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Abstract

We consider the class of 0-semigroups (H, ?) that are obtained by
adding a zero element to a group (G, ·) so that for all x, y ∈ G it
holds x ? y 6= 0 ⇒ x ? y = xy. These semigroups are called 0-
extensions of (G, ·). We introduce a merging operation that constructs
a 0-semihypergroup from a 0-extension of (G, ·) by a suitable super-
position of the product tables. We characterize a class of 0-simple
semihypergroups that are merging of a 0-extension of an elementary
Abelian 2-group. Moreover, we prove that in the finite case all such
0-semihypergroups can be obtained from a special construction where
(H, ?) is nilpotent.
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1 Introduction

In our preceding paper [7] we discovered a family of 0-semihypergroups having
the following property, among others: for any 0-semihypergroup (H, ◦) the
hyperproduct ◦ is obtained by a superposition of the product tables of a 0-
semigroup (H, ?) and a left zero semigroup (H+, ·) [13], where H+ = H−{0}.
Those 0-semihypergroups originated from a study on semihypergroups having
the cardinality of all hyperproducts not greater than 2 and the fundamental
relation β non-transitive. In [7] we obtained a complete description of the
isomorphism classes of that family; if |H+| = n then the number of these
isomorphism classes is the (n+1)-th term of the sequence A000070 [14]. The
aim of the present work is to analyze algebraic and combinatorial properties
of pairs made by a 0-semigroup (H, ?) and a 0-group (H, ·) such that the
operation ◦ defined as x ◦ y = {x ? y, xy} is associative.

After introducing some basic definitions and notations to be used through-
out the paper, in Section 2 we consider 0-semigroups (H, ?) that are ob-
tained by adding a zero element to a group (H+, ·). These semigroups are
called 0-extensions of (H+, ·). Moreover, we introduce the merging opera-
tion, which constructs a 0-semihypergroup by a suitable superposition of the
product tables of (H, ?) and (H+, ·). In Section 3 we consider a class of
0-semihypergroups (H, ◦) that are characterized by being the merging of a
0-extension of an elementary Abelian 2-group. That class is denoted by G0.

In Section 4, we prove that every (H, ◦) ∈ G0 belongs to one of two
subclasses, denoted by G0,d and G0,s, according to whether 1 ◦ 1 = {0, 1}
or 1 ◦ 1 = {1}, where 1 is the identity of the group (H+, ·). We denote
by G∗0,d and G∗0,s the subclasses of semihypergroups (H, ◦) in G0,d and G0,s,
respectively, such that |1◦x| = |x◦1| = |x◦x| = 2, for all x /∈ {0, 1}. There is
a bijection between the semihypergroups in G∗0,d and those in G∗0,s. We show
that every G0-semihypergroup can be obtained from a semihypergroup in G∗0,d
or G∗0,s by two special constructions described in Propositions 4.3 and 4.5. In
Section 5, we study the class G0(n) of finite G0-semihypergroups of size n.
In that case the semihypergroups (H, ◦) in G∗0,d are merging of a nilpotent
semigroup (H, ?) with an elementary Abelian 2-group. In Proposition 5.1 we
show a tight bound on the nilpotency rank of the semigroup (H, ?). Finally,
in Section 6, with the help of symbolic computation software, we determine
the number of isomorphism classes in G0(5) and G0(9). To that goal, we use
the results found in Section 4 and 5. We obtain 41 semihypergroups in G0(5)
and 7272 in G0(9).
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1.1 Basic definitions and results

Throughout this paper we use just a few basic concepts and definitions that
belong to common terminology in semigroup and semihypergroup theory, see
[2, 3, 13].

A semigroup (S, ·) is said to be nilpotent if there exists r ∈ N such that
|Sr| = 1. The minimum positive integer r such that |Sr| = 1 is called
nilpotency rank or degree of (S, ·).

A semigroup with a zero element 0 is called 0-semigroup.
A right zero semigroup is a semigroup (S, ·) such that xy = y, for all

x, y ∈ S. Left zero semigroups are defined in an analogous way.
A group (G, ·) in which every element has order less or equal to two is

called elementary Abelian 2-group.
If (G, ·) is a group and 0 /∈ G the set G ∪ {0} is a 0-semigroup respect

the product ? defined as follows:

0 ? 0 = x ? 0 = 0 ? x = 0, x ? y = xy, for all x, y ∈ G.

The semigroup (G ∪ {0}, ?) is called 0-group.
Let H be a non-empty set, a hyperoperation ◦ on H is a map from

H ×H to P ∗(H), where P∗(H) denotes the family of all non-empty subsets
of H. If A,B are non-empty subsets of H then A ◦ B =

⋃
a∈A,b∈B a ◦ b and

x ◦ A = {x} ◦ A, A ◦ x = A ◦ {x} for all x ∈ H.
A semihypergroup is a non-empty set H endowed with an associative

hyperproduct ◦, that is (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H.
If (H, ◦) is a semihypergroup, an element 0 ∈ H such that x ◦ 0 = {0}

(resp., 0◦x = {0}) for all x ∈ H is called right zero scalar element (resp., left
zero scalar element) of (H, ◦). If 0 is both right and left zero scalar element,
then it is called zero scalar or absorbing element, and (H, ◦) is said to be a
0-semihypergroup.

A simple semihypergroup is a semihypergroup (H, ◦) such that H◦x◦H =
H, for all x ∈ H. A semihypergroup (H, ◦) with a zero scalar element 0 is
called zero-simple if H ◦ x ◦H = H, for all x ∈ H − {0} [9].

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive
closure of the relation β = ∪n≥1βn, where β1 is the diagonal relation in H
and, for every integer n > 1, βn is defined recursively as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ . . . ◦ zn.
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The relations β, β∗ are called fundamental relations on H [1, 10, 11, 15].
The interested reader can find all relevant definitions, many properties and
applications of fundamental relations, even in more abstract contexts, also
in [4, 5, 6, 12].

2 0-extensions and mergings

In this section we introduce a class of 0-semigroups that are obtained by
adding a zero element to a group. Furthermore, we provide a construction of
0-semihypergroups by a suitable superposition of the product tables of one
such 0-semigroup with the associated group. Here and in the following we
indicate with 1 the identity of G and we use the notation In as a shorthand
for the set {0, 1, . . . , n}.

2.1 0-extensions

Definition 2.1. Let (H, ?) and (G, ·) be respectively a 0-semigroup and a
group. We say that (H, ?) is a 0-extension of (G, ·) if the following conditions
are verified:

1. 0 /∈ G and H = G ∪ {0};
2. For all x, y ∈ G it holds x ? y 6= 0 ⇒ x ? y = xy.

Hereafter, we give some examples of 0-extensions.

Example 2.1. Every 0-group is 0-extension of a group.

Example 2.2. Consider the following operations defined on I2:

?1 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

?2 0 1 2
0 0 0 0
1 0 1 2
2 0 0 0

?3 0 1 2
0 0 0 0
1 0 1 0
2 0 2 0

?4 0 1 2
0 0 0 0
1 0 1 0
2 0 0 0

?5 0 1 2
0 0 0 0
1 0 0 0
2 0 0 1

?6 0 1 2
0 0 0 0
1 0 0 0
2 0 0 0
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Then, (I2, ?1), . . . , (I2, ?6) are 0-extensions of the group Z2. Moreover, they
are pairwise not isomorphic and none of them is isomorphic to the 0-group
obtained from Z2.

Example 2.3. Consider the following operations defined on I4:

? 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 0 4 0
3 0 3 4 0 0
4 0 4 0 0 0

∗ 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 1 4 0
3 0 0 0 1 0
4 0 0 0 0 0

Then, (I4, ?) and (I4, ∗) are 0-extensions of the elementary Abelian 2-group
of size 4.

Example 2.4. Let (G, ·) be a group and let {Hi}i∈I be a family of subgroups
of G, with |I| ≥ 2. Moreover, let {{xi1, xi2}}i∈I be a family of subsets of G
which verifies the following conditions for every i, j ∈ I:

1. {xi1, xi2} ⊆ Hi;

2. {xi1, xi2, xi1xi2} ∩Hj = ∅ if i 6= j.

Considering an element 0 6∈ G, we define the following operation ? on the set
H = G ∪ {0}:

a ? b =

{
ab if {a, b} = {xi1, xi2} for some i ∈ I
0 else.

The set H with the operation ? is a 0-extension of the group (G, ·).

Now we show a special construction of 0-extensions, that will be largely
used in the next section.

Proposition 2.1. Let (G, ·) be an elementary Abelian 2-group and let (H, ?)
be a 0-extension of (G, ·) such that

x ? y = z =⇒ x ? z = z ? x = y ? z = z ? y = 0 (1)
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for all (x, y, z) of distinct elements in H − {0, 1}. On the set H we define
the following product: If (a, b) 6= (1, 1) then

a⊗ b =


0 if a = b 6= 1

0 if either a = 1 or b = 1

a ? b otherwise.

(2)

Moreover, 1 ⊗ 1 can be defined as 0 or 1, indifferently. Then the product ⊗
defined in (2) is associative and (H,⊗) is a 0-extension of the group (G, ·).

Proof. Clearly, for every x, y, z ∈ H such that {x, y, z} ∩ {0, 1} 6= ∅, we
have (x⊗y)⊗z = x⊗(y⊗z) = 0. On the other hand, if {x, y, z}∩{0, 1} = ∅
then we obtain:

• If x = y = z we have (x⊗ y)⊗ z = x⊗ (y ⊗ z) = 0.

• If x = y 6= z, we have (x ⊗ x) ⊗ z = 0 and x ⊗ z = x ? z. Clearly, if
x ? z = 0 then x⊗ (x⊗ z) = 0. If x ? z 6= 0 then x ? z = xz with xz 6= 1
since x 6= z and (G, ·) is an elementary Abelian 2-group. Hence x, z, xz
are three distinct elements in H − {0, 1}. So, by (1) and (2), we have
x ? (xz) = 0 and x⊗ (x⊗ z) = x⊗ (x ? z) = x⊗ (xz) = x ? (xz) = 0.

• If x 6= y = z, as in the preceding case, we obtain that (x ⊗ y) ⊗ y =
x⊗ (y ⊗ y) = 0.

• If x 6= y and y 6= z, we can distinguish three cases:

1) x⊗ y = z, 2) y ⊗ z = x, 3) x⊗ y 6= z and y ⊗ z 6= x.

In the case 1), we have (x ⊗ y) ⊗ z = 0 and z = x ⊗ y = x ? y = xy.
Therefore x 6= z otherwise y = 1. Thus, the elements x, y, z are pairwise
distinct and, by (1), x ? y = z ⇒ y ? z = 0. In consequence y ⊗ z = 0
and (x⊗ y)⊗ z = x⊗ (y ⊗ z) = 0.

The case 2) is similar to the case 1). Finally, in the case 3), we have
x ? y 6= 1 and y ? z 6= 1 otherwise 1 = x ? y = xy or 1 = y ? z = yz and
we have the contradiction x = y or y = z since (G, ·) is an elementary
Abelian 2-group. Hence x ⊗ y = x ? y 6= z, y ⊗ z = y ? z 6= x and
consequently (x⊗ y)⊗ z = (x ? y) ? z = x ? (y ? z) = x⊗ (y ⊗ z).

Then (H,⊗) is a 0-semigroup. From (2) we have that x⊗ y 6= 0 ⇒ x⊗ y =
x ? y 6= 0 ⇒ x⊗ y = xy. Hence, (H,⊗) is a 0-extension of (G, ·). �

6



2.2 The merging operation

In this subsection we introduce a construction of a 0-semihypergroup from a
0-extension (H, ?) of a group (G, ·). The 0-semihypergroup obtained in that
way will be called the merging of (H, ?) and (G, ·).

Let (H, ?) be a 0-extension of a group (G, ·). We define on the set H the
following hyperoperation ◦: For every x, y ∈ G let

0 ◦ 0 = 0 ◦ x = x ◦ 0 = {0}, x ◦ y = {x ? y, xy}. (3)

From (3), we trivially deduce that for every x, y ∈ G we have

x ◦ y =

{
{xy} if x ? y 6= 0;

{0, xy} if x ? y = 0.
(4)

We can prove the following result:

Proposition 2.2. The set H equipped with the hyperproduct defined in (3)
is a 0-semihypergroup such that

∏n
i=1 zi ∈ z1 ◦ . . . ◦ zn and |z1 ◦ . . . ◦ zn| >

1⇒ z1 ◦ . . . ◦ zn = {0,
∏n

i=1 zi}, for every z1, z2, . . . , zn ∈ G and n ≥ 2.

Proof. Firstly we prove that the hyperoperation ◦ is associative. Let
x, y, z ∈ H. If 0 ∈ {x, y, z} then (x ◦ y) ◦ z = x ◦ (y ◦ z) = {0}. Therefore,
we suppose that x, y, z ∈ G. By (4), we have that xy ∈ x ◦ y ⊆ {0, xy} and
xyz ∈ (xy) ◦ z ⊆ {0, xyz}. Hence,

xyz ∈ (x ◦ y) ◦ z ⊆ {0, xy} ◦ z = 0 ◦ z ∪ (xy) ◦ z = {0, xyz}

and we deduce that xyz ∈ (x ◦ y) ◦ z ⊆ {0, xyz}. Analogously we can prove
that xyz ∈ x ◦ (y ◦ z) ⊆ {0, xyz}.

Now, we suppose |(x ◦ y) ◦ z| = 1. By (3), we have {x ? y ? z, xyz} ⊆
(x ◦ y) ◦ z = {xyz} and so x ? y ? z = xyz. Since xyz 6= 0, we deduce
that 0 6∈ {x ? y ? z, x ? y, y ? z}. In consequence we obtain y ? z = yz and
xyz = x ? (y ? z) = x ? (yz) = x(y ? z). Thus,

x ◦ (y ◦ z) = {x ? y ? z, x ? (yz), x(y ? z), xyz} = {xyz} = (x ◦ y) ◦ z.

Analogously, if |x ◦ (y ◦ z)| = 1 then (x ◦ y) ◦ z = x ◦ (y ◦ z) = {xyz}.
Now, suppose that |(x ◦ y) ◦ z| = 2. It follows that |x ◦ (y ◦ z)| = 2 and

so (x ◦ y) ◦ z = x ◦ (y ◦ z) = {0, xyz}. Thus (H, ◦) is a 0-semihypergroup.
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To prove the second part of the claim, let n ≥ 2 and z1, z2, . . . , zn ∈ G.
If n = 2 then the claim is true by (4). Proceeding by induction, suppose the
claim is true for n− 1 ≥ 2. Clearly, we have that

∏n−1
i=1 zi ∈ z1 ◦ . . . ◦ zn−1 ⊆

{0,
∏n−1

i=1 zi} and (
∏n−1

i=1 zi) ◦ zn ⊆ {0,
∏n

i=1 zi}. Hence, we obtain

z1 ◦ . . . ◦ zn = (z1 ◦ . . . ◦ zn−1) ◦ zn
⊆ {0,

∏n−1
i=1 zi} ◦ zn = {0} ∪ (

∏n−1
i=1 zi) ◦ zn ⊆ {0,

∏n
i=1 zi}.

Therefore, |z1 ◦ . . . ◦ zn| > 1 ⇒ z1 ◦ . . . ◦ zn = {0,
∏n

i=1 zi}. �

Definition 2.2. We say that the 0-semihypergroup (H, ◦) in Proposition 2.2
is the merging of (H, ?) with (G, ·).

Example 2.5. Consider the following hyperproducts defined on I2:

◦1 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0, 1

◦2 0 1 2
0 0 0 0
1 0 1 2
2 0 0, 2 0, 1

◦3 0 1 2
0 0 0 0
1 0 1 0, 2
2 0 2 0, 1

◦4 0 1 2
0 0 0 0
1 0 1 0, 2
2 0 0, 2 0, 1

◦5 0 1 2
0 0 0 0
1 0 0, 1 0, 2
2 0 0, 2 1

◦6 0 1 2
0 0 0 0
1 0 0, 1 0, 2
2 0 0, 2 0, 1

The 0-semihypergroups (I2, ◦1), . . . , (I2, ◦6) are the merging of the 0-semi-
groups (I2, ?1), . . . , (I2, ?6) in Example 2.2 with Z2. These semihypergroups
will be used in the next section to introduce a new class of 0-semihypergroups.

Remark 2.1. Let (H, ?) be a 0-extension of an Abelian 2-group (G, ·) that
verifies the condition (1). By Proposition 2.1, the semigroup (H,⊗) is also
a 0-extension of (G, ·), where ⊗ is the product defined from ? as in (2).
Moreover, let (H, ◦) be the merging of (H, ?) with (G, ·) and let (H, •) be
the merging of (H,⊗) with (G, ·). By Definition 2.2, the hyperproduct •
fulfills

{1} ⊆ 1 • 1 ⊆ {0, 1}
x • x = {0, 1}
0 • 0 = 0 • 1 = 1 • 0 = 0 • x = x • 0 = {0}
1 • x = x • 1 = {0, x}
x • y = {x⊗ y, xy} = {x ? y, xy}

(5)
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for all x, y ∈ H − {0, 1} and x 6= y. In particular, the hyperproducts ◦ and
• may only differ in the values assumed on the pairs (1, x), (x, 1) and (x, x),
for all x ∈ G. In the remaining cases we have x ◦ y = x • y.

3 The class of G0-semihypergroups

The six semihypergroups in Example 2.5 belong to the list of fourteen 0-
semihypergroups of size 3 where the relation β is not transitive [9, Thm.
5.6]. In particular, they belong to the family of the fully zero-simple semihy-
pergroups [7]. We remember that a 0-semihypergroup (H, ◦) is called fully
zero-simple if it fulfills the following conditions:

1. All subsemihypergroups of (H, ◦) (H itself included) are zero-simple;

2. the relation β in (H, ◦) and its restrictions βK to any subsemihyper-
group K ⊂ H of size ≥ 3 are not transitive.

Since the relation β is transitive in all semihypergroups of size ≤ 2, it follows
that every fully zero-simple semihypergroup has size ≥ 3. In [7] the authors
study the fully zero-simple semihypergrous satisfying the condition {y} ⊆
x ◦ y ⊆ {0, y}, for all x, y ∈ H − {0}. In this case, H − {0} is a right zero
semigroup [13] and (H, ◦) can be regarded as the merging of a 0-semigroup
with a right zero semigroup. Moreover, apart of isomorphisms, the fully
zero-simple semihypergroups of size n that verify such condition are exactly∑n

k=0 p(k), where p(k) denotes the number of non-increasing partitions of k.
In this section we study the fully zero-simple semihypergroups (H, ◦)

with an element 1 6= 0 such that, for all x ∈ H −{0, 1}, the sets {0, 1, x} are
subsemihypergroups isomorphic to one of semihypergroups in Example 2.5.
Moreover, we show that these semihypergroups can be obtained as merging
of a 0-semigroup with an elementary Abelian 2-group. Firstly, we borrow
the following result from Theorem 5.6 in [9].

Theorem 3.1. The semihypergroups in Example 2.5 are all and only the
fully zero-simple semihypergroups of size 3 that are merging of a 0-extension
of Z2 with Z2, apart of isomorphisms.

Now we prove the following result:

Proposition 3.1. Let (H, ?) be a 0-extension of the group (G, ·), with |G| ≥
2, and let (H, ◦) be the merging of (H, ?) with (G, ·). If for all x ∈ H −
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{0, 1} the set {0, 1, x} is a subsemihypergroup of (H, ◦) isomorphic to one
of semihypergroups (I2, ◦1), . . . , (I2, ◦6) in Example 2.5 then (H, ◦) is a fully
0-simple semihypergroup. Moreover, (G, ·) is an elementary Abelian 2-group.

Proof. First of all we prove that if K ⊆ H is a subsemihypergroup of
(H, ◦) then K is zero-simple. We suppose that |K| ≥ 2 since the thesis is
trivial if |K| = 1. By hypothesis, if there exists x ∈ K − {0, 1} then the set
{0, 1, x} is a subsemihypergroup of (H, ◦) isomorphic to one semihypergroups
in Example 2.5. Hence we have 1 ∈ x ◦ x ⊆ K and 0 ∈ {1, x} ◦ {1, x} ⊆
K ◦K ⊆ K. Thus K = {0, 1} or |K| ≥ 3 with {0, 1} ⊂ K. In both cases K
is zero-simple since x ∈ 1 ◦ x ◦ 1 and K ◦ x ◦K = K, for all x ∈ K − {0}.

Now, we prove that if |K| ≥ 3 then βK is not transitive. If |K| = 3, there
exists x ∈ H − {0, 1} such that K = {0, 1, x} and K is isomorphic to one
of the semihypergroups in Example 2.5. By Theorem 3.1, the relation βK is
not transitive. If |K| ≥ 4 then there exist x, y ∈ K −{0, 1} with x 6= y. The
sets {0, 1, x} and {0, 1, y} are subsemihypergroups isomorphic to one of the
semihypergroups in Example 2.5. Hence, there exist two hyperproducts P
and Q of elements in {1, x} and {1, y}, respectively, such that {0, x} = P and
{0, y} = Q. Therefore, (x, 0) ∈ βK and (0, y) ∈ βK . If by absurd (x, y) ∈ βK
then there exists a hyperproduct R of elements in K such that {x, y} ⊆ R,
which is impossible by Proposition 2.2. Thus βK is not transitive and (H, ◦)
is a fully zero-simple semihypergroup. Finally, since 1 ∈ x◦x ⊆ {0, 1}, by (3)
and (4) we have xx = 1 for all x ∈ G, hence (G, ·) is an elementary Abelian
2-group. �

Let F0 be the class of fully zero-simple semihypergroups. We use 0 and
H+ to denote the zero scalar element of a semihypergroup (H, ◦) ∈ F0 and
the set H − {0}, respectively.

Definition 3.1. Let G0 be the subclass of semihypergroups in F0 with an
element 1 ∈ H+ such that for all x ∈ H+ the set {0, 1, x} is a subsemihy-
pergroup of (H, ◦) isomorphic to one of semihypergroups in Example 2.5.
A semihypergroup (H, ◦) ∈ G0 is called G0-semihypergroup. Moreover, the
family of semihypergroups {{0, 1, x}}x∈H−{0,1} is the spectrum of (H, ◦).

For reader’s convenience, we collect in the following lemma some prelim-
inary results from [7].

Lemma 3.1. If (H, ◦) ∈ F0 then we have:
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1. If K is a subsemihypergroup of H such that 0 6∈ K then |K| = 1.
Moreover, if |K| ≥ 2 then the zero element of K is 0;

2. for every sequence z1, . . . , zn in H+ we have z1 ◦ · · · ◦ zn 6= {0};

3. the set H+ endowed with the hyperproduct a � b = (a ◦ b) ∩ H+ is a
simple semihypergroup.

Consider the following definition:

Definition 3.2. Let (H, ◦) ∈ F0. The semihypergroup (H+, �) defined in
Lemma 3.1(3) is the residual semihypergroup of (H, ◦). If (H+, �) is a group
then it is said the residual group of (H, ◦).

Lemma 3.2. Let (H, ◦) ∈ G0. Then we have:

1. |x ◦ y| ≤ 2; and |x ◦ y| = 2⇒ 0 ∈ x ◦ y, for all x, y ∈ H+;

2. the residual semihypergroup of (H, ◦) is an elementary Abelian 2-group.

Proof. 1. By considering the hyperproduct tables in Example 2.5, for all
x, y ∈ H+ we have x ◦ (x ◦ y) = (x ◦ x) ◦ y ⊆ {0, 1} ◦ y = {0, y}. Hence, by
Lemma 3.1(2), we deduce that y ∈ x ◦ a for some a ∈ x ◦ y. Therefore we
have x ◦ y ⊆ x ◦ (x ◦ a) = (x ◦ x) ◦ a ⊆ {0, 1} ◦ a = {0, a}. Hence |x ◦ y| ≤ 2
and |x ◦ y| = 2⇒ 0 ∈ x ◦ y.

2. By the previous point and Lemma 3.1(3), (H+, �) is a simple semigroup.
Moreover, since (H, ◦) ∈ G0, by looking at the tables in Example 2.5, for all
x ∈ H+ we have x � x = {1} and x � 1 = 1 � x = {x}. Hence (H+, �) is an
elementary Abelian 2-group. �

By the preceding lemma, if (H, ◦) ∈ G0 then x � y is a nonzero singleton,
for all x, y ∈ H+. By identifying a singleton with the element itself, we can
define on the set H the following operation:

x ? y =


0 if x = 0 or y = 0;

0 if |x ◦ y| = 2 and x, y ∈ H+;

x � y if |x ◦ y| = 1 and x, y ∈ H+.

(6)

Note that x ◦ y = {x ? y, x � y}. Moreover, we have the following result:

Proposition 3.2. If (H, ◦) ∈ G0 then (H, ?) defined in (6) is a semigroup
that is a 0-extension of the residual group (H+, �).
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Proof. Let x, y, z ∈ H. We have to prove that (x ? y) ? z = x ? (y ? z). If
0 ∈ {x, y, z} the thesis is obvious. Therefore suppose that x, y, z ∈ H+.

If 0 6∈ x ◦ y ◦ z then x ◦ y = x � y, (x � y) ◦ z = x � y � z, y ◦ z = y � z and
x ◦ (y � z) = x � y � z. Hence we have that (x? y) ? z = (x � y) ? z = x � y � z =
x ? (y � z) = x ? (y ? z).

Now, suppose that 0 ∈ x ◦ y ◦ z. There are four options:

1. 0 6∈ x ◦ y and 0 6∈ y ◦ z.

We have x ◦ y = {x � y} and y ◦ z = {y � z}. Hence x ? y = x � y and
y ? z = y � z. Moreover, since 0 ∈ x ◦ y ◦ z, we have 0 ∈ (x � y) ◦ z and
0 ∈ x ◦ (y � z). Consequently, we obtain |(x � y) ◦ z| = |x ◦ (y � z)| = 2
and (x ? y) ? z = (x � y) ? z = 0 = x ? (y � z) = x ? (y ? z).

2. 0 ∈ x ◦ y and 0 6∈ y ◦ z.

We have x◦y = {0, x�y} and y◦z = y�z. Therefore (x?y)?z = 0?z = 0
and 0 ∈ x ◦ (y ◦ z) = x ◦ (y � z). Consequently x ◦ (y � z) = {0, x � y � z}
and x ? (y ? z) = x ? (y � z) = 0. Hence, (x ? y) ? z = x ? (y ? z) = 0.

3. 0 6∈ x ◦ y and 0 ∈ y ◦ z.

The argument is analogous to the preceding one.

4. 0 ∈ x ◦ y and 0 ∈ y ◦ z.

We have x ◦ y = {0, x � y} and y ◦ z = {0, y � z}, hence (x ? y) ? z =
0 ? z = 0 = x ? 0 = x ? (y ? z).

Finally, (H, ?) is a 0-extension of the residual group (H+, �) since we have
x ? y = x � y ⇐⇒ x ? y 6= 0, for all x, y ∈ H+. �

Definition 3.3. The 0-semigroup (H, ?) in Proposition 3.2 is the semigroup
associated to (H, ◦).
Theorem 3.2. Let (H, ◦) be a 0-semihypergroup of size ≥ 3. The following
conditions are equivalent:

1. (H, ◦) ∈ G0;

2. there exists an elementary Abelian 2-group (H+, ·), with identity 1, and
a 0-semigroup (H, ?), which is a 0-extension of (H+, ·), such that (H, ◦)
is the merging of (H, ?) with (H+, ·). Moreover, the set {0, 1, x} is a
subsemihypergroup of (H, ◦) isomorphic to one of semihypergroups in
Example 2.5, for all x ∈ H − {0, 1}.
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Proof. 1. ⇒ 2. The claim follows from Lemma 3.2 and Proposition 3.2.
In fact, (H, ◦) is the merging of the associated semigroup (H, ?) with the
residual group (H+, �).

2.⇒ 1. By hypothesis and Proposition 2.2, (H, ◦) is a 0-semihypergroup
such that xy ∈ x ◦ y and |x ◦ y| = 2 ⇒ x ◦ y = {0, xy}, for all x, y ∈ H+.
Since (H+, ·) is an elementary Abelian 2-group, we have

{0, 1, x} ◦ {0, 1, x} = {0} ∪ 1 ◦ 1 ∪ 1 ◦ x ∪ x ◦ 1 ∪ x ◦ x = {0, 1, x},

for all x ∈ H − {0, 1}. Hence the set X = {0, 1, x} is a subsemihypergroup
of (H, ◦), for all x ∈ H − {0, 1}. By hypothesis (X, ◦) is isomorphic to
one of semihypergroups in Example 2.5, for all x ∈ H − {0, 1}. Finally, by
Proposition 3.1 and Definition 3.1, we conclude that (H, ◦) ∈ G0. �

3.1 A special property of G0-semihypergroups

In this paragraph we prove a special property of the G0-semihypergroups
that will turn out to be useful in next sections. We premise a lemma which
is valid for all (H, ◦) ∈ F0. Hereafter, if A is a non-empty subset of H then
we define RA = {x ∈ H | x ◦ A ⊆ A} and LA = {x ∈ H | A ◦ x ⊆ A}.

Lemma 3.3. Let (H, ◦) ∈ F0 and let A be a non-empty subset of H. If the
set RA (resp., LA) is non-empty then it is a subsemihypergroup of (H, ◦).
Moreover, 0 /∈ A⇒ |RA| = 1 (resp., |LA| = 1).

Proof. Let x1, x2 ∈ RA. For every z ∈ x1 ◦ x2, we have that z ◦ A ⊆
(x1 ◦ x2) ◦ A = x1 ◦ (x2 ◦ A) ⊆ x1 ◦ A ⊆ A, hence x1 ◦ x2 ⊆ RA and RA is a
subsemihypergroup of (H, ◦), and analogously for LA. The last part of the
claim follows from Lemma 3.1(1), since 0 /∈ A⇒ 0 /∈ RA. �

From the preceding proposition, we deduce the following results:

Proposition 3.3. Let (H, ◦) ∈ G0 and let x, y, z be distinct elements in
H − {0, 1} such that x ◦ y = {z}. Then we have

1. x ◦ z = {0, y} and z ◦ y = {0, x};

2. z ◦ x = {0, y} and y ◦ z = {0, x};

3. z ◦ z = {0, 1};

4. |x ◦ 1| = |1 ◦ y|;
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5. |y ◦ 1| = |z ◦ 1| and |1 ◦ x| = |1 ◦ z|.

Proof. 1. Let (H+, ·) be the residual group of (H, ◦). Since x ◦ y = {z},
in (H+, ·) we obtain xy = z, y = xz and x = zy. Therefore in (H, ◦) we have
y ∈ x ◦ z and x ∈ z ◦ y. Now, by absurd, suppose that x ◦ z = {y}. Letting
A = {y, z} we obtain 0 6∈ RA and x ∈ RA. Hence, by Lemma 3.3, we deduce
that |RA| = 1 and RA = {x}, which is impossible because we would have
x ◦ x = RA ◦ RA = RA = {x} in (H, ◦) and xx = 1 in the residual group.
Thus x ◦ z = {0, y}. Analogously we can prove that z ◦ y = {0, x}, by using
LA in place of RA.

2. From item 1., if we suppose that z◦x = {y} we obtain the contradiction
{z} = x ◦ y = x ◦ (z ◦x) = (x ◦ z) ◦x = {0, y} ◦x ⊇ {0}. Then z ◦x = {0, y}.
Analogously, if y ◦ z = {x}, we obtain {z} = x ◦ y = (y ◦ z) ◦ y = y ◦ (z ◦ y) =
y ◦ {0, x} ⊇ {0}, an absurdity. Therefore y ◦ z = {0, x}.

3. We have z ◦ z = (x ◦ y) ◦ z = x ◦ (y ◦ z) = x ◦ {0, x} = {0, 1}.
4. If, by absurd, we suppose that |x ◦ 1| = 2 and |1 ◦ y| = 1 then we have

x ◦ 1 = {0, x}, 1 ◦ y = {y}, hence the following contradiction: {z} = x ◦ y =
x◦(1◦y) = (x◦1)◦y = {0, x}◦y = {0, z}. The case |x◦1| = 1 and |1◦y| = 2
is disproved analogously.

5. We can reason as in the case 4., by using the hyperproducts z ◦ 1 =
x ◦ y ◦ 1 and 1 ◦ z = 1 ◦ x ◦ y. �

Corollary 3.1. Let (H, ◦) ∈ G0. The associated 0-semigroup (H, ?) satisfies
the condition (1), that is x ? y = z ⇒ x ? z = z ? x = y ? z = z ? y = 0, for
all distinct elements x, y, z ∈ H − {0, 1}.

Proof. By Proposition 3.2 (H, ?) is a 0-extension of the residual group
(H+, �). If x, y, z are distinct elements in H−{0, 1} such that x? y = z then
x � y = z and x ◦ y = {z}. From points 1. and 2. of Proposition 3.3, we have
|x ◦ z| = |z ◦ x| = |z ◦ y| = |y ◦ z| = 2 and the claim follows. �

In conclusion, by Theorem 3.2 every (H, ◦) ∈ G0 can be obtained as the
merging of a 0-semigroup (H, ?) with a elementary Abelian 2-group (H+, ·).
By Corollary 3.1, (H, ?) fulfills the hypotheses of Proposition 2.1. Conse-
quently, we can also define of H the product ⊗ in (2); the resulting semi-
group (H,⊗) is a 0-extension of (H+, ·), possibly different from (H, ?). As
pointed out in Remark 2.1, the merging of (H,⊗) with (H+, ·) is the G0-
semihypergroup (H, •) defined by (5).

14



4 Principal semihypergroups in G0

In what follows, we denote by G0(n) the subclass of G0-semihypergroups
with size n. Since H+ is the support of an Abelian 2-group it must hold
n = 2r + 1 for some integer r.

We note that if (H, ◦) ∈ G0 and there exists x ∈ H such that {0, 1, x}
is a semihypergroup isomorphic to (I2, ◦5) or (I2, ◦6) in Example 2.5 then
all other subsemihypergroups in the spectrum of (H, ◦) are isomorphic to
(I2, ◦5) or (I2, ◦6), because in that case 1 ◦ 1 = {0, 1}, otherwise we would
have the contradiction {0, 1} = 1◦1 = {1}. This fact divides G0 into two dis-
joint subclasses, that of the semihypergroups whose spectrum contains only
semihypergroups isomorphic to (I2, ◦5) or (I2, ◦6), and that of the semihyper-
groups whose spectrum contains only semihypergroups isomorphic to (I2, ◦i)
for i = 1, . . . , 4. We denote these two subclasses by G0,d and G0,s, according
to whether 1◦1 is a doublet or a singleton, respectively. In particular G0,d(n)
and G0,s(n) are the subclasses of semihypergroups of size n in G0,d and G0,s

respectively. Clearly, by Theorem 3.1 we have G0,d(3) = {(I2, ◦5), (I2, ◦6)}
and G0,s(3) = {(I2, ◦i), i = 1, . . . , 4}, up to isomorphisms.

A simple construction of semihypergroups in G0,d or G0,s of arbitrary size
is obtained as follows.

Example 4.1. Let (G, ·) be an elementary Abelian 2-group and let 1 be the
identity of G. Let H = G ∪ {0} where 0 6∈ G and let Kx be the set {0, 1, x}
for all x ∈ G− {1}. If we equip every set Kx with a hyperoperation ◦x such
that (Kx, ◦x) is isomorphic to one of the semihypergroups in G0,d(3) (resp.,
G0,s(3)) then we can define in H the following hyperproduct:

a ◦ b =

{
a ◦x b if a, b ∈ Kx for some x;

{0, ab} otherwise.

It is easy to prove that (H, ◦) ∈ G0,d (resp., G0,s).

In this section we will prove some results about semihypergroups (H, ◦) ∈
G0 having the following property:

|1 ◦ x| = |x ◦ 1| = |x ◦ x| = 2, for all x /∈ {0, 1}. (7)

Note that if (H, ◦) fulfills (7) and belongs to G0,d then all semihyper-
groups in its spectrum are isomorphic to (I2, ◦6) in Example 2.5, while if
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(H, ◦) ∈ G0,s then its spectrum consists of semihypergroups isomorphic to
(I2, ◦4). The subclasses of G0,s and G0,d that contain them are denoted re-
spectively with G∗0,s and G∗0,d. These semihypergroups play an important
role in what follows, because any G0-semihypergroup can be obtained from
a G0-semihypergroup fulfilling (7) by means of a particular construction, as
we will prove subsequently.

We observe that there is a bijection between semihypergroups in G∗0,d and
those in G∗0,s, as claimed hereafter.

Proposition 4.1. For every (H, ◦) ∈ G∗0,d there exists (H, •) ∈ G∗0,s such
that x ◦ y = x • y for all pairs (x, y) 6= (1, 1). The converse is also true.

In the following proposition, to any G0-semihypergroup we associate a
special semihypergroup fulfilling condition (7).

Proposition 4.2. Let (H, ◦) ∈ G0. Define on H the following hyperproduct:
1 • x = x • 1 = {0, x} if x ∈ H − {0, 1}
x • x = {0, 1} if x ∈ H − {0, 1}
x • y = x ◦ y otherwise.

(8)

Then (H, •) belongs to G∗0,s or G∗0,d depending on whether (H, ◦) ∈ G0,s or
(H, ◦) ∈ G0,d.

Proof. By Theorem 3.2, (H, ◦) is the merging of a 0-semigroup (H, ?)
with an elementary Abelian 2-group (H+, ·). From Corollary 3.1, the semi-
group (H, ?) satisfies the condition (1) and so, by Remark 2.1, (H, •) is a
0-semihypergroup. Now, observe that for every x ∈ H−{0, 1} the set {0, 1, x}
is a subsemihypergroup of (H, •) which is isomorphic to (I2, ◦4) or (I2, ◦6) of
Example 2.5, depending on whether 1•1 = {1} or 1•1 = {0, 1}, respectively.
Therefore, again by Theorem 3.2, (H, •) belongs to G∗0,s or G∗0,d. �

Definition 4.1. The 0-semihypergroups which belong to G∗0,s or G∗0,d are
called principal semihypergroups. In particular the 0-semihypergroup (H, •)
in Proposition 4.2 is the principal semihypergroup corresponding to (H, ◦).

Example 4.2. The following G0-semihypergroup (H, •) is a principal semi-
hypergroup of the class G∗0,s:
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• 0 1 2 3 4
0 0 0 0 0 0
1 0 1 0, 2 0, 3 0, 4
2 0 0, 2 0, 1 4 0, 3
3 0 0, 3 0, 4 0, 1 0, 2
4 0 0, 4 0, 3 0, 2 0, 1

This semihypergroup is the principal semihypergroup corresponding e.g., to
the following semihypergroups:

◦1 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 0, 1 4 0, 3
3 0 3 0, 4 0, 1 0, 2
4 0 4 0, 3 0, 2 0, 1

◦2 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 0, 1 4 0, 3
3 0 0, 3 0, 4 0, 1 0, 2
4 0 0, 4 0, 3 0, 2 0, 1

Next, we will show how it is possible to generate G0,d or G0,s from G∗0,d
or G∗0,s, respectively.

Proposition 4.3. Let (H, •) ∈ G∗0,d, let (H+, ·) be its residual group, and let
(H, ?) be its associated 0-semigroup. Furthermore, let ∗ be any product on H
fulfilling the following conditions:{

x ∗ x ∈ {0, 1} if x ∈ H − (H ? H ∪ {1})
x ∗ y = x ? y otherwise.

(9)

Then (H, ∗) is a 0-extension of (H+, ·). Moreover, the merging of (H, ∗) with
(H+, ·) belongs to G0,d.

Proof. Firstly, we prove that ∗ is associative. By hypotheses, for all
x ∈ H we have

0 ? x = x ? 0 = 1 ? x = x ? 1 = x ? x = 0. (10)

If a, b, c ∈ H are such that {a, b, c} ∩ {0, 1} 6= ∅ or a = b = c, it is easy to
verify that (a ∗ b) ∗ c = a ∗ (b ∗ c). Therefore, we have to consider only the
following cases, with a, b, c /∈ {0, 1}:
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1. a = b 6= c.

In (H+, ·) we have ac 6= a and we can distinguish two cases: a ? c = 0
and a ? c = ac. In the first case, we have a ∗ (a ∗ c) = a ∗ (a ? c) =
a ∗ 0 = 0. In the second case, by Corollary 3.1, we obtain a ? (ac) = 0
and a ∗ (a ∗ c) = a ∗ (a ? c) = a ∗ (ac) = a ? (ac) = 0. Hence (a ∗ a) ∗ c ⊆
{0, 1} ∗ c = 0 = a ∗ (a ∗ c) and so (a ∗ a) ∗ c = a ∗ (a ∗ c) = 0.

2. a 6= b = c.

The proof is similar to that one of the preceding point.

3. a = c 6= b.

If a ∗ b 6= 0 then we have a ∗ b = a ? b = ab, with a, b, ab distinct
elements in H−{0, 1}. Therefore, by Corollary 3.1, ab∗a = ab?a = 0.
Consequently, we obtain (a ∗ b) ∗ a = 0. Analogously, if b ∗ a 6= 0 we
obtain a ∗ (b ∗ a) = 0, thus (a ∗ b) ∗ a = a ∗ (b ∗ a) = 0.

4. a, b, c mutually distinct and ab = c.

We have a∗b = a?b ∈ {0, c} and b∗c = b?c ∈ {0, a}. If a∗b = a?b = c
then c ∈ (H ?H)−{0} and c ∗ c = c ? c = 0. Moreover, from Corollary
3.1, we have b∗c = b?c = 0. Hence (a∗b)∗c = c∗c = 0 = a∗0 = a∗(b∗c).
If b ∗ c = b ? c = a, we obtain a ∈ (H ? H)− {0} and a ∗ a = a ∗ b = 0
as before. Hence, we have (a ∗ b) ∗ c = 0 ∗ c = 0 = a ∗ a = a ∗ (b ∗ c).
Finally, if a ∗ b = 0 = b ∗ c, it is clearly that (a ∗ b) ∗ c = a ∗ (b ∗ c) = 0.

5. a, b, c mutually distinct and ab 6= c.

In (H+, ·) we have bc 6= a and for definition (a∗b)∗c = a∗(b∗c) = a?b?c.

Therefore (H, ∗) is a 0-semigroup. By definition (H, ∗) is a 0-extension of
the residual group (H+, ·) of (H, •). Now, let (H, ◦) be the merging of (H, ∗)
with (H+, ·). By Proposition 2.2, (H, ◦) is a 0-semihypergroup. By (10), for
all x ∈ H, the set {0, 1, x} is a subsemihypergroup of (H, ◦) isomorphic to
(I2, ◦5) or (I2, ◦6) in Example 2.5. Finally, by Theorem 3.2, (H, ◦) ∈ G0,d. �

The forthcoming result guarantees that all semihypergroups in G0,d can be
obtained by means of the construction outlined in the preceding proposition.

Proposition 4.4. Let (H, •) be the principal semihypergroup corresponding
to (H, ◦) ∈ G0,d and let (H+, ·) be its residual group. If (H, ∗) and (H, ?)
are the 0-semigroups associated respectively to (H, ◦) and (H, •) then the
operations ∗ and ? fulfil conditions (9).
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Proof. By definition (6) and (8), for any x, y ∈ H we have x ∗ y = x ? y
if x 6= y or x ∈ {0, 1} or y ∈ {0, 1}. Moreover, if x ∈ H ? H − {0, 1}
then there exist a, b /∈ {0, 1} such that a 6= x 6= b and x = a ? b = ab.
Hence a ◦ b = a • b = {x} and x ◦ x = {0, 1} by Proposition 3.3(3). Since
x • x = {0, 1}, we obtain x ∗ x = 0 = x ? x. In all remaining cases we have
x /∈ H ? H ∪ {1} and also x ∗ x ∈ {0, 1}. �

The next proposition is analogous to Proposition 4.3 concerning G0,s in-
stead of G0,d. Since the proof essentially follows the trail of the one of Propo-
sition 4.3, we provide the proof of only one case concerning the associativity
of the hyperproduct, which is specific to G0,s-semihypergroups.

Proposition 4.5. Let (H, •) ∈ G∗0,s, let (H+, ·) be its residual group, and let
(H, ?) be its associated 0-semigroup. Moreover, let ∗ be any product on H
fulfilling the following conditions:{

{1 ∗ x, x ∗ 1} ⊆ {0, x} if x /∈ {0, 1}
x ∗ y = x ? y otherwise,

(11)

provided that, if (x, y) ∈ T = {(a, b) ∈ [H − {0, 1}]2 | a ? b 6= 0} then
x ∗ 1 = 0 ⇐⇒ 1 ∗ y = 0

1 ∗ x = 0 ⇐⇒ 1 ∗ (xy) = 0

y ∗ 1 = 0 ⇐⇒ (xy) ∗ 1 = 0.

(12)

Then (H, ∗) is a 0-extension of (H+, ·). Moreover the merging of (H, ∗) with
(H+, ·) belongs to G0,s.

Proof. The proof of the associativity of ∗ proceeds analogously to that of
Proposition 4.3, by considering that here 1 ? 1 = 1 and the other identities
in (10) are still valid. Hereafter we detail the case a = 1 and b, c 6= 1 where
the condition (12) is employed.

If b ∗ c = 0 then 1 ∗ (b ∗ c) = 1 ∗ 0 = 0 = (1 ∗ b) ∗ c because 1 ∗ b ∈ {0, b}.
If b ∗ c 6= 0 then b 6= c, b ∗ c = b ? c = bc 6= 1 and (b, c) ∈ T . Therefore, by

(12), if 1∗b = 0 then 1∗(bc) = 0 and (1∗b)∗c = 0∗c = 0 = 1∗(bc) = 1∗(b∗c),
while if 1∗b = b then 1∗(bc) = bc and (1∗b)∗c = b∗c = bc = 1∗(bc) = 1∗(b∗c).
�

Analogously to Proposition 4.4 we have the following result concerning
G0,s. We refrain from including a complete proof, which requires long but
straightforward arguments.
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Proposition 4.6. Let (H, •) be the principal semihypergroup corresponding
to (H, ◦) ∈ G0,s. If (H, ∗) and (H, ?) are the 0-semigroups associated respec-
tively to (H, ◦) and (H, •) then the operations ∗ and ? fulfil conditions (11)
and (12).

5 Nilpotency of associated semigroups

In this section we consider the 0-semigroups associated to a finite semihy-
pergroup (H, ◦) ∈ G∗0,d. By Corollary 3.1, the associated 0-semigroup (H, ?)
fulfills conditions (1), (2), and 1 ? 1 = 0. Moreover, it is also easy to prove
that for all x, y ∈ H we have

1) x ? y ? x = 0,

2) if x = x ? y or x = y ? x then x = 0.

We observe that if H is finite of size n then (H, ?) is nilpotent. Indeed,
x ? x = 0 for all x ∈ H. Moreover, if x1, x2, . . . , xn+1 are elements in H, the
elements

x1, x1 ? x2, . . . , x1 ? x2 ? . . . ? xn+1

are not distinct. Hence, there exist two integers l,m such that l < m ≤ n+1
and x1 ? x2 ? · · · ? xl = x1 ? x2 ? · · · ? xm. Consequently,

x1 ? x2 ? . . . ? xl = x1 ? x2 ? . . . ? xl ? (xl+1 ? . . . ? xm)2

= x1 ? x2 ? . . . ? xl ? 0 = 0,

hence (H, ?) is nilpotent.

Theorem 5.1. Let H be a finite set of size ≥ 3 and ◦ a hyperproduct on H.
The following conditions are equivalent:

1. (H, ◦) ∈ G∗0,d;

2. there exists a nilpotent semigroup (H, ?) such that

a) (H, ?) is a 0-extension of an elementary Abelian 2-group (H+, ·);

b) x ? 1 = 1 ? x = x ? x = 0 for all x ∈ H+;

c) (H, ◦) is merging of (H, ?) with (H+, ·).
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Proof.
1)⇒ 2) Immediate consequence of Theorem 3.2 and the fact that (H, ◦)

belongs to ∈ G∗0,d.
2)⇒ 1) By c) and Proposition 2.2, (H, ◦) is a 0-semihypergroup. By b),

for all x ∈ H+, the set {0, 1, x} is a subsemihypergroup of (H, ◦) isomorphic
to (I2, ◦6) in Example 2.5. Finally, by a), c) and Theorem 3.2, we have
(H, ◦) ∈ G∗0,d. �

In the following proposition we show a tight bound on the nilpotency
rank of (H, ?).

Proposition 5.1. Let (H, ◦) ∈ G∗0,d(n) and let ν be the nilpotency rank of

its associated semigroup (H, ?). Then
(
ν
2

)
≤ n− 2.

Proof. Let q = ν − 1. By hypothesis, there exist q elements a1, a2, . . . , aq
in H − {0, 1} such that a1 ? a2 ? · · · ? aq 6= 0. Necessarily, these elements are
pairwise distinct. We arrange the proof in four steps.

α) For all i ∈ {1, 2, . . . , q − 1} and for all integers k such that 0 < k ≤ q−i
we have ai?ai+1?· · ·?ai+k /∈ {0, 1}. Indeed, if ai?ai+1?· · ·?ai+k = 0 then
we obtain the contradiction a1?a2?· · ·?aq = 0. If ai?ai+1?· · ·?ai+k = 1
then in the residual group of (H, ◦) we have ai · ai+1 · · · ai+k = 1 and
ai = ai+1 · · · ai+k = ai+1 ? · · · ? ai+k. It follows the contradiction 1 =
ai ? ai+1 ? · · · ? ai+k = ai ? ai = 0.

β) For all i ∈ {1, 2, . . . , q − 1} and integers r, s such that 0 ≤ r < s ≤
q − i we have ai ? ai+1 ? · · · ? ai+r 6= ai ? ai+1 ? · · · ? ai+s. Indeed, if
ai ? ai+1 ? · · · ? ai+r = ai ? ai+1 ? · · · ? ai+s then

ai ? ai+1 ? · · · ? ai+s = ai ? · · · ? ai+r ? ai+r+1 ? · · · ? ai+s
= ai ? · · · ? ai+s ? ai+r+1 · · · ? ai+s︸ ︷︷ ︸

=0

= ai ? · · · ? ai+s−1 ? 0 = 0,

which is impossible for α).

γ) ai?ai+1?· · ·?ai+r 6= aj?aj+1?· · ·?aj+s, for all i ∈ {1, 2, . . . , q − 1}, i < j,
0 ≤ r ≤ q− i and 0 ≤ s ≤ q− j. Indeed, if ai ? · · ·?ai+r = aj ? · · ·?aj+s
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for i < j then

ai ? · · · ? aj−1 ? aj ? · · · ? aj+s = ai ? · · · ? aj−1 ? ai︸ ︷︷ ︸
=0

? · · · ? ai+r

= 0 ? ai+1 ? · · · ? ai+r = 0,

which is impossible for α).

δ) By the preceding points, all the following elements in H − {0, 1} are
pairwise distinct:

a1, a2 . . . , aq and ai ? ai+1 ? · · · ? aj, for all 1 ≤ i < j ≤ q.

Therefore q + (q − 1) + (q − 2) + . . .+ 2 + 1 =
(
q+1
2

)
≤ |H| − 2 and we

obtain the proof. �

Remark 5.1. We can exploit a construction found in [8] in order to deter-
mine the nilpotent semigroups of rank 3 which are 0-extensions of a group
(G, ·) of size ≥ 2. Fix an element 0 /∈ G and a non-empty set A ⊆ G and let
B = (G− A) ∪ {0}. On the set S = G ∪ {0} consider a product ⊗ fulfilling
the following condition: for every x, y ∈ S

x⊗ y =

{
xy or 0 if x, y ∈ A and xy ∈ B;

0 otherwise.
(13)

For all x, y, z ∈ S, we have that (x⊗ y)⊗ z = x⊗ (y⊗ z) = 0, and so (S,⊗)
is a nilpotent 0-semigroup of rank 2 or 3. Clearly (S,⊗) is a 0-extension of
(G, ·). We note that (S,⊗) is a nilpotent semigroup of rank 2 if and only if
x⊗ y = 0 for all x, y ∈ A, and in particular if A is a subsemigroup of (G, ·).

Conversely, if (S,⊗) is a nilpotent semigroup of rank 3 which is also a
0-extension of a group (G, ·) then S ⊗ S ⊂ S. Thus, putting B = S ⊗ S,
the set A = G− B is a non-empty subset of G and 0 /∈ A. Moreover, for all
x, y ∈ S we have:

• if x, y ∈ A then x⊗ y ∈ B and (x⊗ y 6= 0 ⇒ x⊗ y = xy);

• if x 6∈ A or y 6∈ A then {x, y} ∩B 6= ∅ and x⊗ y = 0.

Therefore the operation ⊗ fulfills the condition (13). The result is true even
if the nilpotency rank of (S,⊗) is 2: in that case A = G and B = {0}.
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The Theorem 5.1 and the construction described in the remark above
characterizes the semigroups having nilpotency rank 3 associated to a semi-
hypergroup in G∗0,d.

Theorem 5.2. Let (H, ◦) be a finite semihypergroup in G∗0,d and let (H, ?)
and (H+, ·) be its associated 0-semigroup and residual group, respectively.
The nilpotency rank of (H, ?) is 3 if and only if {0} 6= H ? H ⊂ H and

x ? y =

{
xy or 0 if x, y ∈ H − (H ? H) and xy ∈ H ? H;

0 otherwise.
(14)

6 Computation of isomorphism classes in G0(5)

and G0(9)

In this section we present two results obtained with the help of symbolic com-
putation software. We determine the number of semihypergroups in G0(5)
and G0(9), apart of isomorphisms. To these goals, first we find the semihy-
pergroups in G∗0,s(t) and G∗0,d(t) with t ∈ {5, 9} and after, using Propositions
4.3 and 4.5, we find all the elements in G0(5) and G0(9), up to isomorphisms.
Clearly, by Proposition 4.1, it is sufficient to determine the semihypergroups
in G∗0,d(t) because those in G∗0,s(t) differ only in the hyperproduct 1•1 = {1}.
By Theorem 5.1, the characterization of finite semihypergroups in G∗0,d is
based on the determination of all nilpotent semigroups (H, ?) that are 0-
extensions of an Abelian 2-group. Furthermore, by Corollary 3.1, (H, ?)
must also fulfil the condition (1).

6.1 Semihypergroups in G0(5)

The support of semihypergroups in G∗0,d(5) is H = {0, 1, 2, 3, 4}, and the
residual group (H+, ·) is Z2

2, which is represented by the following table:

· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

By Theorem 5.1, every semihypergroup (H, •) ∈ G∗0,d(5) is the merging of
(H, ?) with (H+, ·), where (H, ?) verifies the following conditions, for all
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distinct elements x, y, z ∈ H+:{
1 ? x = x ? 1 = x ? x = 0;
x ? y = z ⇒ x ? z = z ? x = y ? z = z ? y = 0.

(15)

By Proposition 5.1, the nilpotency rank of (H, ?) is 2 or 3. Obviously, if the
rank is 2 we have x ? y = 0, for all x, y ∈ H. If the nilpotency rank is 3,
then there exists a product x ? y 6= 0, with x, y ∈ {2, 3, 4}. By Theorem
5.2 and (15), it is not restrictive to suppose that B = H ? H = {0, 2} and
A = {1, 3, 4}. In this case, at least one of the products 3 ? 4 and 4 ? 3
differs from 0, and so we have 3 ? 2 = 2 ? 3 = 4 ? 2 = 2 ? 4 = 0. Apart
of isomorphisms, we have two nilpotent semigroups with rank 3 which are
0-extension of (H+, ·). Their product tables are the following:

?1 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 2
4 0 0 0 0 0

?2 0 1 2 3 4
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 2
4 0 0 0 2 0

By considering also the (trivial) nilpotent semigroup of rank 2, we obtain in
G∗0,d(5) three semi-hypergroups which are merging of the preceding nilpotent
semigroups with (H+, ·), whose products are the following:

•0 0 1 2 3 4
0 0 0 0 0 0
1 0 0, 1 0, 2 0, 3 0, 4
2 0 0, 2 0, 1 0, 4 0, 3
3 0 0, 3 0, 4 0, 1 0, 2
4 0 0, 4 0, 3 0, 2 0, 1

•1 0 1 2 3 4
0 0 0 0 0 0
1 0 0, 1 0, 2 0, 3 0, 4
2 0 0, 2 0, 1 0, 4 0, 3
3 0 0, 3 0, 4 0, 1 2
4 0 0, 4 0, 3 0, 2 0, 1

•2 0 1 2 3 4
0 0 0 0 0 0
1 0 0, 1 0, 2 0, 3 0, 4
2 0 0, 2 0, 1 0, 4 0, 3
3 0 0, 3 0, 4 0, 1 2
4 0 0, 4 0, 3 2 0, 1
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Using the construction shown in Proposition 4.3, an exhaustive search of all
0-semigroups that extend (H+, ·) yields 11 semihypergroup in G0,d(5). In
particular, the number of semihypergroups which are obtained from (H, •0),
(H, •1) and (H, •2) is 4, 3, and 4, respectively.

The semihypergroups in G∗0,s(5) can be determined from those in G∗0,d(5), by
applying Proposition 4.1. We denote such semi-hypergroups with (H, •3),
(H, •4) and (H, •5). Analogously to the previous case, by using Proposition
4.5 we can derive 30 semihypergroup in G0,s. Those obtained from (H, •3),
(H, •4) and (H, •5) are 20, 8, and 2, respectively.

In conclusion, we have the following result:

Theorem 6.1. Up to isomorphisms there exist 11, 30 and 41 semihyper-
groups in G0,d(5), G0,s(5) and G0(5), respectively.

6.2 Semihypergroups in G0(9)

As in the preceding case, first of all we outline the arguments which allow
us to determine, up to isomorphisms, the number of semihypergroups in
G∗0,d(9) and G∗0,s(9). The support of semihypergroups in G∗0,d(9) is H =
{0, 1, 2, . . . , 8}, and the residual group (H+, ·) is Z3

2, which is represented by
the following table:

· 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 6 3 4 1 2
8 8 7 6 5 4 3 2 1

(16)

By Theorem 5.1, every semihypergroup (H, •) ∈ G∗0,d(9) is the merging of
the associated nilpotent semigroup (H, ?) with (H+, ·), where (H, ?) verifies
the conditions (15). Moreover, for Proposition 5.1, the nilpotency rank of
(H, ?) can be 2 or 3 or 4.
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If the nilpotency rank of (H, ?) is 4 then there will be at least a nonzero
product of three distinct elements in H − {0, 1}. It is not restrictive to
suppose that 2 ? 3 ? 5 6= 0 and so 2 ? 3 = 4, 4 ? 5 = 8, 3 ? 5 = 7 and 2 ? 7 = 8.
Consequently, by (15), we deduce that 4 ? 2 = 2 ? 4 = 3 ? 4 = 4 ? 3 = 0,
8 ? 4 = 4 ? 8 = 8 ? 5 = 5 ? 8 = 0, 7 ? 3 = 3 ? 7 = 7 ? 5 = 5 ? 7 = 0 and
8 ? 2 = 2 ? 8 = 8 ? 7 = 7 ? 8 = 0. Therefore we arrive at the following partial
product table:

? 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 4 0 8 0
3 0 0 0 0 7 0
4 0 0 0 0 0 8 0
5 0 0 0 0 0
6 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0 0

where the empty cells can assume the value 0 or the corresponding value in
(16). Extensive computations performed with the help of a symbolic com-
putation software produced 13 nilpotent semigroups of rank 4, apart of iso-
morphisms.

Now we determine the nilpotent semigroups of rank three which are 0-
extension of (16). From Theorem 5.2 and (15) we obtain that H ?H can be
equal to one of the following sets, up to isomorphisms:

B1 = {0, 2}, B2 = {0, 2, 3}, B3 = {0, 2, 3, 4}, B4 = {0, 2, 3, 5}

For instance, in case B3 the operation ? must verify the conditions

2 ∈ {5 ? 6, 6 ? 5, 7 ? 8, 8 ? 7} ⊆ {0, 2}
3 ∈ {5 ? 7, 7 ? 5, 6 ? 8, 8 ? 6} ⊆ {0, 3}
4 ∈ {5 ? 8, 8 ? 5, 6 ? 7, 7 ? 6} ⊆ {0, 4}

and all other products must be 0. Symbolic computations yield nB3 = 176
nilpotent semigroups of rank 3. Analogously, using the sets B1, B2 and B4
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we obtain the following numbers: nB1 = 10, nB2 = 36 and nB4 = 10. By
considering also the nilpotent semigroup of rank 2, we get a total of 246 nilpo-
tent semigroups. This number is equal to the number of semihypergroups
in G∗0,d(9) and, by Proposition 4.1, also the number of semihypergroups in
G∗0,s(9), apart of isomorphisms. We collect in the following table the results
obtained for all possible cases arising from Propositions 4.3 and 4.5:

3
rank 2

nB1 nB2 nB3 nB4

4

G∗0,d(9), G∗0,s(9) 1 10 36 176 10 13
G0,d(9) 10 265 990 2495 112 124
G0,s(9) 264 1014 1204 566 110 118

In conclusion, we have the following statement.

Theorem 6.2. Up to isomorphisms, there exist 3996, 3276 and 7272 semi-
hypergroups in G0,d(9), G0,s(9) and G0(9), respectively.

7 Conclusions

In our preceding papers [5, 6, 9] we faced the study of simple semihyper-
groups where the fundamental relation β is not transitive, in all subsemihy-
pergroups of size ≥ 3. These semihypergroups, which we called fully simple,
own a right (or left) zero scalar element and all their hyperproducts have
size ≤ 2. In finite case, the number of isomorphism classes of fully simple
semihypergroups of size n ≥ 3 is n-th term of the sequence A000712. Moti-
vated by these results, in [7] we considered a class of simple semihypergroups
having an absorbing element 0 and the relation β not transitive in every
subsemihypergroup of size ≥ 3. These semihypergroups, which we call fully
0-simple, differ substantially from fully simple semihypergroups since their
hyperproducts can have size greater than two. An example is the following:
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◦ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 0, 2 0, 5 0, 2 0, 2, 6 0, 1, 3, 4 0, 5
2 0 0, 5 0, 1, 3, 4 0, 5 0, 5 0, 2, 6 0, 1, 3, 4
3 0 0, 2 0, 5 0, 2 0, 2, 6 0, 1, 3, 4 0, 5
4 0 0, 2, 6 0, 5 0, 2, 6 0, 2, 6 0, 1, 3, 4 0, 5
5 0 0, 1, 3, 4 0, 2, 6 0, 1, 3, 4 0, 1, 3, 4 0, 5 0, 2, 6
6 0 0, 5 0, 1, 3, 4 0, 5 0, 5 0, 2, 6 0, 1, 3, 4

Still in [7] we analyzed the subclass of fully 0-simple semihypergroups
having all hyperproducts of size ≤ 2. The hyperproduct tables of those
semihypergroups can be regarded as the superposition of the product table
of a 0-semigroup and that of either a (right or left) zero semigroup or an
elementary Abelian 2-group. In particular, we considered the class R0 of fully
0-simple semihypergroups such that for all pairs (x, y) of distinct nonzero
elements the subset {0, x, y} is a subsemihypergroup whose hyperproduct
table contains the product table of a right zero semigroup. Finally, we proved
that the number of isomorphism classes of semihypergroups in R0 having size
n is the n-th term of the sequence A000070.

In the present paper, we deepen the understanding of that superposi-
tion of product tables, which we call merging, see Definition 2.2. Moreover,
we define and study the class G0 of fully 0-simple semihypergroups with a
particular element 1 6= 0 such that, for all x /∈ {0, 1}, the subset {0, 1, x}
is isomorphic to one of the semihypergroups listed in Example 2.5. Those
semihypergroups of size 3 are the only fully 0-simple semihypergroups which
can be obtained by a merging with the group Z2. In particular, we prove
that all semihypergroups in G0 are obtained as a merging with an elementary
Abelian 2-group. Apart of isomorphisms, there are 41 G0-semihypergroups
of size 5 and 7272 of size 9.
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