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Abstract 

Manganese excess can induce in humans neurological disorders known as manganism. A possible 

remedy should be chelation therapy, even if a chelation schedule for manganism is not currently 

established. Para aminosalicylic acid (PAS) has demonstrated effectiveness in reducing manganism 

symptoms. In this work, a study of protonation equilibria of para aminosalicylic acid and of its N-

acetylated metabolite (Ac-PAS) and of their complexation reactions with Mn2+ is presented, also 

extended to the main essential metal ions Cu2+ and Fe3+. A number of complementary techniques 

(potentiometry, spectrophotometry, fluorimetry, EPR) have been used for a thorough comprehension of 

protonation and complex formation equilibria, with the addition of DFT calculations, which provide 
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insights on the relative stabilities and electronic properties of the formed species. Both PAS and Ac-PAS 

form 1:1 and 1:2 metal:ligand complexes with the target Mn2+ ion; surprisingly the N-acetylated 

metabolite forms stronger complexes, whose implications in chelation therapy have been pointed out by 

a speciation study. It is presumed that the relatively small metabolite can penetrate across the blood-

brain-barrier and exert its Mn-mobilizing action intracellularly in vulnerable neurons. 
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Introduction 

The trace element manganese is an essential metal ion, whose dietary deficiency can cause a wide variety 

of health problems [1]. It is indispensable for the normal development and for the body function of all 

mammals, since it regulates many enzymes throughout the body [2-4]. Manganese excess associated with 

occupational and environmental exposure can induce acute effects and/or neurological disorders with a 

syndrome known as manganism, similar for a number of symptoms to Parkinson’s disease. The main 

cause of manganese toxicity is inhalation, especially when air content is greater than 5 mg m-3 and 

particulate size is less than 5µm [5-7].  

A possible remedy against manganism should be chelation therapy, even if currently “a chelation 

schedule in chronic manganese poisoning (manganism) is not established, but 

diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), and para-

aminosalicylic acid (PAS) are available as potential chelators. PAS appears to be the most promising 

agent, although clinical experience is limited”, as reported by Andersen in a detailed review of the 

literature related to experimental and clinical chelation studies [8]. While DTPA and EDTA seems to 

lack of efficacy in the clinical treatment of manganism, PAS has demonstrated effectiveness in reducing 

manganism symptoms in its use in China. Shuqin et al. report two cases of chronic manganese poisoning 

efficaciously treated with PAS (previous treatments with CaNa2EDTA gave initially an improvement of 

symptoms, which emerged again and became more aggravated daily) [9]. Jiang et al. present an 

analogous case of PAS treatment of a woman aged 50 for occupational manganism, and followed then 

at the age of 67 years, i.e. 17 years after the treatment [10]. The examination showed a general normal 

appearance in clinical, neurological and brain NMR imaging presentations. In the same reference [10] a 

Table reports on 85 successful treatments of manganism with PAS, and this led the authors to assert that 

this drug appears effective for treating manganese intoxications. The high dosage of PAS in these 

treatments has to be remarked: a solution of 500 mL of 10% glucose and 6 g of sodium PAS was given 

intravenously per day. Each course of intermittent treatment - four days on the drug alternating with three 

days without the drug - was extended for 3.5 months. 

PAS is a second line agent in use for multidrug-resistant tuberculosis; a granule formulation of PAS has 

been approved in 1995 by US FDA, and PAS combined with other antibiotics is also used against cerebral 

manifestations of tuberculosis. The recommended daily oral prescription is 8-12 g given in 2-3 doses. 

PAS was also defined by US FDA as an orphan drug in the treatment of Crohn’s disease, since it also 

exerts an anti-inflammatory action resembling that of aspirin (acetyl salicylic acid).  
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Two pharmacokinetic studies on PAS can be found in the literature. The first, on humans, is relative to 

the oral administration of granules [11], and the second, on rats, was designed to investigate the 

pharmacokinetics and the bio-distribution in the brain [12]. Both articles give evidence of the formation 

of a N-acetylated metabolite of PAS (AcPAS), and in particular Hong et al. [12] state that PAS and 

AcPAS seem to be both effective in reducing manganese levels in brain. 

Based on all these reports, it seemed necessary to study the protonation equilibria of PAS and AcPAS 

(Scheme 1) and their complex formation with the target Mn2+ metal ion. Salicylic acid was also taken 

into account for comparison, and the study was extended to the essential Cu2+ and Fe3+ ions, whose 

homeostatic equilibria in brain seem to be perturbed by a Mn2+ ion excess [13]. Complementary 

techniques (potentiometry, UV-Vis, EPR spectroscopy and spectrofluorimetry) were used to define the 

equilibria and the possible nature of the species formed. Computational calculations on the ligands and 

their Mn2+ complexes have been also run in order to provide additional insights on geometry, relative 

stability and electronic properties of the species. 

 

 

 

Scheme 1. Molecular structures of (A) 2-hydroxybenzoic acid (SAL), (B) 4-amino-2-hydroxybenzoic 

acid (PAS), and (C) 4-(acetylamino)-2-hydroxybenzoic acid (Ac-PAS). The characterizing substituents 

are marked in red. 

 

2. Experimental 

 

2.1. Reagents 
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2-hydroxybenzoic acid, 4-aminobenzoic acid, 4-amino-2-hydroxybenzoic acid, CuCl2, MnCl2, FeCl3, 

NaOH, NaCl, HCl, anhydrous sodium sulfate, ethyl acetate, acetic anhydride, hexane, CD3OD were 

purchased from Sigma Aldrich. All the reagents, analytical grade, were used without further purification. 

 

2.2. Synthesis of 4-(acetylamino)-2-hydroxybenzoic acid. 

4-(acetylamino)-2-hydroxybenzoic acid was synthesized according to the procedure described by Bade 

et al. [14], obtaining the pure AcPAS with a 40% yield. 1H-NMR (in CD3OD) δ 7.96, 7.86 (d, H) 7.31 

(s, H), 7.03, 7.01 (d, H) 3.32 (s, 3H). 

 

2.3. Potentiometry 

Protonation and complex formation equilibrium studies were carried out under Argon flow in a 

thermostatted glass cell equipped with a magnetic stirrer. The potentiometric apparatus consisted in 

Metrohm 691 pH-meter, Dosimat 665 Metrohm titrator and Metrohm LL UNITRODE glass electrode. 

The titrations were performed in water at 25.0 °C and 0.1 M NaCl ionic strength using 0.1 M NaOH. The 

electrode was daily calibrated for hydrogen ion concentration by titrating HCl with NaOH using the same 

experimental conditions as above, and the results were analyzed using the Gran procedure [15]. Working 

ligand concentration was 0.5 mM both for protonation and for complex formation titrations. Fresh PAS 

solutions were daily prepared to avoid the decarboxylation process [16]. The metal complex formation 

equilibria were studied in 1:5 metal/ligand molar ratio. The obtained potentiometric data were processed 

by Hyperquad 2013 program [17]. 

 

2.4. Spectrophotometry 

A Varian Cary 50 UV/Vis Spectrophotometer was used for UV–Vis studies. Protonation and iron 

complex formation equilibria were studied by titrating 20 mL of 0.5 mM ligand solutions with 0.1 M 

NaOH at 0.1 M NaCl ionic strength, with the use of joined potentiometric spectrophotometric titrations 

[18]. Spectra for protonation equilibria were recorded in the 200–400 nm spectral range with a 0.2 cm 

path length fiber-optic probe, for complex formation equilibria in the 350–800 nm spectral range with a 

1.0 cm path length fiber-optic probe. The obtained data were processed by HypSpec program [19]. The 

formation equilibria were also studied in the 0–2 pH range on sets of solutions at variable molar 

concentrations of hydrochloric acid, since complex formation was almost complete when Fe3+ and ligand 

solutions were mixed. 



6 

 

 

2.5. Spectrofluorimetry 

A Varian Cary Fluorimeter was used for fluorescence spectra. Working ligand concentration for the study 

of protonation equilibria was 0.0125 mM in water. Batch measurements at variable pH were performed 

by adding proper amounts of HCl and NaOH. The excitation wavelength was 276 nm, while emission 

spectra were registered in the 286–486 nm spectral range. 

 

2.6. EPR spectroscopy 

EPR spectra were recorded from 0 to 10000 Gauss at 120 and 298 K with an X-Band Bruker EMX 

spectrometer equipped with a HP 53150A microwave frequency counter. The microwave frequency used 

was in the range 9.40 - 9.43 GHz.  

 

2.7 Computational details 

The geometries of the salicylic acid derivatives in the different protonation states have been optimized 

using the CAM-B3LYP functional [20] with the gaussian-type 6-31+G(d,p) basis set for all the atoms. 

The time-dependent DFT calculations with the CAM-B3LYP functional, in combination with the 

selected basis set, have been previously demonstrated to provide electronic excitation spectra for benzoic 

acid derivatives at different pH values in good agreement with the experimental ones [21] [22]. The 

spectra were calculated for 24 singlet excitations and applying a 15 nm half-height line broadening. All 

calculations (geometry optimizations and electronic excitations) were carried out in presence of water as 

solvent introduced by the PCM method [23].  

For the calculations carried out for MnL and [MnL2]
2- complexes (L = SAL, PAS, AcPAS), the B3LYP 

hybrid functional [24, 25] was chosen as it is widely demonstrated to provide good structural data for 

metal complexes, especially for open shell systems [26-34]. The Stuttgart-Dresden effective-core 

potentials [30] with the associated basis set for the valence electrons were employed for Mn within the 

gaussian-type 6-31+G(d,p) for the other elements. Geometry optimizations for the complexes were 

carried out both in gas phase and in presence of water introduced by the CPCM solvation model [31, 32]. 

To assess the dependence of the calculated parameters from the basis set, optimizations with the B3LYP 

[Y. Zhao, D. G. Truhlar, Theor Chem Account (2008) 120:215–241] functional were also carried out 

with the 6-31+G(d,p) basis set for all the atoms. Then, the energies were also calculated with the 6-

311+G(d,p) and the aug-cc-pVTZ basis sets [T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989); N.B. 



7 

 

Balabanov and K.A. Peterson, J. Chem. Phys, 123, 064107 (2005)]. An additional energy calculation 

with the SMD solvation model [Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B. 2009, 

113, 6378–6396] was employed to compare the results with the CPCM. Finally, the M06 functional, 

which was previously demonstrated to provide accurate structural and thermodynamic data especially 

for transition metal complexes [Y. Zhao, D. G. Truhlar, Theor Chem Account (2008) 120:215–241; Y. 

Zhao, D. G. Truhlar, Chemical Physics Letters 502 (2011) 1–13; M. Nardirossian, M. Head-Gordon, J. 

Chem. Theory Comput. 2016, 12, 4303−4325].[Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. 

Chem. B. 2009, 113, 6378–6396] was tested with the 6-31+G(d,p) basis set. 

According to the results from the EPR analysis (section 3.2), the Mn2+ ion has been considered to be in 

a high spin state (S = 5/2) and the calculations were carried out from starting structures with the metal as 

octahedral coordinated. In a first geometry optimization, the 1:1 MnL complexes were represented as 

Mn(H2O)4L with one bidentate L ligand and four coordinating water molecules, while the 1:2 [MnL2]
2- 

species as [Mn(H2O)2L2]
2- with two equatorial chelating L ligands and two apical water molecules. 

However, the minimum structures obtained presented either large distortions of the ligands around the 

Mn2+ ion to form intra-molecular hydrogen bonds (1:1 complexes in Figure S2) or the dissociation of 

one or two water molecules to give distorted structures with the Mn2+ ion four- or five-coordinated (1:2 

complexes in Figure S2). This difficulty in optimizing Mn2+ octahedral complexes with O-donor ligands 

was previously observed [33]. In addition, other authors [34] argued that Mn2+ species have very small 

energy differences between octahedral and other geometries (e.g. trigonal prismatic or tetrahedral) and 

the coordination in solution is strongly dependent on the nature of the ligands (monodentate/chelate, type 

of coordinating atom, steric hindrance).   

Instead, geometry optimizations with an increasing amount of additional explicit water molecules bound 

through H-bonds to [Mn(H2O)4L] and [Mn(H2O)2L2]
2- produced final structures with Mn2+ in an 

octahedral arrangement. The minimum number of “extra” water molecules to give octahedral geometries 

with all the three L ligands resulted to be two for [Mn(H2O)4L] and six for [Mn(H2O)2L2]
2-. In all cases, 

vibrational analysis was carried out to confirm that stationary were true minima (i.e. no imaginary 

frequencies present).  

For the resulting [Mn(H2O)4L·2H2O] and [Mn(H2O)2L2·6H2O]2- species, the electron density at the Mn-

O(L) critical points according to Bader’s AIM theory [Bader, R. F. W., Chem. Rev., 1991, 91 (5), 893-

928], which are known to be closely related to bonding strength, [Matta, C. F.; Boyd, R. J. The Quantum 

Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley, 2007; p. 11; Kumar, 

P. S. V.; Raghavendra, V.; Subramanian, V. J. Chem. Sci. 2016, 128 (10), 1527–1536] were calculated. 
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All the calculations were performed with Gaussian 16 [37].  

 

 

 

3. Results and discussion 

3.1. Protonation constants 

Protonation constants of SAL, PAS and Ac-PAS were determined by potentiometric, UV-Vis and 

fluorescence techniques. The protonation constants potentiometrically determined are reported in Table 

1. Each protonation step leads to the change of spectrophotometric properties of the ligands allowing 

also a systematic investigation on nature of the related formed species using UV-Vis data. The spectra 

collected at different pH ranges are reported in Figure S1 in ESI for all the investigated ligands and 4-

amino benzoic acid. 

SAL is characterized by two log K values, the lower attributed to the carboxylic group, and the higher to 

the phenolic group (Table 1). Figure 1A presents the absorptivity spectra of the differently protonated 

species of SAL, calculated by HypSpec with the protonation constants in Table 1. The LH2 species shows 

two bands with absorptivity maxima at 237 nm and 302 nm, [LH]- at 231 nm and 296 nm, and [L]2- at 

246 nm and 316 nm. 

 

Table 1. Protonation constants (log K) obtained by potentiometry at 25 °C and 0.1 M  

NaCl ionic strength. 

 SAL PAS Ac-PAS 

-COOH 3.10(1) 2.67(1) 3.29(3) 

-NH3
+ - 3.95(2) - 

-OH 13.6(1) 13.5(1) 13.4(1) 

 

PAS has three log K values, due to the presence of amino group (Table 1). The LH3
+ species shows two 

bands at 235 nm and 300 nm, LH2 species three bands at 230 nm, 275 nm and 302 nm, [LH]-two bands  

at 262 nm and 300 nm, and [L]2- a shoulder at 262 nm and a band at 310 nm (Figure 1B). 
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Ac-PAS has two log K values. The completely protonated species LH2 shows two bands at 271 nm and 

at 307 nm (Figure 1C). The [LH]- species is characterized by two bands at 263 nm and 302 nm, whose 

intensities decrease during the second deprotonation that gives the [L]2- species characterized by the 

bands at 263 nm and 318 nm (Figure 1C). The band at ≈260-270 nm can be attributed to presence of –

NR (R = H, Ac) group in the para-position. This band, not present in the spectra of SAL, appears in the 

spectra of 4-aminobenzoic acid (Figure 1D). Moreover, absorptivity spectra of PAS, Ac-PAS and 4-

aminobenzoic acid are more intense than that of SAL. 

4-aminobenzoic acid has two log K values at acidic pH, one attributed to the carboxylic group, and the 

second to the amino group. LH2 species has one band at 285 nm, which becomes more intense after 

deprotonation (Figure 1D). During the second deprotonation, the spectra are shifted to lower wavelengths 

and the [L]2- species is characterized by the band at 265 nm (Figure 1D). 

 

 

Figure 1. Absorptivity spectra of SAL (A), PAS (B), Ac-PAS (C) and 4-aminobenzoic acid (D) 

calculated with HypSpec program [19].  
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Time-dependent DFT calculations have been carried out to check the correspondence between absorption 

spectra and given species. The minimum energy structures are reported in Figure 2. In all cases, an 

intramolecular hydrogen bond is formed between the carboxylic group and the hydroxyl moiety. For 

PASH2, two possible structures have been optimized depending on the protonation of the amine group 

(PASH2(a) and PASH2(b)).  

The calculated spectra for SAL ligand are reported in Figure 3A. The lowest energy excitations involve 

HOMO – LUMO transitions (MO displayed in Figure S3) and are strongly sensitive to the protonation 

state of the ligands. For SALH2, the lowest energy excitation corresponds to a band centered at calc = 

276 nm, which is shifted to calc = 261 nm when SALH is formed. For SAL this band is red-shifted to 

calc = 283 nm. These variations are in qualitative agreement with the experimental spectrum (Figure 1A) 

even if they systematically underestimate the wavelength at which the band is centered. For PASH3 the 

lowest energy excitation is at calc = 271 nm. Two possible PASH2 isomers have been considered: one 

with protonated amine and one with protonated carboxylic acid (PASH2(a) and (b) in Figure 2). Our 

results show that the PASH2(b) form is energetically favored (E = E (b) - E(a) = -15.4 kcal mol-1 in 

water) and also the calculated spectra (Figure 3B) is in agreement with the experimental spectrum (calc 

= 271 nm with a shoulder at 253 nm, Figure 1C). In addition, the calculated spectrum of PASH2(a) 

presents a maximum at calc = 294 nm which is blue-shifted with respect to that of the starting species 

PASH3 which is not observed in the experiments. Therefore, the absorbing species in solution is 

PASH2(b).  

The trend of the changes in the maxima relative to the PASH and PAS low energy excitations are in 

agreement with the experimental ones (for PASH calc = 262 nm, for PAS calc = 289 nm). Also in the 

case of AcPAS, the calculated spectral changes (276 nm → 265 nm → 289 nm, Figure 3C) are in 

agreement with the experimental spectra.  
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SALH2 SALH SAL   

     

PASH3 PASH2(a) PASH2(b) PASH PAS 

   

  

AcPASH2 AcPASH AcPAS   

Figure 2. Minimum energy structures of the ligands in their different protonation states.  
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a) 

 

b) 

 

c) 

 

Figure 3. Calculated absorption spectra of the ligands in the 120-320 nm wavelength range. Gaussian 

broadening applied with half-bandwidth of 16 nm.   
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The three ligands SAL, PAS and Ac-PAS present fluorescent properties (Figure 4). While fully 

protonated ligands do not present fluorescence, the remaining species are characterized by fluorescence 

properties, which change with the protonation degree. SAL has its fluorescence maximum at 409 nm in 

the monoprotonated form [LH]-; this band shifts at 392 nm and its intensity lowers passing at [L]2- species 

(Figure 4A and 4B). PAS has its maximum fluorescence at 401nm, when present in the LH2 form. Further 

deprotonation leads to the lowering of fluorescence intensity and shift to lower wavelengths (392 nm). 

The last species [L]2- has even lower fluorescence intensity, with the maximum at 392 nm. Ac-PAS 

presents a minimal fluorescence intensity also in the fully protonated at about 460 nm (Figure 4E and 

4F). The first deprotonation leads to a band of marked intensity at 402 nm. The second deprotonation 

produces relevant ipso- and hypo-chromic effects on this fluorescence band. In the same experimental 

conditions, Ac-PAS and then SAL (in the [LH]- form) are the ligands with the most marked fluorescence 

properties. 
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Figure 4.  Fluorescence (left) and molar absorptivity (right) fluorescence spectra of SAL (A, B), PAS 

(C, D), Ac-PAS (E, F), 4-aminobenzoic acid (G, H). C[L] = 0.0125 mM, 0.1 M NaCl ionic strength. 

λEx 276 nm, λEm 286-486 nm.  

 

The increase of fluorescence intensity after the deprotonation of carboxylic group could be reasonably 

attributed to the formation of a hydrogen bond between –COO- and –OH groups (Figure 2), as previously 

suggested [38]. Such intramolecular hydrogen bond leads to the formation of an additional six-membered 

ring that increases the molecule rigidity. In the same experimental conditions, benzoic acid has no 

fluorescence properties neither in acidic, nor in basic pH. On the contrary, 4-aminobenzoic acid has 

fluorescent properties in the [LH]- and [L]2- forms, significantly shifted to lower wavelengths ([LH]- 

species has maximum intensity at 339 nm, and [L]2- species at 337 nm) (Figure 4G and 4H). The absence 

of –OH group could explain the shift to lower wavelengths. Thus, the log K values obtained by 

potentiometric titrations of SAL, PAS and Ac-Pas free ligands can be definitely attributed: the most 
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acidic deprotonation to carboxylic group, while the most basic to the hydroxyl group (Table 1). The 

speciation plots in Figure 5 show that at physiologic pH 7.4 all ligands are present in the monoprotonated 

form ([LH]-).   

  

 

Figure 5. Speciation plots of SAL (A), PAS (B) and Ac-PAS (C) calculated with Hyss program [39] on 

the base of protonation constants in Table 1. 

The presence of strongly electron withdrawing amino group in the aromatic ring in PAS (in para-position) 

lowers the log K value of carboxylic group (2.67) respect to that of the same group in SAL (3.10). On 

the contrary, the moderately electron donating amide group in Ac-PAS increases the log K value of 

carboxylic group (3.29). 

 

3.2. Complex formation with Mn2+ 

The complex formation equilibria of SAL, PAS and Ac-PAS with the target metal ion Mn2+ have been 

studied by potentiometry and the complex formation constants are reported in Table 2. The related 

speciation plots show that the MnL complex starts at pH 4, and [MnL2]
2- forms above pH 6 with SAL 

and Ac-PAS, and above pH 9 with PAS (Figures S4). 
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On the base of the pMn1 values, the manganese complexes of Ac-PAS are more stable than those with 

the other two ligands. It has to be remarked the analogous trend of the pKa value of carboxylic group and 

the pMn value, which implies a strong involvement of the carboxylic group in Mn2+ coordination.  

 

Table 2. Log values of manganese complexes at 25°C and 0.1 M NaCl ionic strength. The relative pMn 

values are also reported. 

 

Species SAL PAS Ac-PAS 

[MnL] 10.7(1) 9.9(2) 11.4(2) 

[MnL2]2- 19.1(2) 17.2(2) 19.8(3) 

pMn 6.25 6.02 6.54 

 

EPR spectra were recorded in the systems Mn2+/PAS and Mn2+/Ac-PAS with a molar ratio of 1:5 at a pH 

value at which MnL complex reach the maximum concentration in aqueous solution (pH 8.6 and 7.1 

respectively, see Figure S4). The spectra, reported in Figure 6, are very similar, suggesting the same 

coordination mode. The hyperfine structure is well evident with the six strong absorptions, corresponding 

to the |-1/2, m>  |1/2, m> ‘allowed’ transitions (M = ±1, m = 0), and in the middle the five pairs of 

‘forbidden’ absorptions (M = ±1, m = ±1). The anisotropy of x, y and z components is negligible and, 

at a first approximation, the values of g and A measured can be considered isotropic. The spin 

Hamiltonian parameters are g = 2.003 and A = 88.8 × 104 cm1 for PAS and g = 2.003 and A = 88.7 × 

104 cm1 for Ac-PAS. These values are compatible with an octahedral Mn2+ species [40-45] and, in 

particular, with a MnO6 coordination [46-50]. These parameters are very similar to those of calcite and 

of the recently characterized Mn2+ species formed by ethylvanillin, where Mn2+ is surrounded by six 

oxygen atoms in an octahedral environment [51, 52]. In contrast, A for the aquo-ion [Mn(H2O)6]
2+ (A ~ 

82 × 104 cm1) [53, 54] is significantly smaller than that measured for MnL.  

 

                                                           
1 pM is defined as the negative logarithm of the concentration of free metal ion in solution, when 

[Mn+]tot =10−6 M, [Ligand]tot =10−5 M at pH 7.4. 
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Figure 6. Anisotropic X-band EPR spectra (120 K) of the MnL species formed in the systems 

containing: (a) Mn2+/Ac-PAS 1:5 (pH 7.1) and (b) Mn2+/PAS 1:5 (pH 8.6). 

 

EPR spectra of the system Mn2+/PAS 1:5 at several pH are shown in Figure 7. It can be observed that, in 

agreement with the speciation plots in Figure S4, EPR spectroscopy suggests the presence of only one 

species in aqueous solution in the pH range 7-10, [MnL] (g = 2.003 and A = 88.8 × 104 cm1). At pH 

higher than 10 the spectral signal changes significantly indicating a variation in the Mn2+ chemical 

environment and the formation of a new species, [MnL2]
2. The approximated spin Hamiltonian 

parameters for this complex are g ~ 2.00 and A ~ 86 × 104 cm1. 
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Figure 7. Anisotropic X-band EPR spectra (120 K) recorded on the system Mn2+/PAS 1:5 as a 

function of pH (Mn concentration was 0.5 mM). 

 

As reported in the Computational details, octahedral geometries in agreement with EPR results were 

obtained for the Mn2+ complexes when second-sphere solvating water molecules were added. This result 

suggests that water is weakly coordinated to the metal in these species. The minimum energy structures 

of the [Mn(H2O)4L·2H2O] and [Mn(H2O)2L2·6H2O]2- complexes are shown in Figure 8.  
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A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure 8. Minimum energy structures calculated at the B3LYP/6-31+G(d,p)/SDD level of theory in 

CPCM water: A) [Mn(H2O)4(SAL)·2H2O], B) [Mn(H2O)4(PAS)·2H2O], C) [Mn(H2O)4(AcPAS)·2H2O], 

D) [Mn(H2O)2(SAL)2·6H2O]2-, G) [Mn(H2O)2(PAS)2·6H2O]2-, F) [Mn(H2O)2(AcPAS)2·6H2O]2-.   

 

The two extra water molecules in the MnL species interact with the oxygen atoms of the L ligands in the 

equatorial plane by means of H-bonds (Figure 8 A-C), while for [MnL2]
2- the six extra water molecules 

interact both with the oxygen atoms of the L ligands and with the two apical water molecules coordinated 

to the metal. 

The obtained Mn-O(L) bond distances of the optimized MnL and [MnL2]
2- species and the mean absolute 

error (MAE) on the O-Mn-O angles with respect to an ideal octahedron are reported in Table 3. The 

calculated MAE standing between 7.5° and 7.2° for the MnL species shows that the optimized structures 

are distorted octahedral, while the [MnL2]
2- have more regular structures. 

The resulting average Mn-O(L) bond distances (Table 3) show that the Mn-O(O-) bonds are 

systematically shorter than the Mn-O(COO-) ones, although no significant differences in the average 

bond distance was detected by changing the L ligands.    
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Table 3. Structural parameters for the MnL and [MnL2]
2- complexes calculated at the B3LYP/6-

31+G(d,p)/SDD level in CPCM water. 

Species 
rMn-O(COO-) 

(Å)a 

rMn-O(O-) 

(Å)b 

Average rMn-O(L) 

(Å)c 
MAE (°)d 

[Mn(H2O)4(SAL)·2H2O] 2.088 2.068 2.078 7.5 

[Mn(H2O)4(PAS)·2H2O] 2.083 2.066 2.074 7.7 

[Mn(H2O)4(AcPAS)·2H2O] 2.087 2.071 2.081 7.6 

[Mn(H2O)2(SAL)2·6H2O]2- 2.167 2.110 2.138 2.6 

[Mn(H2O)2(PAS)2·6H2O]2- 2.163 2.110 2.136 2.5 

[Mn(H2O)2(AcPAS)2·6H2O]2- 2.166 2.111 2.138 2.5 

Calculated bond distances for the aMn-O(COO-) and bMn-O(O-) bonds (average of the two bonds per type for 

[MnL2]2-) and average Mn-O(L) bond distance with the L ligands (L = SAL, PAS, AcPAS). dMean Absolute 

Error calculated as  on n O-Mn-O α angles formed by Mn with the L ligands and the water molecules. 

 

The calculated values of the electron density at the Mn-O(COO-) and Mn-O(O-) critical points according 

to the AIM theory [Bader, R. F. W., Chem. Rev., 1991, 91 (5), 893-928] are reported in Table 4. 

 

Table 4. AIM electron density at the Mn-O(L) critical points for the MnL and [MnL2]
2- species. 

Complex ρMn-O(COO-)
a ρMn-O(O-)

b 
Average 

ρMn-O(L)
c 

[Mn(H2O)4(SAL)·2H2O] 0.063 0.067 0.065 

[Mn(H2O)4(PAS)·2H2O] 0.064 0.068 0.066 

[Mn(H2O)4(AcPAS)·2H2O] 0.063 0.067 0.065 

[Mn(H2O)2(SAL)2·6H2O]2- 0.052 0.060 0.056 

[Mn(H2O)2(PAS)2·6H2O]2- 0.052 0.060 0.056 

[Mn(H2O)2(AcPAS)2·6H2O]2- 0.052 0.060 0.056 

AIM electron density calculated at the aMn-O(COO-) and bMn-O(O-) bond critical points 

(average of the two bonds per type for [MnL2]2-) and caverage value of all the Mn-O(L) bonds 

with the L ligands (L = SAL, PAS, AcPAS). 

 

As can be seen from the reported data, a slight greater electron density for the Mn-O(O-) bonds in 

comparison with the Mn-O(COO-) ones is detectable at least for the [MnL2]
2- complexes. This could 

indicate a stronger Mn-O(O-) bond with respect to Mn-O(COO-), which can be related to the shorter Mn-

O(O-) bond lengths reported in Table 3. However, no difference in the electron densities, and thus in the 

bond strength, is observed by changing the L ligand. This result could be caused by the poor differences 
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between SAL, PAS and AcPAS in terms of coordination properties, given that they are different only for 

the substituent in orto and para positions with respect to the two coordinating moieties. This suggests 

that the logβ values reported in Table 2, which show that the formation of the Mn-L complexes is more 

favorable following the AcPAS > SAL > PAS order, could not primarily influenced by the strength of 

the Mn-L interaction. Evidently this difference in stability could be due to a delicate balance of metal-

ligand interaction and solvation properties of the reagents and products as previously observed [55-57].  

To investigate the formation of the MnL and [MnL2]
2- complexes and check the dependence of the 

obtained results upon the employed level of theory, Gibbs free energies for the reactions have been 

calculated (Table 5): 

 

Mn-SAL + PAS → Mn-PAS + SAL    (1) 

Mn-SAL + AcPAS → Mn-AcPAS + SAL   (2)  

 

 

Table 5. Reaction free energies for the reactions (1) and (2) calculated at different levels of theory. 

Functional Basis set 
Solvation 

model 

ΔG (kcal mol-1) 

Mn-SAL + PAS → Mn-PAS + SAL* Mn-SAL + AcPAS → Mn-AcPAS + SAL* 

[MnL] [MnL2]2- [MnL] [MnL2]2- 

B3LYP 

6-31+G(d,p)/SDD 
CPCM -2.2 -3.6 2.2 4.5 

SMD# -0.4 -4.0 3.6 6.6 

6-31+G(d,p) 
CPCM -2.9 -6.3 -1.0 -1.3 

SMD# -2.3 -1.3 1.0 0.6 

6-311+G(d,p) † 
CPCM -2.9 -5.1 -0.3 -0.4 

SMD# -2.8 -1.2 -1.0 2.5 

aug-cc-pvTZ† CPCM -3.1 -5.3 -0.3 -0.4 

M06 6-31+G(d,p) CPCM -3.0 -6.5 -3.5 -2.1 

*For [MnL2]2- complexes, the reactions taken into account are Mn-SAL2 + 2PAS → Mn-PAS2 + 2SAL and Mn-SAL2 + 

2AcPAS → Mn-AcPAS2 + 2SAL. 

# energy calculations using the SMD solvation for the minimum energy structures obtained with CPCM. 

†energy calculations with the B3LYP 6-31+G(d,p)/SDD geometries. 

 

As can be seen from Table 5, the substitution of the SAL by PAS results always favorable (negative G) 

with the B3LYP functional, indifferently from the employed basis set or solvation model applied. The 

substitution of SAL by AcPAS is always less favorable than that with PAS. On the basis of such 
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theoretical results the predicted stability of the MnL and [MnL2]
2- complexes follows the order PAS > 

SAL > AcPAS or PAS > AcPAS > SAL. This is different from the experimental logβ values which show 

the AcPAS > SAL > PAS stability order. On the other hand, the results obtained with the M06 functional 

show that the substitution of SAL by AcPAS is slightly more favorable than the substitution by PAS, 

thus producing the trend AcPAS > PAS > SAL for the 1:1 complexes, which is closer to the experimental. 

These results show that the calculated free energies strongly depend upon the employed functional, with 

the M06 providing the most accurate results. On the other hand, no significant variations are showed by 

changing the basis set or the solvation model. A similar dependence of parameters such as dissociation 

energies and affinity with ligands from the level of theory, especially for manganese complexes, has been 

already observed by other authors. [N. Russo, E. Sicilia, M. Toscano, A. Grand, International Journal of 

Quantum Chemistry, Vol. 90, 903–909 (2002); M. Lundberg, P. E. M. Siegbahn, Comput Chem 26: 661–

667, 2005; X. Xu, D. Truhlar, J. Chem. Theory Comput. 2012, 8, 80–90] In conclusion the computational 

results are able to reproduce only partially the experimental stability order. This discrepancy could be 

due to the incomplete inclusion of the solvation effects: in our models the solvation is introduced as 

continuum and with explicit water molecule placed around the metal  ion, while the ligand is not 

completely solvated.  

 

 

 

3.3 Complexation with Cu2+ and Fe3+ions 

The complex formation equilibria of SAL, PAS and Ac-PAS with the essential metal ions Fe3+ and Cu2+ 

have been studied by potentiometric methods (in the case of Fe3+, by a joined potentiometric-

spectrophotometric method) and the related overall stability constants are reported in Table 6. Cu2+ ion 

forms complexes with SAL, PAS and Ac-PAS more stable than those of manganese. SAL forms the most 

stable species and the formation of CuL starts at pH 2.5 (Figure S5, speciation plots of Cu2+ complexes). 

Such complex hydrolyzes above pH 5 giving the [CuLH-2]
2- species, which precipitates at pH > 7. PAS 

forms from pH 5 only a [CuL2]
2- complex with low water solubility that precipitates at physiological pH 

while Ac-PAS forms only a [CuL2]
2- complex that hydrolyzes from pH 5.5 giving a [CuLH-2]

2- species 

of low solubility, which precipitates at physiological pH (Figure S5). 

 

Table 6. Log values of Cu2+ and Fe3+ complexes at 25°C and 0.1 M NaCl ionic strength. The relative 

pCu  and pFe values are also reported. 
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Species SAL PAS Ac-PAS 

[CuL] 12.6(4) - - 

[CuL2]2- - 22.4(6) 22.8(6) 

[CuLH-2]2- 1.6(4) - 16.4(2) 

pCu 7.98 6.30 7.65 

    

[FeL]+ 16.10(9) 19.06(8) 15.97(1) 

[FeLH-2]3- -2.8(1) - 1.03(5) 

[FeLH-4]3- - - -6.20(8) 

[FeL2]- 30.58(5) 32.44(7) 30.68(7) 

[FeL2H-2]3- 20.77(6) 20.6(1) 23.12(7) 

[FeL3]3- 43.02(8) 44.0(1) 44.89(4) 

pFe 15.01 16.33 17.42 

 

The complexation of Cu2+ ion with PAS at molar ratio 1/5 was studied by EPR in aqueous solution as a 

function of pH. The results are shown in Figure 9. After aquo-ion (indicated with Cu2+), a minor species 

is observed in the pH range 3.5-4.5 (indicated with I) characterized by gz ~ 2.38 and Az ~ 134 × 104 

cm1. This species is the mono-chelated complex, revealed by potentiometry in the systems with Mn2+ 

and Fe3+ and the low concentration in solution  suggested by EPR spectroscopy  could be the reason 

that precludes its detection with Cu2+. At pH higher than 5.0, only one species is detected in solution with 

gz = 2.329 and Az = 169.4 × 104 cm1 (II in Figure 9); these parameters are consistent with a CuO4 

equatorial coordination and the formation of [CuL2]
2 [58]. The order of the g values, gz >> gy ~ gy > 

2.0023 indicates a ground state based on the Cu-dx2y2 orbital and a geometry with tetragonal symmetry 

such as an elongated octahedron [59, 60]. At pH > 8 the spectra change further and another species is 

revealed (III in Figure 9); its spin Hamiltonian parameters are gz = 2.302 and Az = 178.0 × 104 cm1 and 

could suggest for this system the existence of [CuLH-2]
2- in aqueous solution, as potentiometry indicates 
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for SAL and Ac-PAS. At strongly basic solution the last ligand coordinated to the metal ion in the form 

L2 is replaced by two OH ions with the formation of the hydroxide complex [Cu(OH)4]
2. 

 

 

Figure 7. Anisotropic X-band EPR spectra (120 K) recorded on the system Cu2+/PAS 1/5 as a function 

of pH (Cu concentration was 0.5 mM). With I, II and III the species [CuL], [CuL2]
2 and [CuLH2]

2 

are indicated, while Cu2+ and [Cu(OH)4]
2 denote the aquo-ion and tetrahydroxidecuprate(II). 

 

The red colored complexes with Fe3+ ions are already formed at very acidic pH and therefore the 

stabilities of [FeL]+ complex was determined only spectrophotometrically (Figure 10). In the range pH 

0-3, all the studied ligands form iron complexes with bands at 524 nm, 500nm and 520 nm for SAL, PAS 

and Ac-PAS respectively (Figure 10). At higher pH (3-5), the bands are shifted to lower wavelengths 

(Figure 11) due to the significant formation of 1:2 and 1:3 complexes. Clear isosbestic points are 

observed at 492 nm, 485 nm and 520 nm for SAL, PAS and Ac-PAS relative to the presence of the 

equilibrium between the [FeL2]
- and [FeL3]

3- species. 
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Figure 8. Vis spectra of iron complexes with SAL (A), PAS (B) and Ac-PAS (C) in strongly acidic pH. 

Ligand concentrations were 0.5 mM and a 1:5 metal to ligand ratio was used, 0.1 M NaCl ionic strength 

and optical pathway 1 cm. 

The [FeL]+, [FeL2]
- and [FeL3]

3- complexes present characteristic absorptivity bands (Figure 12), which 

allow to reliably determine the stability constants of the formed complexes from the joined 

potentiometric-spectrophotometric titrations.  

 

 

Figure 9. Visible spectra of iron complexes with SAL (A), PAS (B) and Ac-PAS (C) in the pH range 

about pH 2.7-5. Ligand concentration was 0.5 mM and a 1:5 metal to ligand ratio, 0.1 M NaCl ionic 

strength and optical path length 1 cm were used. 
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Figure 10. Absorptivity spectra of iron complexes with SAL (A), PAS (B) and Ac-PAS (C) calculates 

with HypSpec program.  

 

The obtained results are presented in Table 7, and the related speciation plots in Figure S6. The summary 

of results indicates that SAL forms [FeL]+ complex from pH 1, which transforms into [FeL2]
- complex 

above pH 2, and then, above pH 3, into [FeL3]
3- species. Such complex is not stable at physiologic pH 

and hydrolyzes into [FeL2H-2]
3- complexes. At pH >8 only [FeLH-4] complexes are present.  

PAS forms Fe3+ complexes more stable than those of SAL (Table 7). [FeL]+, [FeL2]
- and [FeL3]

3- 

complexes are formed from pH 1, 3 and 4 respectively. Again, PAS [FeL3]
3- complex hydrolyzes at 

physiological pH.  

Ac-PAS forms the most stable Fe3+ complex. At the acidic pH 1-4 [FeL]+, [FeL2]
- and [FeL3]

3- complexes 

are formed, which also hydrolyze at physiological pH such complexes. Over pH 8, only [FeLH-4]
3- are 

present in the solution.  

 

3.4 Speciation studies 

An evaluation of the scavenge action of PAS and AcPAS toward Mn2+ based on the thermodynamic 

results of the complexation equilibria of these two ligands (Table 2) is presented. In the actual case, the 

metabolism of PAS leads to a derivative with unusual stronger chelating ability than the parent molecule. 

In order to perform a speciation study, besides the knowledge of protonation and Mn2+ complex 

formation constants, we need an estimation of Mn2+, PAS and AcPAS concentrations in the organism. 
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The concentrations of PAS and of its metabolite in plasma can be coarsely evaluated from the 

pharmacokinetic plot reported by Hong et al. in 2011 [12]: the entire dose intravenously administered is 

found in plasma at time zero, it is halved in about 40’ and is practically reduced to zero in five hours. 

The concentration of AcPAS reaches a maximum in about 90’ with a value about 1/8 of the initial 

concentration of PAS, and goes to zero at the same time of the parent molecule. The concentrations in 

the brain are about 100 times lower than the initial one in plasma when expressed in mg/g of tissue, but 

should be supposed higher in plasma circulating in the brain. The brain concentration of AcPAS is almost 

double than that of PAS, and assumes characteristic values in the different regions. Therefore, in our 

simulation we assumed a set of concentrations of PAS ranging from the total injected PAS diluted in five 

liters of circulating plasma to 1/100 up to 1/1000 of this concentration. In the meantime different ratios 

AcPAS/PAS were assumed, from zero to two. The evaluation of Mn2+ presents some greater difficulties. 

Two rough limit values of the total amount of toxic metal ion in the organism can be assumed:  

 the lower, the daily amount [9-10] excreted in urines (disregarding the possible fecal excretion),  

 the higher, up to 60 times this value (15 weeks x four days) x daily excretion , considering that 

the 3.5 months treatment was able to remove all the metal ion contained in the body, and no 

further Mn poisoning occurred during the treatment. 

 

Table 11. Total molar concentrations of PAS (first column), of AcPAS and of Mn2+ (last column) 

combined in the speciation plots (Figure 13). 

[AcPAS]/[PAS] 

 

0 0.1 0.5 1.0 2.0  

 

[Mn2+] mol L-1 [PAS] mol L-1 [AcPAS] mol L-1 

7 × 10-3 

7 × 10-4 

7 × 10-5 

7 × 10-6 

0 7 × 10-4 3.5 × 10-3 7 × 10-3 1.4 × 10-2 2.4 × 10-8

0 7 × 10-5 3.5 × 10-4 7 × 10-4 1.4 × 10-3 0.1 × 10-6

0 7 × 10-6 3.5 × 10-5 7 × 10-5 1.4 × 10-4 0.5 × 10-6

0 7 × 10-7 3.5 × 10-6 7 × 10-6 1.4 × 10-5 1.4 × 10-6

 

Using a number of the possible combinations among the above limiting values (Table 8) we performed 

speciation calculations using the program Hyss [39], and the results are presented in Figure 13. The 

percent of Mn2+ in the various form with respect to the assumed total concentration are reported, and the 

daily excreted amount, expressed in mg/24 h. 
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Even though the rough simplifying assumptions, the whole of these data allows some confident 

considerations: PAS in absence of its metabolite ([AcPAS]/[PAS] = 0 in the figures) is able to bind Mn2+ 

ions by forming the 1:1 complex, the percent of complexed manganese decreasing with the PAS 

concentration.  
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Figure 12. Molar concentrations of the different complexes of Mn2+ with PAS (1:1 complex as blue line) 

and AcPAS(1:1 complex as red continuous line, 1:2 complex as red dashed line), multiplied by 108. The 

upper figures are related to a total Mn2+ concentration 0.024 × 10-6 M (a total body burden of Mn2+ of 

7.2 g); the lower figures are related to a total Mn2+ concentration 1.4 × 10-6 M (a total body burden of 

Mn2+ of 384.6 g).  

 

The figures on the left are not realistic when the ratio [AcPAS]/[PAS] becomes > 0.1 since the 

concentration of PAS should decrease with the formation of its metabolite; nevertheless they show that 

a 10% of AcPAS is able to bind the main part of manganese previously bound to PAS, mainly as 1:1 

complex. 

When the total concentration of the ligand (as PAS + AcPAS) decreases up to 1/100 of the starting value, 

AcPAS ligand becomes the principal chelating agent and binds about 80% of manganese when the ratio 

[AcPAS]/[PAS] becomes = 1. As the concentration of PAS and AcPAS ligands decreases at 1/1000 of 

the starting value (as can realistically be in the brain), the percent of the formed MnAcPAS complex 

drastically reduces. 
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The plots relative to higher manganese burden (lower figures) show exactly the same trend of those 

relative to the lower manganese burden, and this depends on the fact that the ligands are always in large 

excess with respect to the metal.  

 

3.5. Cellular Assay 

The T98G cells in culture plates were growing with medium of Mn2+concentration 0 (control sample), 

113, 284, 566 and 1125 µM. After 24 h, morphological changes in cell cultures were observed and the 

viability was lowered until 40% (samples containing Mn2+ 566 and 1125 µM) respect to control sample 

(viability 90%). The 990 µM concentration of Mn2+ ions was chosen for further experiments.  

 

Figure 13. Box-whisker plot of the % viability of the T98G cells at the end of the experiment.   

The two samples (sample 1 and 2) were growing in the absence of Mn2+ ions, while other 2 samples 

(sample 3 and 4) were growing in the presence of Mn2+ 990 µM for 24h. After 24h all the samples were 

washed with phosphate buffered saline solution (PBS solution) and fresh cell growing medium was 

added. Successively PAS solution was added to the samples 2 and 4 to the final concentration 78 µM. 

After 24 h the cell vailability was counted with Luna-FL™  Cell counter (5 counts for each sample). 

Figure 14 shows the viability of the cell cultures at the end of the experiment. 

We can observe that the presence of PAS (Sample 2) for 24 h decrease the % viability in these cell 

cultures conditions. The presence of Mn2+ ions for 24 h (Sample 3) decreases the % cells’ viability to the 

50% (medium value) and lead to the morphological changes of the cells observable with optical 

microscope. The cells growing 24 h with Mn2+ ions and then 24 h with PAS (Sample 4) show an increased 

rate of the % viability (compare to sample 1) and a control sample comparable morphology (Sample 1). 
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Conclusions 

A number of complementary experimental techniques and DFT calculations have been used in this paper 

for a thorough comprehension of protonation of PAS and Ac-PAS and their complex formation equilibria 

with the target Mn2+ ion, leading to the 1:1 and 1:2 metal:ligand complex formation. Surprisingly the N-

acetylated metabolite forms stronger complexes, whose implications in chelation therapy is documented 

in the present paper. It is presumed that the Ac-PAS relatively small molecule is able to penetrate across 

the blood-to-brain border and exert its Mn-mobilizing action intracellularly in vulnerable neurons. 

Thereby, it transports the neurotoxic metal from vulnerable sites into circulating blood. Ac-PAS may 

also have an anti-inflammatory action intracellularly in brain. It is reasonable to suggest that the Mn-

mobilizing action exerted by Ac-PAS ligand can be enhanced by a combined therapy with an 

extracellularly acting chelator, e.g. CaEDTA that rapidly escorts the metal into urine.   
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