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Abstract: A correct representation of the non-linear interactions between waves and currents is one 

of the key points when studying the morphological evolution of nearshore environments, in 

particular close to river mouths or tidal inlets. Undoubtedly, the numerical modelling of similar 

phenomena can be very complex and computationally demanding, given the size of the domains. 

In the present paper, a two‐dimensional horizontal (2DH) numerical model is applied to 

investigate the hydrodynamics of a turbulent jet current interacting with frontal waves, 

preparatory to the study of morphodynamical processes. The purpose is to reproduce accurately 

the turbulence of the current flow, which develops in both vertical and horizontal planes, even with 

the simplifications of depth-averaged velocities. Moreover, the bottom shear stress induces a 

mechanism of dissipation, which acts both on the jet hydrodynamics and on the wave field. 

Significant attention is given to this process, which turns out to be crucial in shallow waters. The 

present model, based on classic shallow-water equations and wave action balance, is applied to a 

literature test. Comparisons with theoretical and numerical outcomes are shown, the latter 

obtained with a quasi-3D model. 

Keywords: turbulent jet; wave–current interaction; spectral dissipation; bottom friction; numerical 

model; hydrodynamic model; spectral model 

 

1. Introduction 

The morphological evolution of a river delta or a tidal inlet is the result of the interaction 

between jet-like current dynamics, tides and wind wave-induced processes. Sediment transport 

mechanisms, resulting from this interaction, have important effects on the equilibrium 

configurations of the bottom of channels and of the near inlet region. These processes are governed 

by the non-linear interaction between currents and gravity waves, one of the main focuses of 

maritime and coastal hydraulic research. 

Theoretical and experimental studies on waves propagating with and against a current have 

been widely conducted [1–4], highlighting the effects on wave kinematics (Doppler effect and 

changes in the wave number and frequency due to shoaling and refraction) and dynamics (changes 

in wave steepness and wave-action conservation). In turn, the current field is affected by the mutual 

interaction, through forces generated by the radiation stress tensor of wave fluctuations and 

increased bed shear stress. In this regard, the bottom friction coefficient of currents can be enhanced 

significantly by waves [5–8]. 

In the nearshore region, characterized by shallower water depth, the interaction between 

currents and waves with the bottom is one of the main processes that affects the hydrodynamic field. 

A river- or tidal-induced current, debouching into the sea, can be regarded as a plane turbulent 

jet characterized by longitudinal velocity decay and an expansion of its cross section [9]. Several 
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authors have investigated the velocity distribution of a turbulent jet. One of the main contributions is 

by Abramovich [10], who described the basic principles of a free flow, referring to Prandtl’s 

hypothesis of free turbulence on the horizontal plane. This theory establishes the form of the 

similarity function and thus the velocity profile in the jet cross section [11]. Moreover, Öszoy and 

Ünlüata [12] examined with an analytical approach a turbulent jet, which exits from tidal inlets. 

They considered several factors: the lateral entrainment, the bathymetric changes and, in particular, 

the role played by bottom friction. The authors started from widely used depth-averaged equations, 

thus becoming a reference also for comparison with experimental or numerical results. 

Giger et al. [13] and Adami and Milan [14] discussed, from both theoretical and experimental 

points of view, the effects of bottom friction on the reduction of the longitudinal velocity. They 

found that this phenomenon had no influence on the crosswise distribution. This outcome is in 

contrast with the analytical results of Öszoy and Ünlüata [12]. Ismail and Wiegel [15] are the first 

authors who investigated the behavior of a shallow plane turbulent jet in the presence of opposing 

surface gravity waves, pointing out the role of the radiation stress components on the flow field. 

In nearshore environments, waves have a dominant role that considerably affects the 

morphodynamics [16,17]. It follows that the correct prediction of the wave field is fundamental to a 

proper estimate of the morphodynamic changes near the coast. 

A key aspect in the spectral transformation of waves, as they propagate from deep to shallow 

water, is the dissipation of wave energy caused by interaction with the bottom. In particular, the 

friction coefficient has been observed to vary significantly as a function of both the wave Reynolds 

number and the relative roughness; the expressions proposed for the calculation of the friction 

coefficient are numerous and different [18], but precise indications on how to apply them are not 

always provided. These different formulations can be used in similar contexts, but they can give 

diverse results, both in the wave field and in the bottom shear-stress values, depending on the wave 

period. In fact, the wave period may not remain constant in the nearshore propagation, in particular 

if waves interact with currents. The known Doppler effect can be more or less pronounced according 

to the angle of incidence between waves and current, for instance in the two cases of an ebbing flow 

from a river mouth or a tidal inlet, and a longshore current. With the period, the relative roughness 

also changes and, consequently, the amount of wave-energy dissipation in the presence of shallow 

depths. The particular aspect of the variability of the wave period and the consequent effects on the 

bottom friction dissipation in the wave–current interaction, has not been previously dealt with. 

It is clear at this point that the bottom strongly conditions the non-linear mechanisms of the 

wave–current interaction, considerably affecting the current and the wave field, and the bottom shear 

stress, with important effects on the morphological evolution of littorals or river and tidal inlets. The 

complexity of the phenomenon necessarily requires dedicated numerical modelling able to investigate 

hydrodynamic and morphodynamic processes involving estuarine and tidal environments. 

A numerical approach needs the development of an appropriate model that should be 

computationally efficient and able to solve complex hydrodynamic interactions with relative 

simplicity. In tidal and coastal domains, a widely used methodology consists of coupling different 

modules [19–24]: a hydrodynamic model based on classical shallow water equations with 1D, 2D or 

a quasi-3D approach and a spectral wave model that reproduces nearshore wave fields, taking into 

account all the input and dissipation-energy terms. 

It has been largely established that two‐dimensional horizontal (2DH) models are useful to 

study the morphological evolution of littorals or nearshore bottoms requiring large domains of 

application. Moreover, 2DH models can reproduce the observed coastal flow field satisfactorily 

[22,25]. 

A quasi-3D model is undoubtedly more complete, but at the same time the improvement in the 

estimation of vertical eddy viscosity involves a greater computational effort mainly due to the 

following aspects: the vertical discretization of the domain, which can become demanding in very 

extensive domains such as coastal or tidal environments, and the calibration process of related 

parameters. In particular, the last condition is more pronounced when considering the interaction 

with the vertical profile of wave orbital velocity and radiation stresses, the distribution of which is 
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an on-going debate [26,27]. Furthermore, the logarithmic description of the mean current velocity 

profile was experimentally found to be valid also in its interaction with waves [28], confirming the 

validity of a 2DH approach. 

Following these considerations and due to the very good hydrodynamic results obtained in 

literature, Petti et al. [29] presented and applied an efficient 2DH model to a jet current expanding 

into a shallow basin in the presence of opposing frontal waves. The authors obtained good 

agreement with both theoretical and numerical results computed by means of a quasi-3D model [30]. 

The role played by radiation stress forces and the increasing bottom shear stresses in the wave–

current interaction was examined [31]. In particular, near the jet inlet, these two mechanisms seem to 

have the same effect on the flow field, while at greater distances, the contribution to the decay of the 

longitudinal current velocity due to bottom shear stress is dominant. 

In the present paper and starting from these results, the authors investigate the effects induced by 

bottom shear stresses on the spectral propagation of the waves against the jet current. As indicated 

above, the bottom dissipation is crucial to the correct prediction of both the wave kinematics and the 

flow field. In several applications the choice of spectral wave dissipation is not adequately motivated, 

and sometimes even omitted. For these reasons, the authors intend to verify how the relative 

roughness affects the wave characteristics, the current velocities, and the bottom shear stress due to the 

spatial variability of the relative wave period so as to improve the comprehension of the interaction 

phenomenon, also in the perspective of a morphodynamic application. 

Therefore, different approaches used in the computation of the spectral wave dissipation by 

bottom friction are examined and compared to each other. 

In Section 2 the numerical scheme is briefly presented, and in Section 3 the benchmark test is 

described. Section 4 reports a discussion of the numerical results obtained. 

2. Numerical Scheme 

In this work, a bidimensional hydrodynamic model has been coupled with the spectral model 

SWAN (Simulating WAves Nearshore) [32]. 

The hydrodynamic model solves the classical shallow-water equations: 
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(t, x, y) being temporal and horizontal spatial coordinates; U the variable vector; (F, G) and (Ft, Gt) 

the vectors of advective and turbulent fluxes; and S the source term vector. Moreover, h is the water 

depth; (U, V) the mean velocities over the depth in x- and y- directions; g the gravity acceleration;   

the water density; zb the bottom height; and υt the horizontal eddy viscosity coefficient. (Fx, Fy) are 

the forces due to wave radiation stresses, which depend on the radiation stress tensor Sij as: 
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(τmx, τmy) are the components along x and y, respectively, of the mean bottom shear stress τm, due to the 

interaction of current and wave motion. Among all the theories available in literature which combine 

their effect, in the present paper the formula proposed by Soulsby [31] has been preferred [33]: 
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Here, the stresses due to the current τc and to the waves τw are evaluated as: 
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with n the Manning coefficient; Uw the maximal bottom orbital velocity; T the relative wave peak 

period; A the horizontal semi-orbital excursion at the bottom; kn the equivalent roughness length; 

and fw the wave friction factor [31]. 

The horizontal eddy viscosity coefficient υt is evaluated by means of a Smagorinsky approach, as: 
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with cs a numerical coefficient and lc a characteristic length. 

The structure of (8) is similar to υt as evaluated following Prandtl’s theory, assuming the 

product cs·lc as the mixing length. In this context, Abramovich [10] found that the mixing length in a 

free turbulent jet is proportional to the half width of the jet itself b, which varies linearly along the 

longitudinal axis. In this way, cs can be considered as the proportional constant and lc as the half 

width of the jet. Aiming to adopt a magnitude of b, representative of the whole jet field, its value 

measured at the inlet b0 has been chosen. The coefficient cs has been calibrated in previous tests, 

based on the experiments carried out by Ismail and Wiegel [15], starting from some values proposed 

by Abramovich. Finally, cs has been assumed equal to 0.2 and lc equal to b0. 

The numerical integration of Equation (1) is carried out by means of a well-balanced second order 

accurate finite volume method, based on the Harten-Lax- van Leer-Contact (HLLC) Riemann solver 

associated with a hydrostatic variable reconstruction that assures the scheme is well balanced also in 

wet and dry conditions [34–36]. 

The wave parameters are evaluated through SWAN [32], an open source finite difference model 

that solves the wave action density balance equation: 
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where N is the wave action density, defined as E/σ, and it is preferred over wave energy E since it is 

conserved in the presence of a current field [3]. The propagation velocities in Cartesian and spectral 

spaces (cx, cy, cσ, cϑ), can be written as: 
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σ being the relative radiant frequency; ϑ the spectral wave direction; k the wave number vector; cg 

the wave group velocity vector; Uc the current velocity vector (U, V); and (s, m) a local system of 

coordinates, respectively s in the direction ϑand m perpendicular to s. Stot, the term on the right side 

of (9), is the source term that takes into account all physical processes including energy generation 
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by wind, dissipation through whitecapping, bottom friction and depth-induced wave breaking, and 

wave–wave non-linear transfer. 

Equation (9) can also represent phenomena like shoaling or refraction, which are related to 

non-linear interaction and dissipation during wave propagation in shallow water and in the 

presence of changing water levels and current fields. Among the theories implemented in SWAN to 

evaluate the dissipation due to bottom friction, in the present paper the approaches by Collins [37] 

and Madsen et al. [38] are considered, which express the source term due to bottom friction with the 

same structure and a linear dependence by a bottom-friction coefficient Cf. Collins [37] assumes it as 

constant and equal to 0.015, while in Madsen et al. [38] Cf is a function of a wave friction factor fwM 

related to the equivalent bottom roughness height: 
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SWAN and the hydrodynamic module interact through currents, radiation stress and bottom 

shear stress. In the present work they have been coupled at discrete time steps (∆tint). This means that 

they run separately one after the other, so that wave-radiation stress, wave parameters (Uw and T), 

and current fields are updated and interchanged with each other. 

For each run, the water level and current velocities resulting from the hydrodynamic model are 

set as input data in SWAN and, on the other hand, the forces due to wave-radiation stresses, the 

maxima of the orbital motion near the bottom, and the wave relative peak period resulting from 

SWAN are set as input data in the hydrodynamic model. 

Each module works on its own computational grid and the results, to be transferred from one 

module to the other, are interpolated on an exchange grid. 

The whole process is managed by a main program that runs hydrodynamic and SWAN 

modules alternatively, as suggested by the flow chart depicted in Figure 1, until the simulation ends. 

 

Figure 1. Flow chart of the coupling process between the hydrodynamic model and the spectral 

model managed by the main program. 

3. Simulation Setup 

The test case is that proposed by Petti et al. [29] in comparison with Nardin et al. [30]: a jet 

issuing in a rectangular basin and interacting with an opposing wave field. As depicted in Figure 2, 

HYDRODYNAMIC 

MODEL

MAIN 
PROGRAM

SPECTRAL 

MODEL

Interpolation of radiation 
stress forces and wave 

parameters
on the exchange grid

Input file Input file

Output files Output files

• h  water depth

• U , V current velocities

• Uw , T  maximum bottom orbital
velocity and relative peak
period

• Fx, Fy  radiation stress forces

Interpolation of water depth
and current velocities
on the exchange grid
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three different computational grids are built: one mesh for the hydrodynamic model, one for SWAN, 

and one for the data exchange. 

The hydrodynamic mesh is slightly different from that of Petti et al. [29]: it consists of a 

rectangular channel river inlet entering into a 3000 m large and 2000 m long basin (Figure 2). The 

elements are rectangular, with a size of 5 m in the x-direction (along the longitudinal axis of the jet) 

while in the y-direction (along the cross section of the jet) the cell dimension linearly increases from 5 

m in a band close to the river centerline up to 50 m in the farthest part of the domain. This guarantees 

a higher density of grid cells in the central region, where the main characteristics of the flow field 

develop. Different grid resolutions have been tested, finding differences in the hydrodynamic 

numerical results in the order of a few percentage points. For this reason, the numerical results can 

be considered independent of grid size. 

 

Figure 2. Computational grids. A “bin wave spectrum” is specified at the open sea boundary of the 

spectral domain, locating energy E(f) in one frequency bin closest to a corresponding assigned peak 

period. Q is the constant discharge set at x = −200 m. 

The basin has a constant depth of 3 m. A constant discharge of 3.8 m3/sm is assigned to the 

boundary located at x = −200 m, along a width of 100 m, which coincides with the initial width of the 

jet. Along the boundary near the jet inlet, a wall boundary condition is assigned, while a mean sea 

water level coinciding with the still water level is imposed on the remaining sides of the basin. 

The resulting velocity downstream of the inlet is 1.4 m/s, corresponding to the velocity 

indicated in Nardin et al. [30]. A constant Manning coefficient of 0.018 s/m1/3 is adopted for the 

hydrodynamic computational mesh, coherent with the value of Chezy coefficient declared by 

Nardin et al. [30]. 

The SWAN cartesian computational grid is regular with squared elements of 10 m sides. It has 

the same water depth but it is larger than the hydrodynamic domain to keep the lateral boundaries 

sufficiently away from the central area where the wave–current interaction is investigated. Three 

configurations of waves are imposed at the open sea boundary of the domain, located at x = 2000 m: 

a “bin wave spectrum”, one for each simulation, is specified, locating energy in one frequency bin 

closest to a corresponding peak period of respectively 3 s, 5 s and 8 s (Figure 2). The chosen values of 

the peak period are typical of wind waves generated in fetch-limited and shallow-depth basins, such 

as the Northern Adriatic Sea and its lagoons. The same significant wave height, equal to 0.5 m, is 

assigned in all the performed simulations of wave-current interaction. In the remaining sides of the 

SWAN mesh, outflow boundary conditions were imposed (i.e., waves could leave the area freely). 

SWAN is set in non-stationary mode to follow the temporal evolution of the interaction 

between the waves against the jet current. The physics commands are set up in order to reproduce 

the steepening induced by currents [1–4], that can lead to white-capping or, in the limited condition 

given by the shallow depth, to depth-induced breaking; this last term is modelled in the form 

proposed by Battjes and Janssen with a constant breaking parameter equal to 0.78 [39]. 

The wave decay by bottom friction is taken according to the formulations of Collins [37] and 

Madsen et al. [38] as described in Section 2. Using the Madsen approach, an equivalent 
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roughness-length scale of the bottom of 0.025 m is taken. Petti et al. [29] set the dissipation term for 

bottom friction conforming to the empirical JONSWAP model for wind-sea conditions [40]. 

The lowest and the highest discrete frequencies used in the calculation are respectively set equal 

to 0.05 Hz and 0.595 Hz. The spectral directions cover the full circle with a resolution of 6°. 

For better comprehension, the list of the performed simulations with corresponding acronym 

and characteristics is reported in Table 1. 

Table 1. List of the simulations performed. 

Test Model Hs (m) Tp (s) Spectral Bottom Friction Wave–Current Interaction 

jet alone hydrodynamic - - - - 

T3C coupled 0.5 3 Collins complete 1 

T3M coupled 0.5 3 Madsen complete 

T5 coupled 0.5 5 No friction complete 

T5C_rds coupled 0.5 5 Collins radiation stress only 

T5C coupled 0.5 5 Collins complete 

T5M coupled 0.5 5 Madsen complete 

T5J coupled 0.5 5 JONSWAP complete 

T8C coupled 0.5 8 Collins complete 

T8M coupled 0.5 8 Madsen complete 

1 Waves and current interact both through radiation stress and the mean bed shear stress τm. 

The last computational grid, named the “exchange grid”, is the smallest and represents the part 

of the domain in which the hydrodynamic and the spectral model interact. It is a regular grid with 

squared elements of 10 m sides for a total length of 2000 m in both plane directions. The domain, 

inside which the jet develops, coincides with that of Petti et al. [29] and Nardin et al. [30]. 

The interaction between waves and current is performed alternating hydrodynamic and 

spectral modules every ∆tint = 300 s until reaching a steady-state condition. 

4. Results and Discussion 

The hydrodynamics of the jet current alone, without the interaction with a superimposed wave 

field, is well interpreted by the numerical model [29]. The assumption of mean velocity and, thus, of a 

logarithmic profile in the vertical section, subtended by the hypothesis of fully developed turbulent 

flow, is suitable to interpret the behavior of a river or a tidal flow debouching into a large shallow 

basin. 

Following Abramovich [10], two main properties characterize a free turbulent jet current in the 

main region or otherwise called ZOEF (zone of established flow): the exponential decay of 

longitudinal velocity and the self-similarity profile of the velocity in cross sections. In shallow depth, 

bottom friction enhances the velocity decrease, whereas the self-similar profile is maintained. In this 

regard, Öszoy and Ünlüata [12] proposed the analytical expression for the longitudinal velocity for 

different values of bottom friction and suggested faster spreading rates of the jet. 

In the present test, the hydrodynamic results of the jet alone are compared with the results 

obtained in the analogous test carried out by Petti et al. [29] and Nardin et al. [30] by means of a 

quasi-3D numerical model that computes the vertical eddy viscosity with a standard k-ε closure 

scheme and the horizontal eddy viscosity with a large eddy simulation technique. In Figure 3 the 

normalized longitudinal velocity along the jet centerline is reported. 

The very small differences compared to the previous test [29] could be ascribed to the different 

boundary conditions used in the present paper. In order to maintain a constant level inside the 

domain, Petti et al. [29] inserted a crosswise weir on the opposite side of the hydrodynamic mesh 

compared to the jet inlet, while in the present simulation a fixed water level has been imposed. This 

last solution is an improvement because it requires a less extensive domain and its applicability is 

supported by the results obtained. The comparison is also made with the theoretical profile of Öszoy 

and Ünlüata [12] defined by means of an analytical approach based on depth-averaged shallow 

water equations, confirming the 2DH model herein used. 
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Similar considerations can be made about the normalized velocity profile, taken along a cross 

section and depicted in Figure 4; the two theoretical self-similar profiles proposed by Schlichting and 

Tollmienn for a free turbulent jet in the main region [10], are shown for comparison with numerical 

results. 

The graph shows that the self-similar profile is maintained along transverse transects but with a 

greater spread due to bottom friction, according to Öszoy and Ünlüata [12]. This statement justifies 

the increased width at the base of the section of the numerical curves instead of theoretical ones 

without friction. 

 

Figure 3. Longitudinal velocity Uc, taken along the jet centerline, normalized with the velocity at the 

jet inlet, U0. In the abscissa, x is the distance from the start of the zone of established flow (ZOEF) 

normalized with the half-width of the inlet, b0. 

 

Figure 4. Longitudinal velocity U, taken along a transverse transect 780 m from the jet inlet, 

normalized with the centerline velocity, Uc. In the abscissa, y is the distance from the jet axis and yc is 

the local half-width of the jet, corresponding to the location where the mean velocity is equal to half 

the centerline velocity Uc. 

Figures 3 and 4 show good agreement of the present model with numerical quasi-3D and 

analytical results [29], with the great advantage that it is computationally less expensive than a 

quasi-3D model. 
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Petti et al. [29] analyzed the effects of an opposing wave field imposed on the previously 

described hydrodynamic steady-state condition. The same test is herein repeated, assigning a wave 

bin spectrum with a peak period of 5 s at the open sea boundary of the domain (Figure 2). 

In order to verify the effects of the bottom friction in the wave propagation and in the 

subsequent interaction with the jet current, diverse tests are performed using different formulations 

of spectral energy dissipation, as summarized in Table 1. 

The most important hydrodynamic evidence compared to the previous simulation is a more 

pronounced decay of the longitudinal velocity, as depicted in Figure 5, where velocity linear 

contours are compared in the two cases of the jet flow alone and the jet interacting with waves. For 

both conditions, the present current field is completely analogous to that reported by Nardin et al. 

[30]. 

  
(a) (b) 

Figure 5. Linear contours of longitudinal velocity (m/s): (a) jet alone; (b) jet interacting with waves 

according to T5M simulation. 

The flow field develops on the horizontal plane with the prevalent component of the current 

velocity aligned with the jet axis and a lateral spreading due to the transverse transfer of 

momentum, which involves formation of eddies on the jet sides. A characteristic feature of a 

turbulent jet, coherent with both theory and experimental results [10], is the smallness of the 

transverse velocity components in any section of the jet, compared to the longitudinal ones. In the 

cases analyzed, the maximum value reached by the y-directed transverse velocity is about 7 cm/s, 

corresponding to 5% of the velocity at the inlet. For this reason, the waves propagating against the jet 

current are weakly refracted and remain substantially collinear, at least in the domain portion where 

the interaction with the current velocities is more important, as pointed out in Figure 6a. 

With respect to this, the major changes in the wave field are observed in a narrow region 

around the jet centerline, where the current vorticity is greater. As can be seen in Figure 6b,c, the 

main evidence is the steepening of the waves as they approach the jet inlet, where current velocities 

are higher, due to the increase of wave height and a simultaneous progressive reduction of the 

relative period as predicted by the Doppler effect. The obtained results are completely analogous to 

those found by Nardin et al. [30]. 
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Given the underlined peculiarities of both the wave and the flow field, the analysis focuses on 

the main variables extracted along the jet centerline, starting from the normalized longitudinal 

velocity of the jet, depicted in Figures 7 and 8. In Figure 9 the normalized longitudinal velocity is 

taken along a cross section. 

As can be appreciated from the graphs, the spectral friction scheme adopted is important and is 

fundamental for the prediction of the bottom shear stresses, which are also responsible for sediment 

transport mechanisms. This aspect, in several numerical applications of nearshore wave–current 

interaction [20–22], is not specified. 

The major evidence compared to the simulation without wave–current interaction, is the more 

pronounced decay of longitudinal velocity of the current caused by the increase of the global bottom 

shear stress due to the wave motion, which leads to the definition of τm [31]. 

In particular, two aspects emerge from the relative comparison of the results: the first is a larger 

velocity reduction obtained by the present model compared to Petti et al. [29] and Nardin et al. [30] 

numerical results. Petti et al. [29] have already registered a higher steepening of waves to that 

calculated by Nardin et al. [30], who do not specify the frictional scheme setup. 

   
(a) (b) (c) 

Figure 6. Variations obtained in the simulation T5M of the following parameters: (a) the z-directed 

component of the current vorticity, defined as the curl of the flow velocity vector, with superimposed 

arrows representing the mean direction of the waves; (b) the significant wave height Hs; (c) the 

relative peak period Tp. 
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Figure 7. Normalized longitudinal velocity, along the jet centerline, in the case of jet alone and with 

the superimposed wave propagation with a period of 5 s. 

 

Figure 8. Normalized longitudinal velocity, along the jet centerline, in the case of jet alone and with 

the superimposed wave propagation with a period of 5 s, applying different schemes of the spectral 

bottom friction dissipation. 

However, the present model also gives differences using the same spectral bottom friction 

approach of JONSWAP. This outcome is attributable to the different equivalent roughness height 

adopted in the present simulation, suitable to represent a sandy bottom with ripples, consistent with 

literature references [18,31]. In fact, in nearshore shallow depths, bed shear stresses induce ripples 

which enhance the bottom dissipation due to form drag. The equivalent roughness height enters 

directly into the wave bottom shear-stress calculation and consequently into the mean total shear 

stress that reduces current velocity. 

The second important aspect, relevant to this work, is the different longitudinal velocity decay 

obtained in T5C and T5M simulations. It can be seen in Figure 8 that the discrepancies, due to the 

bottom-friction effects, increase when moving toward the jet inlet. For low gradients in the velocity of 

the jet current that occur away from the inlet, the curves substantially coincide. On the other hand, 

where higher gradients of velocity are registered the two frictional approaches give different results. 

This happens from the inlet up to x/b0 = 20. Within this initial region, the Doppler effect of waves 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40

Uc/U0

x/b0

jet alone

T5M

T5C_rds

jet and waves, Nardin et al., 2013

jet and waves, Petti et al., 2015

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30 35 40

Uc/U0

x/b0

jet alone
T5C
T5M
T5J
T5 no friction



Water 2018, 10, 392 12 of 18 

 

against the current is more pronounced, leading to a reduction in the relative wave period as attested 

also by Nardin et al. [30]. Together with the period, the relative roughness A/kn also decreases. 

 

Figure 9. Normalized longitudinal velocity, in a cross section taken at 780 m from the jet inlet in the 

case of jet with the superimposed wave propagation with a period of 5 s. 

Following Kamphuis [41], the bottom-friction coefficient Cf is a function of both the wave 

Reynolds number, Re = AUw/ν, where ν is the kinematic viscosity coefficient, and the relative 

roughness A/kn. A wave rough turbulent motion near the bed, in which Cf depends only on the relative 

roughness, can be distinguished from a laminar or transitional one. Hasselmann and Collins [42], 

using wave spectra measured offshore of Panama City, have indicated a constant value of Cf equal to 

0.015. This value has been widely used, also in recent modelling, even though it has a great 

variability, experimentally verified [18], as found by Madsen et al. [38], who obtained the expression 

(13) as a function of the relative roughness. Figure 10a,b show that, as the relative roughness 

decreases, the bottom friction coefficient considerably increases. 

 
 

(a) (b) 

Figure 10. (a) Comparison between the constant value of the bottom friction coefficient Cf assumed 

by Collins [37] and that computed by Madsen et al. [38] as a function of the relative roughness A/kn; 

(b) friction coefficient diagrams proposed after Kamphuis [18,41]. 
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Figure 11 shows values of the Reynolds number and the relative roughness obtained in the 

present simulations performed. These values are compatible with a wave rough turbulent flow at 

the bottom, confirming the validity of the bottom-friction approaches applied. 

However, in Madsen formulation, the spectral energy dissipation is increased by the 

progressive steepening of the waves against the jet current and consequently the enhancement of the 

bottom-friction coefficient. This explains the higher longitudinal velocity in the T5M simulation 

compared to T5C (Figure 8). 

In the mechanisms of interaction between the waves against current, a gradient of radiation 

stress tensor also arises from the steepening of the waves and, thus, additional hydrodynamic forces 

enter into the motion equations. 

Petti et al. [29] have already highlighted that in the first region of the spreading jet, up to x/b0 = 

10, the contribution to the decay of the velocity due to radiation stress and bottom shear stress is 

similar, due to the presence of major gradients of radiation stress toward the inlet. For this purpose, 

the simulation T5C has also been performed taking into account only the radiation stress 

contribution and neglecting the wave-bottom shear stress in the computation of τm. The results are 

very close to that of Nardin et al. [30], as can be seen in Figure 7. 

  
(a) (b) 

Figure 11. Simulations of wave-current interaction for different peak periods (3 s, 5 s and 8 s) and 

assuming Collins and Madsen approaches: (a) Reynolds numbers and (b) relative roughness A/kn, 

along the centerline of the jet current. 

To check if a different wave period can further influence the jet hydrodynamics, simulations 

with, respectively, a peak period of 3 s and 8 s have also been carried out. In analogy with the above, 

the results in term of normalized longitudinal current velocity are reported in Figures 12 and 13. 

The comparison between the simulations with the different assigned periods does not highlight 

significant differences in the jet flow field; the curves relating to the same bottom friction model are 

practically overlapping. However, the same cannot be said if the wave bed shear stress (Figure 14a) 

and the maximum derived from the wave–current interaction (Figure 14b) are investigated. 

According to Soulsby [31], the maximum bed shear stress is expressed as follows: 

           
 

1 22 2
max cos sinm w w  (14) 

  being the angle between the current velocity and the direction of wave travel. This quantity is 

fundamental in morphodynamics because it is responsible for the lifting of sediments from the 

bottom when it exceeds the threshold bed shear stress for the onset of motion. 
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Figure 12. Normalized longitudinal velocity, along the jet centerline, in the case of jet alone and with 

the superimposed wave propagation with peak periods of 3 s, 5 s and 8 s. 

 

Figure 13. Normalized longitudinal velocity, in a cross section taken at 780 m from the jet inlet in the 

case of jet alone and with the superimposed wave propagation with peak periods of 3 s, 5 s and 8 s. 

  
(a) (b) 

Figure 14. Bottom shear stresses along the jet centerline: (a) τw in the performed simulations; (b) 

comparison between the maximum bottom shear stress of the jet alone with those computed in the 

interactions with waves. 
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If the wave bed shear stresses are considered, a slight dependence on the period is noticed. 

Increasing the periods, the wave bed shear stresses are higher and reach the maximum value closer 

to the jet inlet. Moreover, comparing the results with the same period, great differences are found 

related to the bottom friction scheme, consistent with the previous results. 

The maximum bottom shear stress, deriving from the wave–current interaction, is significantly 

affected by greater values of the wave period. The configurations performed with a peak period of 3 s 

do not show particular differences either among themselves or with the bottom shear stress of the jet 

alone. The contribution of wave shear stress to the maximum bottom shear stress is small for low 

periods at the assigned depth. Instead, τw related to 5 s and 8 s peak period, increase τmax considerably 

and differently if the bottom friction coefficient Cf is left to vary with the relative bottom roughness 

[38]. 

This outcome can be very important in modelling hydrodynamic nearshore processes, 

especially in shallow water depth environments, where the interaction with bottom plays a crucial 

role, both on currents and waves, as can be seen from the numerical results described above. 

For this purpose, in a context, for instance, close to a tidal inlet or an estuarine environment, 

spectral energy dissipation presents great variability related to the peak period, which can change 

significantly in the presence of strong gradients of the velocities due to the Doppler effect. This 

mechanism depends on the angle between current and waves: the Doppler effect is not as evident in 

the case of quasi-orthogonal incidence, as occurs for the longshore currents and the waves 

propagating nearshore, but it becomes important if current and waves are quite collinear, as for river 

or tidal jets. For these reasons, it is difficult to consider that the frictional coefficient can be regarded 

as constant over the whole domain. 

The effects of this dissipation are particularly expressed on the bottom shear stresses, 

responsible for sediment resuspension and motion and the morphological evolution of the bottom 

itself. 

5. Conclusions 

In the present work, a simple 2DH numerical model has been applied to a literature test [29,30] 

reproducing a river jet current issuing into a large shallow basin and interacting with frontal waves. 

The model couples a hydrodynamic numerical model with the spectral model SWAN and it is 

suitable for reproducing the interaction between waves and currents typical of estuarine and coastal 

areas. Moreover, the known computational advantages of 2D modelling allow it to be applied to 

large domains. 

The outcomes have been compared to both analytical and numerical results, the latter being 

obtained with a model that adopts a more complex representation of the vertical and horizontal 

eddy viscosity. The comparison shows that the present model provided a very adequate 

representation of the hydrodynamics of a turbulent jet confined to the bottom. 

In detail, the role played by bottom friction has been investigated and it has been recognized as 

the dominant process in the decay of the jet longitudinal velocity and its greater spreading. Bottom 

friction dissipation becomes even more important in the correct reconstruction of the nearshore 

wave field, above all in shallow-depth contexts. 

The simulations of the jet current interaction with opposing travel waves carried out have 

shown that, in the spectral mechanism of dissipation energy, the proven dependence of the bottom 

friction coefficient with the relative roughness at the bed can change the wave field significantly. 

Consequently, the interaction with current can also affect hydrodynamics. 

To this end, two different theories implemented in SWAN to evaluate the dissipation due to 

bottom friction have been considered: the Collins approach [37], which assumes the bottom friction 

coefficient as constant, and the Madsen scheme [38], which takes into account the variability of the 

same coefficient in contexts of wave rough turbulent motion at the bed. 

The effects of these two approaches are quite sensitive to the period of waves, which can change 

in the domain due to shoaling and Doppler mechanisms generated by currents. In particular, bottom 

friction has a dominant role in the calculation of the maximum shear stress, which is responsible for 
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bed-erosion processes. The stress is significantly increased by greater values of the wave period and 

of the current velocity. Above all, it is conditioned by the assumed spectral dissipation scheme. 

From a general point of view, both of the theories analyzed are suitable for calculating energy 

dissipations that wind waves, propagating on shallow domains, undergo due to interaction with the 

bed. However, near a river delta or a tidal inlet, where currents can be strong and quite collinear 

compared to the mean wave direction, relative roughness can vary, consequently affecting the 

friction coefficient and the related bottom shear stress. The Madsen formulation [38] takes this 

variability into account, as opposed to the Collins scheme [37], and for this reason it results as 

preferable for interpreting the interaction phenomenon. 
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