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Abstract: This paper presents a MATLAB toolbox, called PetriBaR, for the analysis and
control of Petri nets. PetriBaR is a package of functions devoted to basic Petri net analysis
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1. INTRODUCTION

Petri nets (PNs) are a powerful discrete event model.
The analysis of PNs basically concerns the study of some
behavioral properties including reachability, boundedness,
liveness, reversibility, repetitiveness, etc. and some struc-
tural properties related to the presence of P-invariants,
T-invariants, siphons, traps, etc. (Murata, 1989).

Concerning the control of PNs under static specifications,
one of the most popular approaches is based on the notion
of generalized mutual exclusion constraints (GMECs). In
such a case the set of legal markings is defined as a set of
linear inequalities and this benefits from the main feature
of PNs. In particular, Giua (Giua, 1992) demonstrated
that, in the case of controllable and observable transitions,
such constraints could be enforced simply adding some
places called monitors, also guaranteeing maximal permis-
siveness. In (Moody and Antsaklis, 2000) such a theory has
also been extended to the case where some transitions are
uncontrollable and/or unobservable.

When dealing with problems of state estimation, fault
diagnosis, opacity verification, etc. the system is typically
modeled using labeled Petri nets (LPN) to describe the
fact that certain transitions may produce no observation
when they fire (silent transitions) or may produce the same
observation of other transitions (indistinguishable transi-
tions). To avoid exhaustively enumerating all reachable
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markings and firing vectors, the notions of basis marking
and minimal explanation vector have been introduced in
(Cabasino et al., 2010) to solve the problem of fault di-
agnosis. In (Cabasino et al., 2010) the authors also show
that in the case of bounded nets, such notions allow one
to describe the system’s behaviour without enumerating
all the reachable markings (as in the reachability graph)
and introduce the Basis Reachability Graph (BRG). The
BRG has also been efficiently used to solve a series of
other problems, in particular, reachability analysis, state
estimation and opacity verification (Ma et al., 2017; Tong
et al., 2016, 2017).

The goal of this paper is that of illustrating a MATLAB
tool implementing all the above mentioned approaches. We
notice that there are many other tools for PN analysis and
simulation, such as Integrated Net Analyzer (INA) (INA,
2003), TAPAAL (TAPAAL, 2017), PN Tool (Pastravanu
et al., 2004), etc. While all these tools can be used to study
basic properties and simulating the behavior of purely
logical PNs, PNs with time, and also high level PNs, few of
them can handle the problems of states estimation, fault
diagnosis, and opacity verification. Furthermore, all the
above tools offer a user-friendly graphical interface, which
provides users an easy access but makes it hard to modify
the codes and to extend them for other purposes. On the
contrary, the PN toolbox PetriBaR we present consists
of several MATLAB functions and is meant as support for
research activities and classroom problem solving. Its func-
tions can be classified into six categories:(1) basic analysis,
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Aix-Marseille Univ, Université de Toulon, CNRS, ENSAM, LSIS,
Marseille 13397, France (e-mail: giua@diee.unica.it)

Abstract: This paper presents a MATLAB toolbox, called PetriBaR, for the analysis and
control of Petri nets. PetriBaR is a package of functions devoted to basic Petri net analysis
(including the computation of T-invariants, siphons, reachability graph, etc.), monitor design,
reachability analysis, state estimation, fault diagnosis, and opacity verification. In particular,
the functions for reachability analysis, state estimation, fault diagnosis, and opacity verification
exploit the construction of the Basis Reachability Graph to avoid the exhaustive enumeration of
the reachable set, thus leading to significant advantages in terms of computational complexity.
All functions of PetriBaR are introduced in detail clarifying the syntax to be used to run them.
Finally, they are illustrated via a series of numerical examples. PetriBaR is available online for
public access.

Keywords: Petri nets, MATLAB toolbox.

1. INTRODUCTION

Petri nets (PNs) are a powerful discrete event model.
The analysis of PNs basically concerns the study of some
behavioral properties including reachability, boundedness,
liveness, reversibility, repetitiveness, etc. and some struc-
tural properties related to the presence of P-invariants,
T-invariants, siphons, traps, etc. (Murata, 1989).

Concerning the control of PNs under static specifications,
one of the most popular approaches is based on the notion
of generalized mutual exclusion constraints (GMECs). In
such a case the set of legal markings is defined as a set of
linear inequalities and this benefits from the main feature
of PNs. In particular, Giua (Giua, 1992) demonstrated
that, in the case of controllable and observable transitions,
such constraints could be enforced simply adding some
places called monitors, also guaranteeing maximal permis-
siveness. In (Moody and Antsaklis, 2000) such a theory has
also been extended to the case where some transitions are
uncontrollable and/or unobservable.

When dealing with problems of state estimation, fault
diagnosis, opacity verification, etc. the system is typically
modeled using labeled Petri nets (LPN) to describe the
fact that certain transitions may produce no observation
when they fire (silent transitions) or may produce the same
observation of other transitions (indistinguishable transi-
tions). To avoid exhaustively enumerating all reachable

1 Corresponding Author

markings and firing vectors, the notions of basis marking
and minimal explanation vector have been introduced in
(Cabasino et al., 2010) to solve the problem of fault di-
agnosis. In (Cabasino et al., 2010) the authors also show
that in the case of bounded nets, such notions allow one
to describe the system’s behaviour without enumerating
all the reachable markings (as in the reachability graph)
and introduce the Basis Reachability Graph (BRG). The
BRG has also been efficiently used to solve a series of
other problems, in particular, reachability analysis, state
estimation and opacity verification (Ma et al., 2017; Tong
et al., 2016, 2017).

The goal of this paper is that of illustrating a MATLAB
tool implementing all the above mentioned approaches. We
notice that there are many other tools for PN analysis and
simulation, such as Integrated Net Analyzer (INA) (INA,
2003), TAPAAL (TAPAAL, 2017), PN Tool (Pastravanu
et al., 2004), etc. While all these tools can be used to study
basic properties and simulating the behavior of purely
logical PNs, PNs with time, and also high level PNs, few of
them can handle the problems of states estimation, fault
diagnosis, and opacity verification. Furthermore, all the
above tools offer a user-friendly graphical interface, which
provides users an easy access but makes it hard to modify
the codes and to extend them for other purposes. On the
contrary, the PN toolbox PetriBaR we present consists
of several MATLAB functions and is meant as support for
research activities and classroom problem solving. Its func-
tions can be classified into six categories:(1) basic analysis,

14th IFAC Workshop on Discrete Event Systems
May 30 - June 1, 2018. Sorrento Coast, Italy

Copyright © 2018 IFAC 316

e.g., boundedness analysis, siphons computation, etc.; (2)
monitor design for GMECs; (3) reachability analysis; (4)
state estimation; (5) fault diagnosis, including diagnosabil-
ity analysis; (6) state-based opacity verification. Functions
in categories 3-6 exploit the approach based on BRG,
therefore they are able to handle some relatively large-
sized nets. PetriBaR can be freely downloaded from a web
site (PetriBaR, 2017).

Summarizing, the main features of the tool.

• Besides structural and behavioral properties analysis,
PetriBaR can also solve control problems and problems
of reachability analysis, state estimation, fault diagnosis,
and opacity verification taking advantage of the BRG
approach.

• The MATLAB environment has been widely used to
implement software tools for the control of continuous-
time systems. In addition there exists also a few other
Petri net tools based on MATLAB (e.g., Pastravanu et al.
(2004)). A tool, called HYPENS (Sessego et al., 2008),
has also been implemented in MATLAB by some of the
authors of this paper to simulate and analyze First-
Order Hybrid Petri nets (Balduzzi et al., 2000). The tool
illustrated in this paper allows one to fill the gap of
the MATLAB implementation of purely logic PNs and
may lead to the MATLAB solutions to problems of state
estimation, fault diagnosis, etc. in hybrid Petri nets.

• In most universities, MATLAB is taught in basic courses
for engineering students. Thus, it is easy for students
to get started. Moreover, PetriBaR is open source and
built in a modular way. Once the user becomes familiar
with the implemented function, he/she can easily modify
and extend them depending on his/her own requirement.
Finally, MATLAB runs on many platforms (Windows,
Unix, MacOS).

2. BASIC PETRI NET ANALYSIS FUNCTIONS

A Petri net system (PN system) is a pair (N,M0),
where N = (P, T, Pre, Post) is the net structure, P =
{p1, p2, . . . , pm} is the set of places, T = {t1, t2, . . . , tn} is
a set of transitions, Pre : P×T → N and Post : P×T → N
are the pre- and post-incidence functions that specify the
arcs directed from places to transitions and from tran-
sitions to places, respectively, M0 ∈ Nm is the initial
marking. The pre- and post-incidence functions are usually
described by m × n dimensional pre- and post-incidence
matrices, and clearly they uniquely determine the struc-
ture of the PN. Thus, to input a PN system to a function of
the toolbox, users need to give the pre- and post-incidence
matrices and a column vector that represents the initial
marking. PetriBaR contains a function, draw, to assist the
user in inputting the PN system and obtaining the cor-
responding matrices. Running function draw, a graphical
interface appears (see Fig. 1), and the user can input the
PN system by clicking “Place”/“Transition”/“Arc” and
drawing them in the blank area. By double clicking a place
(or an arc), the user can edit the number of tokens in the
place (or the weight of the arc). Finally, choosing “Save
Data”, the value of the pre- and post-incidence matrices,
and the initial marking are written in file getMatrix.

Fig. 1. GUI for inputting the PN system.
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Fig. 2. The PN system in Exmaple 1.

A series of functions for basic PN structural and behav-
ioral analysis, including the construction of the reacha-
bility/coverability graph/tree (RG/CG or RT/CT), are
contained in the directory PN BASIC of the toolbox. The
most significant ones are listed in Table 1.

For sake of brevity, and since our focus here is on the
notion of basis reachability graph, in the following example
we restrict our attention on the function graphPN that
allows us to construct the RG of a given bounded PN
system.

Example 1. Input the PN system in Fig. 2 through func-
tion draw. Function getMatrix returns matrices Pre,
Post, andM0. We check if the PN system is bounded using
function bounded. The output of the function is b = 0: the
net is unbounded (see Fig. 3). Then we input command
G=graphPN(Pre,Post,M0) to construct its CG in the form
of a matrix, as Fig. 4 shows. Let us now briefly explain the
data structure of G.

Matrix G is partitioned into several submatrices:
• G11 = G(1 : 6, 1 : 3): each row of G11 represents
a marking (transposed) in the CG, and the index of
each marking is their corresponding row number 2 , i.e.,
G11(i, ·)T = Mi;
• G12 = G(1 : 6, 4): the i-th element G12(i) of G12 denotes
a father node of Mi;
• G13 = G(1 : 6, 5): G13(i) = −2 (resp., -1) means Mi is
not a dead marking (resp., is a dead marking);
• G14, G15 and G16 (every two columns after 5-th column
and rows 1 to 6 compose a submatrix): each row of G14,
G15 and G16 describes a transition. For instance, the firing
of transition G14(i, 1) at Mi leads to marking Mj , where
j = G14(i, 2);
• G21 = G(7, 1 : 3): the first element of G21 denotes the
number of places, the second one G21(2) is the number of

2 The initial marking is at the first row, i.e., corresponds to M1.
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Aix-Marseille Univ, Université de Toulon, CNRS, ENSAM, LSIS,
Marseille 13397, France (e-mail: giua@diee.unica.it)

Abstract: This paper presents a MATLAB toolbox, called PetriBaR, for the analysis and
control of Petri nets. PetriBaR is a package of functions devoted to basic Petri net analysis
(including the computation of T-invariants, siphons, reachability graph, etc.), monitor design,
reachability analysis, state estimation, fault diagnosis, and opacity verification. In particular,
the functions for reachability analysis, state estimation, fault diagnosis, and opacity verification
exploit the construction of the Basis Reachability Graph to avoid the exhaustive enumeration of
the reachable set, thus leading to significant advantages in terms of computational complexity.
All functions of PetriBaR are introduced in detail clarifying the syntax to be used to run them.
Finally, they are illustrated via a series of numerical examples. PetriBaR is available online for
public access.

Keywords: Petri nets, MATLAB toolbox.

1. INTRODUCTION

Petri nets (PNs) are a powerful discrete event model.
The analysis of PNs basically concerns the study of some
behavioral properties including reachability, boundedness,
liveness, reversibility, repetitiveness, etc. and some struc-
tural properties related to the presence of P-invariants,
T-invariants, siphons, traps, etc. (Murata, 1989).

Concerning the control of PNs under static specifications,
one of the most popular approaches is based on the notion
of generalized mutual exclusion constraints (GMECs). In
such a case the set of legal markings is defined as a set of
linear inequalities and this benefits from the main feature
of PNs. In particular, Giua (Giua, 1992) demonstrated
that, in the case of controllable and observable transitions,
such constraints could be enforced simply adding some
places called monitors, also guaranteeing maximal permis-
siveness. In (Moody and Antsaklis, 2000) such a theory has
also been extended to the case where some transitions are
uncontrollable and/or unobservable.

When dealing with problems of state estimation, fault
diagnosis, opacity verification, etc. the system is typically
modeled using labeled Petri nets (LPN) to describe the
fact that certain transitions may produce no observation
when they fire (silent transitions) or may produce the same
observation of other transitions (indistinguishable transi-
tions). To avoid exhaustively enumerating all reachable
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markings and firing vectors, the notions of basis marking
and minimal explanation vector have been introduced in
(Cabasino et al., 2010) to solve the problem of fault di-
agnosis. In (Cabasino et al., 2010) the authors also show
that in the case of bounded nets, such notions allow one
to describe the system’s behaviour without enumerating
all the reachable markings (as in the reachability graph)
and introduce the Basis Reachability Graph (BRG). The
BRG has also been efficiently used to solve a series of
other problems, in particular, reachability analysis, state
estimation and opacity verification (Ma et al., 2017; Tong
et al., 2016, 2017).

The goal of this paper is that of illustrating a MATLAB
tool implementing all the above mentioned approaches. We
notice that there are many other tools for PN analysis and
simulation, such as Integrated Net Analyzer (INA) (INA,
2003), TAPAAL (TAPAAL, 2017), PN Tool (Pastravanu
et al., 2004), etc. While all these tools can be used to study
basic properties and simulating the behavior of purely
logical PNs, PNs with time, and also high level PNs, few of
them can handle the problems of states estimation, fault
diagnosis, and opacity verification. Furthermore, all the
above tools offer a user-friendly graphical interface, which
provides users an easy access but makes it hard to modify
the codes and to extend them for other purposes. On the
contrary, the PN toolbox PetriBaR we present consists
of several MATLAB functions and is meant as support for
research activities and classroom problem solving. Its func-
tions can be classified into six categories:(1) basic analysis,
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e.g., boundedness analysis, siphons computation, etc.; (2)
monitor design for GMECs; (3) reachability analysis; (4)
state estimation; (5) fault diagnosis, including diagnosabil-
ity analysis; (6) state-based opacity verification. Functions
in categories 3-6 exploit the approach based on BRG,
therefore they are able to handle some relatively large-
sized nets. PetriBaR can be freely downloaded from a web
site (PetriBaR, 2017).

Summarizing, the main features of the tool.

• Besides structural and behavioral properties analysis,
PetriBaR can also solve control problems and problems
of reachability analysis, state estimation, fault diagnosis,
and opacity verification taking advantage of the BRG
approach.

• The MATLAB environment has been widely used to
implement software tools for the control of continuous-
time systems. In addition there exists also a few other
Petri net tools based on MATLAB (e.g., Pastravanu et al.
(2004)). A tool, called HYPENS (Sessego et al., 2008),
has also been implemented in MATLAB by some of the
authors of this paper to simulate and analyze First-
Order Hybrid Petri nets (Balduzzi et al., 2000). The tool
illustrated in this paper allows one to fill the gap of
the MATLAB implementation of purely logic PNs and
may lead to the MATLAB solutions to problems of state
estimation, fault diagnosis, etc. in hybrid Petri nets.

• In most universities, MATLAB is taught in basic courses
for engineering students. Thus, it is easy for students
to get started. Moreover, PetriBaR is open source and
built in a modular way. Once the user becomes familiar
with the implemented function, he/she can easily modify
and extend them depending on his/her own requirement.
Finally, MATLAB runs on many platforms (Windows,
Unix, MacOS).

2. BASIC PETRI NET ANALYSIS FUNCTIONS

A Petri net system (PN system) is a pair (N,M0),
where N = (P, T, Pre, Post) is the net structure, P =
{p1, p2, . . . , pm} is the set of places, T = {t1, t2, . . . , tn} is
a set of transitions, Pre : P×T → N and Post : P×T → N
are the pre- and post-incidence functions that specify the
arcs directed from places to transitions and from tran-
sitions to places, respectively, M0 ∈ Nm is the initial
marking. The pre- and post-incidence functions are usually
described by m × n dimensional pre- and post-incidence
matrices, and clearly they uniquely determine the struc-
ture of the PN. Thus, to input a PN system to a function of
the toolbox, users need to give the pre- and post-incidence
matrices and a column vector that represents the initial
marking. PetriBaR contains a function, draw, to assist the
user in inputting the PN system and obtaining the cor-
responding matrices. Running function draw, a graphical
interface appears (see Fig. 1), and the user can input the
PN system by clicking “Place”/“Transition”/“Arc” and
drawing them in the blank area. By double clicking a place
(or an arc), the user can edit the number of tokens in the
place (or the weight of the arc). Finally, choosing “Save
Data”, the value of the pre- and post-incidence matrices,
and the initial marking are written in file getMatrix.

Fig. 1. GUI for inputting the PN system.
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Fig. 2. The PN system in Exmaple 1.

A series of functions for basic PN structural and behav-
ioral analysis, including the construction of the reacha-
bility/coverability graph/tree (RG/CG or RT/CT), are
contained in the directory PN BASIC of the toolbox. The
most significant ones are listed in Table 1.

For sake of brevity, and since our focus here is on the
notion of basis reachability graph, in the following example
we restrict our attention on the function graphPN that
allows us to construct the RG of a given bounded PN
system.

Example 1. Input the PN system in Fig. 2 through func-
tion draw. Function getMatrix returns matrices Pre,
Post, andM0. We check if the PN system is bounded using
function bounded. The output of the function is b = 0: the
net is unbounded (see Fig. 3). Then we input command
G=graphPN(Pre,Post,M0) to construct its CG in the form
of a matrix, as Fig. 4 shows. Let us now briefly explain the
data structure of G.

Matrix G is partitioned into several submatrices:
• G11 = G(1 : 6, 1 : 3): each row of G11 represents
a marking (transposed) in the CG, and the index of
each marking is their corresponding row number 2 , i.e.,
G11(i, ·)T = Mi;
• G12 = G(1 : 6, 4): the i-th element G12(i) of G12 denotes
a father node of Mi;
• G13 = G(1 : 6, 5): G13(i) = −2 (resp., -1) means Mi is
not a dead marking (resp., is a dead marking);
• G14, G15 and G16 (every two columns after 5-th column
and rows 1 to 6 compose a submatrix): each row of G14,
G15 and G16 describes a transition. For instance, the firing
of transition G14(i, 1) at Mi leads to marking Mj , where
j = G14(i, 2);
• G21 = G(7, 1 : 3): the first element of G21 denotes the
number of places, the second one G21(2) is the number of

2 The initial marking is at the first row, i.e., corresponds to M1.
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Table 1. Main Functions in PN BASIC

Name Function Name Function

graphPN builds the RG/CG of a PN system tree builds the RT/CT of a PN system
show shows the RG/CG in a readable text form plottree draws the graph of a RT/CT
play simulates the evolution of a PN system

bounded checks if a PN system and its places are bounded live checks if a PN system and its transitions are live
dead checks deadlock markings in a PN system reachable checks if a marking is reachable from M0

firable checks if a sequence of transitions is enabled at M0 reversible checks if a PN system is reversible

pinvar computes P-invariants (or P-semiflows) tinvar computes T-invariants (or T-semiflows)
siphons computes siphons traps computes traps

>> draw; [Pre, Post, M0] = getMatrix;
>> b = bounded(Pre,Post,M0)
M =

Inf 0 0
****The net is unbounded!****
b =

0

Fig. 3. The PN system in Fig. 2 is bounded.

>> G = graphPN(Pre,Post,M0)
G =

G11 G12 G13 G14 G15 G16

1 0 0 0 -2 1 2 0 0 0 0
0 1 0 1 -2 2 3 3 4 0 0
Inf 0 0 2 -2 1 5 0 0 0 0
0 0 2 2 -1 0 0 0 0 0 0
Inf Inf 0 3 -2 1 5 2 5 3 6
Inf Inf Inf 5 -2 1 6 2 6 3 6

G21 3 3 1 0 0 0 0 0 0 0 0

Fig. 4. RG (in matrix form) of the PN system in Fig. 2.

transitions, and G21(3) = 1 means the matrix represents
the CG. �

The size of G depends on the number of markings in
the RG/CG and the number of transitions. The functions
using the RG/CG to analyze the behavioral properties are
listed in Table 1. In the case of unbounded nets the CG
gives necessary and sufficient conditions for boundness.
However, for the absence of dead states, reversibility,
liveness, reachability it only provides necessary conditions.

3. MONITOR DESIGN

A set of generalized mutual exclusion constraints (GMEC-
s) (W,K), with W = [w1 . . . wr] and K = [k1; . . . ; kr],
defines a set legal markings

M(W,K) =
⋂r

i=1{M ∈ Zm|wT
i ·M ≤ ki}

= {M ∈ Zm|WT ·M ≤ K},
where wi ∈ Zm and ki ∈ Z (with i = 1, 2, . . . , r). As
shown in (Giua, 1992; Moody and Antsaklis, 2000), a
set of r GMECs can be enforced adding r places, called
monitors, with appropriate initial marking, to the given
net system. In the presence of uncontrollable transitions,
if the given GMECs (W,K) are uncontrollable 3 , a set
of controllable GMECs (W ′,K ′) may be computed such
that the reachable marking set of the obtained system is
contained in the set of legal markings M(W,K).

3 A set of GMECs is uncontrollable if there is a pre arc from a
monitor place to uncontrollable transitions.
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Fig. 5. The PN system in Exmaple 2, where t3 is uncon-
trollable.

>> draw; [Pre, Post, M0] = getMatrix; C = Post-Pre;
w1 = [1 0 0 2]’; w2 = [0 0 2 1]’;
k1 = 2; k2 = 2; u = [3];
W = [w1, w2]; K = [k1; k2];
[W2c, K2c] = controllablegmec(C, M0, w2, k2, u);
W2 = [w1,W2c’]; K2 = [k1;K2c];
>> [CS, MS0] = monitorplaces(C, M0, W2, K2, u)
CS =

1 1 0 -2
1 -2 0 1

MS0 =
0
2

Fig. 6. Computation of monitor places enforcing a given
set of GMECs.

Functions in directory PN MONIT solve the monitor
design problem. The most significant ones are listed in
Table 2. The following example shows how to use them to
compute monitor places enforcing a given set of GMECs.

Table 2. Main Functions in PN MONIT

Name Function

checkgmecs tests if a set of GEMCs is controllable wrt
a PN system

controllablegmec finds all minimally restrictive controllable
GMECs satisfying the given uncontrol-
lable GMEC

monitordesign designs a closed loop net system given a
GMEC

monitorplaces finds the row of the incidence matrix of
the monitor place used to satisfy the set
of controllable GMECs

Example 2. Consider the PN system in Fig. 5, where t3
is uncontrollable. Let (W = [w1, w2], K = [k1; k2]) be
the set of GMECs, where w1 = [1 0 0 2]T , k1 = 2,
w2 = [0 0 2 1]T , k2 = 2. Inputting the incidence matrix
C = [1 − 1 0 0; 0 1 − 1 0; 0 0 1 − 1; −1 0 0 1],
the initial marking M0 = [2 0 0 0]T , the set of GMECs
(W,K), and the uncontrollable transitions u = [3] to func-
tion [Wc,Kc,Wu,Ku]=checkgmecs(C,M0,W,K,u), we ob-
tain that Wc = w1, Kc = k1, Wu = w2 and Ku = k2,
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Fig. 7. Closed loop system in Example 2.

i.e., (w1, k1) is controllable while (w2, k2) is not control-
lable. Use function [W2, K2] = controllablegmec(C,
M0, w2, k2, u) to compute a set of controllable GMEC-
s (W2,K2) such that (W2,K2) is minimally restrictive
and satisfies M(W2,K2) ⊆ M(w2, k2), and the result is
W2 = [0 2 2 1]T and K2 = 2. Finally, we use func-
tion monitorplaces to compute the incidence matrix CS
of monitor places and their initial marking MS0. The
obtained results and the whole procedure are illustrat-
ed in Fig. 6. The corresponding closed loop system is
illustrated in Fig. 7. Note that given a set of control-
lable/uncontrollable GMECs, function monitordesign re-
turns the closed loop system such that its reachable mark-
ings are all legal but may not be maximally permissive 4 .
�

4. FUNCTIONS USING BRG-BASED TECHNIQUES

In (Ma et al., 2017), a compact representation of the
reachability graph (RG) is proposed. Partitioning the set
of transitions into implicit and explicit transitions, it is
shown that if the implicit transitions induced subnet is
acyclic, only a subset of reachable markings, called basis
markings, need to be enumerated, while other reachable
markings are characterized by linear systems, one for each
basis marking.

To help the reader in understanding the idea behind the
programs, we briefly recall the notion of basis marking.
Let (P, T, Pre, Post,M0) be the PN system, Te ⊆ T the
set of explicit transitions, and Ti = T \ Te the set of
implicit transitions. First, the initial marking M0 is a
basis marking. Then, given an explicit transition te if
there is a minimal (in terms of its firing vector) firable
sequence of implicit transitions σi ∈ T ∗

i enabling te, then
the marking M reached by firing σite from M0 is also a
basis marking. Iteratively, the set Mb of basis markings
is obtained. Obviously, the set of basis markings is a
subset of the reachability set since basis markings are
only markings reachable by firing the minimal implicit
transition sequences and an explicit transition. Finally, we
have the following important result.

Theorem 3. (Ma et al., 2017) Let (P, T, Pre, Post,M0) be
a PN system, Te a set of explicit transitions, and Mb a set
of basis markings wrt Te. Assume the Ti induced subnet 5

is acyclic. A marking M ∈ Nm is reachable in the PN
system if and only if there exists a basis markingMb ∈ Mb

such that M = Mb+CI ·y has an integer solution y ∈ NnI ,

4 If there is no solution, the function will output “This method can
not be used”.
5 The Ti-induced subnet of (P, T, Pre, Post) is the net obtained by
removing from (P, T, Pre, Post) all transitions not in Ti.

Table 3. Main Functions in PN REACH

Name Function

BRG computes the corresponding BRG of the net sys-
tem wrt a given feasible Te

showBRG shows the BRG in the form of text

IfReachTe checks if a marking is reachable, given a feasible
Te

CompTe computes a minimal feasible set Te

IfReach checks if a marking is reachable and outputs a
minimal feasible set Te

p1 p2 p3 p4

t1 t2 t3

t5

t4

Fig. 8. The PN system in Example 4.

>> draw; [Pre, Post, M0] = getMatrix; Te = [1 4 5];
>> [B] = BRG(Pre,Post,M0,Te)
B =

[1] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}
[2] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}
[3] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}

Fig. 9. Construction of the BRG of the PN system in Fig. 8.

wherem is the number of places, CI is the incidence matrix
of the implicit transitions induced subnet, and nI is the
number of implicit transitions.

In other words, after the set of basis markings are com-
puted, the reachability problem reduces to the solution
of the integer linear programming problem, and the u-
nion of convex sets associated with the different basis
markings coincides with the set of reachable markings. A
basis reachability graph (BRG) is a graph that describes
the basis markings and their transition relations, and
thus it compactly represents the RG. Based on the BRG
representation, algorithms very efficient in practice have
been proposed in (Cabasino et al., 2010; Ma et al., 2017;
Tong et al., 2017; Cabasino et al., 2011) to solve the
reachability problem, the fault diagnosis problem and the
opacity verification problem. The efficiency of the BRG-
based approaches with respect to other RG-based methods
has been extensively shown in the aforementioned work.

Typically Te is not a set of special transitions. As long as
the set of transitions can be partitioned into Te and Ti

such that the Ti-induced subnet is acyclic (such a set Te

is called feasible), Theorem 3 applies. Thus, in some cases
a feasible set Te needs to be computed first so that BRG-
based techniques can be applied to analyzing the system.

4.1 Reachability Analysis

Functions for reachability analysis are included in direc-
tory PN REACH and listed in Table 3. All functions are
coded using the results in (Ma et al., 2017), where the
reader can also find the technical details.
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Fig. 7. Closed loop system in Example 2.

i.e., (w1, k1) is controllable while (w2, k2) is not control-
lable. Use function [W2, K2] = controllablegmec(C,
M0, w2, k2, u) to compute a set of controllable GMEC-
s (W2,K2) such that (W2,K2) is minimally restrictive
and satisfies M(W2,K2) ⊆ M(w2, k2), and the result is
W2 = [0 2 2 1]T and K2 = 2. Finally, we use func-
tion monitorplaces to compute the incidence matrix CS
of monitor places and their initial marking MS0. The
obtained results and the whole procedure are illustrat-
ed in Fig. 6. The corresponding closed loop system is
illustrated in Fig. 7. Note that given a set of control-
lable/uncontrollable GMECs, function monitordesign re-
turns the closed loop system such that its reachable mark-
ings are all legal but may not be maximally permissive 4 .
�

4. FUNCTIONS USING BRG-BASED TECHNIQUES

In (Ma et al., 2017), a compact representation of the
reachability graph (RG) is proposed. Partitioning the set
of transitions into implicit and explicit transitions, it is
shown that if the implicit transitions induced subnet is
acyclic, only a subset of reachable markings, called basis
markings, need to be enumerated, while other reachable
markings are characterized by linear systems, one for each
basis marking.

To help the reader in understanding the idea behind the
programs, we briefly recall the notion of basis marking.
Let (P, T, Pre, Post,M0) be the PN system, Te ⊆ T the
set of explicit transitions, and Ti = T \ Te the set of
implicit transitions. First, the initial marking M0 is a
basis marking. Then, given an explicit transition te if
there is a minimal (in terms of its firing vector) firable
sequence of implicit transitions σi ∈ T ∗

i enabling te, then
the marking M reached by firing σite from M0 is also a
basis marking. Iteratively, the set Mb of basis markings
is obtained. Obviously, the set of basis markings is a
subset of the reachability set since basis markings are
only markings reachable by firing the minimal implicit
transition sequences and an explicit transition. Finally, we
have the following important result.

Theorem 3. (Ma et al., 2017) Let (P, T, Pre, Post,M0) be
a PN system, Te a set of explicit transitions, and Mb a set
of basis markings wrt Te. Assume the Ti induced subnet 5

is acyclic. A marking M ∈ Nm is reachable in the PN
system if and only if there exists a basis markingMb ∈ Mb

such that M = Mb+CI ·y has an integer solution y ∈ NnI ,

4 If there is no solution, the function will output “This method can
not be used”.
5 The Ti-induced subnet of (P, T, Pre, Post) is the net obtained by
removing from (P, T, Pre, Post) all transitions not in Ti.

Table 3. Main Functions in PN REACH

Name Function

BRG computes the corresponding BRG of the net sys-
tem wrt a given feasible Te

showBRG shows the BRG in the form of text

IfReachTe checks if a marking is reachable, given a feasible
Te

CompTe computes a minimal feasible set Te

IfReach checks if a marking is reachable and outputs a
minimal feasible set Te

p1 p2 p3 p4

t1 t2 t3

t5

t4

Fig. 8. The PN system in Example 4.

>> draw; [Pre, Post, M0] = getMatrix; Te = [1 4 5];
>> [B] = BRG(Pre,Post,M0,Te)
B =

[1] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}
[2] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}
[3] [4×1 double] [1×3 double] {1×3 cell} [1] {1×3 cell}

Fig. 9. Construction of the BRG of the PN system in Fig. 8.

wherem is the number of places, CI is the incidence matrix
of the implicit transitions induced subnet, and nI is the
number of implicit transitions.

In other words, after the set of basis markings are com-
puted, the reachability problem reduces to the solution
of the integer linear programming problem, and the u-
nion of convex sets associated with the different basis
markings coincides with the set of reachable markings. A
basis reachability graph (BRG) is a graph that describes
the basis markings and their transition relations, and
thus it compactly represents the RG. Based on the BRG
representation, algorithms very efficient in practice have
been proposed in (Cabasino et al., 2010; Ma et al., 2017;
Tong et al., 2017; Cabasino et al., 2011) to solve the
reachability problem, the fault diagnosis problem and the
opacity verification problem. The efficiency of the BRG-
based approaches with respect to other RG-based methods
has been extensively shown in the aforementioned work.

Typically Te is not a set of special transitions. As long as
the set of transitions can be partitioned into Te and Ti

such that the Ti-induced subnet is acyclic (such a set Te

is called feasible), Theorem 3 applies. Thus, in some cases
a feasible set Te needs to be computed first so that BRG-
based techniques can be applied to analyzing the system.

4.1 Reachability Analysis

Functions for reachability analysis are included in direc-
tory PN REACH and listed in Table 3. All functions are
coded using the results in (Ma et al., 2017), where the
reader can also find the technical details.
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>> showBRG(B)
Basis Reachability Graph node’s number n = 3
# Marking M0=[1 1 0 0]’
Observable transitions enabled to fire:

(t1) − > M1: e=[0 0]
(t4) − > M2: e=[1 0]
(t5) − > M2: e=[1 1]

*************
# Marking M1=[0 2 0 0]’
Observable transitions enabled to fire:

(t4) − > M0: e=[1 0]
(t5) − > M0: e=[1 1]

*************
# Marking M2=[2 0 0 0]’
Observable transitions enabled to fire:

(t1) − > M0: e=[0 0]
*************

Fig. 10. Output of function showBRG.

>> Te=CompTe(Pre,Post)
Te =

1

Fig. 11. Set of explicit transitions computed by function
CompTe.

Example 4. Consider the LPN system in Fig. 8. Let Te =
{t1, t4, t5} be a feasible set of explicit transitions. First,
we input the net system (Pre, Post,M0) and the set
Te = [1 4 5], and then compute its BRG through function
B=BRG(Pre,Post,M0,Te) (see Fig. 9). Let us now briefly
explain the data structure 6 of B. Entries in columns
1 to 6 are: the index associated with the current basis
markings, the basis marking, explicit transitions whose
minimal explanation vectors are not empty, the minimal
explanation vector and the index of the basis marking
reached, the tag recording if the basis marking has been
analyzed, the explicit transition and the corresponding
minimal explanations fired. Therefore, B contains all the
information about the BRG, and in the future the reader
can develop their own functions based on function BRG as
Sections 4.2 to 4.4 show. The structure of the BRG can be
presented in the form of text, as Fig. 10 shows, by using
function showBRG(B).

Given an arbitrary marking M = [0 1 0 1]T , the result of
running r=IfReachTe(M,Pre,Post,M0,Te) is r = 1, i.e.,
marking M is reachable from the given initial marking. On
the contrary, if M = [1 1 0 1]T , the output is r = 0, which
means that the marking is not reachable.

Suppose the feasible set Te of explicit transitions is not
given. In this case, there are two ways to check if a
marking is reachable. One method consists in first using
Te=CompTe(Pre,Post) to obtain a minimal feasible set Te

(the result is Te = {t1}), then using function IfReachTe to
check whether the given marking is reachable or not. Note
that the reachability of a marking does not depend on the

6 We point out that the data structure of the BRG constructed later
for LPNs, or fault diagnosis, or opacity verification is similar to the
one presented here. For brevity, a detailed discussion on differences
is omitted here and the reader is addressed to the comments inside
the MATLAB functions.

>> M = [0 1 0 1]’; [r, Te] = IfReach(M, Pre, Post, M0)
r =

1
Te =

1

Fig. 12. Output of function IfReach.

value of Te. The other method consists in using function
IfReach directly, as shown in Fig. 12. �

4.2 State Estimation

In an LPN system (Pre, Post,M0, L,E) the labeling func-
tion L associates an output symbol with each transition.
It could either be a symbol in a given alphabet E, or the
empty word ε. Therefore, the transitions are partitioned
into the set To of observable transitions, whose labels are
symbols in E, and the set Tu of unobservable transitions,
whose labels are the empty word.

The considered state estimation problem consists in de-
termining the set of current markings consistent with the
observation w ∈ E∗. Furthermore, the initial state esti-
mation problem consists in determining the set of possible
initial markings from which the observation w ∈ E∗ can be
generated. Typically, the methods of solving the problems
of current state estimation and initial state estimation are
based on the construction of the observer and the initial
state estimator, respectively, of the RG, whose complexity
is known to be exponential wrt the number of reach-
able markings. However, if the unobservable transitions
induced subnet is acyclic, the BRG-based technique can be
applied (Cabasino et al., 2011). In such a case the complex-
ity is still exponential but wrt the number of basis mark-
ings. To build the BRG for LPNs, observable transitions
are taken as explicit transitions, while the unobservable
transitions are the implicit transitions. Moreover, the label
of an observable transition is also tagged on the BRG.

Let C(w) be the set of markings consistent with an ob-
servation w and Cb(w) the set of basis markings consistent
with w. By Theorem 3.7 in (Tong et al., 2017), it holds that
C(w) =

⋃
Mb∈Cb(w){M |M = Mb + Cu · y, y ∈ Nm}, where

Cu is the incidence matrix of the unobservable transitions
induced subnet. Namely, using the BRG-based technique,
the set C(w) of consistent markings is represented by a
set of linear constraints associated with basis markings.
Therefore, computing the set Cb(w) of basis markings con-
sistent with the observation, the set C(w) is also obtained.

Functions for state estimation are in directory PN ESTM
and are summarized in Table 4. Due to limited space, in
Example 5 we mainly illustrate the methods based on the
BRG.

Example 5. Consider again the PN system in Fig. 8.
Let M0 = [1 0 0 0]T , Tu = {t2, t4, t5}, the labels as-
signed to t1 and t3 be a and b, respectively, and the
observation w = aab. For current state estimation, we
can use function CurEst BRG to compute Cb(w) directly.
The procedure and the result is presented 7 in Fig. 13,

7 Since the output Cbw is defined as a cell, the value of Cbw is not
directly shown in the command window.
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Table 4. Main Functions in PN ESTM

Name Function

BRG L builds the corresponding BRG of the LPN system

showBRG L shows the BRG in a readable text form

obsRG computes the observer of the RG

obsBRG computes the observer of the BRG

estRG computes the initial state estimator of the RG

estBRG computes the initial state estimator of the BRG

CurEst RG computes the set of markings consistent with the
observation

CurEst BRG computes the set of basis markings consistent
with the observation

IniEst RG computes the set of markings generating the ob-
servation

IniEst BRG computes the set of basis markings generating the
observation

>> draw; [Pre, Post, M0] = getMatrix; E = {[’a’];[’b’]}; L =
{[1];[3]};
w = ’aab’;
>> [Cbw] = CurEst BRG(Pre,Post,M0,L,E,w)
Cbw =

[4×1 double]

Fig. 13. Computation of the set of basis markings consis-
tent with aab.

>> B = BRG L(Pre, Post, M0, L, E);
>> [ObsB, yb] = ObsBRG(B)
ObsB =

[3] ’12’ [4×3 double] [0] [ ]
yb =

[0] [1] [2]

Fig. 14. Observer of the BRG in Example 5.

where Cb(w) = {[0 0 0 1]T }. Analogously, for initial s-
tate estimation, we can use function IniEst BRG to com-
pute the set of basis markings generating aab, namely
{[1 0 0 0]T , [0 1 0 0]T , [0 0 0 1]T }.
Let us focus on the data structure of the observer ob-
tained by function obsBRG (which could be helpful to
readers interested in building their own functions). After
constructing the BRG B through function BRG L, we input
[ObsB,yb]=ObsBRG(B) to compute the observer of the
BRG (see Fig. 14). ObsB is a 1×5 cell, and columns 1 to 5
represent the number of states 8 of the observer, the set of
events 9 , the transition function 10 , the set of initial states,
and the set of marked states, respectively. Each element
of yb corresponds to the set of basis markings of a state
of the observer. We point out that the estimator of the
BRG, and the observer/estimator of the RG obtained by
functions in Table 4 have a similar structure of ObsBRG.
Therefore, they are not discussed here. �

8 It also denotes the set of states of the observer. Suppose the
number of states is n. Then the set of states is {0, 1, . . . , n− 1}.
9 Alphabetical symbols input to the LPN are orderly projected to
numerical symbols in the observer. For instance, E = {[′a′]; [′b′]} of
the LPN becomes E =′ 12′.
10Suppose one row of the matrix is [xi j xk]. It means that from
state xi the occurrence of event k leads to state xk.

Table 5. Main Functions in PN DIAG

Name Function

BRG D constructs the BRG for fault diagnosis wrt
the class of faults

showBRG D shows the BRG in a readable text form

MBRG constructs the modified BRG (MBRG) that
is used to check whether the LPN system is
diagnosable or not.

showMBRG shows the BRG in a readable text form

BRD constructs the basis reachability diagnoser, a
diagnoser construted on the BRG.

showBRD shows the BRG in a readable text form

diagnosability tests if a bounded LPN system is diagnosable
wrt each fault class

diagnosis online diagnoses an LPN system for a given
observation w

>> [Pre, Post, M0] = getMatrix; F = {[3]; [5]}; L = {[1]}; E =
{[’a’]};
BG = BRG D(Pre, Pos, M0, F, L, E);
BD = BRD(BG, Pre,Post, M0, F, L, E);
T = MBRG(Pre, Pos, M0, F, L, E);
>> diagnosability(T, BD)

All fault classes are not diagnosable since for each of them there
is an indeterminate loop.
Fault class 1:

path = aa
cycle = a

Fault class 2:
path = aa
cycle = a

Fig. 15. Diagnosability test in Example 6

>> w = ’a’; diagnosis(Pre, Post, M0, w, L ,F, E)
The following results summarizes the step of the on-line diagnosis
carried out by the observed word: - ’a’.

SUFFIX DIAGNOSIS STATE

eps 0 0
a 2 2

Fig. 16. Online diagnosis of observation w = a.

4.3 Fault Diagnosis

Given an LPN system and a set of fault transitions,
which have been partitioned into several fault classes F =
{f1, f2, . . . , fr}, two main problems are investigated in the
literature: i) fault diagnosis, which consists in establishing,
given an observation, if a fault in a given class has
occurred, and ii) diagnosability analysis, which consists
in establishing if the occurrence of a fault in a given class
could be detected after the occurrence of a finite number
of other events. Cabasino et al. have proposed efficient
algorithms to solve the above problems using LPNs (see
(Cabasino, 2009) for technical details). Such algorithms
are based on the notion of BRG, and are implemented by
the MATLAB functions in directory PN DIAG. Table 5
lists some of the functions.

Example 6. Consider again the LPN in Fig. 8. Let t3
and t5 be fault transitions that belong to two different
fault classes f1 and f2, respectively, t2 and t4 be regular
unobservable transitions, and the label associated to t1 be
a. To check if f1 and f2 are diagnosable, first the BRG
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Table 4. Main Functions in PN ESTM

Name Function

BRG L builds the corresponding BRG of the LPN system

showBRG L shows the BRG in a readable text form

obsRG computes the observer of the RG

obsBRG computes the observer of the BRG

estRG computes the initial state estimator of the RG

estBRG computes the initial state estimator of the BRG

CurEst RG computes the set of markings consistent with the
observation

CurEst BRG computes the set of basis markings consistent
with the observation

IniEst RG computes the set of markings generating the ob-
servation

IniEst BRG computes the set of basis markings generating the
observation

>> draw; [Pre, Post, M0] = getMatrix; E = {[’a’];[’b’]}; L =
{[1];[3]};
w = ’aab’;
>> [Cbw] = CurEst BRG(Pre,Post,M0,L,E,w)
Cbw =

[4×1 double]

Fig. 13. Computation of the set of basis markings consis-
tent with aab.

>> B = BRG L(Pre, Post, M0, L, E);
>> [ObsB, yb] = ObsBRG(B)
ObsB =

[3] ’12’ [4×3 double] [0] [ ]
yb =

[0] [1] [2]

Fig. 14. Observer of the BRG in Example 5.

where Cb(w) = {[0 0 0 1]T }. Analogously, for initial s-
tate estimation, we can use function IniEst BRG to com-
pute the set of basis markings generating aab, namely
{[1 0 0 0]T , [0 1 0 0]T , [0 0 0 1]T }.
Let us focus on the data structure of the observer ob-
tained by function obsBRG (which could be helpful to
readers interested in building their own functions). After
constructing the BRG B through function BRG L, we input
[ObsB,yb]=ObsBRG(B) to compute the observer of the
BRG (see Fig. 14). ObsB is a 1×5 cell, and columns 1 to 5
represent the number of states 8 of the observer, the set of
events 9 , the transition function 10 , the set of initial states,
and the set of marked states, respectively. Each element
of yb corresponds to the set of basis markings of a state
of the observer. We point out that the estimator of the
BRG, and the observer/estimator of the RG obtained by
functions in Table 4 have a similar structure of ObsBRG.
Therefore, they are not discussed here. �

8 It also denotes the set of states of the observer. Suppose the
number of states is n. Then the set of states is {0, 1, . . . , n− 1}.
9 Alphabetical symbols input to the LPN are orderly projected to
numerical symbols in the observer. For instance, E = {[′a′]; [′b′]} of
the LPN becomes E =′ 12′.
10Suppose one row of the matrix is [xi j xk]. It means that from
state xi the occurrence of event k leads to state xk.

Table 5. Main Functions in PN DIAG

Name Function

BRG D constructs the BRG for fault diagnosis wrt
the class of faults

showBRG D shows the BRG in a readable text form

MBRG constructs the modified BRG (MBRG) that
is used to check whether the LPN system is
diagnosable or not.

showMBRG shows the BRG in a readable text form

BRD constructs the basis reachability diagnoser, a
diagnoser construted on the BRG.

showBRD shows the BRG in a readable text form

diagnosability tests if a bounded LPN system is diagnosable
wrt each fault class

diagnosis online diagnoses an LPN system for a given
observation w

>> [Pre, Post, M0] = getMatrix; F = {[3]; [5]}; L = {[1]}; E =
{[’a’]};
BG = BRG D(Pre, Pos, M0, F, L, E);
BD = BRD(BG, Pre,Post, M0, F, L, E);
T = MBRG(Pre, Pos, M0, F, L, E);
>> diagnosability(T, BD)

All fault classes are not diagnosable since for each of them there
is an indeterminate loop.
Fault class 1:

path = aa
cycle = a

Fault class 2:
path = aa
cycle = a

Fig. 15. Diagnosability test in Example 6

>> w = ’a’; diagnosis(Pre, Post, M0, w, L ,F, E)
The following results summarizes the step of the on-line diagnosis
carried out by the observed word: - ’a’.

SUFFIX DIAGNOSIS STATE

eps 0 0
a 2 2

Fig. 16. Online diagnosis of observation w = a.

4.3 Fault Diagnosis

Given an LPN system and a set of fault transitions,
which have been partitioned into several fault classes F =
{f1, f2, . . . , fr}, two main problems are investigated in the
literature: i) fault diagnosis, which consists in establishing,
given an observation, if a fault in a given class has
occurred, and ii) diagnosability analysis, which consists
in establishing if the occurrence of a fault in a given class
could be detected after the occurrence of a finite number
of other events. Cabasino et al. have proposed efficient
algorithms to solve the above problems using LPNs (see
(Cabasino, 2009) for technical details). Such algorithms
are based on the notion of BRG, and are implemented by
the MATLAB functions in directory PN DIAG. Table 5
lists some of the functions.

Example 6. Consider again the LPN in Fig. 8. Let t3
and t5 be fault transitions that belong to two different
fault classes f1 and f2, respectively, t2 and t4 be regular
unobservable transitions, and the label associated to t1 be
a. To check if f1 and f2 are diagnosable, first the BRG
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Table 6. Main Functions in PN OPAC

Name Function

BRG Cur constructs the corresponding BRG for current-
state opacity wrt a given secret

showBRG Cur shows the BRG in a readable text form

CurOpac checks if the LPN system is current-state opaque
wrt a given secret

InitOpac checks if the LPN system is initial-state opaque
wrt a given secret

>> [Pre, Post, M0] = getMatrix; E = {[’a’]}; L = {[1, 3]};
W = [-1 0 0 -1]; K = -2; S = { W; K};
>> [CSO, Obs, y] = CurOpac(Pre, Post, M0, L, E, S)
CSO =

1
Obs =

[4] ’1’ [4×3 double] [0] [ ]
y =

[0] [1×2 double] [1×2 double] [1×3 double]

Fig. 17. Check if the LPN system is current-state opaque.

for diagnosis is constructed using funcition BRG D, based
on which we construct the basis reachability diagnoser
through function BRD. Then, the modified BRG is built
using MBRG, and finally function diagnosability can be
applied. The above steps and the obtained results are
presented in Fig. 15, which shows that neither of f1 and f2
is diagnosable. Given an observation w = a, to diagnose if
fault f1 or f2 has occurred we use function diagnosis, and
the result is shown in Fig. 16. When nothing is observed
(i.e., suffix equals eps) the diagnosis state is [0 0], which
means that neither f1 nor f2 has occurred; when a is
observed, the diagnosis state is [2 2], which means that
f1 and f2 may have occurred and they are contained in
one (but not in all) justification of w. �

4.4 State-Based Opacity Verification

Given an LPN system and a secret, opacity verification
consists in checking if the system is opaque wrt the secret.
PetriBaR can be used to verify current-state opacity
(CSO) and initial state opacity (ISO). It is assumed
that the secret is described by a set of GMECs, and
the unobservable induced subnet is acyclic. For initial-
state opacity verification, it is also assumed that none
of the secret markings is weakly exposable, i.e., their
unobservable reach is not strictly contained in the secret.

Function for opacity verification are in directory P-
N OPAC, and are based on the results in (Tong et al.,
2017). Some significant functions are listed in Table 6.

Example 7. Consider again the PN system in Fig. 8. Let
M0 = [1 1 0 0]T , Tu = {t2, t4, t5}, the labels assigned to t1
and t3 be a, and the secret S = {M |M(p1) +M(p4) ≥ 2}.
We use function CurOpac to check if the LPN is current-
state opaque wrt S, and the result is presented in Fig. 17.
The value of CSO is 1, which means that the LPN is
current-state opaque; if the value is 0, the LPN system is
not current-state opaque. �

5. CONCLUSIONS

The presented toolbox PetriBaR provides multiple func-
tions for PN analysis, including the solutions to four prob-

lems: reachability, state estimation, fault diagnosis, and
opacity verification. In all cases BRG-based techniques are
implemented. Compared with other PN tools, PetriBaR
has high flexibility, portability and compatibility. As a
future work, we plan to integrate all functions with the
graphical editor to form a fully functional software. Mean-
while, more functions will be continuously added to enrich
the toolbox, such as functions for opacity enforcement.
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