1 -27.5 -37.6 64 

compound 8 -8.1 -29.8 -37.9 58 

* Van-der-Waal (VDW);**Electrostatic (Elec.) 

 

 

In the case of BChE, compound 16 displayed the best interaction energy, with 

respect to the other two compounds, that displayed very similar energies (Table 

8). Interestingly, the same compound 16 also possessed the highest percentage of 

its total surface area buried in the gorge (75%) with respect to the other two 

compounds. To understand the origin of these differences, we carefully inspected 

the binding mode of the ligands in complex with BChE (Fig. 25), and with AChE 

(Fig. 26, shown for comparison). The interaction picture was plotted using 

Ligplot140. 
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Figure 25. Molecular interaction picture of equine serum BChE bound to the 

three compounds. In (A) compound 16 (B) compound 15 and (C) compound 8. 

 

Figure 26. Molecular interaction picture of Electrophorus electricus AChE bound 

to the three compounds. In (A) compound 16 (B) compound 15 and (C) compound 

8. 
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In the case of AChE the three compounds (8, 15 and 16) do not interact with any CAS 

residues, thus, no enzyme inhibition was observed (Fig. 26). On the other hand, in 

BChE the three compounds interacted with at least one of the three CAS residues, 

thus displaying enzyme inhibition. Therefore, the simulations of our models suggest 

interaction of 2-phenylbenzofurans with CAS residues to be crucial for enzyme 

inhibition. Concerning Equine serum BChE, in the three compounds under 

investigation we observed a mixture of conserved and non-conserved interacting 

residue partners (Fig. 25).  

Previous biochemical and molecular studies141 found the difference in inhibitory 

property of E2020 towards AChE and BChE to be related to simultaneous 

participation of CAS and PAS binding residues (present only for AChE). Our 

modeling results confirm a similar effect for 2-phenylbenzofurans (compound 16). 

The participation of both CAS and PAS residues also resulted in better interaction 

energy for the compound 16 complex. Interestingly, in all three complexes, the 

compounds globally interacted with CAS residues (S198, H438). However, only in 

compound 16 we find the 2-phenyl ring moiety involved in interaction with CAS 

residues (Fig. 25). Moreover, only in compound 16, do we observe the benzofuran 

moiety to interact with PAS residues (Q119, Y332) and the 2-phenyl ring moiety to 

interact with W82 and residues E197 and G439. Thus explaining the high interaction 

energy and the related high inhibition (Figure 25). In a recent study, residue Q119 has 

been shown to be important towards selective inhibition of mouse BChE by two 

biscarbamates compounds142. Residue W82 (W86 in AChE) has also been suggested 

as a crucial component of the anionic site127 and as a controller for CAS opening and 

closing of CAS143. Moreover, previous studies analyzed the relevance of residue E197 

(E202 in AChE) in substrate inhibition144 and of residue Y332 (Y341 in AChE) in 

substrate binding145. Overall, jointly with all these previous proposals and findings, 

our current experimental and modeling results confirm and explain the highest BChE 

inhibition characteristic noted for compound 16. 
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4.4 Conclusions 

In conclusion, in this study a series of 2-phenylbenzofurans compounds have been 

designed, synthetized and evaluated for cholinesterase inhibitory activity. These 

compounds showed no inhibition toward AChE while inhibiting BChE with varying 

efficiencies. Compounds 12, 14 and 16 were the most potent inhibitors. These 

compounds displayed also the highest antioxidant activity. According to our results, 

the contemporary presence of a hydroxyl group in the para position of the phenyl ring 

and a substitution at the position 7 of the benzofuran scaffold improved the inhibitory 

activity, with respect to the other synthesized compounds. In particular, compound 16 

exhibited the highest BChE inhibition with an IC50 value (30.3 µM). Molecular 

modeling demonstrated that the interaction of 2-phenylbenzofurans with CAS 

residues is crucial for enzyme inhibition. All the compounds analyzed here interact 

with CAS in BChE, while no interactions involving CAS in AChE were detected. Our 

simulation also revealed that compound 16 binds both CAS and PAS sites in BChE, in 

accordance to the experimental data, which showed that this compound acts as a 

mixed-type inhibitor. We can therefore conclude that the combination of biological 

assays and molecular dynamics simulations, allowed highlighting the molecular basis 

of the selective BChE inhibition by the benzofuran scaffold.  

 

 

4.5 Methods 

Computational modeling of enzyme-ligand complexes. Preparation of three-

dimensional structures for proteins and ligands: the biological assays have been 

performed using AChE from Electrophorus electricus and BChE from Equine serum. 

As no good resolution X-ray or NMR three dimensional structures are available for 

these proteins, homology modeling was performed using the Swiss-model interface42. 

After BLAST sequence alignment, we selected the following templates: the human 

BChE (PDB id: 4TPK)146, for the Equine serum BChE enzyme isoform, and the 

Torpedo californica AChE (PDB id: 2W6c)147, for Electrophorus electricus AChE. 

Two-dimensional atomic coordinates of the ligands were drawn using ChemWriter 

software and subsequently three-dimensional coordinates were generated using Open 

Babel software. All the ligands were then subjected to geometry optimization using 
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the Hartree-Fock basis set 6-31G* within Gaussian03 software package148. The 

charges and the force field parameters for the ligands were evaluated following the 

standard AMBER protocol149.  

Molecular Docking. Docking was performed using SwissDock web server, which is 

based on the docking software EADock DSS150. The docking mode was accurately 

chosen, with a blind docking procedure that considers the entire protein surface as a 

potential target. Using this procedure, a large number of ligand binding modes 

(~15.000) were generated, with the simultaneous rough interaction energy estimation. 

The binding modes possessing favourable energies were then ranked and classified 

into different clusters, this time based on the full fitness scoring function. The most 

consistent and favourable ligand conformation was chosen from 10 independent 

docking runs for each ligand and was further considered for molecular dynamics 

(MD) simulation runs. 

MD Simulations. The starting structures of protein-ligand complexes were built 

using leap module of Amber11. Each complex was inserted in an explicit TIP3P 

water-box with a minimum distance of 1.8 nm between the solute and box boundary. 

We used Amber force-field parameters for the enzymes and the compounds were 

assigned using AMBER protocol. Energy minimization was performed for each 

system, followed by gradual heating to 300 K in steps of 30 K using positional 

restraints.55 The positional restraints were gradually removed during 0.3 ns of 

simulation time and then an equilibration run of 3 ns was performed. The time step 

used in MD simulation was of 2 fs using SHAKE. Simulations were performed in 

NPT ensemble using periodic boundary conditions. Long-range electrostatic 

interactions were treated with particle mesh Ewald method with 12 Å cutoff for non-

bonded interactions. For each complex we performed a MD simulation of 50 ns, using 

NAMD software package on the CRS4 High Performance Computing facility.  
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5. New Phenylbenzofuran 
ligands with an improved 
selectivity against BChE 
protein 

 
BChE activity progressively increases in patients with AD, while AChE activity 

remains unchanged or declines, with changes that become more and more 

pronounced during the disease course. Therefore, it is important to design 

compounds that not only selectively interact with BChE but also display an 

improved inhibitory activity with respect to reference compounds, which might 

have a relevant role in treatment of patients with advanced AD. In the previous 

chapter, we reported specific structural characterization of benzofuran moiety 

able to improve the selective inhibitory activity towards BChE.  

In this chapter we investigate the importance of hydroxyl group substitution in 

the benzofuran phenyl-ring, in the novel synthesized 14 2-phenylbezonfurans 

compounds. Most of our compounds displayed selective BChE inhibitory activity 

with varying efficiencies. In particular, we found two compounds to display 4- 

and 8- times better BChE inhibitory activity than the reference compound, 

galantamine. The results from this work is submitted and under review.  
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5.1 Abstract 
 

Alzheimer’s disease (AD) is a neurodegenerative disorder representing the 

leading cause of dementia and is affecting nearly 44 million people worldwide. 

AD is characterized by a progressive decline in acetylcholine levels in the 

cholinergic systems, which results in severe memory loss and cognitive 

impairments. Expression levels and activity of butyrylcholinesterase (BChE) 

enzyme has been noted to increases significantly in the late stages of AD, thus 

making it a viable drug target. In the present study, a series of hydroxylated 2-

phenylbenzofurans compounds were designed, synthesized and their inhibitory 

activities toward acetylcholinesterase (AChE) and BChE enzymes were 

evaluated. Two compounds (15 and 17) displayed significantly higher inhibitory 

activity towards BChE with IC50 values of 6.23 µM and 3.57 µM, respectively. 

Interestingly, the same compounds further exhibited selective inhibitory activity 

against BChE over AChE. Computational studies were used to compare protein-

binding pockets and evaluate the interaction fingerprints of the compound. MD 

simulations showed a conserved protein residue interaction network between the 

compounds, resulting in similar interaction energy values. Thus, combination of 

biochemical and computational approaches could represent rational guidelines for 

further structural modification of these hydroxy-benzofuran derivatives as future 

drugs for treatment of AD. 

 

5.2 Introduction 
 

Alzheimer’s disease (AD) is a progressive neurodegenerative brain disorder, 

named after German psychiatrist Alois Alzheimer. AD is the most common cause 

of dementia, accounting for up to 80 % of all dementia cases, as well as being a 

major cause of death worldwide120,151,152. It is common in elderly people over 65 

years old and exhibits heterogeneous distribution across the globe, being most 

prevalent in Western Europe and North America, while less prevalent in Sub-

Saharan Africa region153.  
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Being a multifactorial neurodegenerative brain disorder, the exact 

pathophysiology of AD is not yet entirely known154. However, several 

pathogenesis of AD have been suggested: deficits in the cholinergic system155,156, 

accumulation and deposits of beta-amyloid outside the neurons in the brain157, 

oxidative stress158 and inflammation159. Early studies performed on patients 

suffering from AD156 found an altered cholinergic activity, which resulted in 

cognitive and functional symptoms. In the present study, we focus our attention 

on the cholinergic system, which is the most cited potential mechanism160,161. The 

cholinergic system directly contributes to regulation and memory process, thus 

represents a suitable target for the AD drug design120,162,163. In the cholinergic 

system disruption in the levels of acetylcholine (ACh) is caused by hydrolytic 

action of cholinesterases (ChEs)164. ACh is a neurotransmitter that plays a role in 

the modulation of memory function in normal and neurodegenerative 

conditions165.  

Butyrylcholinesterase (BChE) and Acetylcholinesterase (AChE) belong to ChEs 

family of enzymes and play a role in ACh regulation and in the cholinergic 

signalling166. The two enzymes are extraordinarily efficient and are able to cleave 

more than 10000 ACh molecules per second167. AChE is substrate specific in 

nature and is found in high concentrations in the brain, while BChE is non-

specific and is distributed throughout the body163. In particular, it is primarily 

found in the liver, pancreas and associated with glial and endothelial cells in the 

brain166,168. In a healthy brain, the AChE enzyme dominantly degrades ACh while 

BChE plays only a supportive role.  The two enzymes display diverse kinetic 

characteristics depending on ACh concentrations. At low ACh concentrations, 

AChE’s activity becomes highly dominant, while BChE is more efficient in the 

hydrolysis at high ACh concentrations163. Initial studies underestimated the 

importance of BChE in human brain owing to its low expression169. However, 

other studies have shown the importance of BChE within the nervous system to 

be pivotal in the late stages of AD155,170. Indeed in patients with AD, BChE 

activity progressively increases, while AChE activity remains unchanged. 

Moreover, AChE knockouts experiments performed on mouse models 

demonstrated the role of BChE to maintain the cholinesterasic function even in 

the absence of AChE171.  
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Despite being encoded by different genes on human chromosomes 7 and 3172, at 

molecular level the two enzymes AChE and BChE share nearly 65% sequence 

homology. The availability of several X-ray crystallographic structures for the 

two enzymes173,174 further revealed the similarity of the tertiary structure and 

particularly the architecture of the active site. The active site consists of a 

catalytic triad (Ser, His, Glu) and a choline-binding pocket buried nearly 20 Å 

deep into the surface of the enzymes127. The main difference between the two 

enzymes is located in the acyl-binding pocket, which accommodates the acyl 

moiety. In detail, two bulky amino acids (Phe) in AChE are replaced with two 

smaller amino acids; Val and Leu, thus allowing BChE accommodate large and 

chemically different molecules.  

A well-documented strategy towards an effective management of AD is by 

developing inhibitors that suppress the ChEs enzymes from breaking down ACh 

and therefore increasing both the level and duration of the neurotransmitter 

action162. Current Food and Drug Administration (FDA) approved cholinesterase 

inhibitors namely: donepezil, rivastigmine and galantamine, help only in 

controlling the symptoms of AD and do not treat the underlying disease or delay 

its progression. In this scenario, a continuous research related to development of 

more potent and highly efficacious cholinesterase inhibitors becomes even more 

essential.  

Heterocyclic ring compounds are known to display broad biological, medicinal 

and pharmacological characteristics and thus form an important moiety to 

construct inhibitors against ChEs enzymes. Among them, benzofuran derivatives, 

since synthesized for the first time by Perkin175 in 1870, has been constantly 

explored in the treatment of various diseases, including AD176. Initially most of 

the research studies were focused on development of AChE inhibitors towards 

treatment of AD. However, molecules displaying very high selectivity for BChE 

over AChE have also been developed177,178. Recent studies designed and 

synthesized benzofuran derivatives that displayed a selective inhibitory profile 

against AChE enzyme138,179,180. In this context, we recently developed a series of 

2-phenylbenzofuran derivatives121, which exhibited selective inhibitory property 

for BChE enzyme and with an inhibition IC50 value similar to that of galantamine 

(~30 µM). It was noted that the contemporary presence of a single hydroxyl group 
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in the para position of the phenyl ring and a halogen substitution at position 7 of 

the benzofuran scaffold improved the inhibitory activity towards BChE121.  

In this work, we elucidate the importance of hydroxyl group substitution in the 

phenyl-ring in the new series of 2-phenylbenzofuran derivatives (Table 9) with a 

contemporary presence of either chlorine or bromine at position 7 (R1) of the 

benzofuran scaffold. MD simulations were employed to identify key structural 

and dynamical aspects that influence the inhibitory activity of the potent 

compounds against hBChE enzyme. 

Table 9. Inhibition of EeAChE and eqBChE enzymes by Compounds 15-28.  

Compound 
 

IC50 (µM)* 
Selectivity to 

eqBChE** 

R R1 EeAChE eqBChE  

15 H Cl >100 6.23 ± 0.43 >16.0 

16 Cl H 80 ± 7.3 36.6 ± 2.90 2.2 

17 H Br 100 ± 6.1 3.57 ± 0.25 28.0 

18 Br H 66 ± 4.2 30 ± 2.70 2.2 

19 H CH3 >100 10.03 ± 0.96 >10.0 

20 CH3 H >100 12.51 ± 1.29 >8.0 

21 H H >100 25.18 ± 1.30 >4.0 

 

 

 

22 H Cl 50 ± 3.3 25.7 ± 1.60 1.9 

23 Cl H 30 ± 2.8 38.2 ± 2.40 0.78 

24 H Br 37 ± 2.6 18.41 ± 0.93 2.0 

25 Br H 25 ± 1.9 27.6 ± 1.90 0.90 

O

OH

OH

R

R1 15-21

O

OH

OH

R

R1

OH

22-28
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26 H CH3 66 ± 5.4 19.8 ± 1.20 3.3 

27 CH3 H >100 16.05 ± 1.05 >6.2 

28 H H >100 >100 >1.0 

Galantamine   0.95 ± 0.02 28.3 ± 2.1 0.033 

*EeAChE and eqBChE inhibition is expressed as the mean ± SD (n = 3 

experiments). **Selectivity to BChE: IC50 for AChE)/IC50 for BChE 

 

5.3 Results 
 

Inhibitory activity of 2-phenylbenzofuran derivatives against AChE and 

BChE. To investigate the importance of hydroxyl substituents in the synthesized 

2-phenylbenzofuran derivatives, the inhibitory effect of these compounds were 

(15-28) on EeAChE and eqBChE activity by determining their inhibitory potency 

IC50 which is concentration of inhibitor needed to reduce the enzyme activity by 

half. For the initial screening of the compounds, we used enzymes of non-human 

origin namely EeAChE and eqBChE due to their lower cost and high degree of 

similarity with their respective human enzymes. 

The inhibition results of the compounds against the two enzymes are summarized 

in Table 9. We noted that compound 28, with three hydroxyl substituents in 

phenyl-ring and hydrogen atom in position 5 (R) and 7 (R1) of benzofuran 

scaffold did not exert any cholinesterase inhibitory activity. In general, except 

compounds 23 and 25, all other compounds displayed better activity against 

eqBChE enzyme. In detail, only six compounds (15, 17, 19-21 and 27) displayed 

inhibitory activity against eqBChE and with IC50 values for EeAChE being equal 

or greater to 100 µM. While, on the other hand the remaining compounds 

inhibited both the enzymes with varying efficiency. Among these derivatives, 

maximum inhibitory activity against eqBChE enzyme were displayed by 

compound 15 (IC50 = 6.23 µM) and 17 (IC50 = 3.57 µM), with two hydroxyl 

substituents in phenyl-ring and with presence of chlorine and bromine atoms 

respectively at position 7 (R1) of benzofuran scaffold. Interestingly, eqBChE 

inhibitory activity displayed by compounds 15 and 17 was about 4- and 8- times 



 58 

more active than the reference compound, galantamine (IC50 = 28.3 µM). We 

therefore focused our attention on the compounds 15 and 17, which exhibited 

maximum inhibitory action against eqBChE enzyme. Kinetic analysis of steady 

state inhibition data revealed that compound 15 acts as a mixed-type inhibitor and 

compound 17 as a non-competitive inhibitor. The inhibition constants for the 

compound 17 were determined to be 4.3 µM and 4.7 µM.  

The inhibitory activity of the most potent inhibitors (compounds 15, 17) was 

further investigated on hBChE enzyme; the results are presented in Table 10. We 

note that both these compounds inhibit hBChE enzyme with IC50 values in the 

µM range and display similar IC50 values. 

 

Table 10. Inhibition of hBChE by Compounds 15 and 17. 

 

Compound IC50 (µM)* 

15 27.51 ± 1.82 

17 27.46 ± 1.53 

Galantamine 56.8 ± 4.11 

             *hBChE inhibition is expressed as the mean ± SD (n = 3 experiments) 
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Figure 27. Molecular Modelling. (a) Superimposition of best-docked positions of 

compounds 17 (blue) and 15 (red) into binding site of hBChE protein. The protein 

is represented in cartoon representation, the active site residues in licorice, and 

loops leading to hBChE active site are shown. (b) Zoomed representation of 

hBChE interaction site for the two compounds, and key residues are shown. (c) 

RMSD plots for the free and compound-bound hBChE simulations. (d) 

Interaction energy plots between the compound and hBChE residues.  

 

 

Molecular modelling studies. To predict how the compounds 15 and 17 bind to 

hBChE and to understand the molecular origin of their high inhibitory activity 

and selectivity, we performed molecular docking experiments. Docking results 

suggested similar interaction sites (Fig. 27a, 27b) and similar binding energy 

values (~7.5 kcal/mol), for the two compounds. The stability of the docking poses 

of the two compounds was investigated using MD simulations, which is a 

standard technique used to study the dynamical properties of biomolecules57,71,114. 

The stability of the systems during the MD simulations was evaluated by 

calculating the root mean square deviation (RMSD) of C-alpha atoms of protein 

residues (Fig. 27c) from the starting structure. The average RMSD values of 

protein bound compound simulations were lower than in free protein simulations, 



 60 

with lowest value noted for compound 17 complex simulations. Subsequently, the 

interaction energy between the hBChE residues and the two compounds was 

calculated by evaluating the non-bonded energy values comprising of Van der 

Waals and electrostatic energy in the two simulations. Both the complexes 

exhibited similar interaction energy values (Fig. 27d). 

 

 
 
Figure 28.  Molecular interaction picture of hBChE protein bound to (a) compound 

17 and (b) compound 15. The conserved interactions between the two complexes are 

represented as red circles.  

 
 
 
To understand the origin of this similarity, we carefully inspected the binding mode of 

the compounds in complex with hBChE using Ligplot140. The compounds (15 and 17) 

were stably bound to hBChE active site (Fig. 28) encompassing the region between 

peripheral anionic site (PAS) and the catalytic triad site (CAS). Figure 28 depicts five 

overlapping hBChE residues interacting with the two compounds. In detail, these 

residues are located in catalytic triad (S198), oxyanion hole (G117), acyl-pocket 

(L286, V288) and wall of BChE active site. The hydroxyl substituents in compound 

17 interact with peripheral anionic site residue (Y332), while compound 15 interacts 

with oxyanion hole residue (G116) and residue T120.  
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Figure 29.  Dynamical cross-correlation map for C-alpha atoms. (a) Free hBChE, (b) 

compound 17 and (c) compound 15 complexes. Positive correlations are indicated in 

red and negative or anti-correlations in blue, while no correlation in white. In (b) and 

(c) boxed regions represent those regions different with respect to free hBChE 

protein. While in (b), the dashed box for compound 17 represents the region different 

with respect to both the free and compound 15 complexes. 

 

 

To examine the effects of compound 15 and 17 on the protein structural dynamics, 

comparative analysis of a series of snapshots of the protein coordinates from MD 

simulations trajectories between the complex (bound to the compounds) and free 

protein was done. Calculation of all inter-residue cross-correlations fluctuations (see 

Methods) of C-alpha atoms resulted in a matrix of cross-correlation coefficient (Cij) 

elements, which are displayed in a graphical representation as a dynamical cross-

correlation map, shown in Fig. 29.  

As expected, we note strong fluctuations occur along the diagonal occur (between the 

same residue), wherein Cij is always equal to 1. A clear difference in the cross-

correlations maps between the free and complex simulations was observed (Fig. 29). 

With respect to free protein simulations (Fig. 29a), we observed between few 

domains, an increase in either a positive or a negative correlation dynamics for the 

complex simulations (Fig. 29b, 29c). In detail, the regions involved in higher negative 

correlated dynamics included residues 40-60, 170-190 and 380-500, while residues 

230-280 displayed lower negative correlated dynamics. On the other hand, residues 

430-470 exhibited higher positive correlated dynamics in the compound complexes. 
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As expected, most of these regions are in close vicinity to the hBChE active site 

gorge. Interestingly, only for compound 17 complex (Fig. 29b), positive correlation 

dynamics was noted between the domains surrounding the BChE active site gorge, i.e. 

residues 240-280 and 300-330, respectively. 

 

 

5.4 Discussion 
 

There is increasing clinical evidence suggesting an important role of BChE in the 

regulation of ACh levels and in particular in the development and progression of AD. 

Particularly, in progressed or late stage of AD, BChE mostly dominates hydrolysis of 

ACh129. Moreover, alongside its involvement in AD progression, an emerging role of 

BChE as a prognostic marker (which determines the progress of the disease) in liver 

and non-liver diseases, as well as in protein-energy malnutrition and obesity, has been 

reported164,181. Design and development of compounds with the ability to selectively 

inhibit BChE would not only improve understanding of the aetiology of AD but also 

assist in developing wider variety of new treatments.  Therefore, the objective of our 

study has been to design and develop 2-phenylbenzofuran compounds that display 

selective BChE inhibitory activity employing biochemical, kinetics and computational 

techniques. 

In our recent study121, we reported that the contemporary presence of a hydroxyl 

group in the para position of the 2-phenyl ring and a halogen substitution at position 7 

(R1) of the benzofuran scaffold resulted in a good and selective BChE inhibition, with 

best inhibitor displaying an IC50 of 30 µM. Following the results of our previous 

findings, in this present work we decided to explore the importance of the number and 

position of hydroxyl groups located in the 2-phenyl ring of the benzofuran moiety. 

We therefore synthesized new 2-phenylbenzofurans compounds with two hydroxyl 

substituents (compounds 15-21) and with three hydroxyl substituents (compounds 22-

28). Galantamine was used as our reference compound. The inhibitory action of the 

newly synthesized compounds presented in Table 1 demonstrate that, regardless the 

type of substituent at position 7 of benzofuran scaffold, the 2-phenylbenzofuran 

derivatives with two hydroxyl substituents (compounds 15-21) in meta position of the 

2-phenyl ring displayed rather high inhibitory activity toward eqBChE and very low 
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activity against EeAChE.  In particular, compounds 15 and 17 displayed eqBChE 

inhibitory activity 4- and 8- times more effective than the reference compound, 

respectively. However, in the compounds with three hydroxyl substituents (instead of 

two) in the 2-phenyl ring (compounds 22, 24), we found lower inhibitory activity 

against eqBChE. This fact suggest that contemporary presence of three hydroxyl 

groups in the 2-phenyl ring of the compounds could decrease the inhibitory activity of 

the compounds against eqBChE. It has been shown previously182 that the position and 

number of hydroxyl group in the ligand can influence the magnitude of hydrogen 

bond interactions with the protein. The BChE active site is located at the bottom of a 

20 Å deep gorge that is lined mostly with hydrophobic residues. Thus, binding of an 

additional hydroxyl substituent (a polar group) within the gorge could result in a 

thermodynamic penalty of additional 4.3−5.3 kcal/mol183, due to energetic cost of 

desolvation. Hence, this could be one possible hypothesis to explain the low BChE 

inhibitory activity detected for the compounds with three hydroxyl groups in the 2-

phenyl ring. 

The two most active compounds (15, 17) differ in halogen atom at position 7 of the 

benzofuran moiety (chlorine, bromine atoms), respectively. It is interesting to note 

that this little difference is reflected in the protein interaction network characterizing 

these compounds (Fig. 28). The chlorine atom in compound 15 interacts with the CAS 

residue (S198) and F398, while bromine atom in compound 17 interacts with the acyl 

pocket residues (L286, V288). The ChE inhibition can occur either via a competitive 

interaction with CAS, or a non-competitive binding with PAS, or via mixed-type 

mechanisms, by exerting a dual binding ChE inhibition133. Enzyme kinetic analysis 

demonstrated only compound 15 as mixed-type inhibitor, while compound 17 as non-

competitive inhibitor of eqBChE activity. The results from kinetic experiments are 

confirmed from MD simulations, which provide molecular-level insights into how 

ligand binding at an allosteric site can affect protein structure and, consequently, 

enzymatic activity. Indeed, the difference observed in the nature of correlated 

dynamics between the domains of residues surrounding BChE active site gorge 

provide dynamical information about the protein structure, which could explain the 

different BChE inhibition mechanisms between the compounds. 

Previous clinical studies evidence that oxidative stress is a crucial factor in AD and 

plays an important role in inducing and activating multiple cell signalling pathways, 

contributing to the development of AD184,185. Indeed, development of new avenues to 
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reduce oxidative damages can provide therapeutic efficacy in the treatment of AD186. 

We therefore investigated the antioxidant properties of the new synthesized 

compounds. Comparing the results with the antioxidant property of benzofurans 

derivatives analyzed in our previous study121, compounds 15 and 17 showed a higher 

antioxidant activity. Thus, substitution and positioning the groups within the 2-phenyl 

ring of the compounds, led to an improvement in terms of both BChE inhibitory 

activity and antioxidant property.  

 

 

5.5 Conclusions  
 

In this study, a series of hydroxylated 2-phenylbenzofurans compounds were 

designed, synthesized and their selective inhibitory activity BChE was evaluated. 

Combining biochemical analysis and computational approaches, we identified two 

potent BChE inhibitors as compound 17 (IC50=3.5 µM) and compound 15 (IC50=6.25 

µM), with the presence of two hydroxyl substituents in meta position of the 2-phenyl 

ring and bromine or chlorine at position 7 of benzofuran moiety. The BChE selective 

inhibition property decreased with the introduction of a third hydroxyl group in the 2-

phenyl ring of the compounds. Detailed kinetic experiments revealed compound 15 as 

a mixed-type inhibitor, while 17 as non-competitive inhibitor of BChE activity. 

Experimental results were confirmed by MD simulations, which revealed a conserved 

interaction pattern resulting in similar interaction energy values. Finally, compounds 

15, and 17 examined on hBChE revealed 2-times more active inhibitory action than 

the reference compound. In conclusion, gathering the information obtained in this 

study, compounds 15 and 17 could be considered as promising candidates for the 

design and development of drugs against AD.  

 

 

5.6 Methods 
 

Molecular Modeling. High-resolution three-dimensional protein structure of hBChE 

was obtained from protein data bank (PDB id: 4TPK). For the compounds (15 and 

17), the three-dimensional coordinates were generated using Open Babel software187. 
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The geometry of the compounds were optimized using the Hartree-Fock basis set 6-

31G* within Gaussian03 software package148. The charges and the force field 

parameters of the compounds were evaluated following the standard protocol within 

AMBER software tools149,188. 

Molecular docking of the compounds into hBChE protein was performed using 

SwissDock web server, which is based on the docking software EADock DSS150. The 

docking poses of the compounds were accurately chosen with a blind docking 

procedure that considers the entire protein surface as a potential target. Using this 

procedure, a large number of ligand binding modes (~15000) were generated, with the 

simultaneous rough interaction energy estimation. The binding modes possessing 

favorable energies were then ranked and classified into different clusters, this time 

based on the full fitness scoring function. The most consistent and favorable 

conformation chosen from 10 independent docking runs for each compound was 

further considered for MD simulations. 

The hBChE-compound complexes were built using leap module of Amber11. Each 

complex was inserted separately in an explicit water-box with a minimum distance of 

1.8 nm between the solute and box boundary. We used amber force-field 

parameters189 for hBChE protein and TIP3P112 parameters for water molecules. The 

simulation box and number of atoms for the complexes investigated are presented in 

Table 11. Energy minimization, followed by heating of the complexes to temperature 

300 K, was done with positional restraints on C-alpha atoms. The positional restraints 

were gradually removed during the simulation time and an equilibration run of 10 ns 

was performed. The time step used in MD simulation was of 2 fs using SHAKE 

algorithm. Simulations were performed in NPT ensemble using periodic boundary 

conditions. All-atom MD simulations of free protein and protein-compound 

complexes were performed for a simulation time of 100 ns employing NAMD116 

software package.  
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Table 11. Details of total number of atoms and starting simulation box size [x,y,z] in 

the hBChE protein with and with compound complexes.  

 
hBChE   System Details 

No.  of Atoms Box Size (Å) 

Free complex 120545 
 

 [110 122 108] 

Compound 15 complex 119827 
 

 [108 120 105] 

Compound 17 complex 119854 
 

 [108 120 106] 

 

 

The stability of systems was evaluated by calculating the RMSD values for the C-

alpha atoms of residues during MD simulations, using VMD111. The interaction 

energy between the compound and protein residues was calculated by evaluating the 

non-bonded energy values comprising of Van der Waals and electrostatic energy, 

using the energy plugin of NAMD software. A cut-off distance of 12 Å was used for 

non-bonded interactions and for the electrostatic interaction we also adopted the 

particle mesh Ewald118 scheme. The dynamic cross-correlation190 coefficients for C-

alpha atoms was calculated on 1000 snapshots extracted from 100 ns MD trajectories 

using Prody139 software. The matrix of all inter-atomic cross-correlations of atomic 

fluctuations Cij where i and j are C-alpha atoms, can be represented as a dynamical 

cross-correlation map. If the fluctuations of two C-alpha atoms are completely 

correlated then Cij = 1 (red), if anticorrelated then Cij = -1 (blue), and if Cij = 0 (white) 

then the fluctuations of i and j are not correlated.  
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6. Conclusions and Future 
Perspective 

 
The main goal of my research activity is to understand the molecular recognition 

mechanism of biologically relevant protein-protein and protein-ligand complexes 

associated to human diseases. For my research activity, I adopted classical molecular 

dynamics simulations for the investigation of bio-molecular complexes.    

With the recent advances in technology and techniques used in experiments, more and 

more PPI data have become available, while in parallel, computational methods 

emerge to validate and complete the missing interactions. In this thesis, my aim is to 

introduce the importance of protein−protein interactions, protein-ligand interactions 

and to provide a broad and informative methodology for predicting such interactions, 

and furthermore present tools to analyse the data. 

Computational approaches as every method in Science have their own advantages and 

limitations. Indeed, the outcome of the thesis supports the importance to integrate 

experimental and computational techniques. In this light it is encouraging to learn that 

the scientific community is already pursuing strategies to integrate and standardize 

differently annotated data in an organized way defining a common data format to 

exchange PPI information8. In detail, three case studies are presented. 

 

6.1 Application of Molecular Modeling to biological complexes 
associated to MS disease  

 
Three-dimensional X-ray structures of the protein-peptide-protein complexes 

provided a good starting point to model and investigate dynamical aspects of cross-
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reactivity between myelin based protein (MBP) self-peptide and two microbial 

peptides (UL15, PMM) for Hy.1B11 T-cell receptor (TCR). Employing MD 

simulations, estimates of binding energy that were consistent with the trend noted in 

experiment is provided in our work. In addition, we identified a set of molecular 

interactions involving “hot spot” residues in the interface region, possibly responsible 

for TCR cross-reactivity.  

 

6.2 Multidisciplinary approach to investigate protein-ligand 
complexes related to Alzheimer’s disease.  

 
A series of 2-pheynlbenzofurans compounds were synthesized and experimental data 

of their inhibitory activity against butylcholinesterases (BChE) and 

acetylcholinesterases (AChE) protein were provided by our experimental partners. 

These compounds showed different degree of selectivity against BChE protein. 

Employing, homology modeling of the 3D protein structures, molecular docking and 

MD simulations for the protein-ligand complexes, computational analysis revealed the 

molecular mechanism of BChE selectivity displayed by the compounds. The 

interaction of ligand with both the catalytic anionic site (CAS) and peripheral anionic 

site (PAS) was essential to selectively inhibit BChE enzyme. The importance of 

hydroxyl substituent in the 2-pheynl ring emerged for our multidisciplinary approach.  

 

6.3 Design of ligands with improved BChE inhibitory activity.   
 
Gathering information from our multidisciplinary approach, new series of 2-

pheynlbenzofurans compounds were designed and synthesized with two and three 

hydroxyl substituents in the 2-pheynl ring. Experimental data predicted compounds 

with two hydroxyl substituents to displayed higher BChE inhibitory activity even with 

respect to our reference compound galanthamine, which was confirmed using 

computational modeling techniques.   

 

As a whole in my thesis, a sincere effort has been made to demonstrate the role and 

application of computational approaches to provide deep understanding of 

macromolecular biological complexes, thus facilitating discovery, design, and 

development of potential drugs.  
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6.4 Perspectives and work in progress.  
 

The simulation of protein–protein association is challenged by the fact that 

dissociation times is not directly accessible to standard MD simulation lengths by far, 

as long MD simulations can get trapped after a single binding minima, which is not 

necessarily the true minima of the complex and required simulation timescales are not 

yet easily reachable. Future direction of my work will be to use hybrid computational 

approaches such as the combination of an extensive and adaptively generated 

ensemble of unbiased molecular dynamics simulations with hidden Markov modeling 

to protein–protein association kinetics.  

The ultimate goal is to put all these findings and data in the cellular environment, 

consider the interactions stability, affinity, and dynamics to gain further insight into 

cellular mechanisms. In the near future, I believe a well-defined proteome-scale map 

of protein interactions will be obtained by the integrative approaches, thus helping our 

understanding of the human “interactome”. 
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