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ABSTRACT:

This paper proposes an innovative method to create high-quality seamless planar mosaics. The developed pipeline ensures good
robustness against many common mosaicking problems (e.g., misalignments, colour distortion, moving objects, parallax) and differs
from other works in the literature because a global approach, known as synchronization, is used for image registration and colour
correction. To better conceal the mosaic seamlines, images are cut along specific paths, computed using a Voronoi decomposition of
the mosaic area and a shortest path algorithm. Results obtained on challenging real datasets show that the colour correction mitigates
significantly the colour variations between the original images and the seams on the final mosaic are not evident.

1. INTRODUCTION

Aligning and stitching together multiple images is a classical prob-
lem in photogrammetry (Pan et al., 2009) and computer vision

(Uyttendaele et al., 2001, Szeliski, 2006, Brown and Lowe, 2007).

Image mosaicking finds application in various scenarios, rang-

ing from satellite or aerial imagery (Du et al., 2008), street-view

panoramas (Li et al., 2016) or video stabilization (Hansen et al.,

1994), to name a few.

Since there are many technical difficulties in taking a photo with
a very large field of view (FOV), often the only practical solution
is to acquire multiple images with smaller FOV and merge them
together. Image mosaicking can be therefore defined as the pro-
cess of stitching different photos of the same scene in a single
wide image. The result should be as natural as possible, ideally
indistinguishable from a real photo that covers the entire scene.
However, deviation from planarity or photometric nuisances be-
tween the images can lead to a mosaic in which seams are evident.

The goal of this paper is to develop an innovative procedure to
create seamless mosaics exploiting a global approach, known as
synchronization (Singer, 2011). Starting from the geometric and
radiometric information between pairs of overlapping images, the
synchronization method is able to simultaneously estimate global
homographies and colour corrections for all the images, avoiding
the errors that accumulate when adding an image at a time to the
mosaic. Finally, in order to minimize and conceal the seams that
can still be visible after the global colour correction (e.g., due to
parallax and moving objects), the cutting paths are determined
using a Voronoi tessellation and optimized with the Dijkstra’s al-
gorithm (Dijkstra, 1959).

The experimental validation was conducted on datasets composed
by tens of images, acquired by a helicopter or an Unmanned
Aerial Vehicle (UAV). Although the scenes are not perfectly pla-
nar, there are moving objects and strong illumination and in-
tensity differences, the obtained mosaics appear homogeneous,
without artifacts, and the seams are well concealed.
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The paper is organized as follows. In the next section, the litera-
ture on mosaic generation is reviewed. Section 3 introduces the
synchronization problem and illustrates the solutions for homog-
raphy and affinity synchronization, that are used in the mosaick-
ing process for image registration and colour correction, respec-
tively. In Sec. 4 the proposed procedure is described in detail,
while Sec. 5 shows the results. Finally, Sec. 6 draws the conclu-
sion.

2. STATE OF THE ART

Aligning and stitching images into seamless mosaics is a pro-
cedure usually composed by three main steps: image registra-
tion, colour correction and blending. Image mosaicking can be
performed independently from (and prior to) the structure-from-
motion and dense matching phases, that are instead required to
generate orthophotos. The goal of mosaic creation is, in fact, to
visualize a wide area on a single image under perspective projec-
tion, whereas orthophotos are orthographic projections.

In the last decades several methods for automatic image mosaick-
ing appeared in the literature, proposing a complete pipeline for
the final mosaic generation (Davis, 1998, Marzotto et al., 2004,
Brown and Lowe, 2007) or focusing the attention on the optimi-
sation of one of the previously cited steps (Schroeder et al., 2011,
Oliveira et al., 2011, Li et al., 2016).

Algorithms for image alignment can be divided into two broad
categories (Szeliski, 2006): direct (pixel-based) and feature-based.
Direct methods exploit the entire image data, thus providing very
accurate registration but requiring at the same time a close initial-
ization. Feature-based algorithms, instead, do not require initial-
ization and can be computationally less expensive. Moreover,
since the introduction of invariant features (e.g. SIFT, (Lowe,
2004)) and robust feature matching, feature-based methods have
gained increasing attention and are nowadays widely used. (Brown
and Lowe, 2007) proved that, formulating stitching as a multi-
image matching problem and using invariant local features to find
matching between the images, lead to a method insensitive to the
ordering, orientation, scale and illumination of the input images.



To obtain a clean, pleasant looking mosaic, a robust alignment
process must be followed by colour correction. Neighbouring
images can indeed show colour and appearance differences due
to exposure level variation, changes in lighting condition and
different camera settings. Colour correction methods proposed
in the literature can be divided into model-based parametric ap-
proaches and non parametric ones (Xu and Mulligan, 2010). The
former assume that the relation between two images can be de-
scribed by a colour transfer function, whereas the latter consider
no particular parametric format of the colour mapping function
and typically use a look-up table to directly record the mapping
of the colour levels. (Xu and Mulligan, 2010) evaluated the per-
formance of various colour correction approaches, showing how
the gain compensation method by (Brown and Lowe, 2007) and
the local colour trasfer approach by (Tai et al., 2005) are fast,
effective and general (applicable in various scenarios).

Even after colour correction, seams and artifacts can be visible
in the mosaic. Image blending techniques are able to conceal the
colour differences along the seamlines but cannot handle resid-
ual geometric misalignment deriving from parallax and moving
objects. For these reasons, it is mandatory to compute optimal
seamlines that avoid crossing overlap regions with high image
discrepancies. (Davis, 1998) used the Dijksta’s algorithm (Dijk-
stra, 1959) to compute the best cutting path dividing overlapping
regions, segmenting the mosaic into disjoint regions and sam-
pling pixels in each region from a single source image. (Uytten-
daele et al., 2001) proposed a weighted vertex cover algorithm in
order to remove effects caused by moving objects and (Li et al.,
2016) formulated the seamline optimisation as a unified graph
cuts energy minimization problem, concealing the image paral-
lax in the resulting mosaic.

As described in the following sections, we propose an alternative
method to image mosaicking, based on synchronization (Singer,
2011), to globally align images and compensate for their colour
differences, in order to achieve homogeneous, high-quality planar
mosaics.

3. SYNCHRONIZATION

Consider a network of nodes where each node is characterized by
an unknown state. Suppose that pairs of nodes can measure the
ratio (or difference) between their states, that are typically rep-
resented by elements of a group X. The goal of synchronization
(Singer, 2011) is to estimate the unknown states from the pairwise
measures. Several instances of synchronization have been stud-
ied in the literature, which correspond to different instantiations
of X. Among them, it is worth citing SE(d) for rigid-motion
synchronization (Arrigoni et al., 2016b), SL(d) for homograpy
synchronization (Schroeder et al., 2011) and Aff(d) for affine ma-
trix synchronization. Please note that SE(d), SL(d) and Aff(d)
are all subgroups of GL(d). In this paper the attention is focused
on synchronization over SL(3), that will be applied for image
registration, and over Aff(1) for colour correction.

In order to formally define the problem and its solution, let X be
a group and let * denote its operation. Suppose that the pairwise
relations between the index pairs (i,5) C {1,..,n} x {1,..,n}
are known, and refer to them as z;;. Synchronization can be for-
mulated as the problem of recovering x; € ¥ fori = 1, .., n such
that the following consistency constraint is satisfied

Zij :xi*le 1)

The solution is defined up to a global (right) product with any
group element, i.e., if z; € X satisfies (1) then also x; *y satisfies
(1) for any (fixed) y € X.

If the known pairwise measures are noisy, the consistency con-
straint cannot be satisfied exactly. Thus, as shown in Fig. 1, the
searched solution is the one that minimizes the consistency error:

€(x1,x2, .., Tn) = Z(;(Zij,xi*mgl) 2)
(4,9)

where § : ¥ x ¥ — R™ is a metric function for ¥ (Arrigoni et
al., 2016a).
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Figure 1. The synchronization problem. Each node is
characterized by an unknown state and measures on the edges
are ratios of states. The goal is to compute the states that best

agree with the measures.

3.1 Synchronization over (GL(d), -)

In this section we consider the synchronization problem over the
General Linear Group G L(d), which is the set of all d x d in-
vertible matrices, where the group operation * is matrix multipli-
cation and 15 = I;. Let X; € R™? and Z;; € R**? denote
the matrix representations of x; € ¥ and z;; € X, respectively.
Using this notation, Eq. (1) rewrites Z;; = Xin_l.

Let us collect the unknown group elements and all the measures
in two matrices X € R™*% and Z € R¥*9" respectively,
which are composed of d x d blocks, namely

Xl -[d Zlg e Zln
X = X5 Cz= Zor  lg ... Zon B
Xn Zn1 ZLpz ... I

If not all the pairwise measures Z;; are available, the input matrix
becomes Z4 := Z o (A® laxa), where o denotes the Hadamard
product, A is the adjacency matrix and the Kronecker product
with 144 is required to match the block structure of the mea-
sures. The n X n adjacency matrix is constructed as follows:
A;; = 1if the pairwise measure Z;; exists, A;; = 0 otherwise.
Accordingly, the consistency constraint writes

Za=(XX")o(A® lixa) 4)

where X € R¥*?" denotes the block-matrix containing the
inverse of each d x d block of X.

It can be shown (Arie-Nachimson et al., 2012) that

ZaX =(D®I1)X 5)



thus an estimate of X is represented by the eigenvectors of (D ®
14) " Z 4 corresponding to the d largest eigenvalues, where D is
the degree matrix defined as D = diag(Al,x1). This is also
called the spectral solution.

3.2 Synchronization over SL(d)

Consider now the Special Linear Group SL(d), that is the set of
d x d matrices with unit determinant

SL(d) = {R € R™? s.t. det(R) = 1}. (6)

Synchronization over S L(3) corresponds to the homography syn-
chronization problem. Since SL(d) is a subgroup of GL(d), the
problem can be addressed via the spectral solution, which com-
putes the top d eigenvectors of (D ® I;) ™" Z4, that are collected
in a dn x d matrix U. In order to obtain elements of SL(d) from
U, each d x d block in U, denoted by U;, must be scaled to unit
determinant (Schroeder et al., 2011), which can be done by di-
viding U; by {/det(U;). However, if det(U;) is negative and d
is even, real roots do not exist; in this case the determinant can be
always made positive by exchanging two columns of U.

3.3 Synchronization over Aff(d)

Let us finally consider the Affine Group Aff(d), that is the set
of invertible affine transformations in d-space, which admits a
matrix representation through (d + 1) X (d 4+ 1) matrices

Aff(d) = { B{ ﬂ st MeRY™ v e Rd}. )

Aff(d) is a subgroup of GL(d+ 1), therefore the synchronization
problem can be solved by computing the top d + 1 eigenvectors
of (D ® I441) ' Z4. Since this approach leads to an algebraic
solution, it does not enforce constraints that matrices in Aff(d)
should satisfy.

Specifically, the output matrix U will not have vector [01xq 1]
in rows multiple of d 4+ 1. In order to recover X from U it is
sufficient to choose a different basis for the resulting eigenvec-
tors that satisfies such constraint, which can be found by taking a
suitable linear combination of the columns of U, as explained in
(Arrigoni et al., 2016b). More precisely, let F € R™* (@17 pe
the 0/1-matrix such that FU € R™*(@+1) consists of the rows of
U with indices multiple of d + 1. The coefficients a, b € R4*!
of the linear combination are solution of

FUa=0nx1, FUb=1nx1 (®)
where the first equation has a d-dimensional solution space. Let
ai,...,aq be abasis for the null-space of F'U. Thus X is recov-
eredas X = Ulay,...,aq,b].

In the presence of noise, Equation (8) is solved in the least-squares
sense. Then, such a solution is projected onto Aff(d) by forcing
the rows multiple of d + 1 to [01xq 1].

4. PROPOSED METHOD

The novel algorithm proposed in this paper tries to overcome
some common issues in mosaic generation (e.g. misalignments,
colour correction, moving objects) thanks to the use of synchro-
nization and the search for an optimal cutting path between over-
lapping images. The entire process is summarized in Fig. 2 and
described in detail in the following paragraphs.

Feature extraction and
matching

Pairwise homography

Global homography

Pairwise color transform

Global color correction

Patching

Voronoi tessellation

'

Seams optimisation

Image stitching

Figure 2. Flowchart of the proposed method.

4.1 Image alignment

The first step of the proposed procedure is to extract features from
all the images (e.g. SIFT features, (Lowe, 2004)) and match them.
A robust feature matching algorithm should be used in order to
avoid wrong matches that can cause strong misalignments be-
tween the images. For this reason, the method proposed in (Maset
et al., 2017) has been chosen. Starting from the correspondences
between pairs of views, it jointly updates them so as to maximize
their consistency.

Pairwise homographies are then robustly estimated using RANSAC
(Fischler and Bolles, 1981), computing image transformation pa-
rameters through the Direct Linear Transformation (DLT) method
(Abdel-Aziz and Karara, 1971). A possible solution to project all
the images in the same reference system for mosaic generation
is to compose relative transformations multiplying the obtained
pairwise homographies. However, this approach accumulates er-
ror at each successive multiplication. To solve this problem, syn-
chronization over SL(3) (see Sec. 3.2) is applied, converting in
this way pairwise homographies into absolute ones. This guaran-
tees that all relative information are considered simultaneously,
minimizing misalignment errors among the whole dataset.

To improve the accuracy of the synchronization process, a weight-
ing factor can be assigned to each pairwise homography, that de-
scribes its reliability. In practice, the unitary elements of the ad-



jacency matrix A contained in Eq. 4 are replaces by the estimated
weights. In the proposed procedure, these weights are assumed
to be proportional to the area of the convex hull that contains the
features matched in each image pairs.

4.2 Colour correction

Changes of the illumination conditions, different camera settings
and vignetting are some of the causes that make the seams of
the mosaic visible, even when the scene is planar, the images are
sharp and the alignment is perfect. Colour variations between
overlapping images should be modelled by a non-linear function
and often involve the three colour channels simultaneously. How-
ever, the simplified approach that considers the RGB channels in-
dependently and that models the transformation with an affinity
proved to work well. Thus, in the proposed method the relation
between the three colour channel of adjacent images (4, j) is as-
sumed to be an affine transformation, that can be written in matrix

form as
C ac be C
H_:[o 1}[1} ©)
i 2,7 J

where C'is in turn R,G, or B. Formulating the problem in this way
corresponds to estimating the parameters of three affine transfor-
mations between each pair of overlapping images, that have to be
then composed in order to compute a global colour correction for
each single image. It is easy to see that this problem can be solved
via the synchronization over the Affine Group Aff(d), described
in Sec. 3.3.

In the presence of small residual misalignments, a pixel-based
method used to estimate the pairwise affine transformations can
lead to inaccurate results. An alternative robust approach, adopted
in this paper, consists in exploiting the histograms of the overlap-
ping area computed for both images. The parameters of the affine
transformation are computed as the angular coefficient and inter-
cept of the straight line that fits the plot of one cumulative his-
togram versus the other cumulative histogram (Cox et al., 1996).

Once all the relative affine transformations have been computed
for each colour channel, the absolute ones can be retrieved via
synchronization, as done for the homographies. A weighting ma-
trix can be introduced, where the weights are proportional to the
overlapping area size, in order to give more confidence to the
most reliable pairwise colour transformation. Please note that
synchronization retrieves absolute affine transformation, up to a
global one. This degree of freedom can be fixed by choosing one
image that does not undergo colour correction. The unaltered im-
age can be identified automatically as the one that has the best
colour balance, or it can be defined by the user.

An example of the results achieved with this approach is repre-
sented in Fig. 3.

4.3 Voronoi tessellation and seams optimisation

Even if image alignment and colour correction produce optimal
results, seams can still be visible on the final mosaic due to, e.g.,
parallax or moving objects. We therefore propose an approach
that first reduces the seamlines total length and then conceals the
remaining ones.

First of all, it is advisable to remove redundant images, i.e., im-
ages completely covered by the adjacent ones. Using all the
images can indeed generate a mosaic composed by many little

(b)

Figure 3. Mosaic before (a) and after (b) colour correction.

patches, increasing at the same time the total length of the seam-
lines. This issue can be faced searching for a subset of images
with the property that no one is completely covered by the union
of the others. An iterative greedy approach can be followed to
discard redundant elements, considering an image at a time and
evaluating if its projection in the mosaic reference frame is com-
pletely covered by the projection of the other images. If so, the
current image is discarded and the dataset is updated. The pro-
cess is repeated until all the remaining elements are verified. The
drawback of this procedure is that it is order-dependent and does
not guarantee that the minimum subset is kept. The process can
be driven by arranging the dataset in a convenient way, since the
first images analysed are more likely to be discarded. A possible
choice is to sort the images according to their colour balancing or
to the alignment error.

The previously described step reduces the number of tiles that
compose the mosaic. To find a method that further reduces the
overall length of the seams, one can start from the following
considerations. The honeycomb conjecture (Hales, 2001) states
that the hexagonal tiling is the best way to divide a surface into



regions of equal area with the least total perimeter. Moreover,
the Voronoi tessellation of 2D lattices of points gives an irregu-
lar honeycomb tessellation. For these reasons, the Voronoi de-
composition can be applied to approximately minimize the total
length of the seams. The seed points for the Voronoi tessellation
are assumed to be the centroid of the images projected in the mo-
saic plane; for each seed the method determines a corresponding
region consisting of all points closer to that seed than to any other.

()

Figure 4. (a) Image frames projected onto the mosaic reference.
(b) Voronoi tessellation.

Figure 4(a) shows the area covered by each image after projecting
it on the mosaic surface, whereas Figure 4(b) represents the areas
assigned to the images using Voronoi decomposition.

Please note that we assume that the Voronoi region is contained
in the corresponding image; this happens in most cases, but it
cannot be formally guaranteed unless a constrained tesselation is
used.

Finally, the best cutting paths between overlapping images are
computed, in order to avoid the creation of seamlines that pass
through regions where there are significant differences between
adjacent images. For each seamline, the following procedure is
used:

1. Costmap computation: a costmap that provides the informa-
tion for the search of the best cutting path is constructed as
the squared difference (pixel by pixel) between the images
in the overlap area.

2. Costmap to graph conversion: the 2D costmap is converted
into a graph assuming that each pixel becomes a node and
that each adjacent nodes pair is connected by two oriented
edges. The edge takes the weight from the value of the end
pixel.

3. Best path identification: Dijkstra’s algorithm (Dijkstra, 1959)
is used over the generated graph to find the path of minimum
cost.

When multiple images overlap on the same area, a costmap is
computed for each image pairs and then averaged.

The procedure described requires as input the starting and end
points of the seamlines. Since the Voronoi vertices computed be-
fore are independent from the image contents (they depend only
on the position of the image centroids), they can fall in an area
where the differences between adjacent images are high, thus
negatively influencing the search of the best cutting path. To
maintain the Voronoi polygons and at the same time determine
optimal cutting paths, starting and end points are chosen as the
ones that have the lowest cost in a neighbourhood of each Voronoi
vertex, as shown in Fig. 5.

() (®) (©

Figure 5. Costmap for the vertex optimisation. The chosen
vertices are represented by a red cross.

Figure 6 reports an example of the seamlines detected through the
proposed procedure. First the Voronoi tessellation is performed
(Fig. 6(a)), then straight cuts between adjacent images are sub-
stituted by the optimal seamlines obtained through the Dijkstra’s
algorithm (Fig. 6(b)). One can notice that the cutting paths fol-
low the space between the trees and rarely cross them. This is
due to the fact that the ground between the trees is less textured
and the cost corresponding to this zone is low. Thus, during the
best cutting path computation, this area is preferred over the ones
covered by trees.

The whole procedure described in this section determines a seg-
mentation of the mosaic plane into disjoint regions. The final mo-
saic is obtained by filling each region with pixels sampled from a
single source image.

5. EXPERIMENTAL VALIDATION

The proposed method was validated on two challenging dataset
of aerial images. The results were compared to the ones obtained
with AutoStitch ' (Brown and Lowe, 2007), a popular software
for image stitching.

Dataset 1 is composed by 29 images of size 1600 x 1200 pixels,
acquired by a helicopter during a four strips flight. The images
are characterized by small overlap areas and varying camera set-
tings were used for each strip acquisition, thus the images present

Lavailable at http://matthewalunbrown.com/autostitch/autostitch.html



Figure 6. Seams produces by Voronoi tessellation (top) and after
optimisation.

significant colour differences that have to be corrected during the
mosaic generation. In particular, some images have a preponder-
ant unrealistic red colour. The scene is almost planar (parallax
effects are limited) but there are moving vehicles.

Figure 7 shows the mosaic created by aligning the images via
homography synchronization (see Sec 4.1) and stitching them to-
gether according to a simple painter’s algorithm (newer images
overwrites older ones). Small misalignments can be noticed and
strong colour distortions are evident between adjacent strips.

The result obtained with the complete method proposed in Sec. 4
is represented in Fig. 8(a). Please note how the colours have been
corrected with the affinity synchronization step (Sec. 4.2) and
differences between adjacent strips have been removed (reddish
images visible in Fig. 7 are now indistinguishable). Moreover,
misalignments have been concealed and the seamline optimisa-
tion carried out with the Dijkstra’s algorithm (Sec. 4.3) preserved
the integrity of the moving objects and avoided ghosting effects.
A limited number of seams are still visible on the street and they
could be easily eliminated by applying a blending algorithm at the
end of the proposed procedure. The mosaic generated with Au-
toStitch is shown in Fig. 8(b). The software uses gain compensa-
tion and blending to conceal seams between overlapping images.
The obtained mosaic is good, no misalignment is visible and the
colour correction algorithm worked quite well. However, images
with a strong red component are still visible and the blending in
correspondence of moving objects caused ghosting effects.

Dataset 2 is composed by 27 images of size 4000 x 3000 pixels,
acquired with a UAV with a forward and a side overlap of 80%.

Figure 7. Dataset 1: Mosaic obtained after image alignment,
with no colour correction and seamline optimisation.

The scene is not planar (there is a large building in the middle
and high trees in the bottom left part) and this determines strong
misalignments after the homography computation. There are no
evident colour differences except for weak illumination changes.
No moving objects can be noticed in the images. Figure 9 shows
the mosaic generated after homography synchronization, stitch-
ing images together according to the painter’s algorithm, whereas
Fig. 10(a) represents the final mosaic, in which colour variations
and visible cuts are perfectly concealed. Due to the high overlap,
13 images were removed because completely covered by the oth-
ers. Minimizing the number of images used to cover the entire
scene results in seams of shorter length and reduces the misalign-
ment and parallax visible effects. For this dataset, the mosaic
generated with AutoStitch (Fig. 10(b)) is not satisfactory. The
blending algorithm in presence of strong parallax caused blurred
areas and other artifacts.

6. CONCLUSION

In this paper we proposed a novel procedure for image mosaick-
ing, based on the approach known as synchronization. The im-
age alignment and colour correction steps that usually charac-
terize mosaic generation were addressed as a homography syn-
chronization and an affine synchronization problem, respectively.
Synchronization can be seen as upgrading from relative infor-
mation, which involves two overlapping images at a time, onto
absolute information, which involves all the images simultane-



(a)

(b)

Figure 8. Dataset 1. (a) Mosaic obtained with the proposed method. (b) Mosaic obtained with AutoStitch.

Figure 9. Dataset 2: Mosaic obtained after image alignment,
with no colour correction and seamline optimisation.

ously. Thanks to this approach, misalignments and colour dif-
ferences are globally minimized, thus leading to the generation
of homogeneous, visually appealing mosaics. In order to con-
ceal the seams that can still be visible after image registration
and colour correction, a final step is applied, that is composed
by Voronoi tessellation and seams optimisation via the Dijkstra’s
algorithm (Dijkstra, 1959). Results shown in Sec. 5 proved that

this novel procedure generates pleasant looking mosaic, without
resorting to blending algorithms. As a matter of fact, each pixel
of the resulting mosaic comes from a single image.
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