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Cyclin-dependent kinases (CDK) 4/6 inhibitors, namely abemaciclib, palbociclib, and

ribociclib, interfere with cell cycle progression, induce cell senescence andmight promote

cancer cell disruption by a cytotoxic T cells-mediated effect. Phase III randomized clinical

trials have proven that CDK4/6 inhibitors (CDK4/6i) in combination with several endocrine

agents improve treatment efficacy over endocrine agents alone for hormone receptor

positive (HR+) HER2 negative (HER2–) metastatic breast cancer (MBC). Based on such

results, these combinations have been approved for clinical use. Preclinical studies in cell

cultures and mouse models proved that CDK4/6i are active against a broad spectrum

of solid tumors other than breast cancer, including liposarcoma, rhabdomyosarcoma,

non-small cell lung cancer, glioblastoma multiforme, esophageal cancer, and melanoma.

The role of CDK4/6i in monotherapy in several solid tumors is currently under evaluation

in phase I, II, and III trials. Nowadays, abemaciclib is the only of the three inhibitors that

has received approval as single agent therapy for pretreated HR+ HER2– MBC. Here we

review biological, preclinical and clinical data on the role of CDK4/6 inhibitors as single

agents in advanced solid tumors.

Keywords: solid tumors, cyclin-dependent kinases, palbociclib, ribociclib, abemaciclib, cell cycle

INTRODUCTION

The key role of cyclin-dependent kinases (CDK) and D-type Cyclins (CCND) in cell cycle
progression from G1 to S phase was discovered more than 20 years ago (1). Since then, it has
been demonstrated that several solid tumors present direct modifications of genes codifying for
several proteins involved in CCND-CDK activity and regulation (2). As a result, in recent years,
small molecule inhibitors which target this mitogenic pathway have been developed. Three of them
are currently available for the treatment of metastatic breast cancer (MBC) in combination with
aromatase inhibitors or fulvestrant. This review focuses on the role of CCND-CDK in normal cells,
on how this pathway is altered in solid tumors and on the activity of CDK4/6 inhibitors (CDK4/6i),
as single agents in the treatment of advanced solid tumors in adult patients.
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THE ROLE OF CDK IN CELL CYCLE AND
SOLID TUMORS

CCND interact with several CDK, including CDK 4/6, forming
functional complexes that phosphorylate and inactivate
retinoblastoma protein (pRb) (1). This protein operates a
negative control on E2F transcription factors, resulting in an
inhibition of cell cycle progression. Indeed, E2F modulates
the expression of a broad variety of genes implied in cell
cycle S1 phase and mitosis. On the opposite, functional
CCND-CDK4/6 complexes allow E2F to be released from
pRb control and promote the transition from the G1 to the
S phase of the cell cycle (Figure 1) (1). Cyclin D is important
in growth factor signaling and, more in general, is a common
downstream pathway for several mitogenic signaling, including
phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR), mitogen-activated protein kinase
(MAPK), wnt/beta-catenin, janus kinase (JAK)-signal transducer
and activator of transcription (STAT), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), and steroid
hormone signaling pathways (e.g., estrogen, progesterone, and
androgen) (Figure 1) (2). CDK 4/6 activity is regulated by the
INK4 family of proteins. Among them, p16INK4A appears to be
the most relevant, in terms of tumor suppression activity. Several
other factors, including p21CIP1 and p27KIP1 modulate CCND-
CDK4/6 complexes’ activity in a context-dependent manner
(2). Finally, the SMARCB1/INI1/SNF5 tumor suppressor gene
directly represses the transcription of the Cyclin-D coding
gene CCND1 and increases the expression of CCND-CDK4/6
negative regulators p16INK4A and p21CIP1 (2).

In solid tumors, an hyperactivation of the CCND-CDK4/6
activity can occur through: (1) increased activity of upstream
mitogenic signaling pathways; (2) aberrant activity of the
components of the pathway or their regulators. This latter may
depend on various molecular mechanisms, i.e., point mutations,
translocations or amplification of CDK4/6, amplification of
D-type cyclins, deletions that cause the loss of p16INK4A or
pRb expression, epigenetic modifications and downregulation of
microRNAs (miRNAs) that target CDK4/6. Alterations of the
expression of CCND-CDK4/6-INK4-Rb pathway components or
of their direct regulators result in cell cycle progression and cell

Abbreviations: CDK4/6, cyclin-dependent kynases 4 and 6; CDK4/6i, CDK4/6

inhibitors; CCND, cyclin D; PI3K, phosphatidylinositol 3-kinase; mTOR,

mammalian target of rapamycin; MAPK, mitogen-activated protein kinase;

JAK, janus kinase; STAT, signal transducer and activator of transcription;

NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells;

miRNAs, microRNAs; pRb, retinoblastoma protein; ET, endocrine therapy;

ER+, estrogen receptor positive; HR+, hormone receptor positive; HER2–,

human epidermal growth factor receptor 2 negative; MBC, metastatic breast

cancer; BC, breast cancer; GBM, glioblastoma multiforme; WD/DDLS, well-

differentiated/dedifferentiated liposarcoma; NSCLC, non-small cell lung cancer;

SCLC, small cell lung cancer; GIST, gastrointestinal stromal tumors; PDA,

pancreatic ductal adenocarcinoma; EAC, esophageal adenocarcinoma; BBB,

blood-brain barrier; ORR, overall response rate; PFS, progression-free survival;

mPFS, median progression-free survival; TTP, time to progression; DCR, disease

control rate; CBR, clinical benefit rate; DLT, dose-limiting toxicity; MTD,

maximum tolerated dose; RP2D, recommended phase II dose; ADRs, adverse

reactions; SD, stable disease; PR, partial response; CR, complete response; CI,

confidence interval; HR, hazard ratio.

proliferation and represent a key mechanism of tumorigenesis
(2). The solid tumors for which the CCND-CDK4/6-INK4-
Rb pathway is more frequently deregulated through direct
genetic, epigenetic or transcriptional modifications are breast,
head and neck, lung, pancreatic, ovarian and bladder cancer,
melanoma, endometrial carcinoma, liposarcoma, neuroblastoma,
and malignant rabdoid tumors (3–25). Because of their central
role in tumorigenesis and progression, CDK4 and 6 might
represent a valid therapeutic target for cancer treatment in a
broad spectrum of solid tumors.

CDK 4/6 INHIBITORS: AN OVERVIEW

Mechanism of Action and Toxicities
After the discovery of CDK 4/6 role in tumorigenesis, several
CDK inhibitors have been developed for clinical use. The most
recent are selective for CDK4 and CDK6, preventing inhibition
of other CDKs activity (1). Three CDK4/6i are currently
approved in clinical practice, namely: palbociclib, ribociclib, and
abemaciclib. Their mechanism of action is based on the binding
to CDK 4 and 6 ATP pocket, which leads to a substantial
inactivation of CCND-CDK4/6 complexes, with a subsequent
increase in the activity of pRb. The logic consequence is a
G1 phase arrest (Figure 2). The interference with cell cycle
progression results in an increased apoptosis phenomena in
tumor cells (1, 2).

Palbociclib and ribociclib are similar in chemical structure,
while abemaciclib differs and has a higher CDK4/6 binding power
than the other two CDK4/6i. More specifically, abemaciclib
shows higher selectivity for the complex CDK4/cyclin D1
compared to the other two compounds, and is 14 times
more potent against CDK4 than CDK6 (2, 26). Cell cycle
arrest and subsequent apoptosis are sought to be the most
relevant mechanism of action of CDK4/6i. However, a very
recent study based on mouse models of breast cancer and
other solid tumors and on a confirmatory trascriptomic
analysis of serial biopsies from a clinical trial involving
CDK4/6i in breast cancer, showed that CDK4/6 inhibition
might also induce a broad spectrum of immunologic events.
More precisely, they seem to increase the antigen presenting
capability of tumor cells, while concurrently reducing the
immunosuppressive population of T regulator lymphocytes.
This could in turn enhance the activation of cytotoxic T
cells, which ultimately kill tumor cells (27). However,
immunologic effects of CDK4/6i are still object of debate
and need further validation/confirmation. Despite a very
similar mechanism of action, dose limiting toxicities (DLTs)
observed in phase I trials differed, with neutropenia being
the DLT for palbociclib, diarrhea and fatigue for abemaciclib,
and neutropenia, mucositis, asymptomatic thrombocytopenia,
pulmonary embolism, increased creatinine, hyponatriemia,
and QTcF prolongation for ribociclib (2, 28). Some of the
latter toxicities (such as creatinine increase or thromboembolic
events) were also reported for abemaciclib however they
did not represent formal DLTs in phase I trials. The most
common CDK4/6i toxicities of any grade observed in pivotal
phase III trials were neutropenia, leukopenia, fatigue and
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FIGURE 1 | Mitogenic signaling and cell cycle progression. GFs, growth factors; TKR, tyrosine kinase receptor; SFs, survival factors; HR, hormone receptor; SHs,

steroidal hormones (i.e., estrogens, androgens); TFs, transcriptional factors.

FIGURE 2 | CDK4/6 inhibitors’ main effect on cell cycle progression.

nausea for palbociclib (29, 30), neutropenia, nausea, infections,
fatigue and diarrhea for ribociclib (31, 32), creatinine increase,
diarrhea, fatigue, and neutropenia for abemaciclib (33, 34).
The pathophysiology of such toxicities has mostly to be
linked to CDK4/6i mechanism of action. Additionally,
abemaciclib-induced creatinine increase, might be due to
its competitive inhibition of efflux transporters of creatinine
(26). A comparison between main pharmacokinetic and
pharmacodynamic properties among the three molecules
is reported in Table 1. All of the three molecules are orally
administered and are metabolized by the liver. Palbociclib
and ribociclib, due to longer half-life than abemaciclib, can be

administered once daily, while abemaciclib needs twice daily
administration.

Current Indications
The three inhibitors are currently available for the treatment of
hormone receptor positive (HR+) Human Epidermal Growth
Factor Receptor 2 negative (HER2–) MBC in combination with
an aromatase inhibitor (AI) as first-line endocrine therapy or in
combination with fulvestrant in pretreated patients. All of these
combinations substantially doubled the comparator in terms
of median progression-free survival (PFS) (29–34). Moreover,
ribociclib was also studied in combination with tamoxifen or AIs
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TABLE 1 | CDK 4/6 inhibitors’ pharmacological characteristics.

Drug

properties

CDK 4/6 inhibitors

Palbociclib Ribociclib Abemaciclib

Bioavailability (35) 46% Unknown 45%

Protein binding

(35)

85% ∼70% 96.3%

Metabolism (35) Liver Liver Liver

Elimination half-life

(35)

29 (±5) h 32.0 (29.7–54.7) h 18.3 h

Excretion (35) 74% feces, 18%

urine

69% feces, 23%

urine

81% feces,

3% urine

IC50 (nM) (2)

â CDK4-cyclin D1 11 10 2

â CDK6-cyclin

D1-2-3

15 39 10

â CDK1-cyclin B >10,000 113,000 1,627

â CDK2-cyclin

A-E

>10,000 76,000 504

â CDK9-cyclin T NR NR 57

MTDs (2) 125mg 900mg 200mg every

12 h

DLTs (2) Neutropenia Neutropenia,

Mucositis,

Asymptomatic

thrombocytopenia,

Pulmonary

embolism,

Increased

creatinine,

Hyponatriemia,

QTcF prolongation

(>500ms)

Fatigue

Recommended

dose (35)

125 mg/die on a

21-on-28-days

schedule

600 mg/die on a

21-on-28-days

schedule

200mg twice

daily

Administration (35) Oral Oral Oral

and a GnRH analog (GnRHa) in pre-/perimenopausal setting in
the context of the MONALEESA 7 phase III trial (36), which
enrolled HR+ HER2– MBC in first line setting and results were
in line with those published in the other CDK4/6i pivotal trials.
Results and characteristics of the pivotal trials, namely PALOMA
2 and 3, MONALEESA 2, 3, and 7, and MONARCH 2 and 3 are
reported in Table 2.

SINGLE AGENTS CDK4/6I: CURRENT
EVIDENCE

As previously reported, the CCND-CDK4/6-INK4-Rb pathway
is frequently deregulated through direct genetic, epigenetic or
transcriptional modifications in a broad variety of neoplasms (3–
25). Indeed, apart from their use in combination with ET for the
treatment of HR+ HER2– MBC, CDK4/6i are also under study
as single agent in breast cancer (BC) and other solid tumors.
The following paragraphs will resume the current preclinical and
clinical evidence supporting this experimental treatment strategy.

Preclinical Evidence
Single agent CDK4/6i have shown consistent activity in
preclinical models (38–56). In brief, the most relevant results
were observed in in vivo and/or in vitro models of colon
cancer (palbociclib, abemaciclib), glioblastoma (palbociclib,
abemaciclib), breast cancer (palbociclib, ribociclib, abemaciclib),
prostate carcinoma (palbociclib), sarcomas (palbociclib and
ribociclib), pancreatic ductal adenocarcinoma (palbociclib),
melanoma (palbociclib, ribociclib, abemaciclib), non-small
cell lung cancer (palbociclib, abemaciclib), and esophageal
adenocarcinoma (abemaciclib).

Palbociclib
A study demonstrated a potent antitumor activity in different
mice models, bearing colon cancer, glioblastoma, breast, and
prostate carcinoma xenografts. Palbociclib, given as continuous
treatment, was able to arrest growth and induce regression
of tumor xenografts. A modest activity was also observed in
non-small cell lung cancer (NSCLC) models (38). Palbociclib
was also able to arrest the growth of estrogen receptor-positive
(ER+) BC cell lines (39). A potent antitumor activity was also
demonstrated in an ex vivo model of human breast tumors
(40). Palbociclib activity was demonstrated on cell lines and
intracranial xenografts of glioblastoma multiforme (GBM) (41).
In the latter case, the proneural subtype appeared to be the
most sensitive to palbociclib activity (42). In ovarian cancer cell
lines, Palbociclib induces G0/G1 cell cycle arrest by reducing
pRb phosphorylation (43). Palbociclib is also effective in arresting
cell cycle progression and blocking proliferation in synovial
sarcomas cell lines (44). Another study demonstrated that
palbociclib may inhibit cellular growth and induce senescence in
liposarcoma cell lines and mice xenografts (45) and in sarcoma
cell lines (46). An antiproliferative effect was observed also in
rhabdomyosarcoma-derived cell cultures (47). Palbociclib was
also studied in immunocompromised mice with subcutaneous
and intrasplenic injections of pancreatic ductal adenocarcinoma
(PDA) cell lines derived from patients’ specimens. The CDK
4/6i significantly disrupted extracellular matrix organization
and increased quiescence and apoptosis, decreased invasion,
metastatic spread and tumor progression (48).

Ribociclib
Ribociclib as single agent is effective in inhibiting cell growth
in liposarcoma cell lines. Moreover, the administration to mice
bearing human liposarcoma xenografts resulted in tumor growth
inhibition and/or tumor regression. A similar effect was noted
in preclinical models of breast cancers with intact estrogen
receptor and/or activating aberrations of PIK3CA/HER2 (49).
In preclinical models, ribociclib also showed some activity in
melanomas with activating mutations of BRAF or NRAS (50).

Abemaciclib
Abemaciclib is effective in inducing cell cycle arrest and tumor
growth inhibition in colon cancer and breast cancer cell lines
and in mice bearing human melanoma and colon cancer
xenografts (51, 52). Abemaciclib, similarly to temozolamide,
increased survival in a rat xenograft model of glioblastoma
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TABLE 2 | Characteristics of pivotal trials concerning CDK4/6 inhibitors approved for clinical practice.

Characteristics Pivotal trials

Paloma 2 (29) Paloma 3 (30) Monaleesa 2 (31) Monaleesa 7 (36) Monaleesa 3 (32) Monarch-3 (33) Monarch-2 (34)

Combination Palbociclib +

letrozole vs.

letrozole

Palbociclib +

fulvestrant vs.

fulvestrant

Ribociclib +

letrozole vs.

letrozole

Ribociclib +

tamoxifen or AI +

GnRHa vs.

tamoxifen or AI +

GnRHa

Ribociclib +

fulvestrant vs.

fulvestrant

Abemaciclib +

NSAI vs. NSAI

Abemaciclib +

fulvestrant vs.

fulvestrant

Menopausal

status

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal Pre- and

perimenopausal

Post-menopausal Post-menopausal

(iatrogenic or

physiologic)

Post-menopausal

(iatrogenic or

physiologic)

Setting 1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

≥1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

1st line HR+

HER2– MBC

Median PFS

(months)

24.8 vs. 14.5 9.5 vs. 4.6 NR vs. 14.7 23.8 vs. 13.0 20.5 vs. 12.8 NR vs. 14.7 16.4 vs. 9.3

PFS HR (95%

Cis); p-value*

0.58 (0.46–0.72);

p < 0.001

0.46 (0.36–0.59);

p < 0.0001

0.56 (0.43–0.72);

p = 3.29 × 10−6
0.553

(0.441–0.694);

p < 0.0001

0.59 (0.48–0.73);

p = 4.10 × 10−7
0.543

(0.409–0.723);

p = 0.000021

0.553

(0.449–0.681);

p = 0.000021

ORR 42.1 vs. 34.7% 25 vs. 11% 40.7 vs. 27.5% 51 vs. 36% 41 vs. 9% 59.2 vs. 43.8% 48.1 vs. 21.3%

Trial phase III III III III III III III

FDA/EMA

status

A/A A/A A/A A/NA A/NA A/A A/A

*OS data not mature, yet, except for palbociclib + fulvestrant vs. fulvestrant [HR 0.81 (0.64–1.03); p = 0.043] (37).

NSAI, non-steroidal aromatase inhibitor; AI, aromatase inhibitor; GnRHa, gonadotropin releasing hormone analog; HR+, ER and/or PgR positive; HER2–, human epidermal growth

factor receptor 2 negative; A, approved; NA, not yet approved.

(53), thus suggesting a significant capability to cross the
blood-brain barrier (BBB). It was also effective on NSCLC
tumor xenografts (54). Abemaciclib was also able to inhibit
growth of melanoma tumor xenografts and delay tumor
recurrence in combination with vemurafenib. Furthermore,
abemaciclib yielded tumor growth regression in a vemurafenib-
resistant model, and induced apoptotic cell death in a
concentration-dependent manner, suggesting that this drug
might be a viable therapeutic option to overcome MAPK-
mediated resistance to B-RAF inhibitors in B-RAF V600E
melanoma (55). Abemaciclib was also evaluated in preclinical
models of esophageal adenocarcinoma (EAC): in tumor cell lines
it appeared to increased apoptosis and decrease proliferation
while in mice models, it was able to decrease of more than 20%
tumor volume (56).

Clinical Evidence
The preclinical data reviewed above offered a solid rationale to
test single agent CDK4/6i in clinical trials.

Palbociclib: Completed Trials
Palbociclib was tested in a cohort of 41 patients affected by several
solid tumors in the context of a phase I dose escalating study.
Tumors had been screened for the presence of pRb. In this trial
the maximum tolerated dose (MTD) and recommended phase
II dose (RP2D) of single-agent palbociclib was 125 mg/day on a
21-of-28 days schedule. The most frequent G3/4 toxicities were
neutropenia, leucopenia and anemia with the first present in 20%
of cases, the second in 10% and the latter in 7% of cases. Albeit
being a phase I trial, clinical activity was also reported. Among 37

evaluable patients, 27% achieved stable disease (SD) for at least 4
cycles and 16% for at least 10 cycles (57).

Several phase II studies tested palbociclib monotherapy in
a broad variety of solid tumors, namely well-differentiated or
dedifferentiated liposarcoma (WD/DDLS) (58, 59), NSCLC (60),
gastric and esophageal cancer (61), urothelial carcinoma (62),
epithelial ovarian cancer (63), HR+ and triple negative (TN) BC
(64, 65). The best results were observed in WD/DDLS, ovarian
and BC, counterbalanced by overall disappointing results in
the other neoplasms. The most frequent grade (G)3/4 adverse
reactions (ADRs) were hematologic.

More in details, a phase II study explored the activity and
safety of palbociclib on a 200mg/day on a 14-of-21-days schedule
in patients with advanced CDK4-amplified WD/DDLS. The
trial enrolled 30 patients. The estimated 12-weeks PFS rate
was 66%, far exceeding the expected rate of 40% for an active
agent. There was only one partial response (PR) and 19 SD
at 12 weeks. Median PFS (mPFS) was 17.9 weeks. The most
frequent G3/4 ADRs were neutropenia (50%), leukopenia (47%),
thrombocytopenia (30%), lymphopenia (27%), and anemia
(17%) (58). In a subsequent study, patients affected by advanced
WD/DDLS were treated with standard palbociclib 125mg for 21
days in 28 days-schedule. The trial results showed a successful
PFS at 12 weeks of 57.2% [95% Confidence Interval (CI): 42.4–
68.8%]. The median PFS was 17.9 weeks (95% CI: 11.9–24.0
weeks). One complete response (CR) was observed. G3/4 ADRs
were primarily hematologic and included neutropenia (33%),
without neutropenic fever (59). A clinical trial in previously-
treated patients with recurrent or metastatic NSCLC was
prematurely halted due to lack of objective tumor responses. Half
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of evaluable patients achieved SD. The mPFS was 12.5 weeks.
One patient experienced G3 transaminitis and unexpected G4
rhabdomyolysis, supposedly due to concomitant use of high-
dose simvastatin. Some patients developed G3 or 4 neutropenia,
and G3 thrombocytopenia (60). Single agent palbociclib was also
not effective in advanced gastric and esophageal tumors, even
if the patients had been selected for Rb expression and despite
19/38 tumors showed amplification of CCND1. The median
duration of treatment was of 1.7 months, with a maximum of
5.5months. No objective responses were observed (61). Similarly,
palbociclib was not effective in a phase II trial conducted in
patients affected by metastatic urothelial carcinoma with both
p16 loss and pRb expression (62). A single arm phase II trial in
patients with heavily pretreated epithelial ovarian cancer showed
a discreet activity and efficacy for palbociclib as single agent.
Thirty percent of patients were progression-free at 6 months,
with a median PFS of 3.7 months (95% CI: 1.2–6.2). A 4% of
PR and a 65% of SD were observed. The toxicity was minimal.
Predictive biomarker analyses are ongoing (63). A phase II study
of palbociclib as single agent was conducted in patients with
metastatic pRb positive BC. The clinical benefit rate (CBR) at 6
months, composed of all complete responses (CR), PR and SD
observed as best responses, was 21%, the median PFS were of
4.1 months (95% CI 2.3–7.7) for patients with ER+ HER2– BC,
18.8 months (95%CI: 5.1—NE) for ER+HER2+ patients and 1.8
months (95% CI: 0.9—NE) for patients with triple negative (TN)
tumors, respectively. Neutropenia (50%) and thrombocytopenia
(21%) were the most frequent G3/4 toxicities (64). The TREND
study, an Italian multicentre open-label phase II trial, compared
single agent palbociclib with palbociclib combined with the same
ET received prior to disease progression in post-menopausal
women with HR+ HER2– MBC. The trial enrolled 115 patients,
the primary endpoint was CBR. In both arms, 67% of pts had the
study treatment as second line, 33% as third line, and about 1/3
of pts also had received 1 prior chemotherapy for MBC. The CBR
was similar in both arms, 54% (95% CI: 42–67%) observed in the
combination one, and 60% (95% CI: 48–73%) with palbociclib
alone. The Overall Response Rates (ORR), composed of all CR
and PR observed as best responses, were 11% (95% CI: 3–
19%) and 7% (95% CI: 0.4–13%) with the combination therapy
and palbociclib alone, respectively. The trial was not powered
to estimate survival endpoints, however exploratory analyses
were performed, with no significant differences observed in PFS
(p = 0.13) and a longer median duration of clinical benefit for
the combination than for the single agent [11.5 months, 95% CI:
8.6–17.8 vs. 6 months, 95% CI: 3.9–9.9; Hazard Ratio (HR): 0.31,
95% CI: 0.1–0.7, p-value 0.001]. Overall, however, the primary
endpoint did not differ significantly between the 2 study arms,
thereby lending support to the potential use of palbociclib as
single agent in pretreated patients with HR+HER2– MBC (65).

Palbociclib: Ongoing Trials
A number of trials are currently ongoing with single agent
palbociclib in several advanced solid tumors.

Results are awaited from the NCT03219554 single arm
phase II trial that is evaluating the efficacy of single agent
palbociclib in patients with recurrent or metastatic advanced

thymic epithelial tumors pretreated with one or more cytotoxic
chemotherapy. The primary endpoint is PFS (66). The activity
and efficacy of single agent palbociclib will be also evaluated
in the Lung-MAP trial, a phase II/III biomarker-driven study
for second line therapy of squamous cell lung cancer (SCLC).
More specifically, single agent palbociclib will be studied in the
context of a sub-study that includes all patients that harbored
genetic alterations involving cell-cycle genes. The accrual has
been completed and results are awaited (67). A phase II study, the
NCT01907607—CYCLIGIST, has also already completed accrual
and will evaluate the efficacy of single agent palbociclib in
patients with gastrointestinal stromal tumors (GIST) refractory
to imatinib and sunitinib. The primary endpoint is the non-
progression rate at 4 months (68). Results are also awaited for
the NCT01356628. This multicenter single arm phase II trial
is exploring the efficacy of single agent palbociclib in advanced
hepatocellular carcinoma pretreated with standard therapies.
The primary endpoint is the time to disease progression (TTP)
(69). Another phase II trial, the NCT02806648—PALBONET, is
ongoing to demonstrate the safety and activity of palbociclib in
subject affected by pNET with overexpression of CDK4, RB1, and
CCND1. Results are awaited (70).

Several trials are currently recruiting participants. The
NCT02530320 phase II study is ongoing in patients with
oligodendroglioma or recurrent anaplastic oligoastrocytoma
with preserved pRb activity. The primary end point is the
PFS rate at 6 months (71). Another ongoing single arm phase
II study (NCT03242382) will evaluate the efficacy of second-
line palbociclib in patients with advanced soft tissue sarcomas
with CDK4 overexpression. The primary endpoint is the PFS
at 6 months (72). The NCT01037790 phase II clinical trial is
studying activity, safety and tolerability of single agent palbociclib
in preatreated refractory solid tumors, including metastatic
colorectal cancer that harbors the Kras or BRAF mutation,
metastatic breast cancer, advanced or metastatic esophageal
and/or gastric cancer, cisplatin-refractory, unresectable germ cell
tumors and any tumor type if tissue tests positive for CCND1
amplification, CDK4/6 mutation, CCND2 amplification or any
other functional alteration at the G1/S checkpoint. Co-primary
endpoints are the response rates and the safety and tolerability
profile. The trial is currently recruiting participants (73).

Finally, a single arm phase II trial (NCT03454919) in acral
melanoma bearing alterations in cell cycle pathways, including
CDK4 amplification and/or CCND1 amplification and/or P16
(CDKN2A) loss, is going to start but not yet recruiting patients.
The primary end point is PFS (74).

Ribociclib: Completed and Ongoing Trials
The initial phase I dose escalation study of single-agent ribociclib
enrolled 128 patients with pRb positive advanced solid tumors
and lymphomas. The MTD and RP2D were established as 900
and 600 mg/day, respectively, on a 21-of-28-days schedule. The
most relevant G3/4 ADRs were neutropenia (27%), leukopenia
(17%), fatigue (2%), and nausea (2%). An asymptomatic QTcF
prolongationwas observable, butmostly with doses≥600mg/day
(9% of patients at 600 mg/day; 33% at doses >600 mg/day).
Response rates were evaluable for 110 patients, though this was

Frontiers in Oncology | www.frontiersin.org 6 December 2018 | Volume 8 | Article 608

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Schettini et al. CDK4/6 Inhibitors in Solid Tumors

a phase I trial. There were 3 PR and 43 SD as best response;
eight patients were progression-free for more than 6months (75).
Results are awaited for an ongoing phase I study (NCT02345824)
that will assess tumor pharmacokinetics and efficacy of ribociclib
in patients with recurrent glioblastoma or anaplastic glioma (76).

Several phase II trials of single agent ribociclib are
currently ongoing. More specifically, the NCT02571829 trial is
assessing the efficacy and safety of ribociclib in patients with
advanced WD/DDLS. Patients’ recruitment has been completed
(77). Another trial is ongoing in patients with advanced
neuroendocrine tumors of foregut origin progressed after prior
systemic therapy. The primary endpoint is the objective response
rate (78). The NCT02300987 randomized study is ongoing
in patients with relapsed, refractory, incurable teratoma with
recent progression from at least 1 prior line of chemotherapy
and for which no additional standard surgical or medical
therapy exists. This trial will compare ribociclib to placebo.
The primary endpoint is PFS. Recruitment has been completed
and results are awaited (79). Another phase II single arm
study (NCT03096912) assessing efficacy and safety of ribociclib
in patients with advanced WD/DDLS is currently recruiting
patients. The primary endpoint is the response to therapy after
36 months, as evaluated by RECIST and Choi criteria (80).

Abemaciclib: Completed Trials
Abemaciclib as single agent was investigated in a multicentre
phase I study conducted by Patnaik and colleagues. In this
study, the 225 enrolled patients were affected by NSCLC, BC,
melanoma, colorectal cancer and GBM. The MTD was 200mg
twice daily and the DLT was G3 fatigue. The most relevant G3
ADRs were diarrhea (5%), nausea (4%), fatigue (7%), vomiting
(2%), and neutropenia (7%). Activity data were also reported.
Fifteen patients experienced SD for at least 4 cycles, with 3
patients achieving SD for 8, 16, and 26 cycles, respectively. One
patient with ovarian cancer had a durable and relevant CA125
response. One patient with KRAS mutant NSCLC had a PR. One
patient with NRAS mutant melanoma had a confirmed PR. The
ORR was 31% for HR+ BC. Moreover, when also considering
patients who achieved SD as a best response, 61% of the overall
subjects obtained a clinical response lasting at least 6 months
(81, 82). A focus on 49 NSCLC patients was also published.
The most relevant G3 ADRs were diarrhea (2%), nausea (4%),
fatigue (2%), vomiting (2%), and anemia (2%); there were no
G4 events. Activity results were also shown. The disease control
rate (DCR = CR + PR + SD) was 51% with 1 confirmed PR.
The median duration of SD was 5.6 months and the median
PFS was 2.1 months. Twenty patients reached at least 4 cycles
and 13 reached at least 6 cycles. Among those 49 patients, 19
were affected by KRAS wildtype tumors, 26 by KRAS mutant
tumors and 4 with unknown KRAS status. The DCR was 37% for
KRAS wildtype and 54% for KRAS mutant NSCLC, consistently
with what observed in xenograft studies. The MTD was 200mg
twice daily (83). A randomized phase III study JUNIPER, has
compared abemaciclib plus best supportive care to erlotinib plus
best supportive care in patients with metastatic NSCLC with a
detectable KRAS mutation who have progressed after platinum-
based chemotherapy. The primary endpoint was OS and the

study failed to show a significant benefit. Moreover, researchers
reported a higher-than-expected OS rate in the control group
based on historical data (84, 85).

At present, the most relevant trial involving abemaciclib in
monotherapy is the MONARCH-1. Such study was a single
arm phase II trial in which the efficacy and safety profile of
abemaciclib as a single agent were investigated in HR+ HER2–
MBC. The 132 enrolled patients had to be progressed on
or after prior ET and must have received at least two prior
chemotherapy regimens, at least one but no more than two in the
metastatic setting. Abemaciclib was administrated at the dose of
200mg every 12 h on a continuous schedule. The ORR (primary
endpoint) was 19.7% (95% CI, 13.3–27.5), the CBR was 42.4%,
mPFSwas 6months (95%CI 4.2–7.5) andmedian overall survival
(OS) was 17.7 months (95% CI, 16 to not reached). In this
study the most common ADRs were diarrhea, fatigue, nausea,
neutropenia, leukopenia, anemia and increased serum creatinine
(86). This trial led to the FDA approval of abemaciclib as single
therapy in pretreated patients with HR+HER2– MBC.

Finally, preliminary results from a Simon 2-stage single
arm phase II trial in patients affected by HR+ HER2– MBC,
NSCLC or melanoma with brain metastases showed a number
of brain partial responses that met the predefined threshold for
expanding the trial to stage 2. For each patient cerebrospinal
fluid concentration of unbound abemaciclib were comparable
and consistent with those in the plasma and tumor tissue (87).
This trial provided evidence that abemaciclib is able to cross
the BBB in human, coherently with preclinical evidence on mice
xenografts (53). The second stage is ongoing.

Abemaciclib: Ongoing Trials
Several ongoing trials with single agent abemaciclib have
completed patients’ recruitment. An asian phase I study
(NCT02014129) is evaluating the safety and toxicities of
abemaciclib in advanced solid tumors and lymphomas in
Japanese participants (88). Abemaciclib is also currently
investigated in GBM at first relapse in the NCT02981940 phase
II trial. Tumors must be pRb wild type and carry inactivation
of CDKN2A/B or C in the tumor by homozygous deletion.
The coprimary endpoint are the intratumoral abemaciclib
concentration and the 6-months PFS (89). Another phase II
trial (active but no more recruiting), the NCT02450539, is
evaluating the efficacy of abemaciclib compared to docetaxel in
patients with metastatic squamous NSCLC previously treated
with platinum-based chemotherapy. The primary endpoint is
PFS (90). A phase II ongoing study (NCT02308020), currently
recruiting participants, is evaluating the activity and efficacy of
abemaciclib in patients with brain metastases secondary to HR+
breast cancer, NSCLC or melanoma. The primary endpoint is the
objective intracranial response rate. Preliminary results have been
reported in a previous section of this review (87). Other ongoing
trials are currently enrolling participants. More specifically, the
NCT02919696 phase I trial is studying abemaciclib in native
chinese patients with advanced and/or metastatic cancers (91).
A phase II trial (NCT03130439) is also investigating the efficacy
and activity of abemaciclib in metastatic triple negative breast
cancer expressing pRb. The primary endpoint is the ORR
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TABLE 3 | Currently ongoing trials on CDK 4/6 inhibitors as single agent in solid tumors.

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03123744 Palbociclib 200 Non-randomized Phase II study of palbociclib in adult subjects with

recurrent or refractory advanced cancers with aberration(s) in cyclin

(CCN/CDK) signaling.

Response rates in subjects with

advanced cancer and aberrations of

cyclin pathway gene(s) who are

treated with palbociclib

NCT02530320 Palbociclib 40 Phase II pilot, prospective, open label, multicenter clinical trial, to evaluate

the safety and efficacy of palbociclib, in patients with oligodendroglioma or

recurrent oligoastrocytoma anaplastic with the activity of the protein rb

preserved

PFS, PFS6m

NCT03454919 Palbociclib 60 Phase II clinical study on efficacy of palbociclib in advanced acral melanoma

with cell cycle gene aberrations

ORR, Complete response and partial

response

NCT 03242382 Palbociclib 38 Phase II multicenter trial of palbociclib in second line of advanced sarcomas

with CDK4 overexpression.

PFS rate

NCT03219554 Palbociclib 33 Phase II single center, open-label, single arm study of palbociclib treatment

in patients with recurrent or metastatic advanced thymic epithelial tumor

(TET) after failure of one or more cytotoxic chemotherapy regimens

PFS

NCT01907607 Palbociclib 63 Multicentre single-arm phase II study evaluating the efficacy and safety of

orally Palbociclib, 125 mg/day, 21 days on/7 days off, in patients with

documented disease progression while on therapy with second line sunitinib

for unresectable and/or metastatic GIST.

Efficacy, assessed based on

4-months non-progression

NCT01356628 Palbociclib 23 Phase II study of Palbociclib in the treatment of patients with advanced

hepatocellular carcinoma (HCC), a type of adenocarcinoma and the most

common type of liver tumor.

Time to disease progression

NCT02806648 Palbociclib 21 Phase II trial to assess the activity and safety of Palbociclib in patients with

well and moderately differentiated metastatic pancreatic neuroendocrine

tumors (pNET)

Response rates

NCT01037790 Palbociclib 205 Phase II trial is studying the side effects and how well PD 0332991 works in

treating patients with refractory solid tumors.

Response rates

NCT02345824 Ribociclib 3 Early-phase study to assess tumor pharmacokinetics and efficacy of the

cdk4/6 inhibitor Ribociclib in patients with recurrent glioblastoma or

anaplastic glioma

Inhibition of CDK4/CDK6 signaling

pathway in cell proliferation

NCT03096912 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1

Response to therapy as evaluated by

Choi [Time Frame: 36 months]

NCT02571829 Ribociclib 30 Phase II single arm study assessing efficacy and safety of Ribociclib in

patients with advanced well-differentiated or dedifferentiated liposarcoma

Response to therapy as evaluated by

RECIST 1.1 and Choi [Time Frame:

36 months (24 months accrual period

and 12 months follow up period)]

NCT02300987 Ribociclib 10 Randomized, blinded, placebo-controlled, phase II trial of LEE011 in

patients with relapsed, refractory, incurable teratoma with recent

progression.

Progression free survival (PFS) [Time

Frame: at 4 months]

NCT02919696 Abemaciclib 20 Phase I study of Abemaciclib in native Chinese patients with advanced

and/or metastatic cancers.

Number of Participants with One or

More Drug Related Adverse Events

Number of participants with one or

more drug related adverse events

NCT02014129 Abemaciclib 12 Phase I study of Abemaciclib in Japanese patients with advanced cancer Number of Participants with

LY2835219 Dose-Limiting Toxicities

(DLT)

NCT02981940 Abemaciclib 36 Phase II study of Abemaciclib in recurrent glioblastoma Intratumoral abemaciclib

concentration [Time Frame: 2 years]

PFS6m

NCT03130439 Abemaciclib 37 Phase II study of Abemaciclib for patients with retinoblastoma-positive,

triple negative metastatic breast cancer.

Objective Response Rate [Time

Frame: 2 years]

ORR as confirmed Complete

Response (CR) or Partial Response

(PR) per Response Evaluation Criteria

in Solid Tumors (RECIST)

NCT02846987 Abemaciclib 30 Phase II study of Abemaciclib in dedifferentiated liposarcoma PFS [Time Frame: 12 weeks]

NCT03356587 Abemaciclib 32 Biomarker-driven, open label, single arm, multicentre phase II study of

Abemaciclib in patients with recurrent or metastatic head and neck

squamous cell carcinoma who failed to platinum-based therapy

Response rate [Time Frame: 24

months]

(Continued)
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TABLE 3 | Continued

CDK4/6 inhibitor N Phase and setting Primary endpoint(s)

NCT03356223 Abemaciclib 25 Phase II trial aiming to evaluate the clinical interest of Abemaciclib

monotherapy in patients with locally advanced/metastatic head and neck

cancer after failure of platinum and Cetuximab or anti-EGFR-based therapy

and harboring an homozygous deletion of cdkn2a, and/or an amplification

of CCND1 and/or of CDK6

The 8-weeks non-progression rate

defined as the rate of patients with

complete response (CR), partial

response (PR) or stable disease (SD)

lasting at least 8 weeks, according to

RECIST v1.1 [Time Frame: 8 weeks

after start of treatment]

NCT02450539 Abemaciclib 150 Randomized phase II study of Abemaciclib vs. docetaxel in patients with

stage iv squamous non-small cell lung cancer previously treated with

platinum-based chemotherapy.

PFS

NCT02308020 Abemaciclib 247 Phase 2 study of Abemaciclib in patients with brain metastases secondary

to hormone receptor positive breast cancer, non-small cell lung cancer, or

melanoma.

Percentage of Participants Achieving

Complete Response (CR) or Partial

Response (PR): Objective Intracranial

Response Rate (OIRR)

NCT03310879 Abemaciclib 38 Phase II study of the cdk4/6 inhibitor Abemaciclib in patients with solid

tumors harboring genetic alterations in genes encoding D-type cyclins or

amplification of CDK4 or 6.

Progression-free rate

(92). The NCT02846987 phase II trial is currently recruiting
patients affected by not surgically resectable locally advanced or
recurrent dedifferentiated liposarcoma with any number of prior
therapies (including none). The primary endpoint is PFS (93). A
biomarker-driven phase II study (NCT03356587) of abemaciclib
in patients with recurrent or metastatic head and neck squamous
cell carcinoma who failed to platinum-based therapy is also
currently recruiting participants. Primary endpoint is response
rate (94). Another phase II trial in (NCT03356223) patients
with locally advanced/metastatic head and neck cancer is
currently evaluating abemaciclib monotherapy after failure
of platinum and cetuximab or anti-EGFR-based therapy, but
only in tumors harboring a homozygous deletion of CDKN2A,
and/or amplification of CCND1 and/or of CDK6. The primary
endpoint is the 8-weeks non-progression rate (95). Finally,
the NCT03310879 phase II study is testing abemaciclib in
patients with solid tumors of non-breast origin harboring genetic
alterations in genes encoding D-type Cyclins or amplification of
CDK4/6 without therapeutic alternative. The progression-free
rate at 4 months is the primary endpoint (96).

Ongoing trials for palbociclib, ribociclib, and abemaciclib are
resumed in Table 3.

CONCLUSIONS

Albeit it is unquestionable, at present, that CDK 4/6i treatment
proved to be more efficacious in combination strategies (e.g., in
HR+ HER2– MBC is in combination with endocrine agents),
the MONARCH 1 trial results (86) led to the FDA approval
of abemaciclib as monotherapy for the treatment of adult
patients with HR+ HER2– MBC with disease progression
after prior ET and CT received in metastatic setting. This
study opened up a new scenario for CDK4/6i, making them
suitable as single agent treatment in heavily pretreated MBC.

In this perspective, the TREND trial provided some evidence
for some activity of palbociclib as single agent in pretreated
patients with HR+HER2–MBC (65). A cross-trial comparison of
response rate from the MONARCH-1 and TREND trial suggests
that abemaciclib might be more effective than palbociclib
in the same disease setting. However, this hint should be
taken as hypothesis only, given the lack of direct comparisons
between the two CDK4/6i. Additionally, there is a strong
need for biomarkers predictive of response and resistance to
better define which patients could benefit most from these
drugs. In fact, mechanisms of resistance to CDK4/6i therapy
have yet to be clearly identified. Laboratory evidences suggest
that markers of intrinsic resistance might be the pRb loss
and subsequent increase in p16INK4A, deregulation of cyclin
E expression, E2F family members amplification and TP53
mutations (97). Interestingly, a study recently published from
Condorelli et al. showed for the first time in human patients
that acquired mutations leading to functional loss of pRb
encoding gene (RB1) might emerge under treatment with
palbociclib and ribociclib, maybe due to selective pressure from
the CDK4/6i and might potentially confer therapeutic resistance
(98). Results from ongoing trials in solid tumors will surely
shed a light on CDK4/6i future development as single agents.
It is likely that eventual new treatment indications might be
acquired by the three inhibitors in the next future, especially
in tumors where few therapeutic options are available, such as
sarcomas.
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