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Abstract

Nowadays, intelligent video-surveillance is one of the most active research fields in com-

puter vision and machine learning techniques which provides useful tools for surveillance

operators and forensic video investigators. Person re-identification is among these tools; it

consists of recognizing whether an individual has already been observed over a network of

cameras. This tool can also be employed in various possible applications, e.g., off-line re-

trieval of all the video-sequences showing an individual of interest whose image is given as

query, or on-line pedestrian tracking over multiple cameras. For the off-line retrieval appli-

cations, one of the goals of person re-identification systems is to support video surveillance

operators and forensic investigators to find an individual of interest in videos acquired by a

network of non-overlapping cameras. This is attained by sorting images of previously ob-

served individuals for decreasing values of their similarity with a given probe individual.

This task is typically achieved by exploiting the clothing appearance, in which a clas-

sical biometric methods like the face recognition is impeded to be practical in real-world

video surveillance scenarios, because of low-quality of acquired images. Existing clothing

appearance descriptors, together with their similarity measures, are mostly aimed at im-

proving ranking quality. These methods usually are employed as part-based body model in

order to extract image signature that might be independently treated in different body parts

(e.g. torso and legs). Whereas, it is a must that a re-identification model to be robust and dis-

criminate on individual of interest recognition, the issue of the processing time might also

be crucial in terms of tackling this task in real-world scenarios. This issue can be also seen

from two different point of views such as processing time to construct a model (aka descrip-

tor generation); which usually can be done off-line, and processing time to find the correct

individual from bunch of acquired video frames (aka descriptor matching); which is the real-

time procedure of the re-identification systems.
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This thesis addresses the issue of processing time for descriptor matching, instead of im-

proving ranking quality, which is also relevant in practical applications involving interaction

with human operators. It will be shown how a trade-off between processing time and rank-

ing quality, for any given descriptor, can be achieved through a multi-stage ranking approach

inspired by multi-stage approaches to classification problems presented in pattern recogni-

tion area, which it is further adapting to the re-identification task as a ranking problem. A

discussion of design criteria is therefore presented as so-called multi-stage re-identification

systems, and evaluation of the proposed approach carry out on three benchmark data sets,

using four state-of-the-art descriptors. Additionally, by concerning to the issue of processing

time, typical dimensional reduction methods are studied in terms of reducing the processing

time of a descriptor where a high-dimensional feature space is generated by a specific person

re-identification descriptor. An empirically experimental result is also presented in this case,

and three well-known feature reduction methods are applied them on two state-of-the-art

descriptors on two benchmark data sets.
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Chapter 1

Introduction

The importance of security and safety of people in crowd is continuously growing day by

day in our society. Private/public companies, governments, public areas such as airports

and malls, etc., are seriously going along this need which requires too much expenses and

efforts. To accomplish this goal, video surveillance systems are playing a key role in this

manner. These days, plenty of video cameras are growing everywhere which is an useful

tool for addressing a different kind of security issues such as forensic investigations, crime

preventing, and safeguard of the environments. Recording massive quantity of video frames

from network camera per day is one the major critical problems of video surveillance sys-

tems. This due to by monitoring and analyzing the acquired videos from tens or hundreds

of camera which are all needed to be done by surveillance operators at the same time.

Intelligent video surveillance systems aim to automate the issue of monitoring and ana-

lyzing the videos from camera networks to help the surveillance operators in handling and

understanding the acquired videos by camera networks. This is one the most active and

challenging research area in computer engineering and computer science in which com-

puter visions and machine learning techniques are required. This field of research enables

some various tools such as: recognizing a suspicious actions, on-line pedestrians tracking,

off-line forensic investigations. In this manner, person re-identification has been proposed

as a tool of intelligent video surveillance systems; which consists of recognizing an individ-

ual over a video surveillance camera network with non-overlapping fields of view [6, 56].

Figure 1.1 shows an example of a video surveillance camera network with non-overlapping

fields of view.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of multi-camera surveillance illustrated for person re-identification [5].

As pointed out, one of the applications of person re-identification is to support surveil-

lance operators and forensic investigators in retrieving video frames showing an individual

of interest, given an image as a query (aka probe). To this aim, the video frames or tracks

of all the individuals (aka template gallery) recorded by the camera network are ranked in

order of decreasing similarity to the probe, to allow the user to find out the individual of

interest (if any) ideally in top positions. Figure 1.2 demonstrates a typical scheme of this re-

identification scenario. This is a challenging task in a typical video surveillance system, due

to low image resolution, unconstrained pose, illumination changes, and occlusions, which

do not allow to exploit strong biometric techniques like face recognition (see Fig. 1.3). Cloth-

ing appearance is therefore the most widely used cue; other cues like gait and anthropomet-

ric measures have also been investigated.

Most of the existing techniques are based on defining a specific descriptor of clothing ap-

pearance (typically including color and texture), and a specific similarity measure between a

pair of descriptors (evaluated as a matching score) which can be either manually defined or

learnt from data [28, 21, 31, 6, 50]. On the other hand, with considering to the great sucess of

deep learning in image classification [37], some authors have been attempting also to em-

ploy deep learning techniques on person re-identification task [70, 44].
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1.1 Person re-identification scenario

Apart from the methodology of a specific person re-identification technique (i.e. appearance-

, gait-, or anthropometric-based techniques), this task generally consist of three main steps

(see Fig. 1.4):

i The individual of interest must be separated from other part of the image.

ii A significant image representation must be generated, and

iii Finally, the similarity scores of the generated image representations most be computed

between the query image and the gallery set.

Among above-mentioned steps, since the first step is not the main challenge of person

re-identification task, at this thesis work, only the last two steps of re-identification task will

be considered and discussed.

Let D denote a descriptor for person re-identification, m(·, ·) the corresponding similar-

ity measure between a pair of images, t the processing time for computing it, T and P the

descriptors of a template and probe image, respectively, and G = {T1, . . . ,Tn} the template

gallery. For a given probe P, a standard re-identification system computes the matching

scores m(P,Ti ), i = 1, . . . ,n, and returns the list of template images ranked in order of de-

creasing values of their score. Ranking accuracy is widely evaluated using the cumulative

matching characteristic (CMC) curve, defined as the probability that the correct identity is

Figure 1.2: A standard re-identification system for the application of an off-line support of a
human operator.
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Figure 1 Figure 2 Figure 3 Figure 4
Figure 1.3: Sample images of a video-surveillance camera, taken from VIPeR [28] and i-
LIDS [7] data sets: low image resolution, uncostrained poses, and occlusions.

within the first r ranks, for r = 1, . . . ,n. By definition, the CMC curve increases with r , and

equals 1 for r = n.

The main focus of existing works in this field is to attain a high ranking accuracy. Process-

ing time is an issue which has received much less attention so far, instead (to our knowledge,

only in [57, 18, 36]), despite its relevance in practical applications involving interaction with

human operators, like the ones mentioned above. Many of the existing similarity measures

(e.g. standard or learnt from data) are indeed rather complex, and require a relatively high

processing time, e.g., [21, 58, 50, 45]. On the other hand, in real-world applications the tem-

plate gallery can be very large, and even if the processing time for a single matching score

is low (e.g., the Euclidean distance between fixed-length feature vectors [50]), evaluating the

matching scores for all the templates can be relatively time-consuming.

1.2 Motivation and scope

As mentioned above, the consequence of person re-identification becomes more challeng-

ing and difficult due to some image handling issues; although many researches have been

Image

or

Video

Image

or

Video

Descriptor 
generation

Person detection
background/

foreground 
segmentation

Descriptor 
generation

Matching for Re-id 
(descriptor 

similarity ranking)

Camera A
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Step 1 Step 2 Step 3

Figure 1.4: Diagram of general re-identification systems.
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done in this field, several problems still not resolved/solved [56]. For instance, consider the

re-identification in public areas such as shopping malls, airports,etc. which are different

from one in a private place such a private company. Whereas, a re-identification system

must be robust in handling of illumination changes, pose variation, etc., it must be also swift

enough to tackle this task in a real-world application. This thesis work, instead, aims to con-

sider this issue of processing time in person re-identification task, and investigate possible

solutions to reduce the processing time of this problem within the online stages.

One possible solution to reduce processing time is to reduce the complexity of a given de-

scriptor and/or of the associated similarity measure; however, this is likely to reduce rank-

ing accuracy as well. A known approach in the pattern recognition field, in particular for

supervised classification systems, to trade a lower classification accuracy for a lower pro-

cessing time, is to use a multi-stage architecture (e.g., [62, 66]). Inspired by this approach,

I investigate whether and how a multi-stage architecture can be seen as a ranking problem

and exploited to attain an analogous trade-off between ranking accuracy also in person re-

identification systems. In particular, I focus on attaining such a trade-off for any, given de-

scriptor, without limit on the type of descriptor.

Since existing multi-stage solutions cannot be directly applied to person re-identification,

which involves a ranking problem rather than a classification one, I first provide a formal-

ization of multi-stage ranking systems: I develop an analytical model of their processing

time, and discuss the behaviour of the corresponding ranking accuracy, measured through

the CMC curve. Based on our model, I then discuss and propose practical design criteria for

multi-stage person re-identification systems, considering applications requirements given

in terms of strict constraints on the maximum allowed matching processing time. The main

contribution of this thesis work is the extension of the multi-stage architecture used in pat-

tern classification to being utilized on person re-identification task (using any given descrip-

tor and similarity measure), by formalizing the underlying multi-stage approach as a ranking

problem; and a practical design criteria is suggested to attain a significant trade-off between

recognition time and processing time.

As an alternative solution, one can also apply a feature reduction method to reduce the

dimensionality of a feature vector in order to reducing the cost of processing time. It is noted

that feature reduction methods can only be applied for specific type of descriptors (i.e. a
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descriptor that generates a fixed-size feature vector). The feature reduction methods never-

theless employ further in the context of the multi-stage approach at this thesis work, they

(any of them) can be individually also used alone to reduce processing time of a given re-

identification descriptor. It therefore leads this thesis work to investigate also on some typ-

ical feature reduction methods, by comparing their behaviors on person re-identification

data sets.

1.3 Outline of the Thesis

This thesis is structured as follows. I first summarize and review some related works on stan-

dard person re-identification techniques in chapter 2, including a brief survey on deep learn-

ing techniques for person re-identification task.

In chapter 3 the proposed multi-stage ranking approach is formalized and then a design

criteria is developed for multi-stage person re-identification systems. Along with technical

details of the implementation I present also the experimental evaluations on three bench-

mark data sets, using four state-of-the-art descriptors.

In chapter 4, some feature reduction methods are discussed and compared their be-

haviour on fixed-size features for processing time reduction purposes.

Chapter 5 concludes the thesis with suggesting directions for future research.

1.4 List of Publications Related to the Thesis

1.4.1 Journal paper

• [40] B. Lavi, G. Fumera, and F. Roli, A Multi-Stage Ranking Approach for Fast Person Re-Identification.

The journal of the Institution of Electrical Engineers Computer Vision (IET CV), 2017. (Relation

to Chapter 3)

1.4.2 Conference papers

• [38] B. Lavi, G. Fumera, and F. Roli, A Multi-Stage Approach for Fast Person Re-Identification in

International Workshop on Structural and Syntactic Pattern Recognition (SSPR 2016) and Sta-
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tistical Techniques in Pattern Recognition (SPR 2016) Merida-Mexico, 30th of September 2016,

http://www.s-sspr.org (Relation to Chapter 3)

• [41] B. Lavi, M. Fatan Serj, and D. Puig Valls, Comparative Study of the Behaviour of Feature

Reduction Methods in Person Re-identification Task. The International Conference on Pattern

Recognition Applications and Methods (ICPRAM), 2018. (Relation to Chapter 4)
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Chapter 2

Literature review

In this chapter, many of the person re-identification techniques are presented and discussed. Al-

though, some steps are essential in this area before applying a re-identification method such as

human-body detection, background/foreground segmentation, shadow elimination, etc., these steps

of person re-identification task must be done off-line as a pre-processing step. Thus, they will not be

considered at the rest of this thesis. At the following, I discuss on major issues which is concerned

by most of the researchers in this this field; e.g. descriptor generation and similarity computation.

As pointed out, many descriptors on person re-identification task rely on generating an image sig-

nature based on clothing appearance of individuals. Therefore, first a summary of literature works is

given based on existing person re-identification methods, by discussing their advantages and disad-

vantages; Then, I take a short journey through the existing deep learning techniques for person re-

identification task, in which existing neural network models is discussed (e.g. classification, Siamese

model). Next a brief categorization of the person re-identification techniques is presented in terms of

the efficiency of matching scores which has been considered on their works (a comprehensive discus-

sion will be presented at chapter 3). And finally, some well-known benchmark data sets are discussed

at the end of this chapter.

2.1 Standard techniques for person re-identification

Person re-identification consists of matching individuals from different camera network, possibly

non overlapping views. It can provide some useful applications such as off-line retrieval of video se-

quences to find out an individual given as a query, and on-line pedestrians tracking. Clothing appear-

ance is one the most widely cue among the researchers in this area, and therefore many methods have

9
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been proposed based on the people’s appearance in order to generating an image signature. The pro-

posed appearance-based methods can be subdivided into four main categories: color-histograms-,

interest-points-, convariance-, and textural-based descriptors. At the following of this section, the

appearance-based methods for generating individual’s signatures will be discussed.

2.1.1 Descriptor generation

At the following, some existing approaches for generating clothing appearance descriptors are pre-

sented.

Color-histogram-based descriptors

Color histogram is a popular way to describe an image in terms of the occurrence frequency of colors.

Some methods employed this approach to describe an individual of interest. But, for better perfor-

mance of this technique in person re-identification task, that arises to compute the histogram within

the segmented part of image (i.e. detected human body). The color-histogram-based descriptors are

typically defined in different color spaces; RGB [75, 28], HSV [34, 31, 58, 21], and LAB [31, 13] color

histogram based descriptors. Among these color spaces, HSV color histogram is robustness because

of its promising results in person re-identification task. In [58], the proposed descriptor subdivides

body into torso and legs, and extracts some randomly positioned image patches from each part. Each

patch is represented by HSV histogram. Artificial patches are also generated to improve robustness

to illumination changes, by changing the brightness and contrast of the original patches in the RGB

color channel.

Additionally, the proposed works in [29, 49] suggest to divide the image into some horizontal

stripes where the color histograms can be extracted from each strips, separately, and a simple con-

catenation among all the histograms can be represented as final image signature. They believe this

leads the color histogram to make the descriptor more discriminant.

Interest-point-based descriptors

The idea is to find out large amount of interest points (aka key points) including high information

contents about color and structural information around regions. However, descriptors based on in-

terest point are applicable in terms of pose variations and illumination changes, but, the redundancy

of interest points as well as sensitively on the edges are not desirable, which must be taken into ac-

count. Martinel et al. [51] employed scale-invariant feature transform (SIFT) [48] in which the in-
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terest points as the centers of circular regions, and a Gaussian function employed for constructing a

weighted color histogram from the interest points. The work propsoed in [14], used speed up robust

feature SURF [4] to determine and locate the interest points which also contains the HSV histogram

information of each point.

Convariance-based descriptors

Covariance descriptors have been employed in person re-identification task for handling of noise and

in-variance to be a proportional shifting of color [12, 2, 30, 19]. In [12], the spatial convariance regions

(SCRs) descriptor has been proposed in which the location of the point by concerning to RGB color

values, orientations, and gradient’s magnitudes combined to generate the final image representation.

This method is robust to handle the illumination change, and pose variation. Hirzer et al. [30] pro-

posed a methodology to generate the covariance descriptor by subdividing the image into horizontal

patches. For the pose handling, their final feature vector contains y position, LAB color channels, and

vertical/horizontal derivation of the luminance channel. The convariance descriptors are robust in

illumination changes, pose variations, and dense representation from overlapped regions. For the

convariance-based descriptors, it is worth to point out that the generated features are not meant in

Euclidean space, since it does not contain a special structure, and therefore they suggest to use the

mean of covariance of each regions to compare two covariance descriptors, instead of whole descrip-

tor at the same time[53].

Textural-based descriptors

Typically, this kind of descriptors are used as a complementary feature vector to construct appearance-

based descriptors. The extracted textural features usually combined with color features to improve

the recognition accuracy in person re-identification task, which robust on pose variation and rota-

tion change. For instance, Farenzena et al. [21] utilized recurrent high-structured patches (RHSP)

descriptor on this purpose. The descriptor selects some patches from the segmented foreground ,

and transform their invariance through geometric variations. Also, Gabor [24] and Schmid [59] filters

have been applied for this kind of descriptors (e.g. Ma et al. [50]). These filters are also robust on pose

variation and rotation change.
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2.1.2 Similarity computation

A standard re-identification system computes the matching scores between a query image and all

the images in gallery set either by manually defining a similarity measurement or leaning from data.

Many of the existing similarity measures relied on applying common distance metrics and nearest-

neighbor approach to compute the similarity scores [27, 65]. The Euclidean and the Bhattacharyya

distance measures are usually employed depending on the type of specific descriptor [28, 13]. Faren-

zena et al. [21] applied a simple linear combination to merge the matching scores of three different

descriptors by taking into account of a suitable weights for each descriptor. Satta et al. [58] utilized

the Hausdorff distance as distance measurement to avoid sensitivity of outlying elements by adopting

the k-th Hausdorff distances in which takes the k-th ranked distance rather than the maximum value.

This requires a high computational cost because of the use of the Hausdorff distance as similarity

measure, which makes the processing time proportional to the square of the number of patches.

On the other hand, learning a good metric from data recently becomes in attention of many re-

searchers in this area. A metric learning algorithm usually helps in boosting re-identification per-

formance. It is worth to point out that all these kind of learning methods require a supervised (i.e.

labelled data) training set; for instance the template gallery requires a fixed sample set size; tem-

plates cannot be added during system procedure. However, this strategy might be too comprehen-

sive enough to tackle with real-world application scenarios. In [16], Large Margin Nearest Neighbor

(LMNN) proposed to obtain an omptimized metric for nearest neighbor classification in which sup-

port vector machine (SVM) was employed. Inspired by [16], Hirzer et al. [31] utilized the relaxed

pairwise metric learning (RPML) method in which a distance matrix M is automatically estimated

from a training set and further used it in the matching steps. This significantly takes into account of

the body parts with the highest priority are chosen by taking higher weights, through the matrix M.

Zheng et al. [75] proposed the novel probabilistic relative distance comparison (PRDC) model for

triplet images aiming to minimize the distance of a pair of correct matches and maximize it with a

wrong match pair. In [34], the score-level fusion proposed which use linear logistic regression (LLR)

and the likelihood ratio between positive and negative samples for high generalization capability.

2.2 Deep learning techniques for person re-identification

This section gives a taxonomy of some recent works which concern deep learning techniques for

person re-identification task. The bulk of interesting deep learning works proposed to improve the

performance of person re-identification which have done either by modifying the existing deep learn-
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ing architecture of the network, or proposing a new one. Generally speaking, two types of deep

learning models have been employed in this research task: (i) a classification model for person re-

identification problem, and (ii) the Siamese models based on pairwise or triplet comparisons. This

has been started by employing a Siamese network for pairwise comparison of input pair of images for

person re-identification task.

The deep learning methods in person re-identification are still suffering from the lack of training

data. Some of the person re-identification data sets provide only two images for each individual (i.e.

VIPeR data set [28]). Probably, the Siamese models have been mostly chosen because of the lack of

training samples within the existing person re-identification data sets[74].

2.2.1 Classification models

Xiao et al. [69] proposed learning deep features representations from multiple data sets by using

CNNs to discover effective neurons for each training data set. They first produced a strong base-

line model that works on multiple data sets simultaneously by combining the data and labels from

several re-identification data sets together and trained the CNN with a softmax loss. Next, for each

data set, they perform the forward pass on all its samples and compute for each neuron its average

impact on the objective function. Then, they replaced the standard Dropout with the deterministic

Domain Guided Dropout in order to discarding useless neurons for each data set, and continue to

train the CNN model for several more epochs. Some neurons are effective only for a specific data set

which might be useless for another one, this caused by data set biases. For instance, the i-LIDS is the

only dataset that contains pedestrians with luggage, thus the neurons that capture luggage features

will be useless to recognize people from the other data sets.

2.2.2 Siamese models

As pointed out, the Siamese network models have been widely employed in person re-identification

task. Siamese neural network is a type of neural network architectures which contains two or more

identical sub-networks; this means these sub-networks have the same network architecture with

the same parameters and weights (aka shared weight parameters, indicated by w between the sub-

networks). A Siamese network can be typically employed as pairwise: with two sub-networks, or

triplet: with three sub-networks. The output of Siamese model leads to be a similarity score at the

top of the network. An objective function is used to train the network models, which makes the dis-

tance between the matched pairs less than the mismatched pairs in the learning feature space. In
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Figure 2.1: An example of a standard convolutional Siamese network based on input pair of
images.
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Figure 2.2: An example of a standard convolutional Siamese network based on input triplet
of images.

order to output of a Siamese model, a softmax layer is employed at the top of the network on both

distance outputs. Figures 2.1 and 2.2 present an example of Siamese models for pairwise and triplet

comparison, respectively.

Pair-based models

In [71], the Siamese pair-based model takes two images as the input of the two sub-networks which

are locally connected to the first convolutional layer. They employed a linear SVM at the top the net-

work instead of using the Softmax activation function in order to measure similarity of input images

pair as the output of the network. In [70], a Siamese neural network has been constructed to learn

pairwise similarity. Each input image of pair first partitioned into three overlapping horizontal parts.

The part pairs are matched through three independent Siamese networks, and finally are fused at

the score level. Li et al. [44] proposed a deep filter pairing neural network to encode photo-metric
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transformation across camera views. A patch matching layer is added to their network to multiply

the convolution feature maps of pair images in different horizontal stripes. Later, Ahmed et al. [1]

improved the pair-based Siamese model in which the network takes pair of images as the input, and

outputs the probability of whether two images in the pair are of the same person or different people.

The model begins with two layers of convolution by passing input pair of images. The generated fea-

ture maps are passed through a max-pooling kernel to the another convolution layer and followed

another max-pooling layer to decrease the size of feature map. Then a cross-input neighborhood

layer computes the differences of the features in neighboring locations of the other image.

Liu et al. [47] utilized a deep learning model to integrate a soft attention based model in a Siamese

network. This model focus on the important local parts input images under pair-based Siamese

model. Chen et al. [8] proposed a deep ranking framework to jointly learn representation and similar-

ities for comparing pair of images. They aim to learn a deep CNN that assigns a higher similarity score

to the positive pair than any negative pairs in each ranking unit by utilizing the logistic loss function.

They first stitched the pair of images of persons horizontally to form an image which used as the input

of the network, and then, the network returns a similarity score as its output. Franco et al. [25] pro-

posed a coarse-to-fine approach to achieve a generic-to-specific knowledge through a transfer learn-

ing. The approach is followed by three steps: first a hybrid network is train to recognize a person, then

another hybrid network employed to discriminate the gender of the person, and finally the output of

two networks are passed through the coarse-to-fine transfer learning method to a pairwise Siamese

network to accomplish the final person re-identification in order to measure the similarity between

those two features. Later, the same authors proposed a novel type of features based on convolutional

covariance descriptor (CCF) in [26]. They intend to obtain a set of local covariance matrices over the

feature maps extracted by the hybrid network under the strategy of above-mentioned framework.

Wang et al. [67] proposed to employ a metric learning method to learn spatio-temporal features

under pairwise Siamese model. The network takes a pair of images in order to obtain CNN fea-

tures, and outputs whether two images reports a same person or different person by employing the

quadratic discriminant analysis method. In [61], a Siamese network takes a CNN learning feature

pair, and outputs the similarity value between them by applying the cosine/Euclidean distance func-

tion. A CNN framework employed to obtain deep features of each input image pair, and then, each

image is split into three overlapping color patches. The deep network built in three different branches

and each branch takes a single patch as its input. Finally, the three branches are concluded by a fully-

connected layer.
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Triplet-based models

Each triplet unit contains three images with pair of images from the same person and one from a

different person. Cheng et al. [9] proposed a triplet loss function in which the network takes the

triplet images as input. The network enables jointly learning of the global full-body and local body-

parts features from a given person’s image, and the fusion of these two types of features as the output

of the network. The CNN model begins with a convolution layer, and afterward, it is divided into four

equal parts, and each part forms the first layer of an independent body-part channel that aims to

learn features from the respective body part. The four body-part channels together with the full-body

channel constitute five independent channels that are trained separately from each other. At the top

of the network, the outputs from five separate channels are concatenated into a single vector which

is passed through a final fully-connected layer. Su et al. [63] proposed a semi-supervised three-stage

learning in which the network first trained on an independent data set to predict the attributes, and

then the attributes are trained the triplet loss on data sets with individuals labels.

2.2.3 Loss function

In most of the statistical areas such as machine learning, computational neuro-science, etc., a loss

function (aka cost function), is a function that aims to map intuitively some values into a one single

real number; this typically represents a cost which associated to those values. The techniques like

Neural Networks (NNs) are in the same way to optimally minimize that loss function. When, a loss

function is used for a Siamese model, it depends on the type of model which is going to be chosen

(i.e. pairwise or triplet model). At the following, I discuss some of loss functions which commonly

used on pair- and triplet-based models, particularly applied on person re-identification task.

Pairwise loss function

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} be a set of person images and corresponding label for

each, respectively, and to distinguish from the positive and negative pairs

Is(xi , x j ) =
{ posi t i ve i f yi = y j ,

neg ati ve i f yi = y j

(2.1)

Pairwise hinge loss: the features from the positive pairs are geometrically close in the Euclidean

distance, while the negative pairs not below a certain margin of the Manhattan distance to each other.

I (x1, x2, y) =
{ ‖x1 −x2‖ i f y = 1

max(0,m −‖x1 −x2‖) i f y =−1
(2.2)
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Cosine similarity loss: this similarity loss function maximizing the cosine value for positive pairs

to reduce the angle between them, and at the same time, minimizing the cosine value for the negative

pairs when the value is less than margin (denoted by m).

I (x1, x2, y) =
{ max(0,cos(x1, x2)−m) i f y = 1

1− cos(x1, x2) i f y =−1
(2.3)

The total loss of two above-mentioned pairwise loss functions is computed as:

L(X1, X2,Y ) =− 1

n

n∑
i=1

I (x1
i , x2

i , yi ) (2.4)

Triplet loss function

This loss function typically creates a margin between distance metric of positive pair and distance

metric of negative pair. At the following, we discuss a few of common loss functions employed at

existing deep learning works for person re-identification task. The triplet loss function is used to train

the network models, which makes the distance between the matched pairs less than the mismatched

pairs in the learning feature space. Let O = {(Ii , I+i , I−i )}N
i=1 be a set of triplet images, in which Ii and

I+i are referred to images of the same person, and Ii and I−i present the different persons.

Typically, Euclidean distance is common to be used as the distance metric of this function. The

loss function under L2 distance metric has been employed in some of the triplet-based models such

as [17, 47, 9, 63], and is denoted as d(W,Oi ); where W =Wi is the network parameters, and Fw (I ) rep-

resents the network output of image I , in which the difference in the distance is computed between

the matched pair and the mismatched pair of a single triplet unit Oi :

d(W,Oi ) = ‖Fw (Ii )−Fw (I+i )‖2 −‖Fw (Ii )−Fw (I−i )‖2 (2.5)

and relatively the loss function is computed as:

fw (Oi ) =∑
Oi

max{d(W,Oi ),C } (2.6)

where C is a constant margin parameter. The total loss function over all the triplets can be calculated

as:

L(Ii , I+i , I−i ) =
N∑

i=1
l oss( fw (Oi ), fw (O+

i ), fw (O−
i )) (2.7)

An improved triplet loss function employed in [8] as follows:

L(Ii , I+i , I−i , w) = 1

N

∑
(max{d n(Ii , I+i , I−i , w),δ1}+βmax{d p (Ii , I+i , I−i ),δ2}), (2.8)



18 CHAPTER 2. LITERATURE REVIEW

where N is the number of triplet training examples, β is a weight to balance the inter-class and intra-

class constraints. In this implementation, the distance function d(., .) is defined as the L2-norm dis-

tance as explained above.

The hinge loss function aims to minimize the squared hinge loss of the linear SVM which is equiv-

alent in order to finding the max margin according to the true person match and false person match

over training step. This loss function is a convex approximation in range of 0-1 ranking error loss,

which approximate the model’s violation of the ranking order specified for a triplet unit as follows,

L(Ii , I+i , I−i ) = max(0,C +D(Ii , I+i )−D(Ii , I−i )) (2.9)

where C is a margin parameter which regularizes the margin between the distance of the two image

pairs: (Ii , I+i ) and (Ii , I−i ), and D is the euclidean distance between the two euclidean points.

2.3 Processing time in person re-identification

To our knowledge, the issue of processing time has been explicitly addressed so far in the context of

person re-identification only in [18, 57, 36]. To tackle person re-identification in a real-time applica-

tion, the issue of processing time is one of the critical problem to be faced. However, the phase of

generating the descriptors can be constructed off-line, but computing the matching score between a

query image and the images in the gallery set can be reasonably high, even the similarity measure-

ment is fast.

The authors in [18] only proposed a solution as a multi-stage framework in terms of the efficiency

of the processing time: the first stage selects a subset of templates using a descriptor which is built

upon a bag-of-words feature representation and an indexing scheme based on inverted lists, and re-

quires a low processing time for computing matching scores; the second stage ranks only the selected

templates using a different, more complex descriptor based on mean Riemann covariance. In [18]

only two stages are considered, and only a subset of templates is ranked by the whole system, possi-

bly losing the correct identity. Moreover, a different, specific descriptor is used in each stage, whereas

our approach can be applied to any descriptor, and uses different versions of the same descriptor at

each stage.

In [57], they proposed a dissimilarity-based approach to design descriptors made up of bags of

local features, possibly extracted from different body parts. It consists in finding a set of M represen-

tative local features (called prototypes) from all individuals of the template gallery, and in represent-

ing each template and probe image as a vector of M dissimilarity values between the corresponding
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Table 2.1: Summary of benchmark person Re-ID datasets.

Dataset Multiple images Multiple camera Illumination variations Pose variations Occlusions Scale variations
VIPeR X X X X
i-LIDS X X X X X X
ETHZ X X X X
CUHK01 X X X X X
CUHK02 X X X X X
CUHK03 X X X X X
Market-1501 X X X X X X
PRID X X X X
CAVIAR X X X X X X

bag of local features and the templates. This allows the matching score to be computed as a distance

between feature vectors, rather than using a more complex similarity measure between bags of local

features. Contrary to the multi-stage approach proposed in this paper, the one of [57] can be ap-

plied to descriptors made up of bags of local features. The method of [36] reduces processing time

in the specific multi-shot setting (when several images per individual are available), and for specific

descriptors based on local feature matching, e.g., interest points. It first filters out irrelevant interest

points, then it builds a sparse representation of the remaining ones.

2.4 Data sets in person re-identification

To evaluate the performance of a person re-identification method, some factors must be taken into

account to reach a reliable recognition rate on this task; it makes this task challenging due to diffi-

culty of the available bench-mark data sets such as occlusion (e.g. this is obvious on i-LIDS data set),

and illumination variation. On the other hand, background and foreground segmentation in order

to distinguish person’s body in challenging, while some of the data sets perfectly provide this seg-

mentation to subtract the person’s body (e.g. VIPeR, ETHZ, and CAVIAR datasets). There are several

available data sets that have been employed to measure the performance of re-identification meth-

ods1. Among these datasets, VIPeR, CUHK01, and CUHK03 are mostly interested by researchers of

this field of research to evaluate the deep learning techniques. However, VIPeR is most commonly

used for re-identification evaluations due to it is challenging on individuals images. At the follow-

ing, I give a brief description on a few of bench-mark data sets on person re-identification task, and

additionally table 2.1 provides a summary of them.

VIPeR [28] is a challenging data set for person re-identification; it is made up of two images of

632 individuals from two camera views, with pose and illumination changes. This is one of the most

1For comprehensive information about the available person re-identification data sets, check
out the following link: http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/
projectpages/reiddataset.html

http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html
http://robustsystems.coe.neu.edu/sites/robustsystems.coe.neu.edu/files/systems/projectpages/reiddataset.html


20 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Example of images from VIPeR data set [5]. Images on the same column represent
the same person.

Figure 2.4: Example of images from i-LIDS data set [5]. Images on the same column represent
the same person.

challenging data sets yet for person re-identification task. The images are cropped and scaled to be

128×48 pixels. Fig. 2.3 shows some example images from this data set.

i-LIDS [7] was acquired in crowded public spaces which contains 476 images of 119 pedestrians

taken at an airport hall from non-overlapping cameras, with pose and lightning variations and strong

occlusions. A minimum of 2 images and on an average there are 4 images of each pedestrian. Fig. 2.4

shows some example images from this data set.

ETHZ [20] contains three video sequences of a crowded street from two moving cameras; images

exhibit considerable illumination changes, scale variations, and occlusions. The images are of dif-

ferent sizes. The data set provides three sequences of multiple images of an individual from each

sequence. Sequences 1, 2 and 3 have 83, 35, and 28 pedestrians respectively. Fig. 2.5 shows some

example images from this data set.

As a recent well-known dataset provided by Chinese University of Hong Kong (CUHK), which

particularly gathered persons images for person re-identification task, and includes three different
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Figure 2.5: Example of images from ETHZ data set. The first, second, and third row present
the images from sequences 1,2, and 3, receptively [5].

partitions with specific set up for each; CUHK01 [43] includes 1,942 images of 971 pedestrians; it

has only two images captured in two disjoint camera views, and camera B mainly includes images

of the frontal view and the back view, and camera A has more variations of viewpoints and poses.

Fig. 2.6 presents some samples of this data set; CUHK02 [42] contains 1,816 individuals constructed

by five pairs of camera views (P1-P5 with ten camera views). Each pair includes 971, 306, 107,193

and 239 individuals respectively. Each individual has two images in each camera view. This dataset is

employed to evaluate the performance when camera views in test are different than those in training.

Fig. 2.7 presents some samples of this dataset; and CUHK03 [44] includes 13,164 images of 1,360

pedestrians. This data set has been captured with six surveillance cameras. Each identity is observed

by two disjoint camera views and has an average of 4.8 images in each view; all manually cropped

pedestrian images exhibit illumination changes, misalignment, occlusions and body part missing.

Fig. 2.8 presents some samples of this dataset.

The Market-1501 [73] is the largest person re-identification data set up to date, and contains

32,643 fully annotated boxes of 1501 pedestrians. Each perseon is captured by maximum six cameras

and boxes of person are cropped by employed a state- of-the-art detector, the Deformable Part Model

(DPM) [22]. Fig. 2.9 shows some example images from this data set.

The PRID [30] data set is specially designed for person ReID in single shot. It contains two image
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Figure 2.6: Example of images from CUHK01. Images on the same column represent the
same person.

Figure 2.7: Example of images from CUHK02 provided in [42], which has five pairs of camera
views denoted with P1-P5, with two images per person are shown for each of pairs.

sets containing 385 and 749 persons captured by camera A and camera B, respectively. These two

data sets share 200 persons in common.

CAVIAR [10] contains 72 persons and two views in which 50 of persons appear in both views while

22 persons appear only in one view. Each person has 5 images per view, with different appearance

variations due to resolution changes, light conditions, occlusions, and different poses. Fig. 2.10 shows

some example images from this data set.
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Figure 2.8: Example of images from CUHK03. Images on the same column represent the
same person.

Figure 2.9: Example of images from MARKET-1501 data set provided in [73].

Figure 2.10: Example of images from CAVIAR data set [5]. Images on the same column rep-
resent the same person.





Chapter 3

Multi-stage person re-identification

systems

As pointed out at chapter 1, existing multi-stage approaches to classification problems, aimed at trad-

ing classification accuracy for the processing time, cannot be directly applied to person re-identification,

which involves a ranking problem. As the main contribution of this part of my thesis work, a specific

formulation of multi-stage ranking problems is proposed and developed in order to trade-off between

ranking accuracy and processing time; in which only focuses on trading ranking accuracy for process-

ing time as spend for matching phase of person re-identification problem, for any given descriptor

and similarity measure. In particular, I first develop an analytical model of processing time and dis-

cuss the behaviour of the corresponding ranking accuracy measured using the CMC curve. Based on

these results I also propose a practical design criteria. This work extends my preliminary work in [39]

by considering in the analytical model of the behaviour of multi-stage re-identification systems, in

the design criteria, and in a wider empirical investigation. The former approach focused on practi-

cal application scenarios characterized by a very large template gallery to be ranked in response to

a query by a human operator, and/or by a similarity measure exhibiting a high processing time. As

the main drawback of this approach, in practice, it could also be difficult to accurately estimate the

corresponding optimal values of the number of templates to be ranked by each stage (but the first

one), as they depend on the size of template gallery. I, further, investigate on a design criteria which

focused instead on strict requirements characterized by the maximum allowed processing time.

At the following of this chapter, I first discuss on some proposed multi-stage systems in classi-

fication problems. Next, I summarize existing multi-stage methods which specifically proposed for

person re-identification task. I then describe my proposed multi-stage ranking approach on person

25
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re-identification problem by formulating a possible criterion to attain a proper trade-off between

ranking accuracy and processing time. At the end, I present some experimental evaluations of multi-

stage ranking approach; carried out by using four state-of-the-art descriptors on three benchmark

data sets.

3.1 Overview on multi-stage approaches

Although, the idea of multi-stage system is not that novel and has been employed in many applica-

tions, it still keeps its novelty on person re-identification systems in which ranking problem always

takes into account. At this section, a brief taxonomy of multi-stage system is presented for its ap-

plications in pattern recognition, and then more specifically discussion of application of multi-stage

system in person re-identification task.

3.1.1 Multi-stage classification approaches

The multi-stage approach is used since a long time in pattern classification systems. For instance,

in [55] a cascade of classifiers was proposed to attain a trade-off between classification accuracy and

the cost of feature acquisition, e.g., for medical diagnostics applications: each classifier uses features

that are more discriminant, but also more costly [55] than previous classifiers. The goal is to assign

an input instance (e.g., a medical image) to one of the classes (e.g., the outcome of a diagnosis) with a

predefined level of confidence, using features (e.g., medical exams) with the lowest possible cost; if a

classifier but the last one does not reach the desired confidence level, it rejects the input instance (i.e.,

withholds making a decision), and sends it to the next stage. This approach has later been exploited

to attain a trade-off between classification accuracy and processing time, e.g., in handwritten digit

classification [35, 62, 64]. A similar approach is used in the well-known algorithm of [66] for designing

fast object detectors: it consists in detecting and discarding background regions of the input image

as quickly as possible, using classifiers based on features fast to compute; this allows focusing the

attention on regions more likely to contain the object of interest, using classifiers based on more

discriminant features that also require a higher processing time.

3.1.2 Multi-stage re-identification approaches

Multi-stage re-identification systems have already been proposed by some authors. Their aim is how-

ever to improve ranking accuracy, without taking into account processing time [30, 52, 46, 68, 33].
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In [30] the first stage uses returns the operator the 50 top-ranked templates; if the probe identity is

not among them, a classifier is trained to discriminate the probe image from other identities, and is

used to re-rank the remaining templates. In [52] person re-identification is addressed as a content-

based image retrieval task with relevance feedback, for settings where several instances of a probe

can be present in the template gallery; accordingly, the aim is to increase recall. In each stage (i.e.,

iteration of relevance feedback) only the top-ranked templates are shown to the operator, then his

feedback is exploited to adapt the similarity measure for the probe at hand, and the remaining tem-

plates are re-ranked. A similar multi-stage strategy was proposed in [46] for reducing the operator’s

effort in analyzing the template images: in each stage only the top-ranked templates are presented to

the operator, who is asked to select a “strong negative” (i.e., a different individual whose appearance

is most dissimilar to the probe), and optionally a few “weak negatives”; a post-rank function is then

learnt based on this feedback and on the probe image, and the remaining templates are re-ranked in

the next stage. A similar, two-stage approach was proposed in [68]: the operator is asked to label some

pairs of locally similar and dissimilar horizontal image regions in the top-ranked templates, and this

feedback is exploited to re-rank all templates. Another two-stage approach was proposed in [33], to

improve the ranking provided by a given first-stage descriptor: a small subset of the top-ranked tem-

plates is re-ranked by the second stage, by a different descriptor that uses a manifold-based method

with three specific low-level features.

Accordingly, as the main contribution of this work, in this chapter we develop a specific formu-

lation of multi-stage ranking problems focused on trading ranking accuracy for processing time in

person re-identification systems, for any given descriptor and similarity measure. In particular, we

first develop an analytical model of processing time and discuss the behaviour of the corresponding

ranking accuracy measured using the CMC curve. Then I define practical design criteria for multi-

stage person re-identification systems, based on my analytical model of their behaviour.

At this work I consider application scenarios characterized by strict requirements on the process-

ing time for obtaining the ranked list of templates, e.g., due to real-time constraints. In particular,

I consider requirements expressed by the constraint t ≤ tmax , where tmax is an application-specific

value. Many existing appearance descriptors attain a high recognition rate at the expense of a high

complexity, which results in a relatively high value of t , e.g., [21, 58, 50, 45]. Moreover, even if t is rel-

atively low, when the gallery set size is very large an even lower tmax value may be required. Focusing

on the case when a given descriptor D exhibits a satisfactory ranking accuracy, but does not meet the

constraint t ≤ tmax , in the next section I propose a multi-stage ranking approach capable of trading a

lower ranking accuracy for a lower processing time.
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3.2 A multi-stage ranking approach for person re-

identification

Let me first discuss the case of a two-stage ranking system. Consider a given descriptor, that I denote

as D2, and assume that it exhibits a satisfactory ranking accuracy (CMC curve) but a too high pro-

cessing time, t2 > tmax , as explained above. My approach is based on modifying D2, by changing its

parameters, into a descriptor D1 that exhibits a lower processing time t1 < tmax . Usually this can be

attained only at the expense of a lower accuracy, i.e., the CMC curve of D1 (denoted as C MC1) lies

below that of D2 (C MC2). If C MC1 is not satisfactory for the application at hand, D1 and D2 can be

combined into a two-stage system to meet the constraint on processing time, attaining at the same

time a CMC curve better than C MC1. To this aim, for a given probe, first all n templates are ranked

using D1, then the n2 top-ranked ones are re-ranked using D2, for a given n2, with 1 < n2 < n. The

resulting average processing time per probe, t1−2, is given by:

t1−2 = 1

n
tD1 + t1 + n2

n
t2 , (3.1)

where also the time tD1 for computing the descriptor D1 of the probe is taken into account (the same

descriptor can be computed offline for templates, and is therefore not considered). Note that the

impact of such an overhead time reduces as the overall number of templates to be ranked increases.

From Eq. (3.1), the constraint t1−2 ≤ tmax translates into:

n2 ≤ n
(tmax − t1)

t2
− tD1

t2
. (3.2)

Consider now the resulting CMC curve, denoted by C MC1−2. To make an analytical derivation of

its behaviour possible, at least to some extent, I disregard the general case when C MC1 and C MC2

cross in one or more points, and consider only the case when C MC1(r ) < C MC2(r ) for ranks r ≤ r∗,

and C MC1(r ) = C MC2(r ) for r > r∗, for a given rank r∗ ≤ n, as in the example of Fig. 3.3. In other

words, when D2 gives a rank between 1 and r∗ to the template of the correct identity, the rank given

by D1 is on average lower; when D2 gives a rank between r∗ and n, instead, the rank given by D1 is

on average the same (see the example in Fig. 3.1). In the limit cases of n2 = 1 and n2 = n, it is easy to

see that C MC1−2 =C MC1 and C MC1−2 =C MC2, respectively. For 1 < n2 < n, the above assumption

implies that C MC1−2 lies between C MC1 and C MC2, and approaches C MC2 as n2 increases. This

can be proven as follows. First, C MC1−2(r ) = C MC1(r ) for all r ≥ n2, since for any r ≥ n2 the correct

identity is among the r top ranks of the two-stage system, if and only if it is among the r top ranks

of D1. Second, since the n2 top-ranked templates by D1 are re-ranked by the more accurate D2, it
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1 2 3 4 5 6
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114 115 116 117 118

Figure 3.1: Two examples of the ranked list of templates produced by a descriptor D2 and by
a less accurate version of it, D1, for a given probe (the correct identity is marked in green).
Left: the correct identity is in the top ranks, and is ranked higher by D2. Right: the correct
identity has a low rank, and is ranked identically by both descriptors.

follows that C MC1−2(r ) ≥C MC1(r ) for r < n2. An example of this behaviour is reported in Fig. 3.3 for

two different values of n2.

To sum up, for two-stage systems a trade-off between processing time and ranking accuracy can

be attained by values of n2 that satisfy constraint (3.2): the higher n2, the higher the resulting pro-

cessing time and ranking accuracy.

The above results can be generalized to multi-stage systems with N > 2, using the original de-

scriptor in the last stage as DN , and different versions of D in the previous stages as D1,. . . ,DN−1,

characterized by increasing ranking accuracy and increasing processing time, t1 < t2 < . . . < tDN , with

t1 < tmax (see Fig. 3.2). Denoting by ni the number of matching scores computed by the i -th stage,

under the constraint:

n1 = n > n2 > . . . > nN > 1 , (3.3)

the corresponding average processing time t1−N is:

t1−N = 1

n

N−1∑
i=1

tDi + t1 +
N∑

i=2

ni

n
ti . (3.4)

Accordingly, the constraint t1−N ≤ tmax can be rewritten as:

N∑
i=2

ni ti ≤ n(tmax − t1)−
N−1∑
i=1

tDi . (3.5)

Note that constraint (3.2) is a particular case of (3.5) for N = 2.

Assuming that the CMC curves of any pair of adjacent stages, C MCi and C MCi+1, exhibit the

same behaviour considered above (see Fig. 3.3), by the same arguments above it follows that the CMC

curve of the multi-stage system, C MC1−N , lies between C MC1 and C MCN . In particular, in the limit
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Stage #1 Stage #2 Stage #N

...

n ... n-n2 n-n2+1 ... n3+n2 ... nN+1 nN ... 2 1

...

t1

t2

t3

tn

Gallery set

Probe 

Final ranked list topbottom

1

.

.

.

n2

n2+1

.

.

.

n

1

.

.

.

n3

n3+1

.

.

.

n2

1

2

.

.

.

nN

R
a

n
k

ed
 l

is
t 

#
1

R
a

n
k

ed
 l

is
t 

#
2

R
a

n
k

ed
 l

is
t 

#
N

Figure 3.2: Scheme of the proposed multi-stage ranking approach.

cases when ni = 1, and ni = n for every i > 1, we obtain C MC1−N =C MC1, and C MC1−N =C MCN , re-

spectively. Moreover, C MC1−N (r ) =C MC1(r ) for r ≥ n2. In general, for increasing values of n2, . . . ,nN ,

C MC1−N gets closer to C MCN .

Accordingly, for a generic multi-stage system a trade-off between processing time and accuracy

can be attained when the ni ’s satisfy constraints (3.3) and (3.5); the higher n2, . . . ,nN , the higher the

resulting processing time and ranking accuracy.

3.3 Design criteria

Designing a multi-stage re-identification system according to the above approach requires to choose

the number N of stages, the descriptors D1, . . . , DN−1, and the number of templates n2 > . . . > nN to

be re-ranked at each stage, under constraints (3.3) and (3.5). The best solution, among the ones that
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Figure 3.3: Example of CMC curves of two-stage systems. Light blue: first-stage; dark blue:
second-stage; r ∗ is the rank from which their CMC curves become identical; light and dark
green: two-stage systems corresponding to different values of n2.

satisfy such constraints, is the one that maximizes ranking accuracy. However it cannot be analytically

found, and finding it empirically by evaluating all possible choices is clearly impractical, since the

three choices above are interrelated and many possible solutions may even exist. In the following I

discuss each choice separately, and suggest practical, though suboptimal, design criteria.

Descriptors. Consider first the problem of developing different versions DN−1, . . . , D1 of a given

descriptor D, exhibiting a decreasing ranking accuracy and a decreasing processing time. This can be

attained by suitably modifying the parameters of D. However existing descriptors can be very com-

plex and contain several parameters. Moreover, only an empirical evaluation is usually possible of

the impact of any parameter on ranking accuracy; for instance, the relative behaviour of the CMC

curves of any two descriptors depends on the data at hand: see, e.g., the CMC curves of the original

and of the first-stage SDALF descriptor on the VIPeR and ETHZ1 data sets, in Fig. 3.4. To define a

practical design criterion I propose to subdivide descriptors into two main categories: fixed-size fea-

ture vectors (e.g., [50, 45]), and descriptor with variable size (e.g., [21]). For fixed-size feature vectors,

an unsupervised feature reduction technique like PCA can be used. The suitability of PCA to person

re-identification tasks is witnessed to its use in the pre-processing step of gBiCov [50]. For descriptors

with variable size I suggest to modify the parameter that has the highest impact on processing time;

for instance, in SDALF descriptor [21] such a parameter is the number of “blobs” of its MSCR com-
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ponent (see Sect. 3.4.1). Once a single parameter has been chosen (either the feature set size for the

former category of descriptor, or a descriptor-specific parameter for the latter category), its value for

each stage (but the last one) can be set according to the corresponding processing time, which has to

be empirically evaluated. The only constraint is that the left-hand side of inequality (3.5) is positive,

which amounts to:

t1 < tmax − 1

n

N−1∑
i=1

tDi . (3.6)

As a simple guideline, one should set t1 to be no more than half the above upper bound.

Number of templates to be re-ranked at each stage. Assuming that N and DN−1, . . . , D1 have

already been chosen, the choice of n2, . . . ,nN can be discussed separately for N = 2 and N > 2. For

two-stage systems, the single value of n2 has to be chosen under constraint (3.2). In this case the best

trade-off between processing time and ranking accuracy can be identified a priori: it is attained when

the second stage re-ranks the highest possible number of templates, which leads to:

n2 =
⌊

n
(tmax − t1)

t2
− tD1

t2

⌋
. (3.7)

In the case N > 2, constraints (3.3) and (3.5) define a convex polyhedron in the N−1-dimensional

space, and the feasible solutions are all the points n = (n2, . . . ,nN ) with integer coordinates belonging

to such a polyhedron. However, among these solutions it is not possible to identify a priori the one

that maximizes ranking accuracy. One can only discard the dominated solutions: if a solution n′ =
(n′

2, . . . ,n′
N ) is dominated by a different solution n′′ = (n′′

2 , . . . ,n′′
N ), i.e., n′

2 ≤ n′′
2 , . . . ,n′

N ≤ n′′
N , then n′

can be discarded, since each of its stages (but the first one) re-ranks a lower or identical number of

templates than the corresponding stage of n′′, and consequently its ranking accuracy will be lower.

Instead, for any pair of non-dominated solutions n′ and n′′, if n′
i < n′′

i for some i , then some j exists

such that n′
j > n′′

j ; this means that their relative ranking accuracy can be evaluated only empirically,

which is impractical if the number of non-dominated solutions is high.

To avoid such problems, I consider a simpler, though potentially suboptimal criterion for multi-

stage systems with N > 2: I consider values of n2, . . . ,nN such that, beside satisfying constraints (3.3)

and (3.5), the number of templates between two consecutive stages is reduced by a same amount

α< 1, i.e.:

ni = bαni−1c, i = 2, . . . , N . (3.8)

It is now easy to see that ranking accuracy is maximized by choosing the maximum value of α that

satisfies constraints (3.3) and (3.5), which can be found by a simple line search.

Number of stages. Taking into account the design criteria suggested above, I suggest to limit

the choice of the number of stages to two or three, to avoid a time-consuming empirical evaluation
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of more alternatives. In practice, for a two-stage system one can set the parameter of D1 such that

t1 < 1
2

(
tmax − 1

n tD1

)
(see above); for a three-stage system one can set the parameter of D1 and D2 such

that t1 < 1
2

[
tmax − 1

n

(
tD1 + tD2

)]
, and t2 about twice t1. Then the choice between a two- and a three-

stage system can be made based on an empirical comparison of the corresponding ranking accuracy.

3.4 Experimental evaluation

I evaluated the proposed approach on three benchmark data sets (VIPeR, i-LIDS and ETHZ data sets),

and four state-of-the-art appearance descriptors, using two- and three-stage systems.1 Take into con-

sideration that, I used only the first sequence “SEQ. #1” (ETHZ1) which contains the largest number

of pedestrians (83), and 4,857 images in total. I also rescaled the images of i-LIDS and ETHZ1 to the

same size of 128×48 pixels as in VIPeR, to get a similar processing time.

3.4.1 Descriptors

I used the SDALF, gBiCov, LOMO and MCM descriptors. SDALF and MCM are not fixed size descrip-

tors: I chose ad hoc parameters to modify as described below. Although, gBiCov and LOMO are

fixed-size descriptors, instead, and according to my suggested design criteria I obtained faster and

less accurate versions of each of them by using PCA, I additionally obtained different version of the

each of them with ad hoc parameters for the sake of comparison. Since my aim was not to fine-tune

these descriptors to maximize their performance on each data set, I chose the parameter values by

preliminary experiments, and used the same versions of each descriptor for all data sets.

SDALF2 [21] subdivides body into four parts: left and right, torso and legs. Three kinds of features

are extracted from each part: maximally stable color regions (MSCR), i.e., elliptical regions (blobs)

exhibiting distinct color patterns (their number depends on the specific image), with a minimum size

of 15 pixels; a 16×16×4-bins weighted HSV color histogram (wHSV); and recurrent high-structured

patches (RHSP) that characterize texture. A specific similarity measure is defined for each feature;

the matching score is computed as their linear combination. In my experiments I did not use RHSP,

due to its relatively lower performance. I obtained faster and less accurate versions of SDALF by

increasing the minimum MSCR blob size to 65 and to 45 for the first and second stage, respectively

(which reduces the number of blobs), and by reducing the corresponding number of bins of the wHSV

histogram to 3×3×2 and to 8×8×3.

1The source code of the experiments is available at https://github.com/bahramlavi/MultiStageRanking
2Source code: http://www.lorisbazzani.info/sdalf.html

https://github.com/bahramlavi/MultiStageRanking
http://www.lorisbazzani.info/sdalf.html
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gBiCov3 [50] is based on biologically-inspired features (BIF) obtained by Gabor filters with differ-

ent scales over the HSV color channels. The resulting images are subdivided into overlapping regions

of 16×16 pixels; each region is represented by a covariance descriptor that encodes shape, location

and color information. BIF and covariance descriptors are concatenated, and PCA is used to reduce

its dimension. I obtained different versions of gBiCov by increasing the region size to 32× 64 and

16×32 pixels for the first and second stage, respectively. I also obtained different versions of gBiCov

by reducing its dimension to 5 for two-stage systems, and to 2 and 5 for three-stage systems.

LOMO4 [45] extracts an 8× 8× 8-bins HSV histogram and two scales of the Scale Invariant Lo-

cal Ternary Pattern histogram (characterizing texture) from overlapping windows of 10×10 pixels; it

then retains one only histogram from all windows at the same horizontal location, obtained as the

maximum value among all the corresponding bins. These histograms are concatenated with the ones

computed on a down-sampled image. A metric learning method is used to define the similarity mea-

sure. I obtained different versions of LOMO by increasing the window size to 20×20 and 15×15 for

the first and second stage, respectively, and by decreasing the corresponding number of bins of the

HSV color histogram to 3×3×2 and 4×4×3. Additionally, I used PCA to reduce the dimension of the

LOMO descriptor to 20 for two-stage systems, and to 5 and 20 for three-stage systems.

MCM5 [58] subdivides body into torso and legs, and extracts 80 randomly positioned image patches

from each part. Each patch is represented by a 24×12×4-bins HSV histogram. Artificial patches are

also generated to improve robustness to illumination changes, by changing the brightness and con-

trast of the original patches in the RGB color channel. The similarity measure is the average k-th

Hausdorff distance between the set of patches of each pair of corresponding body parts, where k was

set to 10 in [58]. I obtained different versions of MCM by reducing the number of patches to 10 and

to 20 for the first and second stage, respectively, and the corresponding number of bins of the HSV

histogram to 3×3×2 and 12×6×2.

3.4.2 Experimental setup

For each descriptor D, I designed two- and three-stage systems; for the sake of simplicity I used the

same version of D to implement D1 in two-stage and D2 in three-stage systems. As in [21], for each

data set I repeated my experiments on ten different subsets of individuals, using one image of each

individual as template and one as probe, and reported the average CMC curve over the ten runs. I

used an Intel Core i5 2.6 GHz CPU. I considered three different values of tmax defined as a fraction of

3source code: http://vipl.ict.ac.cn/members/bpma
4source code: http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda/
5source code is available upon request to the authors.

http://vipl.ict.ac.cn/members/bpma
http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda/
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Table 3.1: Number of templates processed at each stage for each descriptor and data set, and
for the different values of β.

Descriptor Data set
Two-stage systems Three-stage systems

β=0.3 β=0.4 β=0.5 β=0.3 β=0.4 β=0.5

n n2 n2 n2 n2 n3 n2 n3 n2 n3

SDALF
VIPeR 316 25 57 88 84 22 120 45 150 71
i-LIDS 119 9 21 33 31 8 45 17 56 26
ETHZ1 83 7 15 23 22 5 31 11 39 18

gBiCov
VIPeR 316 50 81 113 140 62 169 90 193 118
i-LIDS 119 19 31 43 53 23 63 33 72 44
ETHZ1 83 13 21 30 37 16 44 23 50 30

gBiCov+PCA
VIPeR 316 92 124 156 170 91 197 123 221 154
i-LIDS 119 35 47 59 64 34 74 46 83 58
ETHZ1 83 24 33 41 44 23 51 31 58 40

LOMO
VIPeR 316 57 107 138 149 70 178 100 203 130
i-LIDS 119 28 42 52 56 26 67 37 76 48
ETHZ1 83 20 28 36 39 18 46 25 53 34

LOMO+PCA
VIPeR 316 88 120 151 167 88 194 119 218 150
i-LIDS 119 33 45 57 63 33 73 44 82 56
ETHZ1 83 23 31 40 43 22 51 31 57 39

MCM
VIPeR 316 94 126 157 172 93 199 125 222 156
i-LIDS 119 35 47 59 64 34 74 46 83 58
ETHZ1 83 25 33 41 45 24 52 32 58 40

the processing time of the original descriptor used in the last stage, tmax =βtN , for β= 0.3,0.4,0.5; as

can be seen from Table 3.2, all the resulting values satisfied the constraint t1 < tmax (see Sect. 3.2).

3.4.3 Results

The average processing time for computing one matching score at each stage, evaluated on VIPeR, is

reported in Table 3.2. Similar processing times were observed in the other data sets, due to the use of

the same image size. Note that processing time of MCM cannot be compared to the one of the other

descriptors, since MCM was implemented in C# and the other descriptors in Matlab. Note also that

the original MCM descriptor has a much higher processing time than its versions used in the first and

(for three-stage systems) second stage, with respect to the other descriptors: this is due to the use of

the Hausdorff distance as similarity measure, which makes the processing time proportional to the

square of the number of patches (see Sect. 3.4.1).

The number of templates processed at each stage, chosen according to the proposed design cri-

terion, is reported in Table 3.1. The average CMC curves are shown in Figs. 3.4 and 3.5, respectively

for two- and three-stage systems.
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Note first that, since I did not fine-tune the different versions of each descriptor to each data set,

in some cases the first and last stages turned out to exhibit very similar CMC curves, and therefore the

CMC curve of the correponding multi-stage systems is similar to both. For instance, this is the case

of SDALF and MCM on VIPER, and of gBiCov on i-LIDS, in two-stage systems (Fig. 3.4).

As another alternative guidelines for the fixed-size descriptors, as pointed out in Sec. 3.3, I ob-

tained the fast versions of a given descriptor by using PCA method. The average CMC curves are

shown in Figs. 3.6 and 3.7, respectively for two- and three-stage systems.

Table 3.2: Average processing time ti (in msec.) for computing one matching score in the
i -th stage, for each of the four descriptors. Note that the original descriptor is used in the
last stage.

SDALF gBiCov gBiCov+PCA LOMO LOMO+PCA MCM
two-stage systems t1 2.08 0.0057 0.0003 0.0023 0.0008 0.060

three-stage systems
t1 1.60 0.0015 0.0002 0.0017 0.0003 0.051
t2 2.08 0.0057 0.0003 0.0023 0.0008 0.060

last stage t 9.44 0.0400 0.0400 0.0370 0.0370 27.400

In all the other cases the trade-off between the ranking accuracy and the processing time (given

by tmax ) of multi-stage systems clearly emerges; see, e.g., the CMC curves of SDALF on ETHZ1, both

in two- and in three-stage systems. In particular, note that in the top ranks the CMC curve of these

multi-stage systems is almost identical to the one of the corresponding original descriptor; it then

decreases, starting from a rank that depends on the specific data set and descriptor, up to becoming

identical since rank n2 to the CMC curve of the first stage. Moreover, for a given data set and descrip-

tor, the CMC curve of the corresponding multi-stage system worsens as tmax decreases, i.e., as n2

(and, for three-stage systems, n3) increases. As point out that this behaviour agrees with the one that

has been derived analytically in Sect. 3.2, and then exploited in Sect. 3.3 to define the proposed design

criterion. Accordingly, this provides evidence that my design criterion, albeit suboptimal for systems

made up of more than two stages, allows one to attain an effective trade-off between processing time

and ranking accuracy.

3.5 Conclusions

I proposed a multi-stage ranking approach for person re-identification, aimed at trading a lower pro-

cessing time for a lower ranking accuracy for any given appearance descriptor. My approach is in-

spired by the well-known multi-stage classification architecture used in pattern recognition systems,

which I adapted to ranking problems by developing an ad hoc analytical model of the trade-off be-



3.5. CONCLUSIONS 37

tween their ranking accuracy and processing time. I also suggested practical design criteria based

on my analytical model, and carried out a first empirical investigation on benchmark data sets and

state-of-the-art descriptors. Multi-stage re-identification systems can be useful in practical appli-

cations that involve interaction with human operators and are characterized by very large template

galleries and/or complex descriptors, requiring strict constraints on processing time. They can be

useful also in application scenarios when the operator cannot or does not want to scan all the ranked

template images (e.g., in real-time settings): in this case, only the subset of templates ranked by the

last stage can be returned to the operator. If needed, the attainable trade-off between processing

time and ranking accuracy can be improved, with respect to my suggested design criteria, by fine-

tuning the different system parameters discussed in Sect. 3.3, at the expense of an additional effort to

empirically evaluate the different alternatives.
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Figure 3.4: CMC curves of two-stage systems where the different versions of descriptors ob-
tained by ad hoc parameters modification. Black: first stage; blue: second stage (original
descriptor); red, pink, and cyan: two-stage systems with β = 0.3,0.4,0.5, respectively. En-
larged version of plots with very close CMC curves are shown for better visualization.
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Figure 3.5: CMC curves of three-stage systems where the different versions descriptors ob-
tained ad hoc parameters modification. Black: first stage; green: second stage; blue: third
stage (original descriptor); red, pink, and cyan: three-stage systems with β = 0.3,0.4,0.5,
respectively. Enlarged version of plots with very close CMC curves are shown for better visu-
alization.
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Figure 3.6: CMC curves of two-stage systems where the different versions descriptors ob-
tained by PCA feature reduction method. Black: first stage; blue: second stage (original de-
scriptor); red, pink, and cyan: two-stage systems with β= 0.3,0.4,0.5, respectively. Enlarged
version of plots with very close CMC curves are shown for better visualization.
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Figure 3.7: CMC curves of three-stage systems where the different versions descriptors ob-
tained by PCA feature reduction method. Black: first stage; green: second stage; blue: third
stage (original descriptor); red, pink, and cyan: three-stage systems with β = 0.3,0.4,0.5,
respectively. Enlarged version of plots with very close CMC curves are shown for better visu-
alization.



Chapter 4

Comparative Study of the Behavior

of Feature Reduction Methods in

Person Re-identification Task

Dimensional reduction is an essential pre-processing step in machine learning techniques (i.e. clas-

sification). Generally speaking, reducing the high-dimensional feature space into a low-dimensional

feature space can be achieved by a dimensional reduction method, in which new, low-dimensional

features are derived from the original feature space. It is desirable to achieve a low-dimensionality

features as low as possible, not only to reduce the computational load, but also to make the system

robust [11].

For a given XP , a standard re-identification system computes the matching scores m(XP ,XTi ),

i = 1, . . . ,n, and returns the list of template images ranked for decreasing values of the score. Rank-

ing accuracy is typically evaluated using the cumulative matching characteristic (CMC) curve, i.e.,

the probability (recognition rate) that the correct identity is within the first ranks. Hereinafter I con-

sider only the generated fixed-size feature vector (e.g. X) by a specific descriptor. Figure 4.1 presents

the whole scheme of the strategy; aiming to employing a feature reduction method on person re-

identification task

Apparently, some redundancies of patterns can be occurred within a feature vector, which are in-

tuitively effected on processing time on real-time applications. It is worth to remind the readers that

the issue of processing time in person re-identification can be categorized from two point of views:

the processing time of constructing descriptor ( aka descriptor generation); which can be done off-line

for the gallery set, and the processing time of computing matching score between pair of descriptors

41
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Figure 4.1: Application of a feature reduction method in person re-identification.

( aka descriptors matching); which has to be done on-line for investigating an individual of interest

(i.e. probe image) as the procedure of the real-time application. At this thesis work, whereas a feature

reduction method needs a training phase to project the proper patterns into the low-dimensional

space as same as a step of the re-identification system which needs to construct the descriptor for

each individual. I consider, instead, the issue of the matching processing time of a single probe im-

age and a template image. I therefore study on the feature vectors generated by the descriptors, and

investigate an empirical procedure to attain a significant trade-off between processing time and rank-

ing quality in person re-identification task.

Moreover, having redundant and irrelevant patterns from the feature vectors might be caused in

overfitting problem. Removing these irrelevant pattern from the feature space before tacking them in

real-world application scenarios is know as prepare data step in machine learning processes. To sum

up, there might be three key advantages of feature reduction methods:

1. decrease the risk of overfitting; which allows the algorithm to make a decision in less redundant

data.

2. improve the recognition accuracy; which avoid the algorithm by occurrence of misleading

those irrelevant data.

3. decrease the processing time; which leads the method to be faster.
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4.1 Feature reduction methods

Usually, reduction in high-dimensional feature is achieved by subspace projection. There are many

existing linear projection methods as well as their non-linear version. PCA [32] is a well-known

method in terms of compressing data pattern which consists of calculating the Eigenvectors of the

covariance matrix of the original feature space, and describing the variation of a set of variables in

terms of a reduced set of uncorrelated linear space of such variables with maximum variance (aka

principal components (PCs)). KPCA [60] is the nonlinear version of PCA in which the original feature

space is mapped to a higher-dimensional features space using a kernel function, and then PCA is cal-

culated. Isomap (aka isometric feature mapping) is popular in terms of computing quasi-isometric

from a high-dimensional feature space to a low-dimensional feature space . Isomap is highly efficient

and applicable to a wide range of data points and dimensions [3]. The isometric feature space can be

supposed as a kernel function and so this method can also be known as a type of KPCA technique. At

this section, briefly explaination these methods are presented.

4.1.1 Principal Component Analysis (PCA)

PCA is pretty a well-known method for linear dimensional reduction. This method leads to identify

important patterns within a data, and express the data in low-dimensional patterns by keeping the

nature of the data at the same time(aka compressing data). PCA, typically, employs Singular Value

Decomposition (SVD) of the features to project a feature vector into a lower dimensional space. SVD

can be more fundamental in the concept of feature reduction method, since not only it provides direct

approach to compute the principle components(PCs), but also simultaneously helpful to obtain row

and column spaces [72]. At the following, I go through some brief introductions of the mathematical

point of views of SVD.

Let X = {x1, x2, . . . , xN } be the given feature vector of size N to be compressed. While X is denoted

as X ∈ RN . The SVD of X is defined as

X =U SV H (4.1)

where U ∈ RN×N and V ∈ RN×N are unitary matrices, and S ∈ RN×N as a diagonal matrix, S = di ag {α1, . . . ,αr ,0, . . . ,0}.

The singular values are ordered in decreasing order, α1 ≥ . . . ≥ αr ≥ 0. Accordingly, in many applica-

tions, it can be useful to approximate X by considering whole matrix as

X =
[

Ur Un−r

] Sr 0

0 0

 V H
r

V H
n−r

 (4.2)
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where Ur = (u1,u2, . . . ,ur ), Vr = (v1, v2, . . . , vr ), and Sr = di ag {s1, s2, . . . , sr } which are used to project

the original feature space into the low-rank feature space of rank r. Therefore, the approximate of

matrix X with low-rank matrix is computed as

X̄ =Ur Sr V H
r (4.3)

where X̄ is the final projected feature space in r ank = r .

4.1.2 Kernel Principal Component Analysis (KPCA)

Kernel-PCA (KPCA) is an improved theory of traditional linear PCA in a high-dimensional space which

is constructed by employing a kernel function. On the other words, KPCA is a non-linear dimensional

reduction for the features to project a lower dimensional space using the kernel method, and then

compute PCA on the high-dimensional feature space. However, KPCA can be applied based on a spe-

cific kernel of k, this leads the application to choose a proper kernel function [60]. Given a data set X

of input samples {x1, x2, . . . , xN }, a kernel is defined as follows

k : X×X →R

(xi , x j ) 7→ k(xi , x j ),
(4.4)

where the kernel k(., .) gives a scalar that describes the similarity of the samples xi and x j . In this

work, the Gaussian kernel (RBF) is employed as follow

k(xi , x j ) = exp

(
−

∥∥xi −x j
∥∥2

2σ2

)
(4.5)

Using the obtained kernel, the originally linear operations of PCA are performed (as explained in 4.1.1)

to reduce the dimensionality of the kernel feature space. The Gaussian kernel (RBF) is chosen in this

studying because the linear kernel function gives the same performance as applying the normal PCA

in the original feature space.

4.1.3 Isomap

Isomap is a non-linear dimensional reduction through isometric feature mapping which consists of

calculating quasi-isometric to obtain low-dimensional embedding of a set of high-dimensional data

points. The algorithm is based on estimating of geometry features of data distribution, and then

mapping data to a new space. Isomap is quite straightforward technique that resolves feature reduc-

tion problem by computing geodesic distances between each data point. Geodesic distance basically

computes between two points over the manifold. In order to compute the distances between data
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points xi , i = 1,2, . . . , N , a neighborhood graph of G is constructed in which each data point xi is con-

nected with its k nearest neighbors xi j , j = 1,2, . . . ,k, within a data set, and forming an estimation

of the geodesic distance between two points by taking into account the shortest path between them.

One can compute the shortest-path between all the data points by employing Dijkstras [15] or Floyds

algorithms [23], and form into a pairwise geodesic distance matrix.

The whole procedure of the isomap feature reduction method can be summurized in three steps

as follow:

1. Constructing the neighborhood graph by assigning to each data point with its neighbors.

2. Measuring shortest paths on the neighborhood graph and create a graph distances matrix.

3. Constructing an embedding of the data in Rd from the graph distances matrix.

The computational complexity of this method, only the second step of it, is the most time con-

suming and it is performed in O(N 3) operations.

4.1.4 Reconstruction Error

The performance of a re-identification system is typically measured using the CMC curve, defined as

the probability that the correct identity is within the first rnk ranks, for rnk = 1, . . . ,n. By definition,

the CMC curve increases with rnk, and equals 1 for rnk = n. Whereas, this work aims to reduce the

feature space of the original descriptor, I employ reconstruction error to estimate the variances the

projected feature space. However, this can be simply identified from the behaviour corresponding

CMC curve, but for sake of comparison of different reduction methods, the reconstruction error is

computed between the original feature space and the projected feature space. In order to estimate

the reconstruction error of the projected feature vector, I employed Frobenius norm. To this aim, by

recalling the projected feature space (X̄) and the original feature vector(X), the reconstruction error is

estimated as

E =
∥∥X − X̄

∥∥2
F

‖X ‖ (4.6)

4.2 Experimental evaluation

The comparison has been carried out with two well-known descriptors in person re-identification

problem: gBiCov and LOMO, on two benchmark data sets: VIPeR and i-LIDS. More details of the

used descriptors as well as the data sets have been discuss in Sect. 3.4.1 and Sect. 2.4, respectively.
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These descriptors are gBiCov and LOMO; which have been chosen because of their fixed-size image

representation. The generated original image representation by gBiCov contains ≈ 6000 elements,

while it is ≈ 27000 for LOMO descriptor.

4.2.1 Experimental setup

One image for each person was randomly selected to build the template gallery; the other images

formed the probe gallery. As in [21], for each data set the experiment is repeated on ten different

subsets of individuals, using one image of each individual as template and one as probe, and reported

the average CMC curve over the ten runs, used an Intel Core i5 2.6 GHz CPU. The above-mentioned

feature reduction methods are applied on two well-known descriptors on VIPeR data set in person

re-identification task.

The original feature generated by a given descriptor (X), are reduced for different sizes in r =
{2,5,20,50,80,100,130,150,200,300,500,800,1000,1200,2000,2500,3500}. For KPCA, and the Gaus-

sian kernel is chosen because of its good performances. For Isomap, I set the number of neighbor-

hoods to k = 5.

4.2.2 Experimental results

Figures 4.2 and 4.3 present the corresponding CMC curves obtained by using different descriptors as

well as different feature reduction methods on VIPeR, and i-LIDS data sets, respectively. The CMC

curves are presented only in the first ranks for better visualization, however, the first ranks are typ-

ically taken into consideration for the determination of the power of a re-identification system for

real-time application. PCA as a standard technique, which the new techniques are still unable to out-

perform it. KPCA also have a very similar behaviour in terms of the recognition accuracy in person

re-identification. Also, in both techniques, the recognition accuracy outperformed the original CMC

curve on LOMO descriptor when PCA and KPCA are applied for the original feature vector, and in the

same way, with slightly better performance by using gBiCov on VIPeR and i-LIDS data sets. In con-

trast, KPCA is very time consuming because of the computational complexity when the feature vector

is relatively larger in comparison to the other methods. As pointed out in Sect. 4.1.4, for the sake of

comparison between the original descriptor and the projected descriptor into the new feature space,

the measure of reconstruction error can be simply computed between two feature spaces. Figures 4.4

and 4.5, therefore, demonstrate the estimated errors among different feature reduction methods for

different values of r. Apparently from the presented figures, the error leads to be zero at the certain
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value of r > 1000 on VIPeR, and r > 500 for i-LIDS data set where LOMO and gBicov descriptors with

PCA and KPCA are employed. However, Isomap achieves better performances only on i-LIDS data

set with respect to its behaviour on VIPeR data set, and this is also obvious from the computed error

estimations in which the error leads to be zero for r > 500.

The average processing time for computing one matching score, evaluated on VIPeR and i-LIDS,

are reported in Fig. 4.6. Similar processing times were observed in all data sets, due to the use of the

same image size.

4.3 Conclusions

At this chapter, the performances of most popular fundamental dimensional reduction approaches

were compared between PCA, KPCA, and Isomap feature reduction methods on person re-identification

data sets. The comparison is done through the experiments conducted by using two descriptors

on two benchmark data sets. The experimental results evidenced that generated features by these

descriptors might be not well-optimum. PCA and KPCA outperformed the original CMC curve on

LOMO and gBiCov descriptors on VIPeR and i-LIDS data sets. This was apparent also from their error

estimation of projected feature space using two descriptors on two data sets. Both these reduction

methods achieve better performances rather than Isomap method in person re-identification task.

The reason relies in the fact that PCA and KPCA can explore higher order information of the original

inputs than Isomap. It is worth to point out that, at this work, PCA was better than others in terms

of the computational cost, while KPCA was more time consuming with respect to the other two re-

duction methods. It therefore can be stated that PCA achieved promising performance for handling

of optimization of raw data and projection of it to low-dimensional feature space. This has only been

studied for the descriptors with fixed-size feature vector. Finally, I point out that the optimization of

the dimensional reduction methods analyzed in this paper is computationally and numerically prac-

tical in real-time applications. As the future work, I aim at carefully study the behavior of these feature

reduction methods by concerning on some analytical terms, and visualize the projected data on the

actual feature space to get better prospective on those behaviours.
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Figure 4.2: CMC curves obtained by gBiCov and LOMO descriptors on VIPeR data set in
which the feature reduction methods have been employed.
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Figure 4.3: CMC curves obtained by gBiCov and LOMO descriptors on i-LIDS data set in
which the feature reduction methods have been employed.



50
CHAPTER 4. COMPARATIVE STUDY OF THE BEHAVIOR OF FEATURE REDUCTION METHODS IN

PERSON RE-IDENTIFICATION TASK

0 500 1000 1500 2000 2500 3000 3500

r

0

1

2

3

4

5

6

7

E
rr

o
r 

e
s

ti
m

a
ti

o
n

10
-6 gBiCov, VIPeR, PCA

0 500 1000 1500 2000 2500 3000 3500

r

0

1

2

3

4

5

E
rr

o
r 

e
s

ti
m

a
ti

o
n

10
-5 LOMO, VIPeR, PCA

0 500 1000 1500 2000 2500 3000 3500

r

0

1

2

3

4

5

6

7

E
rr

o
r 

e
s

ti
m

a
ti

o
n

10
-9 gBiCov, VIPeR, KPCA

0 500 1000 1500 2000 2500 3000 3500

r

0

1

2

3

4

5
E

rr
o

r 
e

s
ti

m
a

ti
o

n
10

-8 LOMO, VIPeR, KPCA

0 500 1000 1500 2000 2500 3000 3500

r

0

0.05

0.1

0.15

E
rr

o
r 

e
s

ti
m

a
ti

o
n

gBiCov, VIPeR, ISOMAP

0 500 1000 1500 2000 2500 3000 3500

r

0

1

2

3

4

5

6

7

E
rr

o
r 

e
s

ti
m

a
ti

o
n

LOMO, VIPeR, ISOMAP

Figure 4.4: Reconstruction errors of different feature reduction methods by using gBiCov and
LOMO descriptors on VIPeR data set.
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Figure 4.5: Reconstruction errors of different feature reduction methods by using gBiCov and
LOMO descriptors on i-LIDS data set.
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Chapter 5

Discussion and conclusions

This thesis work presented a contribution to the literature on Intelligent Video Surveillance systems,

which is one of attracting and interesting task among researchers and industries due to a continu-

ously growing demand of security and safety in crowd. In particular, the thesis addressed, specifi-

cally, the issue of the processing time for person re-identification problem, that could provide a tools

of video-surveillance operators and forensic investigators to be proceeded swiftly. The ultimate goal

for a generic re-identification system is the capability of it in real-time applications. To this aim, the

whole re-identification procedure must be quick enough, and enables to design and implement such

a task in real-world application.

This conclusive chapter closes the thesis. First, the major contributions of this work are stated in

Sect. 5.1, and then, Sect. 5.2 provides future research directions to enrich and extend the presented

work.

5.1 Contributions of this thesis

Person re-identification is one the most challenging tasks of intelligent video surveillance system with

broad open areas of its application in numerous fields. It has received lots of attention by many

researchers and the re-identification methods and recognition techniques become a long way but

are still very narrow and specific to apply them on real world problems.

At this thesis work, I proposed a multi-stage ranking approach for person re-identification task; in

which the goal was to achieve a trade-off between processing time and ranking accuracy for any given

appearance descriptor of person re-identification. Th approach was inspired by a well-known multi-

stage classification architecture which widely used in pattern recognition systems, and I therefore

53
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adapted it to a ranking problem by developing an ad hoc analytical model of the trade-off between

its ranking accuracy and processing time. The multi-stage ranking system could be useful in real-

world applications that are supposed to be involved by interaction with human operators. It could

also be useful in an application scenario when the operator cannot or does not want to scan all the

ranked template images. Empirical evidence on the used data sets, using different state-of-the-art

descriptors, showed that the proposed ranking approach was capable of reducing processing time,

by keeping the ranking quality of the original descriptor. The proposed multi-stage ranking system

has been well positioned in the application of real-time video intelligent surveillance systems. To the

best of author’s knowledge, multi-stage ranking approach is unique on its way that explicitly explored

the issue of the processing time in person re-identification task, by its quite straightforward imple-

mentation strategy. Considering to the point: the computational complexity of many methods is too

high to be used in real-time applications (e.g., SDALF); at this thesis, I addressed this issue more ex-

plicitly, however, a more thorough analysis of the requirements for real-time re-identification systems

in terms of computational resources must be taken into account.

Additionally, some feature reduction methods were studied at this thesis work including: PCA,

KPCA, and Isomap. The goal was to enrich a promising trade-off between processing time and rank-

ing accuracy. On the other hand, the results evidenced that using a feature reduction method such as

PCA, could be also useful to the application of such a system like the one proposed multi-stage tech-

niques, which also relied on the issue of achieving a trade-off between processing time and ranking

accuracy. The empirical experimental evaluation also proved that using a feature reduction method

not only practical in the issue of the processing time, but also can be remarkable in terms of the rank-

ing accuracy.

5.2 Future works

The research on person re-identification is a relatively young area in pattern recognition and com-

puter vision. Also, many aspects have still to be explored, and a large amount of work has to be

adopted before a re-identification system can be employed in real-world scenarios. Although some

attempts in this regard have been proposed, there still exist many open issues that must be solved

before a complete real-time re-identification system being successfully implemented.

The proposed multi-stage approach in chapter 3 can be improved and also the attainable trade-

off can be optimized, for a given descriptor, by suitably choosing the number of stages and the pa-

rameters to be modified in order to obtain faster (and less accurate) versions of the same descriptor in
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each stage but the last one. The idea of multi-stage ranking approach could further expand by investi-

gating on some optimization techniques (e.g. the well-known Pareto optimization as a technique for

multiple criteria decision making[54]) which might be jointly optimized of all critical design param-

eters. By this, the multi-stage approach is leaded to be constructed/designed as a novel multi-stage

system which enables to autonomously determined the number of stage, as well as, constructing the

different simplified versions of a given descriptor to gain the significant trade-off of between process-

ing time and ranking accuracy.

The study which has been investigated in chapter 4, showed also the ability of feature reduction

methods in terms of the reducing the processing time; which attained by reducing the feature space of

the original descriptor, and improve the quality of the ranking accuracy in some descriptor and data

sets (e.g. gBicov on VIPeR and i-LIDS data sets where PCA has been employed). This behaviour can

be studied further in terms of the better recognition accuracy which achieved after some reduction

on the original feature vector. This is typically caused due to the well-known problem in pattern

recognition, so-called the curse of dimensionality. The curse of dimensionality is the fact when the

number of features or dimensions are too large; this leads the machine learning with some difficulties

in training stage (e.g. the algorithm can be easily failed caused by overfiting during the the training

process). In this manner, a feature reduction method can impede the possibility of this kind of issues

by removing the redundant or irrelevant patterns from the data space.
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