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Abstract 

According to the insurance hypothesis, high taxonomic diversity should ensure ecosystem stability 

because of functional redundancy, whereas reduced functional diversity that results from species 

loss should affect ecosystem sensitivity, resilience, and vulnerability. However, even in species-rich 

ecosystems, functional over-redundancy (FOR; i.e., the tendency of most species to cluster into a 

few over-represented functional entities) in some cases may result in under-representation of many 

functions, and the ecosystem might become highly vulnerable. Using a stratified random sampling 

design with nested spatial levels (nine land use strata, 70 plots, 435 trees/rock outcrops, and 9845 

quadrats), we recorded the occurrence of over 350 species of epiphytic and rock-dwelling lichens in 

semi-arid ecosystems in western Sardinia, where solar radiation defines a wide environmental 

gradient. By accounting for species functional traits, such as growth form, photosynthetic strategies, 

and reproductive strategies, we obtained 43 functional entities (> 60% of all possible combinations) 

and tested the scale-dependency of FOR and functional vulnerability (FV, i.e., the risk of losing 

functional entities) by generalized linear mixed models. We found that FOR increased and FV 

decreased with increasing spatial scale, which supports the hypothesis of a cross-scale functional 

reinforcement. Decoupling of FOR and FV was far more evident for rock-dwelling compared with 

epiphytic communities, which reflects differing environmental conditions associated with substrate 

type. Our results indicate that increased warming and climatic extremes could exacerbate species 

clustering into the most resistant functional entities and thus enhance FOR at the community level. 

Therefore, high taxonomic diversity may not ensure systematic buffering of climate change 

impacts.  
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1. Introduction 

Due to numerous disturbing factors, we are losing diversity at a rate never previously observed in 

the past. There is now a general agreement on the fact that diversity includes not only species 

richness, but also other aspects including, among others, the functional diversity, i.e. the value and 

range of species traits (Díaz and Cabido, 2001). These traits influence coexistence and ecosystem 

function. Their variation within communities can be quantified in terms of ‘functional diversity’ 

(Cadotte et al., 2011). Consequently, loss of ecological functions may affect ecosystem processes 

and services; resilience, and vulnerability to future changes (Foley et al., 2005; Hooper et al., 2005, 

Oliver et al., 2015). This may result in reduced management options (Carpenter et al., 2009). 

Therefore, future conservation strategies should incorporate species functional traits to assess and 

counteract ecosystem vulnerability to global change (Díaz and Cabido, 1997; Wright et al., 2004). 

According to the insurance hypothesis (Loreau et al., 2003; Yachi and Loreau, 1999), high 

species richness should ensure ecosystem stability because of functional redundancy; each function 

should be covered by several species, and result in a non-linear relationship between species and 

function losses (Ehrlich and Walker 1998). However, recent research warned against generalizing 

these assumptions. Even in species-rich ecosystems, ecosystem functioning could be vulnerable 

because of over-redundancy (i.e., the tendency of most species to cluster into a few over-

represented functional entities), as many functions may be under-represented; therefore, ecosystems 

may be highly vulnerable (Mouillot et al., 2014). Such findings were first described for fish faunas 

on tropical reefs, but should be further tested in other ecosystems and across different spatial scales 

and taxonomic groups to determine if there is a general pattern that might occur across ecosystems 

and inform environmental management strategies under global climate change. 

Lichens, which are usually neglected symbiotic systems based on the interaction between 

fungi (mycobionts) and photosynthetic partners (photobionts) (Spribille et al., 2016), are 

particularly suited to testing the insurance hypothesis for two main reasons. First, lichen 
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communities support multiple functions and services in terrestrial ecosystems (de Bello et al., 

2010), such as by contributing to nutrient cycling (Cornelissen et al., 2007; Elbert et al., 2012), 

water flux regulation (Delgado-Baquerizo et al., 2016), soil formation (Zedda and Rambold, 2015), 

and providing food and nesting material to several vertebrate and invertebrate species (Asplund and 

Wardle, 2017). Second, lichen functional diversity is mainly mediated by photobiont type, thallus 

growth form, and dispersal strategy (Giordani, et al., 2012; Giordani et al., 2016); these attributes 

have been extensively reviewed and systematically classified for thousands of species (e.g., Nimis 

and Martellos, 2017). Such traits fit the definition of functional traits (Nock et al., 2016) because 

they directly affect growth, reproduction, and survival (Violle et al., 2007). For example, lichens 

with cyanobacterial photobionts contribute to biogeochemical nutrient cycling because they can fix 

atmospheric nitrogen (Rikkinen, 2015). Alternatively, crustose lichens showed higher desiccation 

tolerance and resistance to drought events compared with other growth forms (Phinney et al., 2018); 

these traits are related to lower thallus surface-to-volume ratio, which controls water uptake directly 

from atmospheric water vapor. Finally, contrasting reproductive strategies with different dispersal 

success can substantially affect lichen population dynamics and, therefore, their distributional 

patterns (Johansson et al., 2012; Scheidegger and Werth, 2009). Unfortunately, because of their 

poikilohydric nature that directly couples organism eco-physiology with environmental conditions, 

lichens are extremely vulnerable to human impacts, including air pollution (Giordani, 2007), land 

use change (Giordani et al., 2010), and climate change (Bargagli et al., 2002; Giordani and Incerti, 

2008; Nascimbene et al., 2016). Therefore, testing the consistency of the insurance hypothesis in 

lichen communities may help elucidate their Functional Vulnerability (FV, i.e., the risk of 

functional entities loss) under the pressure of anthropogenic impacts that are driving global changes. 

From a more theoretical perspective, integrating conventional community ecology 

approaches with information on species functional traits is crucial for understanding how ecosystem 

functions are filled by biological communities (Cadotte et al., 2011) and maintained along 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

5 

 

environmental and taxonomic richness gradients. Consistent with taxonomic diversity, patterns of 

functional (over-) redundancy and vulnerability are expected to be scale-dependent (Peterson et al., 

1998). Spatial scale is intrinsically connected to ecosystem functioning because species interact 

with scale-dependent sets of ecological drivers and processes (Bastos et al., 2016; Lang et al., 

2009). Consequently, it can be argued that potential erosion of functional diversity at the macro-

ecological scale may not directly translate into a potential decline of ecosystem functioning 

(Mouillot et al., 2014). Indeed, cross-scale buffering effects can occur, such as when a functional 

group that consists of species that operate at different scales provides cross-scale functional 

reinforcement that fosters resilience of the ecosystem’s functioning. Alternatively, cross-scale 

resilience complements within-scale resilience produced by overlap of ecological functions among 

species of different functional groups that operate at the same scales (Peterson et al., 1998). 

Besides spatial scale, functional groups may cluster and interact differently along 

environmental gradients (Hobbs et al., 2006; Spasojevic and Suding, 2012; Bonanomi et al.,2016), 

which were predicted for plant interactions by the stress gradient hypothesis (e.g., Bertness and 

Callaway, 1994; Lortie and Callaway, 2006). In lichens, this phenomenon can even be observed 

along a gradient of micro-morphological substrate features, which control water and light 

availability and thus affect dispersal, growth rates, and photosynthetic processes (Concostrina-

Zubiri et al., 2014; Giordani et al., 2014; Matos et al., 2015). At larger spatial scales, water 

availability and solar radiation may widely vary for epiphytic compared with rock-dwelling lichens; 

the former are exposed to less extreme conditions, especially in semi-arid environments (Giordani 

et al., 2014). Under such conditions, tree canopies protect epiphytes from intense solar radiation and 

increasing temperatures, and mitigates thallus water loss by prolonging water availability because it 

affects both leaf transpiration and water retention capacity of the bark (Gauslaa et al., 2007). 

In this study, we explored functional over-redundancy (FOR) and vulnerability (FV) 

patterns of epiphytic and rock-dwelling lichen communities using a multi-scale approach, which 
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included a species richness gradient that corresponded to land use intensity. We also explored the 

functional response to transmitted solar radiation at tree and rock outcrop scales, thus encompassing 

a wide environmental gradient. We used a stratified random sampling design with nested spatial 

levels to test the scale-dependency of the observed patterns. In particular, we hypothesized that (1) 

FOR increases and FV decreases with increasing spatial scale, because species will cluster into a 

few over-represented functions and there will be cross-scale functional reinforcement, and (2) 

decoupling of FOR and FV differs between rock-dwelling and epiphytic communities because of 

different environmental conditions associated with substrate type. In particular, we expect that 

decoupling of FOR and FV would be far more evident for rock-dwelling compared with epiphytic 

communities, reflecting more severe conditions for the former. Our study aimed to provide 

information about potential threats posed by global change to lichen community functioning. 

 

2. Materials and methods 

2.1 Survey area 

The study was carried out in a 1260-km2 area of western Sardinia, Italy, where human population 

density is very low (~40 persons/km2) and local sources of air pollution are absent. Along an 

altitudinal gradient that ranged from sea level to 1200 m, the main vegetation types were 

Mediterranean maquis, Mediterranean garigue, and evergreen holm oak forest; the latter was mixed 

with deciduous oaks, which demonstrated a progressive compositional shift from xero-thermophilic 

to mesophilic communities up to the highest altitude. Along the same altitudinal gradient, natural 

plant communities were locally replaced or mixed with stone pine plantations, cork oak stands, arable 

fields, and pastures for sheep breeding. Mean annual rainfall and temperature range from 600 mm 

and 15°C, respectively, along the coast to 110 mm and 13°C, respectively, at the highest elevations. 

The main rock substrates include basalts of alkaline, transitional, and sub-alkaline affinity from the 
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Plio-Pleistocene cycle, and rhyolite and andesite rocks of the Oligo-Miocene calc-alkaline cycle 

(Carmignani et al., 2016). 

2.2 Sampling design and data collection 

Based on a stratified random sampling design, we randomly selected coordinates pairs (UTM, 

WGS84) to obtain 70 sampling points, which were allocated into nine strata obtained by 

aggregation of CORINE land cover classes, proportionally to the surface occupied by each stratum 

within the survey area (Table 1). In the field, each sampling point was positioned using a GPS and 

used as the SW corner of a N-oriented 20×20-m plot. Within each plot, we randomly selected and 

sampled 1 to 6 trees and 1 to 6 rock outcrops; the numbers of trees and rock outcrops sampled were 

proportional to the area covered by each substrate type. The occurrence of corticolous lichen 

species was recorded in each 10×10-cm quadrat of a sampling grid, which consisted of a 10×50-cm 

ladder that was divided into five quadrats and systematically placed on the N, E, S, and W sides of 

each tree bole, with the top edge 1.5 m above ground level; these methods follow those described 

by Asta et al. (2002). Twenty quadrats were sampled for each tree. Similarly, we sampled epilithic 

(rock-dwelling) species occurrence in each of 25 10×10-cm quadrats using a 50×50-cm grid that 

was systematically centered on each rock outcrop. Overall, in 70 plots (64 of which had trees and 

66 had rock outcrops), we sampled 4120 quadrats on 206 trees and 5725 quadrats on 229 rock 

outcrops (Table 1). Most species of lichenized and lichenicolous fungi were identified in the field. 

Critical specimens were collected and identified in the laboratory using standard stereo- and light 

microscopy techniques. 

As previously described (Giordani et al., 2014), we used Gap Light Analyzer (Frazer et 

al.,1999) to calculate direct and diffuse transmitted solar radiation based on hemispherical 

photographs taken at each subplot (i.e., either tree or rock outcrop). Hemispherical photographs can 

provide accurate estimates of Leaf Area Index, i.e. the ratio of leaf area and sky area (Bramer et al. 
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2018). Photographs were taken from the end of June to mid-July, which is at the end of leaf flushing 

and shedding periods of the dominant tree species (Quercus spp.) when canopy cover is stable (Ogaya 

and Penuelas, 2004). The hemispherical photograph approach facilitates estimation of solar radiation 

over long periods in different sampling units and also accounts for local variation of site morphology 

(e.g., slope and aspect) along with canopy coverage. As solar radiation can widely affect lichen 

performance, especially in semi-arid environments where it is directly related to temperature and 

water availability (Giordani et al., 2014), we considered it a proxy of environmental severity at the 

sampling sites. Actually, solar radiation is among the main factors determining microclimatic factors, 

such as local temperature, humidity and evapotranspiration (Bramer et al., 2018; Zellweger et al., 

2019). 

 

2.3 Functional entities and indices 

Following Nimis and Martellos (2017), we considered three functional traits for each lichen species: 

Growth Form (GF), Photosynthetic Strategy (PS), and Reproductive Strategy (RS) (Table 2). 

Attributes for GF, PS, and RS produced a theoretical total of 240 Functional Entities (FEs), i.e. 

unique combinations of trait values. 

As described by Mouillot et al. (2014), we calculated two indices of functionality for lichen 

communities recorded in each sampling unit at every spatial level (i.e., land use stratum, plot, 

tree/rock outcrop, and quadrat). For each community and sampling unit, FOR represented the level 

of over-representation of FEs in terms of species richness and was calculated as: 

 



N

1i

i FRFR),max(s
S

1
FOR  

where N is the total number of FEs in the given community and sampling unit, siis the number of 

species in the i-th FE, and FR is the functional redundancy. FR is the ratio between species richness 

(S) and the number of FEs, and is calculated as: 
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N

S
s

N

1
FR

N

1i

i  


 

FV describes the risk of FE loss and is calculated as follows: 





N

1i

i 1)  ,1(s min
N

1
1FV  

Consequently, FR ranges between 1 (all FEs are non-redundant) and S (when a single FE includes all 

the species in the community); in both cases, FOR=0 indicates absence of over-redundancy, whereas 

FOR> 0 indicates over-redundancy (i.e., uneven species distribution among different FEs). 

Alternatively, FV ranges between 0 (all FEs are redundant; i.e., represented by more than one species) 

and 1 (all FEs are non-redundant).  

2.4 Data analysis  

Variations in FOR and FV along species richness gradients were separately tested for rock-dwelling 

and epiphytic lichens at each spatial scale (i.e., quadrats, rock/tree subplots, plots, and land use 

strata) using univariate logarithmic regression models. Generalized linear mixed models were fitted 

to total (i.e., direct and diffused) solar radiation, including first-order and interactive fixed effects of 

substrate type, land use (nine levels, Table 1), nested random effects of sampling plot, and their 

interactions. Substrate type effects on FOR and FV were tested using generalized linear mixed 

models with transmitted solar radiation components and their interactions as continuous covariates. 

Pairwise differences were assessed for all cases using HSD post-hoc tests for unequal sample sizes 

at α=0.05. 

3. Results 

3.1 Functional composition of epiphytic and rock-dwelling communities 

Overall, we found 43 FEs (Supplementary Table S1), which represented 18% of all the theoretical 

combinations produced by factorially combining GF, PS, and RS attributes. Nineteen FEs occurred 
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on both rocks and trees; these included nearly all GF, PS, and RS attributes, with the exceptions of 

the fruticose-filamentous and foliose-umbilicate GFs. Crustose and foliose broad-lobed lichens, 

with chlorococcoid algae and sexual reproduction, predominated on both substrate types across all 

land use strata (Supplementary Table S1). Alternatively, foliose narrow-lobed lichens with 

chlorococcoid algae were more frequent on trees than rocks, whereas non-lichenized and 

lichenicolous fungi showed an opposite pattern and were more frequent on rocks (Supplementary 

Table S1). Twelve FEs were exclusively recorded on rocks, including four FEs of foliose-

umbilicate lichens with both cyanobacteria and chlorococcoid algae, and four FEs of fruticose 

lichens with cyanobacteria and Trentepohlia as photobionts (Supplementary Table S1). Similarly, 

12 FEs were exclusively epiphytic; seven were macrolichens (fruticose or foliose GFs) and most 

had filamentous cyanobacteria as photobionts (Supplementary Table S1). Most exclusively 

epiphytic FEs were extremely rare and occurred in fewer than 50 quadrats (out of 4120) throughout 

the entire survey area. 

3.2 FOR and FV across spatial scales and species richness gradients 

FOR increased with spatial scale on both substrate types, although rock-dwelling lichen values were 

consistently higher than epiphyte values (Fig. 1). This pattern was congruent with that observed for 

FR median values, which ranged for rock-dwelling and epiphytic communities from 2.4 and 1.8 

species per FE, respectively, at the quadrat level, to 6.3 and 4.5 species per FE, respectively, at the 

land use scale. Alternatively, FV showed contrasting spatial patterns between the two substrates. 

For epiphytes, FV progressively decreased with spatial scale, with median values that ranged from 

0.72 at the quadrat level to 0.35 at the land use scale (Fig. 1). However, FV of rock-dwelling 

communities was much less variable, with median values that were not significantly different across 

spatial scales and ranged between 0.43 at the land use scale and 0.55 at the subplot scale (Fig. 1). 

Consequently, FV differences between rock-dwelling and epiphytic communities varied in 
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magnitude and trend across spatial scales; epilithic lichens had greater FV than epiphytes at smaller 

spatial levels but not at the land use scale (Fig. 1). 

At each spatial level, FOR consistently increased with species richness (Fig.2), and FOR of 

rock-dwelling communities was consistently higher compared with that of epiphytes across the 

entire species richness gradient. The only exceptions to this pattern were the non-over-redundant 

(i.e., FOR = 0) assemblages, which were progressively rarer at increasing spatial scales. 

Interestingly, at quadrat and subplot levels, these assemblages were rarely (N = 484 out of 10388) 

non-redundant and monospecific (and therefore highly vulnerable), and most often (N = 3648) 

consisted of one FE composed of several species (with maxima at the quadrat level of 11 and 12 for 

rock-dwelling and epiphytes, respectively). Along the same species richness gradient, FV was not 

as straightforward. In the case of epiphytes, FV showed a negative association with richness, which 

was mostly consistent across spatial scales, except at the land use level (Fig. 2). This trend was 

much less evident for rock-dwelling communities, which showed FV association with species 

richness at the quadrat level but no significant relationships at larger scales (Fig. 2). 

3.3 Functional response to solar radiation  

Epiphytes experienced significantly milder solar radiation conditions compared with rock-dwelling 

communities (Fig. 3). This solar radiation difference was less clear in closed forest conditions, such 

as in stone pine and broadleaved stands, but far more evident in woodland clearances and especially 

over rock outcrops in open land, where total transmitted solar radiation had 5× higher peaks 

compared with isolated tree bark (Fig. 3). Expectedly, environmental severity, as inferred by 

transmitted solar radiation, was also highly variable at the local scale, as indicated by the significant 

random effect of the plot, which was nested within land use class (Table 3). However, because the 

maxima exceeded 6.4 MJ m-2 d-1 (Fig. 3), the sampling sites had a wide gradient of environmental 

conditions and encompassed very harsh conditions for rock-dwelling communities and mostly mild 

conditions for epiphytes. 
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Lichen functional response showed interesting patterns along the environmental severity 

gradient. In particular, we found a significant effect of the transmitted solar radiation on FOR, 

which was consistent for both the direct and diffused radiation (Table 4). Excluding the large 

amount of noise, such an effect was significant, even when tested with simple univariate models 

(Fig. 4); this indicates an enhancing role of solar radiation on FOR that is potentially linked to 

competitive exclusion and high specialization in extreme niches under very high irradiance. 

However, light effects on FOR were not consistent between rock-dwelling and epiphytic 

communities, as shown by the significant effects of substrate type and its interactions with 

transmitted light components (Table 4). Indeed, FOR exacerbation at high radiation densities was 

limited to epilithic communities that were exposed to harsh conditions; alternatively, epiphytes did 

not significantly respond compared with rock-dwelling communities, likely because of the limited 

radiation gradient below the tree canopy (Supplementary Fig. S1). In contrast, FV was negatively 

associated with transmitted direct and diffused solar radiation (Fig. 4). Although FV showed limited 

decrease along the light resource gradient and higher variability among observations compared with 

FOR (Fig. 4), the effect depended on substrate (Table 4). 

4. Discussion 

We explored FOR and FV patterns of lichen communities in a Mediterranean area at different 

spatial scales relative to species richness and substrate type, and used transmitted solar radiation to 

infer an environmental severity gradient. In particular, we tested the non-mutually exclusive 

hypotheses that FOR increases and FV decreases with increasing spatial scale (hypothesis 1), and 

rock-dwelling and epiphytic communities show contrasting patterns of FOR and FV relative to 

different environmental severity experienced over different substrate types (hypothesis 2). Our 

results revealed scale- and substrate-dependent patterns for these functional descriptors, which 

partially confirmed our two hypotheses. In accordance with hypothesis 1, we demonstrated that 
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FOR in lichen communities is scale-dependent. FOR patterns were consistent between rock-

dwelling and epiphytic lichens; FOR increased with species number and was substantially saturated 

at intermediate values of species richness. This pattern corresponded to a progressive increase of 

FOR with increasing spatial scale, which likely reflected the process of species accumulation 

underlying the well-known species–area relationship (MacArthur and Wilson, 1967). 

Our FOR findings also supported hypothesis 2: FOR magnitude of rock-dwelling lichens 

was much higher than that of epiphytic communities across all tested conditions, which supports a 

substrate-dependent response related to environmental severity. Notably, in the study area, solar 

radiation on rock outcrops was, on average, twofold higher than that under tree canopies, which was 

quantitatively consistent with the maximum FOR difference between the corresponding lichen 

communities. Besides the obvious effects on photosynthesis, solar radiation was considered a 

reliable proxy for environmental severity at the sampling sites, as it is strictly related to water 

availability and temperature (Díaz-Barradas et al., 2018), which are fundamental for lichen 

physiology, especially in semi-arid ecosystems (Giordani et al., 2014; Matos et al., 2015; Tretiach 

et al., 2012). Consequently, our results indicate that, in lichen communities, species tend to cluster 

into a few over-represented FEs increases as environmental conditions become harsher and that, 

under these conditions, diversity–stability relationships (the insurance hypothesis; Yachi and 

Loreau, 1999) do not apply.  

These findings do not contradict previous evidence and theory on the stabilizing effect of 

diversity on ecosystem functioning, which were mostly based on observations in systems exposed 

to mildly fluctuating environmental conditions (Cardinale et al., 2012; De Boeck et al., 2018). 

Further supporting evidence was reported from a recent meta-analysis on biodiversity–stability 

relationships under climate extremes (De Boeck et al., 2018); under climate extremes, ecosystem 

functioning was not differently protected by either high or low plant diversity. In the case of 

lichens, epiphytic compared with rock-dwelling communities are supposed to experience milder 
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conditions because of the ameliorating effect of tree canopies by filtering solar radiation and 

mitigating desiccation (Bramer et al., 2018; Gauslaa et al., 2007). Forest canopies buffer 

temperature extremes, thus mitigating the thermodynamic constraints on species growth, 

reproduction, and survival (Zellweger et al., 2019). As far as water availability is concerned, the 

effects of vegetation are complex: basically, higher vegetation cover allows greater 

evapotranspiration, due to the effects of leaf area; but on the contrary, a high level of canopy 

shading can also reduce evapotranspiration (Bramer et al., 2018). At substrate level, compared with 

rock substrates, tree bark could also prolong water availability because of the high water retention 

capacity and buffering against extreme temperatures (Středa et al., 2015). Indeed, in semi-arid 

environments, sun-exposed rock outcrops provide extremely severe conditions that can be critical 

for lichen growth, especially in the summer, with a persistent water deficit due to climatic drought 

conditions and rapid desiccation related to high temperatures (Giordani et al., 2014; Sterflinger and 

Krumbein, 1995; Incerti et al., 2011). The higher FOR of rock-dwelling communities may reflect 

adaptive convergence in response to extreme environmental severity (Bruno et al., 2016), which led 

to selection of the most resistant FEs. 

In contrast to our FOR observations, hypothesis 2 was not supported by FV, as FV patterns 

were poorly or not related to substrate type and spatial scale. Therefore, our findings indicate that 

FOR does not evenly reflect FV across spatial scales and substrates. We observed that epiphytic 

lichen community vulnerability presumably depended on interactions between processes acting at 

the stand scale, including trophic interactions or acclimation, and at the landscape scale, including 

gene flow and dispersal limitation, even though the general relevance of these events for lichen 

ecology is not yet sufficiently understood (Ellis, 2013). Our trait-focused approach contributed to 

generalization of these processes and revealed that, at least for epiphytic lichens, the scale-

dependency of FV is limited to the small (i.e., micro-sites, trees) and intermediate (i.e., plots) spatial 
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levels; increasing species richness reduced the risk of functional loss, which is consistent with the 

insurance hypothesis (Yachi and Loreau, 1999).  

Accordingly, as predicted by the rivet redundancy hypothesis (Ehrlich and Walker, 1998), 

the breadth of functions associated with lichen assemblages at a within-plot scale would be less 

vulnerable in species-rich communities, where limited species loss may not be detrimental to 

community functioning. Alternatively, at larger spatial scales (such as homogeneous land use 

parcels), FV of epiphytic lichens is independent of species richness, even with highly vulnerable 

communities that are not affected by an increase in species number. For example, at the landscape 

scale, the most taxonomically diverse assemblages and those threefold less diverse would have 

equal FV. Such a shift in the functional response of epiphytic lichens across spatial scales, with a 

clear decoupling of FV and taxonomic diversity across different spatial scales, indicates that the 

level of FV for these communities likely depends on processes that act on small spatial scales. 

These findings could have relevant implications for conservation strategies because generic habitat 

protection directives (e.g., as assigned in Europe by the Habitat Directive; Council Directive 

92/43/EEC) may not be effective for preserving the functional diversity of epiphytic lichen 

communities. Instead, there should be specific measures at the very small scale (e.g., site and tree; 

Benesperi et al., 2018), where preserving species richness would prevent the loss of FEs. 

In the case of rock-dwelling communities, FV was not buffered by increasing species 

richness and, consistently, did not substantially change across spatial scales. This pattern is 

consistent with that found by Mouillot et al. (2014) for tropical fish faunas, which indicates that 

species richness may fail to protect communities and ecosystems against function loss. Even in 

species-rich sites, FV is not necessarily increased because, as a result of the occurrence and 

magnitude of FOR, some FEs are under-represented (e.g., by a single species). From this 

perspective, a generic conservation strategy that focuses on the increasing of species richness may 

fail to preserve the functional diversity of lichen assemblages and therefore the complete ecosystem 
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functioning. To overcome this issue, specific protection should be assigned to the most vulnerable 

FEs. 

Given the relatively low variability of macroclimatic factors in the study area, in our models 

we focused on the effects of microclimatic and local variables (e.g. substrate). Although the 

macroclimate is critical to making wider-ranging considerations on the effects of global change, our 

data can contribute to describing indirect effects on a local scale, the relevance of which has 

recently been increasingly highlighted. In fact, recent progresses in microclimate ecology are 

emphasizing the view that microclimate variability may modulate the impacts of climate change, 

thus stressing the importance of considering the effect of microclimatic conditions for improving 

the reliability of our predictions on the response of organisms to global changes (Bramer et al., 

2018; Zellweger et al., 2019). In this perspective, the contrasting functional spatial patterns related 

to substrate types (i.e. epiphytes vs rock-dwelling species) and local solar radiation corroborate the 

idea that global change could exacerbate species clustering into the few most resistant FEs, and thus 

enhances FV at the community level. This would imply that, in accordance with a recent synthesis 

on plant communities structure (De Boek et al., 2018), high taxonomic diversity may not ensure 

systematic buffering of global change impacts. Indeed, besides impacting species richness 

(Newbold et al., 2015), global change is expected to trigger FV; this hypothesis was corroborated 

by recent studies that documented the loss of entire functional groups along climatic gradients 

(Giordani et al., 2014; Nascimbene and Marini, 2015). On the other hand, the availability of suitable 

micro-habitats within a given macro-habitat may reduce the FV of lichen communities to global 

change (Ellis, 2013). For example, in shrubby semi-arid rangelands, high geodiversity at small 

spatial scales (centimeters to few decimeters) enhances the on-site retention of water and soil 

resources, and limits the vulnerability of these ecosystems to prolonged droughts and climatic 

changes (Stavi et al., 2018). In the case of lichens, the relevance of small-scale events to FV should 

be even more evident, as was previously shown for different small sessile short-range organisms 
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(Schooler et al., 2017). Indeed, although small-scale impacts are generally subsumed within 

ecological niches at a coarse scale (Pearson and Dawson, 2003), the ecological niche of lichens is 

mainly determined by their physiological performance at a microclimatic scale (Schroeter et al., 

2010). In this perspective, our study highlights the need for specific, local management practices to 

counteract global change effects on lichen communities. 
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Tables 

 

Table 1. Distribution of sampling units across spatial scales and land use strata. 

Landuse strata 
 Epiphytic    Rock-dwelling 

Plots Trees Quadrats   Plots Rocks Quadrats 

Stone pine stands 6 25 500  3 10 250 

Broadleaved forest 12 50 1000  12 40 1000 

Cork oak plantations 7 23 460  7 22 550 

Croplands 5 14 280  5 16 400 

Agro-forestry 3 8 160  3 12 300 

Agro-natural land 5 15 300  5 16 400 

Pastures  12 36 720  12 39 975 

Maquis and shrublands 11 28 560  14 49 1225 

Garigue and bare rock 3 7 140   5 25 625 

Total 64 206 4120  66 229 5725 
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Table 2. Functional traits considered in this study and attributed to epiphytic and rock-dwelling 

lichen species following Nimis & Martellos (2017). 

Functional trait Attribute 
Description 

Growth form (GW) F non-lichenized, non-lichenicolous fungus 

 LF  lichenicolous fungus 

 Cr  crustose  

 Cr.end  crustose endolithic 

 Cr.pl  crustose placodiomorph 

 Lepr leprose 

 Sq squamulose 

 Fol.b foliose broad-lobed 

 Fol.n foliose narrow-lobed 

 Fol.u  foliose umbilicate 

 Frut fruticose 

 Frut.f fruticose filamentous 

Photosynthetic strategy (PS) N.Ph non-photosynthetic* 

 Ch photosynthetic with Chlorococcoid green algae 

 Tr  photosynthetic with Trentepohlia pigments 

 Cy.h  photosynthetic with filamentous cyanobacteria 

 Cy.c photosynthetic with coccaceous cyanobacteria 

Reproductive strategy (RS)  S mainly sexual by means of ascospores 

 A.s mainly asexual, by soredia, or soredia-like structures 

 A.i mainly asexual, by isidia, or isidia-like structures 

 A.f mainly asexual, by thallus fragmentation 

* attribute not included in Nimis & Martellos (2017); here used for non-lichenized fungi usually considered by 

lichenologists, therefore attributed to species with F growth form. 
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Table 3. Summary of the Generalized Linear Mixed Modelling (GLM) testing for main and 

interactive effects of landuse (L, nine levels), plot (random effect nested within L) and substrate type 

(S, two levels: rock outcrops, tree bark) on total transmitted solar radiation measured at rock outcrop/ 

tree level.  

 Effect type df SS MS F P 

Total transmitted solar radiation       

 Landuse class (L) Fixed 8 243.6 30.5 17.4 < 0.0001 

 Substrate (S) Fixed 1 789.6 789.6 1086.6 < 0.0001 

 Plot(Nested within L) Random 69 116.0 1.7 2.3 < 0.0001 

 L x S Fixed 8 242.1 30.3 41.6 < 0.0001 

 Error  348 226.0 0.7   
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Table 4. Summary of the Generalized Linear Modelling (GLM) testing for main and 

interactive effects of substrate type (S, two levels: rock outcrops, tree bark) and transmitted 

solar radiation (partitioned into the two direct and diffused components, both treated as 

continuous covariates) on functional over-redundancy (FOR) and vulnerability (FV).  

 df SS MS F P 

Functional over-redundancy (FOR)      

 Substrate (S) 1 887.5 887.5 6.873 0.009 

 Trasmitted direct solar radiaton (Tdir) 1 506.9 506.9 3.926 0.048 

 Trasmitted diffused solar radiaton (Tdif) 1 680.2 680.2 5.268 0.022 

 S x Tdir 1 506.4 506.4 3.922 0.048 

 S x Tdif 1 178.8 178.8 1.385 0.240 

 Error 429 55392.6 129.1   

      

Functional vulnerability (FV)      

 Substrate (S) 1 11.3 11.3 0.030 0.862 

 Trasmitted direct solar radiaton (Tdir) 1 2045.1 2045.1 5.464 0.020 

 Trasmitted diffused solar radiaton (Tdif) 1 2169.0 2169.0 5.795 0.016 

 S x Tdir 1 2379.1 2379.1 6.356 0.012 

 S x Tdif 1 1880.3 1880.3 5.024 0.026 

 Error 429 160568.1 374.3   
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Figure captions 

Figure 1. Violin plots showing FOR and FV density distributions across spatial levels for epiphytic 

and rock-dwelling lichens. Letters above numbers bracketed below violins, white bars, dots and 

whiskers indicate significantly different groups (Tuckey’s unequal N HSD post-hoc test, P< 0.05), 

sample size, medians, means and 95% confidence intervals, respectively.  

Figure 2. Scatterplots and logarithmic fit of FOR and FV as a function of species richness, across 

spatial levels for epiphytic (green dots and lines) and rock-dwelling (brown-yellow) lichens. Solid 

and dotted lines indicate statistically significant (P< 0.05) and not significant logarithmic regression 

models, respectively. 

Figure 3. Total transmitted solar radiation measured at tree/rock level across land use strata. Data 

refer to medians (bars), interquartile ranges (boxes) and non-outlier ranges (whiskers). Letters above 

whiskers indicate significantly different groups (Duncan post-hoc test for the landuse × substrate 

effect, P< 0.05). 

Figure 4. FOR (top) and FV (bottom) at tree/rock level as a function of direct (left) and 

diffused (right) transmitted solar radiation. 
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Highlights (3 to 5, each max 85 characters, spaces included) 

 Functional redundancy at high taxonomic diversity should ensure ecosystem stability 

 Functional over-redundancy (FOR) is expected to foster functional vulnerability (FV) 

 We explored Mediterranean lichen diversity across spatial and severity gradients 

 Lichen FOR and FV decouple at increasing spatial scale, most on harsh rock outcrops 

 High taxonomic diversity may not ensure buffering of climate change impacts 
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