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Bearing-based Network Localizability:
a Unifying View

Federica Arrigoni and Andrea Fusiello

Abstract—This paper provides a unifying view and offers new insights on bearing-based network localizability, that is the problem of
establishing whether a set of directions between pairs of nodes uniquely determines (up to translation and scale) the position of the
nodes in d-space. If nodes represent cameras then we are in the context of global structure from motion. The contribution of the paper
is theoretical: first, we rewrite and link in a coherent structure several results that have been presented in different communities using
disparate formalisms; second, we derive some new localizability results within the edge-based formulation.

Index Terms—bearing-based localization; direction-based localization; parallel rigidity; bearing rigidity; structure from motion
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1 INTRODUCTION

Bearing-based (or direction-based) network localization is a fun-
damental problem in many computing and networking
tasks. The goal is to recover the position of n nodes in
d-space (with n ě 2 and d ě 2), given a redundant set
of (possibly noisy) directions between pairs of nodes. Each
node can represent any sensor able to measure the direction
of the line joining its location to that of its neighbors (see [1],
[2], [3]). One example is a network of cameras [4], in which
case we are dealing with global structure from motion [5].
The problem can be profitably modeled by introducing a
graph G “ pV, Eq where vertices are the sensors and edges
correspond to the available measures. Existing methods (e.g.
[6], [7], [8], [9]) differ in the problem formulation (deter-
ministic versus probabilistic) and the computational model
(centralized versus distributed).

A fundamental question concerns the localizability of the
network – which is the main focus of this paper, namely
the problem of establishing whether bearing-based network
localization is well-posed. Clearly, node locations can not
be absolutely determined, since translations and dilations
of a solution yield the same directions, and hence produce
other solutions. Thus the question is whether the measures
uniquely determine (up to translation and scale) the node
locations, i.e., after fixing the position of two nodes (which
essentially fixes the global translation and scale), all the
other nodes are uniquely defined by the directions. Requir-
ing that G is connected is not sufficient to guarantee the
uniqueness of the solution, but more complicated assump-
tions are required, which are studied under the name of
parallel rigidity (or bearing rigidity).

Several theoretical results about parallel rigidity are
present in the literature [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], as well as practical algorithms for find-
ing maximal subgraphs in which the localization problem is
well-posed [20], [21], [22]. These works come from disparate
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communities: discrete geometry [10], [11], [12], [18], [22];
computer vision [14], [19]; robotics [21]; decision and control
[9], [15], [16], [17], [20]; computer-aided design [13].

The rigidity question can be posed either in terms of a
point formation [15], [17], that is a configuration of n nodes
in d-space, or in terms of the underlying graph G “ pV, Eq
without reference to the specific values of the node locations
[12], under the assumption that they are generic. The former
gives rise to an algebraic characterization of localizability
in terms of the rank of specific matrices derived from the
coordinates of the nodes [9], [14], [16], [19], whereas the
latter makes a combinatorial characterization of parallel
rigidity possible [10], [11], [13]. A related concept is that
of parallel rigidity index [18] in which the directions (instead
of node locations) are assumed to be generic.

In this paper we consider the absolute version of the
localizability problem, namely we assume that all the direc-
tions are expressed in a common rotational reference frame.
See [23] for the relative version of the problem, where no
global coordinate frame is known. We also assume that the
network is anchor free, i.e., all the nodes have unknown po-
sitions. Some localizability results in the presence of nodes
whose position is known in advance (anchors), are reported
in [9].

A related topic, which is not covered in this paper, is
distance-based network localization [24], [25], where each node
can measure relative distances to a set of other nodes. The
corresponding theory on the uniqueness of the solution is
known as classical rigidity [26], which characterizes well-
posed instances of the localization problem in 2-space.
However, no such characterization has been shown to hold
for d ě 3. Parallel rigidity, instead, has a simpler structure
since the direction constraints between pairs of nodes can
be expressed as linear equations, which allows to solve the
localizability problem for all d.

1.1 Problem Definition

Consider a network consisting of n nodes labeled from 1 to
n, where each node is located at a fixed (unknown) position
in Rd, and suppose that some pairs of nodes can measure
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the direction of the line joining their locations. Let pi P Rd
denote the location of node i and let

uij “
pj ´ pi
‖pj ´ pi‖

(1)

denote the direction between node i and node j, where ‖¨‖
denotes the Euclidean norm in Rd. In some applications the
sign of the directions may be unspecified, in which case
˘uij is known. The neighbor relationships of the network
can be represented as a simple directed graph G “ pV, Eq
with vertex set V “ t1, 2, . . . , nu and edge set E such that
pi, jq P E if there is a measured direction between node i and
node j, with m “ |E |. We do not assume full measurements,
i.e. G may not be complete.

The d-dimensional bearing-based network localization prob-
lem consists in determining the node locations p1, . . . ,pn
in Rd, given the (redundant) set of pairwise measures
tuijupi,jqPE , as shown in Figure 1. These measures may be
corrupted by noise, in which case the goal is to combine
them into an estimate of the locations where errors are
mitigated by exploiting the redundancy in the data.
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Figure 1: The bearing-based localization problem.

Given a set of (noise-free) directions and the underlying
graph, the unknown node locations pi P Rd can be recov-
ered as the solution of the following system

pj ´ pi “ αijuij pi, jq P E (2)

where αij P R are unknown as well.
Let P be the d ˆ n matrix obtained by juxtaposing all

the node locations, namely P “ rp1 . . .pns, let U be the
dˆmmatrix obtained by juxtaposing all the edge directions,
namely U “ ru12 . . . uij . . . s, and let α P Rm be the
vector containing all the scales αij . It is easy to see that the
equations above can be expressed in matrix form as

PB “ U diagpαq (3)

where B denotes the nˆm incidence matrix of G, which is
defined in Equation (80), and diagpαq produces a diagonal
matrix with elements αij along the diagonal.

Applying the vectorization operator vecp¨q to both sides
in (3) and using formulas (90) and (95) we get

pBT b Idqp “ pIm d Uqα (4)

where p “ vecpP q, b denotes the Kronecker product, d
denotes the Khatri-Rao product, and Id (respectively Im)
denotes the dˆ d (respectively mˆm) identity matrix. See
Equations (86) and (93) for the definitions of such matrix
products.

We are interested here in establishing whether Equation
(4) admits a unique solution (up to translation and scale).
Note that both p P Rdn and α P Rm are unknown. There
are two paths that can be followed in order to remove one
unknown: node-based [9], [10], [11], [12], [13], [15], [16], [17],
[19], [21] and edge-based [14], [18], [20], [22]. The former
derives a system of equations in terms of the node locations
only, whereas the latter reduces (4) to a system of equations
with the sole scales as unknowns. The node-based formu-
lation is better studied than the edge-based one, which is
fairly recent.

1.2 Contribution

In this paper – for the first time in the literature – we provide
a unifying view of bearing-based localizability, rewriting
results proposed in different scenarios using the same the-
oretical formalism, while at the same time also proposing
some novel results which fill in gaps of knowledge, par-
ticularly related to the edge-based formulation. Note that
some of these results were previously announced in our
conference paper [14]. More precisely, our contributions are
the following.

First, we provide a comprehensive survey on node-based
parallel rigidity, which is reported in Section 2, considering
both the standard definition of parallel rigidity, which in-
volves a formation of n nodes in d-space, and the concept
of generic parallel rigidity, which is a property of the graph
G “ pV, Eq. A novel result linking rigidity in Rd with rigidity
in Rd`1 is also derived (Proposition 2).

Secondly, as our main contribution, in Section 3 we de-
scribe the edge-based formulation of parallel rigidity, which
builds upon [14], [20], [22]. We show that this formulation is
theoretically equivalent to the node-based one (Proposition
4), it entails a compact matrix formulation (Theorem 7), and
it also enables us to prove results involving the structure
of the graph. Specifically, we prove that biconnectivity is
necessary for parallel rigidity (Proposition 7) and we derive
sufficient conditions for parallel rigidity (Theorems 9 and
10) based on the existence of cycle bases of G with certain
properties.

Then, in Section 4 we rewrite in simpler terms the
concept of parallel rigidity index defined in [18], providing
its direct computation for some simple cases (Proposition 10
and Corollary 3) and explaining how it relates to parallel
rigidity. We also underline its impact on bearing-based
network localization, specifically we point out which graphs
are better suited for the localization problem since they
promote error compensation in the presence of noise.

Finally, in Section 5 we explain how bearing-based lo-
calizability is related to the structure from motion problem
in Computer Vision, and we provide some examples of
datasets encountered in real scenarios where the localization
problem is not well posed.

The theory presented in this paper requires some ba-
sic notions from graph theory, which are covered in Ap-
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pendix A, and the definitions of the Kronecker and Khatri-
Rao products, which are given in Appendix B, included as
additional material.

2 NODE-BASED PARALLEL RIGIDITY

The theory of parallel rigidity is concerned with the problem
of establishing if there are enough direction constraints
(and they are distributed well enough) to ensure that all
the feasible solutions to bearing-based network localization
differ by translation and scale. The node-based formulation of
parallel rigidity – which is the classical way to study the
solvability of the localization problem – reasons in terms
of node positions, and it is based on the concept of point
formation. A complete treatment of this subject can be found
in [10], [11], [13], [15], [16], [17].

2.1 Rigidity of a Point Formation

Let us start with the definition of point formation.

Definition 1. A d-dimensional point formation (or embedding)
Fp is a set P “ tp1, . . . ,pnu of n points in Rd together with
a set E ofm links, with E Ď tpi, jq, i ‰ j, i, j P t1, 2, . . . , nuu.

A point formation uniquely determines a directed graph
G “ pV, Eq with vertex set V “ t1, 2, . . . , nu and edge set E ,
together with a measurement function u : E Ñ Sd´1 whose
value at pi, jq P E is the direction of pj´pi, which is defined
in Equation (1). We assume here that the points in Fp are
distinct, i.e. pi ‰ pj for all i ‰ j, so that Equation (1) is
well defined. We use the notation p P Rdn to denote the
stack of the coordinates of the points in Fp, that is p “

rpT
1 pT

2 . . . pT
ns

T.
A point formation represents a configuration of n nodes

in d-space. Specifically, the points pi represent a solution
to bearing-only localization with uij known, and the set E
corresponds to node pairs for which the direction can be
measured, which define constraints between specific nodes.

Definition 2. Two point formations Fp and Fq on the same
graph G “ pV, Eq are called parallel point formations (or
parallel drawings) if pj ´ pi is parallel to qj ´ qi for all
pi, jq P E .

Note that pj´pi is parallel to qj´qi if and only if there
exists a scale sij P R such that

qj ´ qi “ sijppj ´ piq pi, jq P E . (5)

similarly to Equation (2).
The parallelism constraint for the edge pi, jq P E can

be expressed in an equivalent form which does not involve
the unknown scale sij . Let us start with the d “ 2 case.
Using the operator p¨qK for turning a plane vector by π{2
counterclockwise, such constraint can be written as

ppj ´ piq
K ¨ pqj ´ qiq “ 0 pi, jq P E . (6)

Thus, given a point formation Fp in 2-space, a parallel
drawing Fq solves a homogeneous equation for each edge

in E , resulting in a linear system of m equations in 2n
unknowns. In the d ě 3 case, Equation (6) generalizes to

ppj ´ piq
T
N1
pqj ´ qiq “ 0 pi, jq P E

ppj ´ piq
T
N2
pqj ´ qiq “ 0 pi, jq P E

. . .

ppj ´ piq
T
Nd´1

pqj ´ qiq “ 0 pi, jq P E

(7)

where ppj´piqNk
for k “ 1, . . . , d´1 are (linearly indepen-

dent) vectors that span the subspace orthogonal to pj ´ pi.
The equations in (7) are called the direction constraints (or
normal constraints). Thus, given a point formation Fp, all
parallel drawings solve d ´ 1 homogeneous equations for
each edge in E . If we collect such equations for all the edges
we get a system of mpd´ 1q equations in dn unknowns

RFpq “ 0 (8)

where q “ rqT
1 qT

2 . . . qT
ns

T P Rdn and RFp P Rmpd´1qˆdn

is called the parallel rigidity matrix.
Given a point formation Fp, trivially parallel point forma-

tions are translations and dilations of Fp (including the par-
allel point formation in which all the points are coincident).
Note that also a negative scaling of Fp is considered trivially
parallel to the original point formation. All the others (if
they exist) are non trivial. Figure 2 shows an example:
Figure 2a represents a point formation in R2; Figures 2b
and 2c are dilations of the point formation in Figure 2a
(in particular, the former is an expansion and the latter is
a contraction); Figure 2d shows a translation of the point
formation in Figure 2a; Figure 2e reports a non-trivially
parallel point formation, since it can not be obtained from
the point formation in Figure 2a by translation or dilation,
although all the corresponding edges are parallel to each
other.

(a) (b) (c)

(d) (e)

Figure 2: Parallel point formations.

Definition 3. A point formation Fp is called parallel rigid (or
tight) in d-space if all parallel point formations are trivially
parallel. Otherwise it is called flexible (or loose).

According to Definition 3, the point formation in Figure
2a is flexible in R2 since it admits a non-trivial parallel
drawing, whereas the point formation in Figure 3, which
is obtained from the formation in Figure 2a by adding an
extra link, is parallel rigid. Note that parallel rigidity is a
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property of the point formation, i.e. it depends both on the
graph and on the coordinates of the points in Rd.

Figure 3: Parallel rigid point formation.

Note that trivially parallel point formations span a
pd ` 1q-dimensional subspace of the null-space of RFp ,
corresponding to translations along each of d axes and one
scaling, thus rankpRFpq ď dn ´ pd ` 1q. Since the set of
parallel drawings of a point formation Fp coincides with the
solution set of Equation 8, we obtain the following algebraic
characterization of parallel rigidity.

Theorem 1 ( [16]). Suppose that a point formation Fp contains
at least d ` 1 points which are not contained in any proper
hyperplane of Rd. Fp is parallel rigid in d-space if and only if

dimpkerpRFpqq “ d` 1, (9)

or, equivalently, if and only if

rankpRFpq “ dn´ pd` 1q. (10)

Note that the assumption in Theorem 1 guarantees that
there are always d ` 1 independent solutions to (8). Other-
wise, parallel rigidity can be checked in lower dimensions,
namely in pd ´ 1q-space if Fp contains d points, and so on.
In the remainder of this section we suppose that such an
assumption is satisfied.
Remark 1. We observe that a point formation Fp “ pp, Eq
is parallel rigid if and only if F 1p “ pp, E 1q is parallel rigid,
where E 1 is obtained from E by reversing the orientation of
some edges, i.e. the endpoints are the same but the tail is
replaced with the head and vice versa. Indeed, substituting
pi, jq with pj, iq in Equation (7) results in an equivalent sys-
tem. Thus the rigidity of a point formation is independent of
the particular orientation of the edges, but it depends only
on the underlying undirected graph. This is in agreement
with Laman’s condition (Theorem 3) which depends only
on the number of edges/vertices of certain subgraphs of
G, but not on the orientation of the edges. For this reason,
the figures in this paper represent undirected graphs. Note
that in other related problems, e.g. formation control, the
orientation of the edges is relevant, as explained by the
notion of persistence [27], [28].

2.1.1 Alternative Formulations of the Direction Constraints
We observe that the directions constraints can be expressed
in alternative forms which are equivalent to Equation (7).
Let us start with the d “ 3 case. The vectors pj ´ pi and
qj ´qi are parallel if and only if their cross-product is zero,
namely

ppj ´ piq ˆ pqj ´ qiq “ 0 pi, jq P E (11)

or, equivalently,

rpj ´ pisˆpqj ´ qiq “ 0 pi, jq P E (12)

where rasˆ denotes the skew-symmetric matrix associated
with the cross-product with a “ ra1 a2 a3s

T, namely

rasˆ “

»

–

0 ´a3 a2
a3 0 ´a1
´a2 a1 0

fi

fl . (13)

Equation (12) gives rise to 3 homogeneous equations for
each edge in E , where only two of them are linearly inde-
pendent. This formulation is used (e.g.) in [20], [21].

In the general case, the property that pj´pi and qj´qi
are parallel can be expressed as a rank constraint, namely

rankprpj ´ pi, qj ´ qisq “ 1 pi, jq P E (14)

which is equivalent to impose that all order-two minors are
zero. The number of such minors is dpd ´ 1q{2, which give
rise to dpd ´ 1q{2 homogeneous equations for each edge in
E , where only d´ 1 of them are linearly independent. Such
equations can be expressed in matrix form as in Equation
(12), where rasˆ now denotes a dpd ´ 1q{2 ˆ d matrix
composed of d´ 1 blocks arranged by rows, as explained in
[29]. The i-th block has d´ i rows and d columns

Ai “

»

—

—

—

–

01ˆpi´1q ´ai`1 ai 0 0 . . . 0
01ˆpi´1q ´ai`2 0 ai 0 . . . 0
01ˆpi´1q ´ai`3 0 0 ai . . . 0
. . . . . .

01ˆpi´1q ´ad 0 0 0 . . . ai

fi

ffi

ffi

ffi

fl

(15)

and

rasˆ “

»

–

A1

. . .
Ad´1

fi

fl . (16)

It can be checked that Equation (16) reduces to (13) if d “ 3.
If we collect the equations in (12) for all the edges in E ,

we get a system of mdpd´ 1q{2 homogeneous equations in
dn unknowns. Let S denote the mdpd ´ 1q{2 ˆ md block-
diagonal matrix with blocks rpj ´ pisˆ along the diagonal,
namely

S “ blockdiagptrpj ´ pisˆupi,jqPEq (17)

and let Q “ rq1 . . .qns. Using this notation, the equations
in (12) can be expressed in a compact matrix form as

S vecpQBq “ 0 (18)

which, using formula (90), rewrites

SpBT b Idqq “ 0 (19)

where q “ vecpQq, B is the incidence matrix and b is the
Kronecker product. The linear system in (19) is equivalent to
(8), thus we can check the rank of SpBT b Idq instead of the
rank of the parallel rigidity matrix to establish the rigidity
of a point formation in d-space.

A different formulation is used in [9], [19], which is based
on the observation that pj ´ pi is parallel to qj ´ qi if and
only if the components of qj ´ qi orthogonal to pj ´ pi are
zero, namely

Γpj´pipqj ´ qiq “ 0 pi, jq P E (20)
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where Γa P Rdˆd denotes the orthogonal projection matrix
which geometrically projects any vector onto the orthogonal
compliment of a P Rd, namely

Γa “ Id ´
a aT

||a||2
. (21)

Thus d homogeneous equations for each edge in E are
obtained, where only d ´ 1 are linearly independent. Such
equations can be collected for all the edges as in Equation
(19), resulting in

GpBT b Idqq “ 0 (22)

where
G “ blockdiagptΓpj´pi

upi,jqPEq. (23)

Equation (22) is a system of dm homogeneous equations in
dn unknowns which is equivalent to (8), thus the rank of
GpBTb Idq can be computed to check the rigidity of a point
formation.

2.1.2 The Bearing Laplacian Matrix
In practice, a parallel point formation q can be recovered by
solving the normal equations associated with (22), namely

`

GpBT b Idq
˘T`

GpBT b Idq
˘

loooooooooooooooooomoooooooooooooooooon

H

q “ 0. (24)

Note that H is symmetric and positive semidefinite. By
computation it can be verified that the projection matrix Γa

defined in (21) satisfies ΓT
a “ Γa “ Γ2

a for all a P Rd, thus
GTG “ G. Using this property and Equation (87) we get

H “ pB b IdqGpB
T b Idq (25)

which, after some rewriting, can be expressed as

H “

»

—

—

—

–

ř

j Γ1j
ř

j Γ2j

. . .
ř

j Γnj

fi

ffi

ffi

ffi

fl

`

´

»

—

—

—

–

0 Γ12 . . . Γ1n

Γ21 0 . . . Γ2n

...
. . .

...
Γn1 Γn2 . . . 0

fi

ffi

ffi

ffi

fl

(26)

where, for simplicity of notation, Γij “ Γpj´pi
. The matrix

H is called the bearing Laplacian in [9] since it resembles the
Laplacian matrix of a weighted graph (see Appendix A.2).
Note that Equation (26) is the same as the matrix used in
[30]. Since rankpHq “ rankpGpBT b Idqq, the rank of the
bearing Laplacian matrix can be computed in order to check
the rigidity of a point formation in d-space, as done in [9].

2.1.3 Global Rigidity
We introduce the concept of global parallel rigidity which
turns out to be equivalent to parallel rigidity. In the case
of distance-based localization, instead, the conditions for
global rigidity are stronger than those for rigidity [26].

In the same way as a point formation uniquely deter-
mines a graph and a measurement function, it also deter-
mines a localization problem where the input are such graph
and directions. By construction, the point formation solves

this problem, thus the question is whether it is the unique (up
to translation and scale) solution (or there exist other non-
trivially parallel solutions). If the answer is positive, then
the configuration is called globally parallel rigid. In other
words, a point formation is globally parallel rigid if it is the
unique solution to the associated localization problem.

Definition 4. A point formation Fp is called globally parallel
rigid in d-space if it is exactly determined (up to translation
and scale) by its graph and measurement function.

Proposition 1 ( [17]). A point formation Fp is parallel rigid if
and only if it is globally parallel rigid.

Proof. We follow the reasoning reported in [31]. Let us
consider the measurement function which associates a point
formation Fp with Γpj´pi

for all pi, jq P E , where the
orthogonal projection matrix Γ is defined in (21). Note that
the knowledge of Γpj´pi

is equivalent to the knowledge of
˘uij where the sign is undetermined, with uij defined in
(1). Let us define a map M that assigns each point formation
to its graph and measurement function, namely

M : Fp ÞÑ pG,Γq. (27)

More precisely, since the property of being trivially parallel
point formation is an equivalence relation, we can define the
above map on the quotient space induced by such relation.
Note that Fp is globally parallel rigid if and only if M is
injective at Fp. It is clear that M is injective at Fp if and
only if Fp admits only trivially parallel point formations,
since parallel point formations have the same measurement
function and vice-versa.

Given the interpretation of global rigidity in terms of
bearing-based localization, Proposition 1 implies that parallel
rigidity is equivalent to the unique localizability of a sensor
network in d-space. Accordingly, the equations arising from
the definition of parallel rigidity can be exploited to address
the localization problem via a node-based approach. In
order to facilitate the implementation, we refer here to the
formulations reported in Section 2.1.1, which are equivalent
to Equation (8).

Given a set of directions tuiju for pi, jq P E , the local-
ization problem can be addressed by solving the following
homogeneous system of equations with respect to the un-
known p P Rdn

SpBT b Idqp “ 0 (28)

where S “ blockdiagptruijsˆupi,jqPEq. This formulation
is exploited in [32], [33] in the context of structure from
motion. The above equation has the same structure as (19):
in the first case, we are looking for a point formation –
which represents the solution to bearing-based localization
– whose edges are parallel to a given set of directions;
in the second case, we are looking for point formations
whose edges are parallel to those of a given configuration.
Note that ||uij || ruijsˆ “ rpj ´ pisˆ, thus the matrices in
Equations (19) and (28) coincide up to a left-multiplication
by a diagonal matrix of scales. As a consequence, the rank
of the matrix in (28) – instead of (19) – can be computed to
establish the rigidity of Fp in d-space, or, equivalently, the
uniqueness of the solution to bearing-based localization, in
agreement with Proposition 1.
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Remark 2. Equation (28) can also be derived by multiplying
(4) by the block-diagonal matrix S

SpBT b Idqp “ SpIm d Uqα. (29)

Note that, by construction, the right-side vanishes, yielding
Equation (28), which does not involve the edge scales. Al-
ternatively, node locations and edge scales can be computed
simultaneously from Equation (4), as done in [34], [35], [36].

A different formulation for bearing-based localization is
used in [9], [19], [30], [37] where the following homogeneous
system of equations is considered

GpBT b Idqp “ 0 (30)

with G “ blockdiagptΓuij
upi,jqPEq, which resembles Equa-

tion (22) in the same way as (28) resembles Equation (19).

Remark 3. In the d “ 3 case the bearing Laplacian associated
with Equation (30) can be equivalently expressed as

H “ pB b IdqGpB
T b Idq “ pB b IdqS

TSpBT b Idq (31)

since rasˆrbsˆ “ baT ´ abTI3 for all a,b P R3, which
implies that ruijsTˆruijsˆ “ I3 ´ uiju

T
ij “ Γuij

(recall that
‖uij‖ “ 1 by construction). Note that the matrix in Equation
(31) is the coefficient matrix of the normal equations associ-
ated with (28). This implies that (in the presence of noise) the
least-squares solution associated with (28) coincides with
the spectral solution proposed in [30], as observed also in
[21].

2.2 Generic Rigidity

According to the above results, given a point formation Fp,
it can be established (by checking the rank of the parallel
rigidity matrix) if it is uniquely determined by its graph
and directions. If it is not so, the cause can be the structure
of the graph or the actual coordinates of the points, i.e., there
can be algebraic dependencies among the coordinates that
make the rank drop. How can we predict the rigidity of the
problem based on the structure of the graph (and dimension
d) only? This issue is addressed in the present section, where
the concept of generic parallel rigidity is introduced. This
property does not depend on the specific coordinates of a
point formation, but it predicts the rigidity of almost all the
point formations from the nodes and their incidences, i.e.,
from the underlying graph.

Definition 5. A set A “ tα1, . . . , αku of distinct real
numbers is called algebraically dependent if there exists a
non-zero polynomial h with integer coefficients such that
hpα1, . . . , αkq “ 0. Otherwise it is called generic.

A set P “ tp1, . . . ,pnu of points in Rd is called generic
if its dn coordinates are generic. Note that if the set contains
less than d ` 1 points, then there are always algebraic
dependencies among the coordinates, since the points are
contained in a hyperplane of Rd. In such a situation the
generic property is checked in lower dimensions (namely
d ´ 1 if there are d points, and so on). It can be shown that
the set of generic Ps forms an open dense subset of Rdn
[12]. Note that, with reference to the structure-from-motion
application, a camera that is moving along a straight line is

not considered generic by this theory (if the points in the
scene are not considered).

Definition 6. A graph G “ pV, Eq is called generically parallel
rigid in d-space if Fp “ pP, Eq is parallel rigid for a generic
P . Otherwise it is called generically flexible.

Due to Theorem 1, we can equivalently say that a
graph G “ pV, Eq is generically parallel rigid if and only
if rankpRFpq “ dn ´ pd ` 1q, where RFp is constructed
using a generic point formation Fp. It can be shown that
rankpRFpq is independent of the coordinates of the chosen
point formation (assuming that it is generic) and it depends
only on the underlying graph and dimension d [16], hence
Definition 6 is well-posed. Due to Proposition 1, we can
equivalently say that a graph G “ pV, Eq is generically
parallel rigid if Fp “ pP, Eq is globally parallel rigid for a
generic P .

Figure 4a shows a generically parallel rigid graph1. It
is easy to see that, given a point formation with generic
coordinates, all the possible transformations that keep the
corresponding edges parallel are translations and dilations,
thus the underlying graph is parallel rigid in d-space.
Note that the rigidity of G does not imply that all the
point formations defined on G are parallel rigid. If there
are algebraic dependencies among the coordinates (e.g. all
the nodes lie on a common line) then the rank of the
parallel rigidity matrix drop, resulting in a flexible point
formation. The rigidity of G implies that all the generic
point formations are parallel rigid, and hence, since generic
formations are dense in Rdn, it implies that almost all the
formations defined on G are parallel rigid in d-space. Fig-
ure 4b shows a generically flexible graph G “ pV, Eq. It
is easy to see that, given a point formation with generic
coordinates, independent scaling of the edges in the sub-
graphs G1 “ pV1, E1q “ pt1, 2, 3u, tp1, 2q, p2, 3q, p3, 1quq and
G2 “ pV2, E2q “ pt3, 4, 5u, tp3, 4q, p4, 5q, p5, 3quq produces
non-trivially parallel point formations, thus the underlying
graph is flexible in d-space.

1 2

34

(a)

1

2

3

4

5

(b)

Figure 4: Left: generically parallel rigid graph. Right: gener-
ically flexible graph.

Note that, if we choose a graph and vary the position
of the nodes in d-space, the dimension of the solution space
of Equation (8) changes. However, a minimum dimension
occurs and it clearly depends only on the underlying graph.
It can be shown that such minimum is attained when the
coordinates of the nodes are generic [16], which is equiv-
alent to say that generic point formations maximize the

1. Note that Figures 2 and 3 represent 2-dimensional point forma-
tions, i.e. specific coordinates of nodes in 2-space, whereas Figure 4
and all subsequent figures represent graphs, i.e. only the links matter
and the embedding in the plane is merely accidental. To make this
difference evident a 2D reference frame is drawn where appropriate.
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rank of the parallel rigidity matrix. Recall that rankpRFpq

is constant for any generic Fp. Thus we get the following
algebraic characterization of generic parallel rigidity.

Theorem 2 ( [16]). A graph G “ pV, Eq is generically parallel
rigid in d-space if and only if

max
pPRnd

rankpRFpq “ dn´ pd` 1q. (32)

Theorem 2 gives rise to a randomized test for checking
generic parallel rigidity [19], where a parallel rigidity matrix
is built from a point formation randomly sampled from
i.i.d. Gaussian distribution. This test correctly establishes
the generic rigidity of G with probability 1 with a time
complexity of Opmq, with m “ |E |.

Note that, if G is generically parallel rigid, then adding
edges between existing nodes keeps the graph rigid, since
it corresponds to include dependent equations in (8). If
removing an edge results in a flexible graph, then G “ pV, Eq
is called minimally parallel rigid in d-space, i.e. it is generically
parallel rigid with minimum number of constraints. See [15]
for techniques to generate minimally rigid graphs in 2-space
and in 3-space.

We now list some combinatorial characterizations of
generic parallel rigidity.

Theorem 3 (Laman’s condition [11]). A graph G “ pV, Eq is
generically parallel rigid in d-space if and only if there exists a
subset E 1 Ď pd´ 1qE , where pd´ 1qE denotes the set consisting
of d´1 copies of the edges in E , such that the following conditions
are satisfied:

1) |E 1| “ dn´ pd` 1q;
2) @ E2 Ď E 1, E2 ‰ ∅: |E2| ď d|V2| ´ pd` 1q, where V2

denotes the set of vertices that are endpoints of the edges
in E2.

Corollary 1 ( [10]). A graph G “ pV, Eq is generically parallel
rigid in d-space if and only if for any partition tE1, E2, . . . , Ehu
of E it holds

h
ÿ

i“1

`

d|Vi| ´ pd` 1q
˘

ě dn´ pd` 1q. (33)

The conditions in Theorem 3 translate into combinatorial
algorithms for testing generic parallel rigidity, e.g. methods
based on the pebble game [38] with a time complexity of
Opn2q. Note that if E satisfies pd´1q|E | ă dn´pd`1q then,
even if we take E 1 “ pd ´ 1qE , Condition 1 in Theorem 3
will not be fulfilled. Thus we have the following necessary
condition for a graph G to be generically parallel rigid

pd´ 1qm ě dn´ pd` 1q (34)

which essentially states that G needs to have a sufficient
number of edges.

Let us consider the examples provided in Figure 4. The
graph in Figure 4a is generically parallel rigid in 2-space,
since E 1 “ E satisfies the conditions in Theorem 3, whereas
the graph in Figure 4b is generically flexible in 2-space, since
the necessary condition (34) is not satisfied. Note that in the
d “ 2 case the set E 1 satisfying the conditions in Theorem
3 (if it exists) is simply a subset of the edge set E . We now

consider the d “ 3 case. As for Figure 4a, it is easy to see that
E 1 “ E Y tp1, 2q, p2, 4q, p4, 1qu Ď 2E satisfies the conditions
in Theorem 3. As for Figure 4b, since |2E | “ 12, there exists
a set E 1 satisfying Condition 1, i.e. |E 1| “ 11, only if E 1 “
2Ezteu for some e P E . However, in this case E 1 has a subset
E2 consisting of two copies of each of the three edges in a
triangle graph, which violates Condition 2.

The following result derives from the equivalence be-
tween the count in Theorem 3 and a pd ` 1qTd decompo-
sition of E 1 [39], i.e. a decomposition of E 1 into d ` 1 edge-
disjoint trees where each vertex is contained in d trees. See
Appendix A for the definition of tree.

Theorem 4 ( [11]). A graph G “ pV, Eq is generically parallel
rigid in d-space if and only if there exists a subset E 1 Ď pd´ 1qE
such that E 1 can be decomposed into d ` 1 edge-disjoint trees,
where each vertex is contained in exactly d trees, and for any
subgraph E2 Ď E 1, E2 ‰ ∅, the set of trees induced by E2 has
cardinality at least d` 1.

Note that Theorems 3 and 4 do not involve the whole
graph G “ pV, Eq, but the existence of a subset E 1 Ď pd´1qE
with certain properties. As observed in [10], [11], such a
subset corresponds to dn´pd`1q linearly independent rows
of the parallel rigidity matrix, whose existence is equivalent
to rankpRFpq “ dn´ pd` 1q.

The following proposition, which exploits Laman’s con-
dition, establishes the relation between generic rigidity in
d-space and in pd ` 1q-space. In particular, we get that all
the graphs which are generically parallel rigid in R2 are also
rigid in Rd for any d ě 3.

Proposition 2. If a graph G “ pV, Eq is generically parallel rigid
in d-space, then it is generically parallel rigid in pd` 1q-space.

Proof. Since G “ pV, Eq is generically parallel rigid in d-
space, by virtue of Theorem 3, there exists a subset E 1 Ď
pd´ 1qE such that

|E 1| “ dn´ pd` 1q (35)
@ E2 Ď E 1, E2 ‰ ∅ : |E2| ď d|V2| ´ pd` 1q. (36)

Note that G is connected, otherwise a non-trivial parallel
drawing can be found from independent scaling and/or
translation of each connected component, which contradicts
the assumption. In order to prove that G is generically
parallel rigid in pd` 1q-space, we have to find a set rE 1 Ď dE
satisfying the following conditions

|rE 1| “ pd` 1qn´ pd` 2q (37)

@ rE2 Ď rE 1, rE2 ‰ ∅ : |rE2| ď pd` 1q|rV2| ´ pd` 2q. (38)

Let us define rE 1 :“ E 1YT , where T is any arbitrary spanning
tree of G, which is well defined since G is connected (see
Appendix A). Note that E 1 is contained in the set consisting
of d´1 copies of the edges of E , whereas T is contained in E ,
thus their union is contained in the set consisting of d copies
of the edges of E . Using Equation (35) and |T | “ n´1 we get
|rE 1| “ |E 1|`|T | “ dn´pd`1q`pn´1q “ pd`1qn´pd`2q and
hence Equation (37) is satisfied. We now prove that Equation
(38) holds. Let rE2 Ď rE 1 with rE2 ‰ ∅. We can write rE2 “
E2 Y T 2 where E2 Ď E 1 and T 2 Ď T . Note that T 2 is not
necessarily a tree, but it will be a disjoint union of trees (i.e.
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a forest) in general, thus |T 2| “ nT 2 ´ cc ď nT 2 ´ 1, where
cc denotes the number of connected components in T 2 and
nT 2 denotes the number of vertices that are endpoints of
the edges in T 2. Combining this observation with Equation
(36) we get |rE2| “ |E2| ` |T 2| ď d|V2| ´ pd` 1q ` nT 2 ´ 1.
Note that the number of vertices that are endpoints of the
edges in E2 and the number of vertices that are endpoints
of the edges in T 2 are both dominated by the total number
of vertices in rE2, i.e. |V2| ď |rV2| and nT 2 ď |rV2|, hence we
get Equation (38).

Note that the converse of Proposition 2 is not true. For
instance, the graph associated with the point formation in
Figure 2 is flexible in R2 and it is parallel rigid in Rd for any
d ě 3, as it can be checked easily.

2.2.1 Maximal Rigid Components

If a graph is not generically parallel rigid, then it can be
decomposed into maximal rigid components. A rigid component
of G “ pV, Eq in d-space is a subgraph G1 Ď G such that G1
is generically parallel rigid in d-space. Clearly, the union of
rigid components sharing (at least) one edge is also rigid,
since the edge in common fixes the position of two nodes
and hence it determines the global scale and translation.
A rigid component is called maximal if it is not a subset
of any other rigid component. A maximal rigid component
is called the largest maximal rigid component if it has the
largest number of nodes.

Theorem 5 ( [21]). The set of all maximal rigid components of
a graph G “ pV, Eq in d-space induces a partition of the edge set
E .

For instance, the edge set of the (flexible) graph re-
ported in Figure 4b can be partitioned into two maximal
rigid components, namely E1 “ tp1, 2q, p2, 3q, p3, 1qu and
E2 “ tp3, 4q, p4, 5q, p5, 3qu. Note that these components
share one vertex.

Polynomial-time algorithms for finding maximal rigid
components of flexible graphs are presented in [21], [22].
The authors of [21] analyze the null-space of the parallel
rigidity matrix and cast the problem to identifying sets of
parallel lines. A different approach is followed in [22] where
rigid components are first identified among known rigid
graphs of small size, and then they are grouped using a
reduction to a maximum flow problem.

We briefly review here the algorithm introduced in [21].
Let RFp be the parallel rigidity matrix associated with a
generic point formation Fp and let N P Rdnˆk be a matrix
whose columns span the null-space of RFp , where

k “ dimpkerpRFpqq ą d` 1. (39)

Equivalently, the matrices in Equations (19) or (22) could
be used in place of RFp , as explained in Section 2.1.1. The
null-space matrix N can be partitioned into blocks as

N “

»

—

—

—

–

M1

¨ ¨ ¨

Mi

¨ ¨ ¨

Mn

fi

ffi

ffi

ffi

fl

(40)

where Mi P Rdˆk denotes the i-th set of d rows of N
corresponding to node i.

Theorem 6 ( [21]). Let us fix a node i and consider the modified
null-space matrix

N i “

»

—

—

—

–

M1 ´Mi

¨ ¨ ¨

0
¨ ¨ ¨

Mn ´Mi

fi

ffi

ffi

ffi

fl

Ð i . (41)

Nodes j and h (with j ‰ i and h ‰ i) are part of a maximal
rigid component with node i if and only if the d rows of N i

corresponding to node j are parallel to the corresponding rows for
node h.

Theorem 6 implies that we can find the vertex sets
(and hence the corresponding edge sets) of all maximal
rigid components containing node i by identifying sets of
parallel rows in N i, where, as suggested in [21], the cosine
similarity can be used to check if two vectors are parallel. By
repeating this procedure for each node, the flexible graph G
is decomposed into maximal rigid components, with a total
cost of Opkn3q, as explained in [21].

3 EDGE-BASED PARALLEL RIGIDITY

In this section we describe an equivalent formulation of
parallel rigidity, which is called the edge-based formulation,
since it reasons in terms of edge lengths rather than node
positions. It provides a more intuitive way to look at rigidity,
since the problem is expressed in terms of cycles in the
graph. This formulation is based on some recent works [14],
[20], [22].

3.1 Rigidity of a Point Formation
Let Fp be a point formation in d-space and let αij P R`
denote the length of pj ´ pi for pi, jq P E , namely

αij “ ||pj ´ pi||. (42)

The inter-nodal distances αij are called the epipolar scales
in [14], with reference to the structure-from-motion appli-
cation, and edge scales in [20]. Alternatively, given a point
formation Fp and its measurement function, i.e. its set of
directions tuiju, we can define the length of edge pi, jq as
the positive real number αij such that Equation (2) holds,
i.e. pj ´ pi “ αijuij . This general definition can also take
into account the fact that a direction uij may be measured
with the wrong sign, in which case the corresponding αij is
negative in order to fulfill Equation (2).

We now show how parallel rigidity can be restated in
terms of edge lengths.

Proposition 3 ( [20]). A point formation Fp is parallel rigid if
and only if for any parallel point formation Fq it holds

qj ´ qi “ sppj ´ piq @ pi, jq P E (43)

assuming that G “ pV, Eq is connected, where s does not depend
on the individual pi, jq pair.

Proof. In one direction: if Fp is parallel rigid then – by defi-
nition – any parallel drawing Fq satisfies qi “ spi ` t with
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s P R and t P Rd, and hence Equation (43) clearly holds. In
the opposite direction: let Fp be a point formation and let
Fq be a parallel drawing such that qj ´ qi “ sppj ´ piq for
all pi, jq P E , or, equivalently, qj ´ spj “ qi ´ spi. If the
graph is connected, each node can be reached by any other
node through a path, thus such relation is valid for all the
nodes, i.e. qj ´ spj “ qi ´ spi “ ¨ ¨ ¨ “ qk ´ spk “ t, thus
qi “ spi ` t for all i P V , which means that Fp is parallel
rigid.

A set of edges satisfying Equation (43) is called an
interdependent edge set in [20]. Note that, according to Equa-
tion (5), the parallelism of Fp and Fq rewrites qj ´ qi “
sijppj ´ piq for some scales sij P R, while parallel rigidity
– as expressed by Equation (43) – means that such scales are
all equal, i.e. sij “ s P R for all pi, jq P E .

Proposition 4. A point formation Fp is parallel rigid if and only
if its lengths are exactly determined (up to a global scale) by its
graph and measurement function, assuming that the underlying
graph G “ pV, Eq is connected.

Proof. In one direction: if Fp is parallel rigid then, due
to (43), any parallel drawing Fq satisfies ||qj ´ qi|| “
|s| ¨ ||pj ´ pi|| for all pi, jq P E , i.e. the lengths of Fq

coincide (up to a global scale) with those of Fp. Recall
that parallel point formations have the same measurement
function and vice-versa, hence we get the thesis. In the
opposite direction: by definition, the lengths of Fp satisfy
(2), which is equivalent to Equation (4). If we assume that
the graph is connected then rankpBq “ n´1 (see Appendix
A) and hence, using (92), rankpBTbIdq “ dn´d, where the
rank deficiency corresponds to the translation ambiguity. In
other words, Equation (4) admits a unique solution (up to
translation) for fixed lengths, i.e. Fp is uniquely determined
(up to translation) by its graph and measurement function.
Combining this observation with the assumption, we get
that Fp is uniquely determined (up to translation and scale)
by its graph and directions, i.e. it is globally parallel rigid
(and hence parallel rigid).

In simple words, Proposition 4 states that we cannot
change the inter-nodal distances of a parallel-rigid point
formation independently since, by fixing the length of an
edge, we also constrain the length of the remaining edges.

We aim at deriving an algebraic characterization of par-
allel rigidity in terms of edge lengths, thus we require a
linear system having the sole lengths as unknowns. Such
system is reported in the following proposition and it
involves suitable circuits in G (see Appendix A for the
definition of circuit).

Proposition 5 ( [22]). Let G “ pV, Eq be a connected graph
and let T be a spanning tree of G. For any e P EzT let ce P
t´1, 0, 1um denote the circuit obtained by adding e to T , and
let ce` (ce´) denote the forward (backward) edges in ce. Let tuiju
be a set of directions defined on G. A length assignment tαiju
is compatible with edge directions tuiju, i.e. there exists a point
formation Fp on G with directions uij and lengths αij , if and
only if

ÿ

pi,jqPce
`

αijuij ´
ÿ

pi,jqPce
´

αijuij “ 0 @ e P EzT . (44)

Proof. Note that Equation (44) can be written as
ÿ

pi,jqPE
rcesijαijuij “ 0 @ e P EzT (45)

where the circuit ce is traversed in a cyclic order (clock-
wise or anti-clockwise), and the (non-zero) entries of ce

have a sign that indicates whether the corresponding edge
is traversed along the direction specified by uij or not.
Equation (45) clearly holds if αij “ ||pj ´ pi|| and uij “
ppj ´ piq{||pj ´ pi|| for a point formation Fp. To prove the
opposite direction, we can compute the position of the nodes
using the spanning tree T , i.e. the root is set equal to the zero
vector and the coordinates of the other nodes are computed
via the relation pj “ pi ` αijuij ô pj ´ pi “ αijuij .
Such point formation has directions equal to uij and lengths
equal to αij for all the edges e P T (by construction), and
also for all the edges e P EzT (due to Equation (45)).

Note that Proposition 5 is about the existence and not
the uniqueness of a point formation. For instance, if G is a
tree (which does not contain circuits) and tuiju is a given set
of directions, then any length assignment is valid, whereas
any edge beyond the tree introduces additional constraints.
Note also that only one direction in the proof of Proposition
5 requires a connected graph, whereas the other holds for
any graph (and also for any set of circuits besides the ones
associated with a spanning tree, as observed in Remark 5).

The equations in (45) state that the (signed) sum of
directions (weighted with the correct lengths) along circuits
must be zero, and they are called the compatibility constraints
in [14]. Such equations can be expressed in a compact matrix
form if all the lengths αij are collected in a vector α P Rm
and all the directions uij are collected in a matrix U P Rdˆm.
Specifically, the equations for a single circuit ce become

U diagpcTe qα “ 0 (46)

or, equivalently, using the Khatri-Rao product

pcTe d Uqα “ 0. (47)

If the equations coming from all the circuits induced by T
are stacked, then a system of dpm ´ n ` 1q homogeneous
equations is obtained, namely

pCT d Uqα “ 0 (48)

where CT P t´1, 0, 1upm´n`1qˆm denotes the cycle matrix
associated with the circuits ce for e P EzT , which indeed
form a fundamental cycle basis (see Appendix A).

The following result states that we can use any cycle basis
(fundamental or not) in Equation (48).

Proposition 6. Equation (48) is equivalent to

pC d Uqα “ 0 (49)

where C denotes the cycle matrix associated with any cycle basis
of G “ pV, Eq.

Proof. Let CT be the cycle matrix associated with the circuits
defined in Proposition 5 and let C be the cycle matrix
associated with another cycle basis of G. Since the cycle
space of the directed graph G “ pV, Eq is a vector space over
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Q, there exists an invertible matrix R P Qpm´n`1qˆpm´n`1q

such that C “ RCT . Using Equation (94) we obtain

C d U “ pRCT q d pIdUq “ pRb IdqpCT d Uq. (50)

Note that the matrix R b Id is invertible (since both R and
Id are invertible), hence we get the thesis.

Remark 4. As explained in Appendix A, there are several
types of cycle bases for a directed graph G “ pV, Eq besides
the fundamental cycle basis, namely zero-one, integral, and
undirected cycle bases. In the proof of Proposition 6 a
directed cycle basis is used since it generalizes all of them.

Equation (50) means that if a circuit is a linear combi-
nation of other circuits, then the compatibility constraint
associated with such circuit is a linear combination of the
equations associated with the addends. This implies that
considering all the circuits in a graph is redundant and what
is actually required is a maximal set of independent circuits
(i.e. a cycle basis). In summary, we have the following result.

Corollary 2. Let G “ pV, Eq be a connected graph and let C
denote the cycle matrix associated with any cycle basis of G. There
exists a point formation Fp on G with directions uij and lengths
αij if and only if

pC d Uqα “ 0. (51)

Remark 5. We observe that Equation (51) can also be derived
in an alternative manner. Let us multiply left and right sides
in (4) by pC b Idq

pC b IdqpB
T b Idqp “ pC b IdqpIm d Uqα. (52)

Using properties (89) and (94) we get
`

pCBTq b Id
˘

p “ pC d Uqα. (53)

SinceCBT “ 0 for any cycle matrixC, as stated by Equation
(85), the left side vanishes, yielding Equation (51). Note
that this computation (which does not require a connected
graph) is not a proof of Corollary 2 but it proves only one di-
rection, namely it proves that there exists a point formation
with directions uij and lengths αij only if pC d Uqα “ 0.

Formula (51) captures at the same time both the structure
of the graph (via C) and the specific values of the directions
(via U ). For example, in the case of Figure 4a, the matrix
C d U has the following structure

C d U “

„

u12 u24 u41 0 0
0 ´u24 0 u23 u34



(54)

where the following cycle matrix is considered

C “

„

1 1 1 0 0
0 ´1 0 1 1



(55)

and the edges are ordered as in

U “
“

u12 u24 u41 u23 u34

‰

. (56)

A similar formulation is derived in [20]:

DpC b Idqblockdiagptuijupi,jqPEqα “ 0 (57)

where D “
`

pC b IdqpC b Idq
T
˘´1{2

and
blockdiagptuijupi,jqPEq produces a dm ˆ m ma-
trix with blocks uij along the diagonal. Since

pC b Idqblockdiagptuijupi,jqPEq “ C d U and D is
invertible we get

ker
`

DpCbIdqblockdiagptuijupi,jqPEq
˘

“ ker
`

CdU
˘

(58)

which means that Equation (57) is equivalent to Equation
(51). The latter enjoys a more compact formulation, which
permits us to exploit algebraic properties of the Khatri-Rao
product, as done (e.g.) in the proof of Proposition 6.

Hereafter we use the notation U to denote the d ˆ m
matrix constructed from any set of directions, and we use
the notation Up to denote the d ˆ m matrix built from the
directions of a point formation Fp. Note that if Fp is a point
formation then Equation (51) holds, i.e. the null-space of
C d Up is at least 1-dimensional. The following theorem,
which is a direct consequence of Proposition 4 and Corollary
2, states such null-space is exactly 1-dimensional if and only
if Fp is parallel rigid.

Theorem 7. Let G “ pV, Eq be a connected graph and let C
denote the cycle matrix associated with any cycle basis of G. A
point formation Fp on G is parallel rigid if and only if

dimpkerpC d Upqq “ 1 (59)

or, equivalently, if and only if

rankpC d Upq “ m´ 1. (60)

Remark 6. Although the focus of this section is the local-
izability aspect, it also provides a way to solve bearing-
based localization via an edge-based approach. More pre-
cisely, given a set of directions collected in a matrix U , the
localization problem can be solved in two-steps:

1) the unknown scales contained in α P Rm are re-
covered as the solution to the homogeneous linear
system (51);

2) the unknown node locations contained in p P Rdn
are derived as the solution to the non-homogeneous
linear system (4) with known α.

It is assumed here that bearing-based localization admits a
unique solution (up to translation and scale). The existence
of a solution is equivalent to assume that the input direc-
tions are noise free, or, equivalently, that there exists a point
formation Fp whose directions are those in U , i.e. U “ Up.
The uniqueness of the solution is equivalent to assume
that such point formation is parallel rigid, as explained in
Section 2.1.3, which coincides with assuming that the null-
space of pC d Uq is 1-dimensional, according to Theorem
7. This implies that Step 1 returns a unique solution (up
to scale). As concerns Step 2, the solution is unique (up to
translation) if the graph is connected, as explained in the
proof of Proposition 4. As a matter of fact, Step 2 is an
instance of group synchronization [40] in R3.

Experiments reported in [40] suggest that the approach
outlined Remark 6 is comparable in accuracy to state-of-the-
art algorithms which exploit the node-based formulation,
thus showing that both node-based and edge-based algo-
rithms are viable in practice.
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3.2 Generic Rigidity
We now consider the property of generic rigidity. Due to
Theorem 7 we can say that a connected graph G “ pV, Eq is
generically parallel rigid in d-space if and only if rankpC d
Upq “ m ´ 1 or, equivalently, if and only if dim

`

kerpC d
Upq

˘

“ 1, where Up is constructed using a generic point
formation Fp defined on G. Reasoning in the same way as in
Section 2.2, we get the following algebraic characterization
of generic parallel rigidity in terms of cycles in the graph.

Theorem 8. A connected graph G “ pV, Eq is generically
parallel rigid in d-space if and only if

max
pPRnd

rankpC d Upq “ m´ 1, (61)

or, equivalently, if and only if

min
pPRnd

dim
`

kerpC d Upq
˘

“ 1. (62)

Similarly to the node-based case [19], Theorem 8 can
be used to develop a randomized test for checking generic
parallel rigidity, where a matrix Up is built from a point
formation randomly sampled from i.i.d. Gaussian distribu-
tion. Theorem 8 gives also rise to an algorithm to identify
maximal rigid components of flexible graphs [20], where the
null-space of C d Up is computed and sets of parallel lines
among the rows are identified. Theoretical results on the
topology of maximal rigid components can be found in [41].
The authors of [41] also study the rigidity recovery problem,
where the goal is to turn a flexible graph into a rigid one by
adding new edges, and they provide both a combinatorial
algorithm and a greedy strategy to select which edges to
add.

Note that in order to guarantee that Equation (61) holds,
the number of rows in C d Up must be greater than (or
equal to) m´ 1, i.e. the following necessary condition must
be satisfied

dpm´ n` 1q ě m´ 1 (63)

which is equivalent to Equation (34).
The formulation of Theorem 8, although equivalent to

the node-based one, enables us to prove results involving
the topology of the graph, showing, for instance, why trian-
gulated graphs are rigid while graphs with long cycles may
loose this property. Let us start by presenting a necessary
condition for generic parallel rigidity, namely biconnectivity
(see Appendix A for the definition of biconnected graph and
related properties). This was also mentioned en-passant in
[34].

Proposition 7. If a graph G “ pV, Eq is generically parallel rigid
in d-space, then it is biconnected.

Proof. If G “ pV, Eq is not biconnected then it can be
partitioned into biconnected components. Let b ą 1 denotes
the number of such components and let E1, . . . , Eb denote
their edge sets. Since the set of biconnected components
induces a partition of the edge set E and a circuit belongs to
only one biconnected component, the matrix C dUp can be
expressed as a block-diagonal matrix (up to a re-ordering of
the edges), where each block corresponds to a biconnected
component, namely C d Up “ blockdiagpG1, . . . , Gbq. Let
us assume that all such components are generically parallel

rigid, otherwise the thesis is obvious, thus in each compo-
nent the lengths of a generic point formation are uniquely
determined by its graph and directions (up to a global
scale), namely rankpGiq “ |E i| ´ 1. Thus rankpC d Upq “
řb
i“1p|E i| ´ 1q “ m ´ b ă m ´ 1, meaning that all such

scales can not be reconciled into a single scale, hence G is
generically flexible.

It is straightforward to see that the necessary condition
of Proposition 7 alone is not sufficient: for instance, the
graph associated with the point formation in Figure 2a is
biconnected and flexible in 2-space. However, Proposition
7 gives a simple condition to detect non-rigid graphs: for
instance, it can be established that the graphs reported in
Figure 5 are flexible in d-space.

5

6

1 2

34

(a)

1 2

34

5

6

7

(b)

Figure 5: Non biconnected graphs.

Note that if G “ pV, Eq is biconnected (and contains at
least 3 vertices), then it is bridgeless (see Appendix A), i.e.
each edge in E belongs to (at least) one cycle (and hence one
circuit). This implies that if G is generically parallel rigid in
d-space, then it is bridgeless. This result is not surprising
since an edge not belonging to any circuit is not constrained
by the other edges, and hence its length can be chosen
arbitrarily. Such an edge corresponds to a column of zeros
in C, which makes the rank of C d Up drop. Two examples
of graphs with a bridge are reported in Figure 6.
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1
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34

5

(b)

Figure 6: Non bridgeless graphs.

We now consider the case where G consists of a single
circuit of length ` ě 3, and show that short circuits are rigid
while long circuits are flexible. In this case m “ n “ `,
hence Equation (63) rewrites ` ď d ` 1, i.e. the following
proposition holds.

Proposition 8 ( [14], [20]). A circuit of length ` ě d` 2 is not
generically parallel rigid in d-space.

What happens for circuits of length ` ď d ` 1? It can be
shown that such circuits are generically parallel rigid in Rd.
Figure 7 reports some examples in R3.

Proposition 9. A circuit of length ` ď d ` 1 is generically
parallel rigid in d-space.
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Proof. If G consists of a single circuit then C d Up is a d ˆ
` matrix where each column contains one direction (with
the correct sign). Since a given point formation Fp satisfies
Equation (51) then

rankpC d Upq ď `´ 1 (64)

which means that the points in Fp belong to an affine
subspace of Rd of dimension at most ` ´ 1. Note that spe-
cific configurations make rankpC d Upq drop. Specifically,
rankpC d Upq “ 1 if and only if the points in Fp lie on a
common line; rankpC d Upq “ 2 if and only if the points
in Fp lie on a common plane; . . . rankpC d Upq “ ` ´ 2 if
and only if the points in Fp lie on an affine subspace of Rd
of dimension ` ´ 2. On the contrary, if the points in Fp are
generic, then rankpC d Upq “ ` ´ 1, meaning that Fp (and
hence G) is parallel rigid in Rd.

1

23

(a) Parallel rigid

1 2

34

(b) Parallel rigid

1

2

34

5

(c) Flexible

1

2

34

5

6

(d) Flexible

Figure 7: Rigidity of circuits in 3-space.

Remark 7. Note that there is a key difference between a
circuit of length ` “ d`1 and a circuit of length ` ď d, which
is essential to understand the next section. In the ` “ d ` 1
case, C d Up is a dˆ pd` 1q matrix, thus its rank is at most
d “ `´ 1 independently of the directions, i.e. Equation (64) is
satisfied even if Up is substituted by a random set of d ` 1
directions. On the contrary, in the ` ď d case, if we take a
random set of ` directions then Equation (64) will not be
satisfied.

Propositions 8 and 9 completely characterize the local-
izability of a graph made of a single circuit (in terms of its
length). What happens to graphs made of several circuits?
The remainder of this section reports sufficient conditions
for parallel rigidity, which give some insights on how to
answer such question.

Given a cycle basis for a (connected) graph G “ pV, Eq,
the cycle graph2 GC is defined as follow: each vertex corre-
sponds to a circuit in the basis, and an edge is present be-
tween two vertices if and only if the corresponding circuits
share (at least) one edge in G. The notion of cycle graph is
exploited by the following theorem.

2. This notion generalizes the “triplet graph” of [42].

Theorem 9. Let G “ pV, Eq be a connected bridgeless graph.
Suppose that there exists a cycle basis of G such that the following
conditions are satisfied:

1) each circuit in the basis has length at most d` 1;
2) the associated cycle graph GC is connected.

Then G is generically parallel rigid in d-space.

Proof. Each circuit in the basis is generically parallel rigid
in d-space due to Proposition 9. Since the cycle graph is
connected by assumption, we can start with any circuit
and reach all the others through a path, thus producing a
growing rigid subgraph. Specifically, let us consider a node
in GC (i.e. a circuit) and let us take an edge incident to
such node (i.e. a circuit sharing one edge with the first
circuit). The union of these circuits is rigid since both of
them are rigid and they have one edge in common. We can
repeat this line of reasoning considering all the remaining
circuits, obtaining a parallel rigid subgraph. Such subgraph
coincides with G itself since G is bridgeless, and hence each
edge in E belongs to (at least) one circuit in the basis.

3

51

2 4

(a)

3 5

1

2 4

8 67

(b)

3 5

1

2 4

8 67

(c)

Figure 8: Examples of graphs which satisfy the assumptions
in Theorem 9, and hence they are generically parallel rigid
in d-space, with d ě 2 (a) and d ě 3 (b,c).
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Figure 9: Left: cycle basis composed of 3-length circuits for
the graph in Figure 8a. Right: cycle graph GC associated
with such cycle basis.

By means of Theorem 9 it can be established that the
graphs in Figure 8 are parallel rigid in d-space, with d ě 2
(Figure 8a) and d ě 3 (Figures 8b and 8c). The graph in
8a admits a cycle basis composed of three 3-length circuits,
the graph in Figure 8b admits a cycle basis composed of
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three 4-length circuits, and the graph in Figure 8c admits a
cycle basis composed of two 3-length circuits, and two 4-
length circuits. In all these cases the associated cycle graph
is connected. The one associated with Figure 8a is reported
in Figure 9.

Remark 8. Note that the reverse of Theorem 9 is not true. For
instance, the graph reported in Figure 10 is parallel rigid in
3-space but Condition 1 can not be fulfilled. Let us consider
the following cycle basis

c1 “
“

1 1 1 0 0 0 0 0 0
‰T

c2 “
“

0 1 0 1 1 1 0 0 0
‰T

c3 “
“

1 0 0 0 0 ´1 1 1 1
‰T

(65)

where the edges are ordered as in

Up “
“

u12 u26 u61 u67 u73 u32 u34 u45 u51

‰

.
(66)

Note that the associated cycle graph GC is connected. It is
easy to see that cycle bases composed of shorter circuits do
not exist, thus Condition 1 can not be satisfied. To prove
that G is generically parallel rigid we consider a generic
point formation Fp and show that its lengths are uniquely
determined by its graph and directions, i.e. Equation (51)
admits a unique solution (up to scale). Note that Equation
(51) rewrites

$

’

&

’

%

pc1 d Upqrα12 α26 α61s
T “ 0

pc2 d Upqrα26 α67 α73 α32s
T “ 0

pc3 d Upqrα12 α32 α34 α45 α51s
T “ 0.

(67)

Instead of solving Equation (67) globally, we follow a se-
quential approach. Let us start with the 3-length circuit c1:
its lengths are uniquely determined (up to a global scale)
since it is parallel rigid, meaning that, if we arbitrarily fix the
value of (e.g.) α12, we can (uniquely) compute the remaining
lengths (i.e. α26 and α61) by solving the first row in Equation
(67). Then we use the obtained value of α26 to fix the global
scale of the 4-length circuit c2 (which is parallel rigid), and
(uniquely) solve for the remaining scales (i.e. α67, α73 and
α32) by considering the second row in Equation (67). Note
that this is possible since c1 and c2 share an edge. Finally,
we consider the 5-length circuit c3, which is flexible (if con-
sidered in isolation). However, the key observation is that
the values of α12 and α32 have been already computed, thus
only three unknowns remain. In other words, the fourth row
in Equation (67) becomes equivalent to the compatibility
constraint of a 4-length circuit, and hence the remaining
lengths (i.e. α34, α45 and α51) are uniquely determined. In
this way we are able to compute all the unknowns up to
a single scale, which corresponds to the arbitrary choice of
α12, meaning that G is parallel rigid.

Note that the sequential approach outlined in Remark 8
heavily depends on the chosen cycle basis and on the order
in which circuits are processed. On the contrary, if Equation
(67) is solved globally, then any cycle basis can be used, due
to Proposition 6.

Remark 8 has pointed out that a long circuit (which is
flexible alone) can be part of a larger rigid graph. Indeed, if
the compatibility constraint of a flexible circuit is properly

1

2

34

5
7

6

Figure 10: Example of a rigid graph in 3-space which does
not satisfy the assumptions in Theorem 9. It admits a cycle
basis composed of one 3-length circuit, one 4-length circuit
and one 5-length circuit, and cycle bases with shorter cir-
cuits do not exist.

combined with those of rigid circuits, it may results in a
system with a unique solution (up to scale).

We conclude this section by stating the following result,
which is a generalization of Theorem 9.

Theorem 10. Let G “ pV, Eq be a connected bridgeless graph.
Suppose that the circuits of a cycle basis can be ordered such that
the first circuit has length at most d`1, and each of the remaining
circuits satisfies one of the following conditions:

1) it has length at most d` 1 and it has at least one edge in
common with the subgraph induced by the previous ones;

2) it has length at least d ` 2, and it has at least one edge
in common and at most d edges not in common with the
subgraph induced by the previous ones.

Then G is generically parallel rigid in d-space.

Proof. Let c1, . . . , cr denote the circuits in the basis (ordered
as in the assumptions) with r “ m´n`1. Note that the cycle
graph GC is connected. The first circuit c1 is parallel rigid
in d-space since it has length at most d` 1. Let us consider
the second circuit c2. If Condition 1 is satisfied, then the
union of c1 and c2 is rigid, since both circuits are rigid and
they have (at least) one edge in common. If Condition 2 is
satisfied, then we can use the same argument as in Remark 8
and prove that c2 is equivalent to a circuit of length (at most)
d ` 1 with one edge in common with c1, hence their union
is rigid. Indeed, given a generic point formation Fp, we
can first solve the compatibility constraint associated with
c1, and arbitrarily fix the length of an edge in c1 in order
to fix the global scale, thus all the lengths of Fp in c1 are
uniquely determined. Then, thanks to the edges in common
with c1, (at most) d unknowns remain when considering
the compatibility constraint associated with c2, which can
be computed as in a circuit of length (at most) d ` 1 where
one length is fixed. We can repeat this line of reasoning
considering the remaining circuits c3, . . . , cr one after the
other, obtaining a growing parallel rigid subgraph. Such
subgraph coincides with G itself since G is bridgeless.

It is easy to see that the graph reported in Figure 10 satis-
fies the conditions in Theorem 10. Establishing whether such
conditions are also necessary is subject of future research.
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4 THE PARALLEL RIGIDITY INDEX

The results on generic rigidity reported in Sections 2 and 3
are derived considering a generic point formation Fp, which
uniquely defines a set of directions (i.e. a measurement
function). What happens if the directions, not the coordinates
of the points in Fp, are generic? This issue is addressed
in [18], where the authors, starting from the edge-based
formulation, introduce the concept of parallel rigidity index,
which is a property of the graph and dimension d.

Definition 7. The parallel rigidity index IdpGq of a connected
graph G “ pV, Eq in d-space is defined as

IdpGq “ min
UPRdˆm

dim
`

kerpC d Uq
˘

. (68)

Note that there is an essential difference between the
right side in Equation (68) and the left side in Equation
(62): the former computes the minimum over all the pos-
sible edge directions (contained in U ) whereas the latter
computes the minimum over all possible point formations
Fp (which define a matrix Up).
Remark 9. An equivalent definition for the parallel rigidity
index is the following

IdpGq “ m´ max
UPRdˆm

rankpC d Uq. (69)

We observe that the above equation does not coincide, in
general, with m ´ gerpC d Uq, where gerpC d Uq denotes
the generic rank [43] of C d U , that is the maximal rank
that C d U (viewed as a structured matrix) achieves as a
function of its arbitrary (non-zero) elements. Indeed, when
considering Equation (69), the nonzero entries in pC d Uq
are not arbitrary at all: for instance, if an edge pi, jq belongs
to more than one circuit in C, then multiple copies of uij
appear in C d U , one for each circuit. It is easy to see that

IdpGq ě m´ gerpC d Uq. (70)

The generic rank has also a combinatorial description [43],
namely it is equal to the maximum number of edges of
any matching of a bipartite graph constructed as follows:
nodes correspond to rows/columns of the matrix, and edges
correspond to its nonzero entries. Establishing under which
conditions (if any) equality holds in (70) is left to future
research.

It can be shown that the minimum in Equation (68) is
attained for generic directions [18], where a set of directions
is called generic if its dn coordinates are not algebraically
dependent. Thus we can rewrite the parallel rigidity index
as IdpGq “ dim

`

kerpC d Uq
˘

, or, equivalently,

IdpGq “ m´ rankpC d Uq (71)

where U is a dˆm matrix containing generic directions in its
columns. This suggests a randomized procedure to compute
the parallel rigidity index, where a matrix U is built from
a set of directions sampled at random on the sphere in d-
space, similarly to the randomized test for parallel rigidity
proposed in [19].

As observed in Section 3, a point formation Fp satisfies
Equation (51), i.e. the null-space of C d Up is at least 1-
dimensional. On the contrary, if we consider generic di-
rections we can not expect to find a non-trivial solution to

pC d Uqα “ 0 for any graph G, i.e. it may happen that a
point formation on G with such directions does not exist.
In other words, the parallel rigidity index IdpGq can be
equal to zero, which means that the only length assignment
compatible with a generic set of m directions is α “ 0, i.e.
all the nodes collapse into one point in Rd. IdpGq “ 1 means
that there exists a unique (up to scale) length assignment
α ‰ 0 compatible with a generic set of directions, i.e. for any
set of directions in Rd (with coordinates not algebraically
dependent) there exists a unique (up to translation and
scale) point formation Fp on G (such that not all the nodes
are coincident) having such directions as measurement func-
tion. IdpGq ě 2 means that there exists a point formation Fp

on G compatible with a generic set of directions, but it is not
unique (up to translation and scale), i.e. there are additional
degrees of freedom.

Using the definition, we can easily compute the parallel
rigidity index of a graph G consisting of a single circuit of
length ` ě 3. The difference between the ` ď d case and the
` “ d` 1 case has been already observed in Remark 7.

Proposition 10. Let G be a circuit of length `.

‚ If ` ď d then IdpGq “ 0;
‚ if ` “ d` 1 then IdpGq “ 1;
‚ if ` ě d` 2 then IdpGq “ `´ d ě 2.

Proof. If G is a circuit of length `, then m “ ` and C d U
is a d ˆ ` matrix containing any (generic) direction in each
column. Thus C d U has full rank and, using (71), we get
IdpGq “ `´mintd, `u.

Using Proposition 10, we get that I3pGq “ 0 for the
graph in Figure 7a, I3pGq “ 1 for the graph in Figure 7b,
I3pGq “ 2 for the graph in Figure 7c, and I3pGq “ 3 for the
graph in Figure 7d.

The following result provides a combinatorial character-
ization of the parallel rigidity index of a connected graph.

Theorem 11 ( [18]). The parallel rigidity index IdpGq of a
connected graph G “ pV, Eq in d-space is equal to the minimal
size of the intersection of d spanning trees of G.

Corollary 3. Let G “ pV, Eq be a connected graph, let nb denotes
the number of bridges, and let G1, . . . ,Gnb denote the connected
components obtained after removing all the bridges from G. Then

IdpGq “ nb `
nb
ÿ

i“1

IdpGiq. (72)

Proof. Note that, if G has a bridge, then this bridge belongs
to any spanning tree of G. Recall that the removal of a bridge
disconnects the graph, and hence it can be partitioned into
connected components. Thus any minimal intersection of d
spanning trees of G is the union of all the bridges and a
minimal intersection of d spanning trees for each connected
component.

According to Theorem 11, the parallel rigidity index
can be computed by first counting the edges in common
between d (distinct) spanning trees, and then taking the
minimum over all the possible choices of such spanning
trees. In this way it can be established, for instance, that
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IdpGq “ 0 for the graphs in Figures 4a and 8a. Using
Corollary 3 we get that IdpGq “ 1 for the graphs in Figure
6. In general, IdpGq is greater than or equal to the number
of bridges of G. Note that adding an edge between existing
nodes may modify the parallel rigidity index. For instance,
as it can be easily verified, the graph in Figure 8b satisfies
I3pGq “ 1 whereas the graph in Figure 8c (which is obtained
from the former by adding one edge) satisfies I3pGq “ 0.

The following result, which is a straightforward conse-
quence of Theorem 11, establishes the relation between the
parallel rigidity index in d-space and in pd` 1q-space.

Corollary 4 ( [18]). The parallel rigidity index IdpGq of a
connected graph G “ pV, Eq in d-space decreases as d grows,
namely IdpGq ě Id`1pGq.

What is the relation between the parallel rigidity index
and the generic rigidity of a graph? Since the set of direc-
tions coming from point formations is contained in the set
of all possible directions, we get

min
UPRdˆm

dim
`

kerpCdUq
˘

ď min
pPRnd

dim
`

kerpCdUpq
˘

. (73)

Thus, if IdpGq ě 2 then G is generically flexible in d-space.
In other words, if G is generically parallel rigid in d-space,
then either IdpGq “ 0 or IdpGq “ 1. The converse is not true,
i.e. the parallel rigidity index of a flexible graph can assume
any value. For example, the graphs reported in Figure 5 are
both flexible in 3-space and – as it can be easily verified –
the parallel rigidity index is IdpGq “ 1 for the left sub-figure
and IdpGq “ 2 for the right sub-figure. The flexible graph in
Figure 4b satisfies IdpGq “ 0. More examples are reported
in Figure 11.
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Figure 11: Relationship between the notion of generic paral-
lel rigidity and the parallel rigidity index IdpGq with d “ 3.
The graphs amenable to error compensation are the ones in
the upper right corner.

4.1 Which rigidity for error compensation?

Let us now come back to the network localization problem.
As explained in Remark 6, given a set of directions tuiju
and a graph G “ pV, Eq, the unknown node locations
pi P Rd can be recovered via a two-step procedure: first,
the unknown lengths αij are computed by solving system
(51); then, the unknown node locations are derived as the

solution of Equation (4). Other methods can also be found
in the literature, which refer to the node-based formulation
(e.g. [30], [32]).

Let us consider the noiseless case where uij “ ppj ´
piq{||pj ´ pi||, with p generic. In this scenario the graph is
required to be generically parallel rigid in d-space, in order
to guarantee that Equation (51) has a unique solution (up
to scale), and hence the network localization problem, i.e.
Equation (4), admits a unique solution (up to translation
and scale).

Suppose now that measurements are noisy (as it is
always the case in practice), i.e. uij « ppj ´ piq{||pj ´ pi||.
In this case, besides parallel rigidity, one has a further
requirement, which is related to error compensation. In
particular, one wants to exclude graphs that, by virtue of
their structure, always yield an exact solution to the network
localization problem regardless of the direction measures.
This analysis cannot be performed within the generic rigid-
ity framework, for it is based on generic point formations
(which always yield exact directions), but the parallel rigid-
ity index is required, which relies on generic directions.

As a matter of fact, the graphs which, due to their
structure, satisfy dim

`

kerpC d Uq
˘

“ 1 for any (generic)
U are all those and only those with IdpGq “ 1, thus there
exists an exact solution to Equation (51) in the presence of
noise and/or outliers. On the contrary, IdpGq “ 0 means
that dim

`

kerpCdUq
˘

“ 0 and no exact solution to Equation
(51) exists (apart from the trivial solution α “ 0), as one
expects in a noisy case.

We conclude that: among all the graphs which are generically
parallel rigid in d-space, only the ones with IdpGq “ 0 are
amenable to error compensation. They correspond to the upper
right corner of Figure 11.

A similar analysis is performed in [44] for distance-based
localization, where the authors define two rigidity indexes
that permit them to identify graphs with better capacity than
others to recover node locations in the presence of noise.

5 RELATION TO STRUCTURE FROM MOTION

As observed also in [19], a relevant topic in Computer
Vision which is closely related to bearing-based network
localization is structure from motion [5], that is the problem
of recovering both the structure of the scene (i.e. 3D co-
ordinates of scene points) and camera motion (i.e. angular
attitudes and positions of the cameras), given a collection of
images.

A paradigm which is receiving a growing attention in the
community is represented by synchronization [40] or averag-
ing [46] methods (e.g. [32], [33], [45], [47], [48], [49]), where
the motion part is decoupled from structure and solved
first. These method are usually faster and less memory-
demanding than sequential and hierarchical methods (e.g.
[50], [51], [52], [53], [54]), and they ensure a fair distribution
of the errors among the cameras, being global.

As for the motion task, most of these techniques first
estimate the angular attitudes of the cameras and then re-
cover their positions, starting from relative motions derived
from point correspondences. We are concerned here with
the second step only, namely computing camera positions.
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(a) Madrid Metropolis (b) Alamo (c) Roman Forum (d) Arts Quad

Figure 12: Graphs corresponding to the Arts Quad dataset [33] and the 1DSfM datasets [45]. The grey circle represents the
largest rigid component. Edges not belonging to the largest rigid component are drawn in blue. Nodes which are endpoint
of such edges are drawn in red if they belong to the largest rigid component or green if they do not belong to the largest
rigid component. All of the remaining nodes/edges are not reported.

Owing to the depth-speed ambiguity, such relative mo-
tions are not fully specified: only the direction of relative
displacements between pairs of cameras can be measured,
for the magnitude is unknown. This means that camera
positions are computed from pairwise directions, and this
is an instance of bearing-based network localization in 3-
space, where sensors are the cameras. In this case G “ pV, Eq
is known as the epipolar graph [14], [34] or the viewing graph
[55], and several approaches can be found in the literature
to build it, e.g. [56], [57], [58].

There is a wealth of available approaches in structure
from motion literature to recover camera positions, includ-
ing linear least squares [32], [40], [42], spectral decom-
position [30], `8 minimization [34], Riemannian gradient
descent [35], the Levenberg-Marquardt algorithm [33], [45],
semi-definite programming [19], quadratic programming
[36], and the alternating direction method of multipliers
[37]. See the survey in [5] for a detailed description of such
techniques. However, if bearing-based network localization
is ill-posed, then any method will fail to produce a solution.
The presence of ill-posed instances in practical scenarios
(e.g., the case where the viewing graph is not connected
or all the constraints on a node are collinear) is also pointed
out in [30] as a “problem pathology”. Thus it is important
to study the localizability of the problem before solving
structure from motion. This is also observed in [19], [36]
where the largest rigid component of the epipolar graph
is extracted before computing camera positions (using the
algorithm described in [21], which is reviewed in Section
2.2.1), which is considered a mandatory part of a global
structure-from-motion pipeline.

We report some examples of graphs encountered in real
scenarios, which are widely used in structure from motion
literature. We consider the Arts Quad dataset [33], which
contains 6514 images3 of the Arts Quad at Cornell Univer-
sity, and the 1DSfM image collections [45], which contain a
number of medium-scale to large-scale Internet datasets4.
For each dataset, estimates of relative motions between

3. http://vision.soic.indiana.edu/projects/disco/
4. http://www.cs.cornell.edu/projects/1dsfm/

camera pairs are provided, which define an epipolar graph.
This graph, however, is not connected in the case of the
Arts Quad dataset, thus the largest connected component
is considered only, which corresponds to a subset of 5530
nodes and 222044 edges, as detailed in [49]. Note that these
edges represent only 2% of the edges in the complete graph.
Table 1 reports this percentage for each dataset, which gives
an idea on the sparsity of these graphs.

Table 1: Several statistics are reported for the Arts Quad
dataset [33] and the 1DSfM datasets [45]: number of images
n; percentage of edges; number of articulation points; num-
ber of bridges; number of nodes sn and number of edges sm
that do not belong to the largest rigid component; parallel
rigidity index of the largest rigid component I3pG1q.

Dataset n % edges rigid articulation bridges sn sm I3pG1q

Arts Quad 5530 2 7 30 10 70 115 0
Piccadilly 2508 10 7 59 62 62 62 0
Roman Forum 1134 11 7 28 28 32 34 0
Union Square 930 6 7 60 68 77 83 0
Vienna Cathedral 918 25 7 19 20 20 20 0
Alamo 627 50 7 17 19 21 22 0
Notre Dame 553 68 3 – – – – 0
Tower of London 508 19 7 19 19 19 19 0
Montreal N. Dame 474 47 7 7 7 7 7 0
Yorkminster 458 26 7 9 10 10 10 0
Madrid Metropolis 394 31 7 17 15 24 29 0
NYC Library 376 29 7 17 18 18 18 0
Piazza del Popolo 354 40 7 8 9 9 9 0
Ellis Island 247 67 7 6 7 7 7 0

For each dataset, generic parallel rigidity is checked
using the randomized test proposed in [19], which computes
the rank of the parallel rigidity matrix constructed from a
randomly sampled point formation. Note that, as explained
in the previous sections, other formulations could be used,
such as the equations reported in Section 2.1.1 or the edge-
based approach, since they are all equivalent. In the case
where a graph is not generically parallel rigid, the largest
rigid component G1 Ď G is extracted using the algorithm
reviewed in Section 2.2.1, as implemented by the authors of
[19].

Table 1 reports the outcome of checking parallel rigid-
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ity and, in case of a negative answer, the number of
nodes/edges that do not belong to the largest rigid com-
ponent. The number of articulation points and bridges are
also reported, which are found by manual inspection. It
is worth noting that only the graph associated with the
Notre Dame dataset is generically parallel rigid in 3-space,
whereas all of the others are flexible. In particular, the
latter exhibit articulation points and bridges, thus they do
not satisfy the necessary condition in Proposition 7. Recall
that, as a consequence of Corollary 3, the parallel rigidity
index of a graph is greater than (or equal to) the number
of bridges, thus I3pGq ě 7 for all the considered datasets
except Notre Dame, i.e., the corresponding graphs lie in the
bottom (orange) part of Figure 11.

Figure 12 shows a visual representation of the graphs
corresponding to four datasets. Due to the inherent diffi-
culty in representing graphs with a high number of nodes,
we report a simplified representation where only the edges
outside the largest rigid component are drawn. Let us anal-
yse, for instance, the Arts Quad graph reported in Figure
12d: there are 10 bridges and 30 articulation points which
make the graph flexible. In particular, 8 bridges correspond
to the situation where one camera is linked to just one
other camera; 5 articulation points do not belong to the
largest rigid component; 25 articulation points belong to the
largest rigid component and they link such component to
subgraphs of various sizes, including 10 cycles of length 3.

Table 1 also reports the parallel rigidity index of the
largest rigid component of each graph, which is computed
using formula (71) with a randomly sampled set of direc-
tions. In the case of the Notre Dame dataset, such value
coincides with the parallel rigidity index of the initial graph
since it is parallel rigid, i.e. G1 “ G. All of the datasets,
restricted to the largest rigid component – which is where the
localization problem should be solved – have zero index,
thus they provide good graphs for bearing-based localiza-
tion (in the sense of Section 4.1). In the case of the Notre
Dame dataset, this property is satisfied by G itself, namely
the initial graph lies in the upper-right corner of Figure 11.

6 CONCLUSION

In this paper we considered the localizability problem of a
sensor network in d-space constrained with direction mea-
sures, which is studied under the name of parallel rigidity,
where global structure from motion is one application in
the society of Computer Vision. We provided a unifying
view of such a problem: first, we reviewed the node-based
formulation of parallel rigidity; then, we described the edge-
based formulation, which is equivalent to the node-based
one; finally, we suggested how the parallel rigidity index
permits to identify which graphs promote error compensa-
tion in bearing-based network localization.

As concerns possible future work, several directions
could be investigated. First, we aim at establishing if the
sufficient conditions in Theorem 10 are also necessary, and,
in case of a negative answer, we aim at finding a character-
ization of localizability in terms of a cycle basis (based on
the length of its circuits and how they overlap). Secondly, we
will explore under which assumptions (if any) the parallel
rigidity index can be rewritten in terms of the generic rank

of C d U . Finally, from the practical perspective, we plan to
compare the node-based and edge-based approaches in the
presence of noise. In this context, we also aim at studying
whether the choice of a particular cycle basis influences the
performances of the edge-based localization.
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APPENDIX A
RESULTS FROM GRAPH THEORY

In this section we review some useful concepts from graph
theory. A complete treatment of this subject can be found in
[59], [60], [61].

A graph is a pair G “ pV, Eq where V is a finite set of
vertices and E is a finite set of edges. We use n and m
to denote the number of vertices and edges respectively,
namely n “ |V| and m “ |E |. A weighted graph is a graph
together with a weight function ω : E Ñ R`. If the graph is
unweighted, we set ω : E Ñ 1 and call w the uniform weight
function. An edge occurring more than once is referred to
as a multiple edge, and a graph without multiple edges is
called simple. An edge of the form pv, vq is called a loop. In
an undirected graph, the degree of a vertex v is the number of
times that v occurs as an endpoint of an edge. In a directed
graph, the outdegree and indegree of a vertex v are the number
of times that v occurs as the tail and head of an edge,
respectively.

A subgraph G1 “ pV 1, E 1q of G is a graph with V 1 Ď V
and E 1 Ď E . If E 1 is a subset of E , then GzE 1 denotes
the graph obtained by removing all the edges in E 1 from
G. If V 1 is a subset of V , then GzV 1 denotes the graph
obtained by removing all the vertices in V 1 and their in-
cident edges from G. A path from v to w is a subgraph
G1 “ pV 1, E 1q with V 1 “ tv0 “ v, v1, . . . , vk “ wu
and E 1 “ tpv0, v1q, pv1, v2q, . . . , pvk´1, vkqu. An undirected
graph is called connected if there exists a path from each
vertex to any other, and a directed graph is called connected
if the underlying undirected graph is connected. Any max-
imal connected subgraph H is called a connected component.
A graph is a tree if it is connected and it has n ´ 1 edges.
The disjoint union of trees is called a forest. The number of
edges in a forest is n ´ cc, where cc denotes the number of
connected components in G. A subgraph G1 of a connected
graph G is called a spanning tree if it has the same vertices
of G and it is a tree. If G is not connected, any union of
spanning trees for each connected component is called a
spanning forest.

A connected graph G is called biconnected if it has no
articulation points, where a vertex v P V is an articulation
point (or cut vertex) if Gztvu is not connected. Any maxi-
mal biconnected subgraph is called a biconnected component.
Equivalently, a biconnected component is a maximal set of
edges such that any two edges in the set lie on a common
circuit. It can be shown that biconnected components par-
tition the edges of the graph [62], where a single edge is
considered biconnected by definition. However, they may
share vertices with each other.

A connected graph G is called bridgeless if it has no
bridges, where an edge e P E is a bridge (or cut edge) if
Gzteu is not connected. It can be shown (e.g. [59]) that if G
is a connected graph on at least 3 vertices and e is a bridge,
then e is incident to (at least) one articulation point. In other
words, if G is biconnected and contains at least 3 vertices,
then it is bridgeless.

A.1 Cycle Bases

Let K be a field. A cycle in a graph G is a vector c P Km such
that for any vertex v P V it holds

ÿ

ePδ`pvq

rcse “
ÿ

ePδ´pvq

rcse (74)

where δ`pvq and δ`pvq denote the edges leaving and en-
tering v, respectively, and rcse denotes the component of c
indexed by edge e. It is shown in [59] that an edge of a
connected graph is a bridge if and only if it does not belong
to any cycle.

A cycle is simple if rcse P t´1, 0, 1u for all e P E , and a
simple cycle is a circuit if its support (i.e. the set of edges
with rcse ‰ 0) is connected and for any vertex v P V there
are at most two edges in the support incident to v. The set
of cycles forms a vector space over K, which is called the
cycle space of G, and a cycle basis is a set of circuits forming a
basis of such a space. It can be shown [60], [61] that if G is
connected the dimension of the cycle space is given by the
cyclomatic number

ν “ m´ n` 1. (75)

If T is a spanning tree of G, then adding any edge from EzT
to T generates a circuit [61]. The set of such circuits forms a
cycle basis, which is referred to as the fundamental cycle basis.
Figure 13 reports one example.
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Figure 13: Left: graph with n “ 5 nodes and m “ 7 edges.
Right: fundamental cycle basis associated with the spanning
tree T “ tp1, 2q, p2, 3q, p3, 4q, p4, 5qu.

Particularly interesting are the cases K “ Q and K “

Z2, which correspond to a directed and undirected graph,
respectively. If K “ Q, the field of rationals, then the cycle
basis is referred to as the directed cycle basis. Directed cycles
may use arcs in forward (rcse ą 0) or backward (rcse ă
0) direction. A directed cycle basis tc1, c2, . . . , cνu is called
a/an

‚ integral cycle basis if each cycle c of G can be written
as an integer linear combination of the circuits in the
basis, namely

Dλi P Z : c “ λ1c1 ` λ2c2 ` . . . λνcν ; (76)

‚ zero-one cycle basis (or totally unimodular cycle basis) if
each cycle c of G can be written as a linear combina-
tion with coefficients in t´1, 0,`1u of the circuits in
the basis, namely

Dλi P t´1, 0,`1u : c “ λ1c1`λ2c2` . . . λνcν . (77)

If K “ Z2 “ GF p2q, the field of two elements, then the
cycle basis is referred to as the undirected cycle basis. In Z2

the only non-zero element in the field is ´1 “ `1, thus a
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Figure 14: Sum of two cycles.

cycle is a vector c P Zm2 such that for any vertex v P V it
holds

ÿ

ePδpvq

rcse “ 0 (78)

where δpvq denotes the set of edges incident to v. Alterna-
tively, an undirected cycle can be viewed as a set of edges,
namely it is a subgraph in which every vertex has even
degree. The sum of two cycles, denoted by ‘, is a cycle
where the common edges vanish, and, more generally, the
sum of cycles is the cycle consisting of all the edges that are
contained in an odd number in the addends. This concept is
illustrated in Figure 14. It can be shown that an undirected
cycle basis can be turned into a directed cycle basis, but the
converse is not true [61].

The relationships between the aforementioned classes
of cycle bases are illustrated in Figure 15. The proofs of
such inclusions are provided in [61], which also reports
counterexamples showing that the inclusions are strict. Note
that any directed graph has a basis of each type, since any
directed graph has a fundamental cycle basis, and all the
other classes generalize fundamental cycle bases.

directedundirectedintegralzero-onefundamental

Figure 15: Classification of cycle bases.

A.2 Matrices associated with graphs

The adjacency matrixA of a graph G is the nˆnmatrix whose
elements indicate whether pairs of vertices are adjacent or
not, namely

rAsi,j “

#

1 if pi, jq P E
0 otherwise.

(79)

If G does not contain loops, then A has zero diagonal.
Note that the adjacency matrix is symmetric if the graph
is undirected.

The incidence matrix B of a directed graph G is the nˆm
matrix defined by

rBsk,e “

$

’

&

’

%

1 if k is the head of edge e,
´1 if k is the tail of edge e,
0 otherwise.

(80)

The rows of B correspond to vertices and the columns
correspond to edges. Note that each column has exactly two
non zero entries, which correspond to the endpoints of the
edge associated with that column. The incidence matrix B of
an undirected graph G is defined considering a particular
orientation of the edges. It is shown in [60] that, if G is
connected, then

rankpBq “ n´ 1. (81)

The degree matrix D of an undirected graph G is the nˆn
diagonal matrix such that rDsi,i contains the degree of node
i. Equivalently, it can be defined as

D “ diagpA1nˆ1q (82)

where 1nˆ1 denotes a n ˆ 1 matrix filled by ones, thus
A1nˆ1 is the sum of the rows of A. In the case of a directed
graph, either the indegree or the outdegree can be used. The
Laplacian matrix L is defined as

L “ D ´A. (83)

It can be checked that, independently of the orientation of
the edges, the following equation holds for an undirected
graph

L “ BBT (84)

which implies that L is symmetric and positive semidefinite,
and, if the graph is connected, rankpLq “ rankpBq “ n´ 1.

The notion of adjacency matrix can be extended to the
case of a weighted graph, which translates in letting the
entries of A to assume non-negative values. Specifically,
rAsi,j contains the weight of edge pi, jq, and rAsi,j “ 0
still indicates that pi, jq R E . In this case Equations (82) and
(83) still make sense, which define the degree matrix and
Laplacian matrix of a weighted graph, respectively.

The cycle matrix C corresponding to a cycle basis of a
connected graph G is the pm´n`1qˆm matrix having the
incidence vectors of the circuits in the basis in its rows. Note
that the cycle matrix has columns of zeros in correspondence
of bridges (if they exist). The following equation [60], [63]
expresses the relation between the cycle matrix and the
incidence matrix

CBT “ 0. (85)

APPENDIX B
KRONECKER AND KHATRI-RAO PRODUCTS

This appendix is devoted to the Kronecker and Khatri-Rao
products [64], [65], [66], which are widely used in this paper.

Let A and B be two real matrices of dimension m ˆ r
and n ˆ s respectively. The Kronecker product of A and B
[64], denoted by AbB, is defined as

AbB “

»

—

–

rAs1,1B rAs1,2B . . . rAs1,rB
rAs2,1B rAs2,2B . . . rAs2,rB
. . . . . .

rAsm,1B rAsm,2B . . . rAsm,rB

fi

ffi

fl

(86)
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where each rAsi,jB is a block of dimension nˆs, thus AbB
has dimension mn ˆ rs. The Kronecker product is associa-
tive, distributive (with respect to the sum of matrices), but
not commutative, and it satisfies the following properties

pAbBqT “ AT bBT (87)

pAbBq´1 “ A´1 bB´1 (88)
pAbBqpC bDq “ pACq b pBDq (89)

vecpAXBq “ pBT bAqvecpXq (90)

where vecp¨q denotes the vectorization operator which trans-
forms a matrix into a vector by stacking the columns of the
matrix one underneath the other.

Let A “ UAΣAV
T
A and B “ UBΣBV

T
B be the singular

value decompositions of A and B, respectively, then

AbB “ pUA b UBqpΣA b ΣBqpVA b VBq
T (91)

which implies

rankpAbBq “ rankpAq rankpBq. (92)

Thus the Kronecker product of two matrices is invertible if
and only if both the factors are invertible.

Consider now two real matrices A and B of dimension
mˆ r and nˆ r respectively, and denote the columns of A
by a1, . . . ,ar and those of B by b1, . . . ,br . The Khatri-Rao
product of A and B [65], [66], denoted by A d B, is defined
as

AdB “
“

a1 b b1 a2 b b2 ¨ ¨ ¨ ar b br
‰

(93)

where each aibbi is a vector of dimension mn, thus AdB
has dimension mn ˆ r. The Khatri-Rao product is associa-
tive, distributive, but not commutative, and it satisfies the
following equalities

pAbBqpC dDq “ pACq d pBDq (94)

vecpA diagpxq Bq “ pBT dAqx (95)

where diagpxq transforms the vector x “ rx1 . . . xrs
T

into a diagonal matrix with elements x1, . . . , xr along the
diagonal.


