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Abstract 

 

Superparamagnetic iron nanoparticles (SPION) have been functionalized with 3-

mercaptopropionic acid (3-MPA), characterized and applied for the removal of Ag+, Hg2+ 

and Pb2+ metal ions from aqueous solutions by iron oxide (Fe3O4). The heavy metal 

adsorption has been investigated by means of ICP-OES and isothermal titration 

calorimetry. Experimental data ware better fitted by Langmuir rather than Freundlich 

isotherms and the thermodynamic parameters for the adsorption process of the metal ions 

on the functionalized SPION nanoparticles (SPION@3-MPA) were obtained.  

Isothermal titration calorimetry (ITC) is applied to monitor heavy metal adsorption on 

SPION@3-MPA: the process results to be exothermic for Hg2+, Ag+ while it is weakly 

endothermic in the case of Pb2+ and the adsorption enthalpies and entropies have been 

obtained. The values of the thermodynamic parameters suggest that the Ag+ and Hg2+ ions 

interact strongly with the thiol groups, while the Pb2+ ions seem to be adsorbed by the 

material mostly via electrostatic interaction. When compared to other thiol-functionalized 

materials, the obtained SPION@3-MPA NP can be considered a competitive adsorbent 

for Ag+ and Hg2+ ions. The comparison between the ICP-OES adsorption rata and the 

enthalpy trend obtained by ITC supports shows that the latter technique can be a good 

tool for a fast testing of materials to be applied for heavy metal separation from solutions.  
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1. Introduction 

 

Activities such as electroplating, mining, metallurgical and chemical industries are some 

of the main anthropogenic sources of heavy metals (HM) in the environment[1]. Unlike 

organic contaminants, heavy metals are not biodegradable, tend to accumulate in living 

organisms[2] and soils[3,4]. Heavy metals also can enter the food chain[5] and are known 

to be toxic or carcinogenic[4,6,7]. Due to such serious consequences, the release of heavy 

metal contaminants in the environment has to be avoided and therefore it is of 

fundamental importance to have efficient methods for the HM recovery from liquid 

wastes.  Several methods of heavy metal ion removal have been developed so far[8], but 

they suffer from several issues, such as complicated processes, high costs, secondary 

pollution and recycling difficulty. In contrast, adsorption, is one of the best techniques 

recognized as effective wastewater treatment because it offers flexibility in design and 

operation and sustainability both from an environmental and economic point of view[9]. 

Furthermore, since this process is often reversible, adsorbed species can be recovered by 

suitable desorption process and the material regenerated for its re-use.  

Nanoparticles attracted much attention for metal ion recovery from water because of their 

high surface area to volume ratio, fast reaction kinetics, the possibility to be chemically 

modified on their surface[10,11]. These materials can be then separated from the liquid 

samples with relatively simple methods. Among them, nanosized metal oxides 

demonstrated to be promising materials for metal removal from wastewaters[9,12,13].  

Recently, Super Paramagnetic Iron Oxide Nanoparticles (SPION), received special 

attention for their low toxicity, low cost and easy recovery from aqueous media by 

magnetic separation[9,14,15]. To obtain an efficient recovery of metal ions from aqueous 

solutions it is necessary to modify the surface of the SPION with organic ligands able to 

bind selectively a given metal ion.   

           In this work, SPION functionalized with 3-mercaptopropionic acid (SPION@3-MPA) 

are synthesized characterized and tested for the removal of heavy metal ions from water. 

This nanomaterial has been previously employed for the adsorption of anionic inorganic 

pollutants[16–19], but never for heavy metal cation removal from water, despite the 



3 

 

presence of thiol groups makes it particularly suitable for the selective separation of heavy 

metal cations with a soft acid nature. The adsorption of Ag+, Hg2+ and Pb2+ is studied by 

means of a combination of ICP-OES analysis and Isothermal Titration Calorimetry (ITC). 

Calorimetry is a powerful tool which allows to directly measure the energy exchange 

occurring when two reagents are mixed in the measurement cell. This technique has been 

largely used to obtain thermodynamic data for metal complexation reactions occurring in 

aqueous or non-aqueous media[20–29], but much less examples of ITC applied to metal 

ion adsorption studies are present in the literature[30–37]. In many works, metal ion 

adsorption enthalpy (ΔHads) has been calculated by van’t Hoff equation[38,39]. However, 

the values obtained by this method often suffer from relatively large uncertainties[40]. 

Moreover, several studies evidenced serious discrepancies with enthalpies obtained by 

direct calorimetric measurements[41–46]. In this work, ITC is applied for the direct 

determination of ΔHads to provide reliable thermodynamic parameters for metal ion 

adsorption.  

 

2. Materials and methods 

 

2.1. Chemicals 

 

All reagents used in the experiment were analytical grade and used without further 

purification. Ammonium hydroxide (NH4OH), hydrochloric acid (HCl), Fe(II) chloride 

(FeCl2·4H2O), Fe(III) chloride (FeCl3·6H2O) and 3-mercaptopropionic acid (3-MPA) 

were purchased from Sigma-Aldrich.  

The metal stock solutions were prepared by dissolving Hg(II) chloride (HgCl2, Riedel), 

lead(II) nitrate (Pb(NO3)2 Fluka), silver perchlorate (AgClO4, Aldrich) in acetic acid / 

acetate buffer. 

 

2.2. Synthesis and functionalization of SPION 

 

Iron oxide nanoparticles were synthesized by a co-precipitation method, similar to that 

described elsewhere[17]. The formation of the particles is schematized in Eq.1: 

   
2 3 4 3 4 4 22 8 ( ) 8 4FeCl FeCl NH OH Fe O colloid NH Cl H O      (1) 
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A stock solution of NH4OH 0.7M was deoxygenated under nitrogen gas with vigorous 

magnetically stirring and heated at 70 °C. The stock solution of Fe(III) and Fe(II) was 

prepared dissolving the respective chloride salts (Fe(II) : Fe(III) in a molar ratio 1 : 2) in 

a deoxygenated HCl 0.2M and then added to the NH4OH solution. The particles obtained 

(solution turned black quickly) were aged during 45 min and then cooled to room 

temperature with a water bath. The SPION were collected by a magnetic separation and 

then washed several times with deoxygenated distilled water. The synthesis was carried 

out in a continuous N2 bubbling, in order to avoid the oxidation of Fe(II) into Fe(III) and 

the formation of undesirable iron oxides as maghemite or ferrihydrite.  

The SPION@3-MPA were obtained by ligand addition method[17]. A known amount of 

SPION was suspended in water acidified with HNO3 to pH = 2.0, to have the surface 

charged positively (pHpzc of the SPION = 6.8)[47]. Then, 10 mL of suspension was added 

a solution of the 3-MPA (150 mM) in toluene and stirred continuously for 24h under N2 

atmosphere. 

 

2.3. Material characterization 

 

The nanoparticles were imaged by Scanning Electron Microscope (SEM) using a 

MERLIN FE-SEM (Carl Zeiss Microscopy, LLC., Germany) with an EDS detector 

Oxford LINCA X-Max and EBSD analysis Oxford Nordlys II. Transmission Electron 

Microscope (TEM) micrographs were performed by JEM-2011, with a resolution of 0.18 

nm at 200 kV and an accelerating voltage of 80–200kV and equipped with a camera CCD 

GATAN 895 USC 4000 and a detector EDS Oxford LINCA with energy resolution of 

136eV (Jeol Ltd., Japan). 

The crystallographic phase determination was obtained by X-ray diffraction (XRD) of 

the powder with a Philips X-Pert diffractometer using a nickel-filtered Cu Kα radiation. 

The diffractograms were collected in the 2θ range of 15–100° with a step of 0.02 and a 

counting time of 15 s/step. 

The BET surface area data were calculated from N2 adsorption at -196 °C by using a 

Micromeritics Tristar 3000 gas adsorption analyzer. Prior to the analysis, the samples 

were kept at 150°C for 1h under vacuum conditions. 

Particle size distribution was determined by dynamic light scattering (DLS) on a Horiba 

LB-550 Particle Size Analyzer. A sample of SPION was suspended in 10 mL of water 

and sonicated for 15 min before the DLS measurement. 
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Vibrational spectra were recorded before and after functionalization with 3-MPA in the 

middle-IR region (400 - 4000cm-1) using a VECTOR 22 FT-IR spectrometer equipped 

with a ATR accessory.  

Thermogravimetric (TGA) analysis was performed with a Q500 TGA (TA Instruments) 

to determine the amount of 3-MPA present on the SPION. A sample (15-20 mg) was 

placed in a small flat Pt crucible licked by a tangent N2 flow (60ml min-1) and then heated 

at a constant rate (10 °C min-1) up to 900°C. The pHpzc of SPION@3-MPA was 

determined by the published methodology[48].   

 

2.4. Adsorption studies 

 

The adsorption experiments were performed at room temperature (298K ±1) in batch 

conditions by adding 5mg of SPION@3-MPA to 10mL solutions containing metal ions 

in the 0.1-1.0 mM concentration range. The suspension was sonicated during 30min and 

then allowed 30min in contact. The magnetic adsorbent was separated from the aqueous 

phase and the metal concentration in the filtered solution was determined by ICP-OES 

(Varian VISTA-MPX CCD Simultaneous ICP-OES). 

Adsorption of Pb2+, Hg2+ and Ag+ was carried out at pH = 5.0 (20mM acetic acid buffer 

solution). At higher pH (> 5.0) these metals can hydrolyse and the corresponding 

hydroxide precipitates (M(OH)n). On the other hand, at pH extremely acidic, the surface 

of the adsorbent material would be highly protonated inhibiting the adsorption due to 

electrostatic repulsions.  

Adsorption data were fitted by Freundlich and Langmuir isotherms, since it has been 

demonstrated that such models better fit the adsorption behaviour of pollutants from 

solutions[49]. The aforementioned models may be expressed by Eq. 2 and Eq. 3 

respectively[50–52]:   

max

1

e
ads

e

Q bC
C

bC



    (2) 

Ce = equilibrium concentration (M), Cads = solute adsorbed at equilibrium (mol g-1),  

Qmax = maximum quantity of solute adsorbed per gram of adsorbent (mol g-1) and  

b = Langmuir constant (M-1).  

1

n
ads f eC K C      (3) 
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Kf = Freundlich constant ((L·mmol-1 g-1)1/n), n = adsorption intensity, Ce = equilibrium 

concentration of the metal ion in the solution (M), Cads = amount of adsorbed species at 

equilibrium (mol g-1). 

  

2.5. Isothermal Titration Calorimetry (ITC) 

 

The calorimetric study of adsorption was carried out with a TAMIII isothermal 

microcalorimeter (TA Instruments) connected with an automatic titration syringe was 

used to measure the heat of adsorption of the metals on SPION@3-MPA. The samples 

were prepared in acetic-acetate buffer solutions (pH = 5.0). The titration cell was filled 

with 0.7mL of buffer where ~0.5g L-1 SPION@3-MPA were dispersed. The suspension 

was stirred continuously at 120rpm. The cell content was titrated with 14μL injections of 

Ag+and Hg2+ solutions (metal concentrations ~5mM) and 12 injections of 16μL of Pb2+ 

(4.2mM). A delay time of 1 hour between consecutive injections was set for all metals. 

The reference cell was filled with 0.8 mL of MilliQ water. 

The values of b and Qmax  resulted from the fit of the Langmuir isotherm obtained from  

ICP-OES data have been used as input data in eq. 4 to calculate Ce for each titrant addition 

by numerically solving eq. 2 with the same experimental conditions as the calorimetric 

titrations[53]. Then, the ∆Hads (kJ mol-1) value has been calculated to best fit the 

experimental heat according to the isotherm (eq. 4):  

max

1

e
cum ads

e

Q bC
q H

bC
 


     (4) 

Where: qcum = total heat involved at each titrant addition per weight (w) of adsorbent (kJ 

g-1). Dilution heat (qdil) was also determined to correct the total heat measured (qmeas) by 

the instrument. Thus qcum = (qmeas – qdil)/w represents only the heat involved on the 

adsorption reaction. Data fitting and statistical analysis of the results has been done with 

the MS-Excel Solverstat and EST tools[54,55]. 
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3. Results and Discussion  

 

3.1. Material characterization 

 

The BET surface area for bare SPION has been found to be 92.3 m2 g-1, while resulted in 

63.4m2 g-1 for SPION@3-MPA. Therefore, the surface area decreases when the particles 

are coated by the organic ligand. 

The SPION@3-MPA diffractogram (Figure S1, Electronic Supplementary Material) 

exhibits a single phase analogous to the characteristic reflections of magnetite (Fe3O4), 

corresponding to the (111), (220), (311), (400), (422), (511) and (400) planes as 

confirmed by JCPDS database (JCPDS, Card N°19). This shows that the 3-MPA coating 

process does not cause modifications of the crystalline phase of the material.  

The vibrational spectrum of SPION (Figure 1) shows a band at 524 cm-1, characteristic 

of Fe-O vibrations [12]. The spectrum of the free 3-MPA ligand displays a peak at 3100 

cm-1, which corresponds to the O-H vibrations, while the presence of the functional group 

S-H is evidenced by the two weak bands at 2669 cm-1 and 2573 cm-1. The strong band at 

1710 cm-1 identifies the C=O vibrations, and the two peaks at 1433 cm-1 and 1251 cm-1 

are assigned to the C-O- stretching.  

The SPION@3-MPA would be expected to present a stretching band around 2573 cm-1, 

related to S-H stretching, however, because of its weak intensity it is typically not 

observed in thin films [12]. Two new bands corresponding to the symmetric and 

asymmetric stretching modes of a bidentate bound carboxylate group[56]  appear at 1540 

cm-1 and 1400 cm-1. All these features in the vibrational spectra clearly indicate that the 

binding of the ligand to the SPION surface occurs through the carboxylate group rather 

than the thiol one as shown in Figure 2, as previously suggested[12,17].  

Thermogravimetric analysis (Figure 3) displays an initial weight loss about 1% for both 

SPION and SPION@3-MPA is observed until 200°C, which is related to the loss of 

internal hydroxyl groups and/or adsorbed water[57]. The 0.8% of weight loss for bare 

SPION above 200°C is related to the decomposition of amorphous iron hydroxides 

followed by iron oxide formation[16], while the 12.9% of mass loss of the coated SPION 

is associated to the decomposition of the 3-MPA attached on the particles surface[16]. 

Thus, TGA analysis confirm the functionalization of the NP with an amount of 1.4 mmol 

g-1 of 3-MPA coating the SPION surface. 
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The SEM and TEM images of SPION@3-MPA are shown in Figure 4. In the SEM images 

(Figure 4-A and B), the particles appear spherical with some aggregation, possibly related 

to the coating of the NP. TEM micrographs (Figure 4-C and D), show that the particles 

have a mean diameter of 10-30nm. Aggregation is also confirmed by DLS (Figure S2), 

which provides an average size of ~890 nm.  

 

3.2. Metal ions adsorption  

 

The pHpzc obtained for SPION@3-MPA is pHpzc = 4.0. Hence, pHpzc of the coated SPION 

shifted from 6.8[47] for uncoated SPION to 4.0 for the functionalized material. Therefore, 

when the working pH is higher than pHpzc (4.0), the SPION@3-MPA surface is negatively 

charged while it will be positively charged at lower pH. This implies that the metal ions 

studied will be attracted by electrostatic force towards the surface in the conditions 

employed for the adsorption study. 

The adsorption data have been fitted with Langmuir and Freundlich isotherms and the 

obtained parameters are summarized in Table 1, while the experimental points and 

calculated curves are reported in Figure 5. The best fit is always obtained when the 

Langmuir model is used (Table 1), indicating the presence of a monolayer adsorption. 

The Langmuir adsorption constant (b) obtained for each metal ion is considerably high, 

with logb values similar for Hg2+ and Ag+, higher than that for Pb2+ ion. The Qmax shows 

a similar loading capacity for Hg2+ and Ag+, which is ~11 times higher than that obtained 

for Pb2+ ion. When Qmax is compared with the number of moles of 3-MPA bound to 

SPION, it emerges that a ~1:1 metal/ligand ratio is obtained in the case of Hg2+ and Ag+.  

The calorimetric titrations of SPION@3-MPA suspensions with solutions of the ions are 

shown in Figure 6, and the experimental and calculated qcum values are reported in Figure 

7, as obtained by using eq. 4. The corresponding ∆Hads are reported in Table 2 together 

with the calculated entropy values.  

The ∆Hads is clearly negative for Ag+ and Hg2+, while for Pb2+ a weak endothermic effect 

is shown. The calorimetric data are therefore in agreement with a weaker interaction of 

Pb2+with the SPION@3-MPA particles. Also, adsorption takes place with a positive 

entropy change (ΔSads) for Ag+, Hg2+ and Pb2+, indicating an increase of the degrees of 

freedom of the system which is related to the desolvation of the metal ions when 

interacting with the SPION@3-MPA surface and with the solution reorganization upon 

charge neutralization[58–60]. The obtained ΔSads for the Ag+ adsorption process is 
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relatively small with respect to the bipositive ions in agreement with its lower solvation 

in water[58–60].  

The enthalpy values indicate that Ag+ and Hg2+interact more strongly with the thiol 

groups of 3-MPA bound to SPION surface with respect to Pb2+, in agreement with their 

soft acid nature[21,61,62]. The Pb2+ ions seem to interact mostly via electrostatic 

interaction with the negatively charged surface[63] as suggested by the small positive 

ΔHads and large ΔSads. Furthermore, the possible species formed should be taken into 

account in an adsorption experiment, since they can strongly influence the process (and 

the thermodynamic parameters associated). On the basis of available stability constants 

data[64–66], in our experimental conditions, the Ag+ is essentially present as hydrated  

ion, while Pb2+ and Hg2+ are partially complexed by the acetate of the buffer. In this 

respect, further studies in different ionic media and/or complexing species that could 

modulate the selectivity of the SPION@3-MPA nanoparticles will follow. 

The simultaneous fitting the Hads, b and Qmax parameters does not lead to meaningful 

results since they are affected by very large error. However, if the Qmax is determined 

independently (or estimated) and only Hads, b are optimized, the results obtained are not 

far from those obtained by the combined ITC-ICP method (Table S1).   

Adsorption data for SPION@3-MPA with the metals reported in this work and for some 

thiol-functionalized adsorbents found in the literature are reported in Table 3[67–73]. 

The SPION@3-MPA nanoparticles show better loading capacity for Ag+ (1.5mmol g-1) 

than the silica NP modified with trithiocyanuric acid[67] (0.75 mmol g-1) or thiol-

functionalized silica[68] (0.70mmol g-1), while exhibit a lower adsorption capacity 

regarding the thiol-functionalized polysilsesquioxane microspheres (10.57 mmol g-1)[69].  

The Qmax obtained for Hg2+ adsorption (1.7mmol g-1)  is higher than for other materials 

reported in the literature, when comparing SPION@3-MPA with Fe3O4@SiO2–SH[70] 

(0.74mmol g-1) or respect to thiol-functionalized superparamagnetic carbon 

nanotubes[71] (0.33mmol g-1), however a lower adsorption capacity is observed when 

compared with CoFe2O4@SiO2–SH (3.19mmol g-1) [72].  

The adsorption efficiency of the SPION@3-MPA towards Pb2+ (0.14mmol g-1) is poorer 

when compared with other materials (Table 3)[67,71–73]. 
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4. Conclusions  

 

The SPION@3-MPA nanoparticles are a low-cost material which can be dispersed in the 

solution containing the target species and then easily recovered by the application of a 

magnetic field.  

The adsorption of Ag+, Hg2+ and Pb2+ ions by the SPION@3-MPA is well modelled by a 

Langmuir isotherm. The logb values are similar for Hg2+ and Ag+ while somewhat lower 

for Pb2+. On the contrary, the loading capacity, which is much higher for Hg2+ and Ag+ 

ions makes SPION@3-MPA nanoparticles suitable for their recovery. 

Calorimetric data show that adsorption on SPION@3-MPA is an exothermic process for 

Hg2+, Ag+ while it is weakly endothermic in the case of Pb2+. The enthalpy trend obtained 

by ITC parallels the affinity sequence found by ICP-OES, evidencing that also 

calorimetry is a good tool for screening adsorbent materials.  

The adsorption enthalpy values, negative for Ag+ and Hg2+ and positive for Pb2+, suggest 

that the ions interact differently with the SPION@3-MPA. In particular Ag+ and Hg2+ 

show stronger interactions with the thiol groups, while the Pb2+ ions seem to interact 

mostly via electrostatic interaction with the negatively charged surface. This is 

compatible also with the ΔSads values, much more positive for Pb2+ than the other two 

ions.   

When compared to some other thiol-functionalized materials, the obtained SPION@3-

MPA NP can be considered an interesting adsorbent for Ag+, Hg2+ ions, while a lower 

efficacy is found towards the Pb2+ ion.  
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Figures 

 

 

Figure 1. FT-IR spectra of   SPION (black), 3-MPA coated SPION (blue) and 3-MPA 

(red). 

 

 

 

  

Figure 2. Functionalization mechanism of 3-MPA on SPION (=Fe) surface.  
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Figure 3. TGA curves for SPION and SPION coated 3-MPA by ligand addition method. 
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Figure 4. SEM (A,B)  and TEM (C,D) images of SPION@3-MPA. 
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a) 
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Figure 5. Adsorption isotherms showing the experimental data (symbols) for Ag+ (a), 

Hg2+ (b), Pb2+ (c) and the calculated values with the best fitting Langmuir (solid line) and 

Freundlich (dashed line) isotherms (Table 1). 
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Figure 6. Calorimetric titrations plots corresponding to: 14 injections of 14µL of (a) Ag+ 

5.0 mM, (b) Hg2+ 5.0 mM, (c) 12 injections of 16 µL of Pb2+ (4.2mM). The cell contained 

buffer solution (V = 0.7mL) in which SPION@3-MPA were dispersed (0.5g L-1).  
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Figure 7. Experimental calorimetric data (points) fitted with eq. 4 (line) for Ag+ (), 

Hg2+ () and Pb2+ ().   
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Tables 

 

Metal pH  

  Langmuir equation Freundlich equation 

Qmax b 
log b R2 n 

Kf 
R2 

(mol g-1) (M-1) (L mmol-1 g-1) 

Ag+ 5 
0.0015 

±0.0001 

92482 

±21320 

4.9 

±0.2 
0.997 4 ±1 

2.3  

±0.6 
0.879 

Hg2+ 5 
0.0018 

±0.0001 

137727 

±32392 

5.1 

±0.2 
0.998 

3.5 

±0.9 

3.1  

±0.8 
0.837 

Pb2+ 5 
0.00014 

±0.00001 

20799 

±7207 

4.3 

±0.3 
0.986 

4.4 

±0.9 

0.16 

 ±0.01 
0.943 

Table 1. Langmuir and Freundlich isotherms parameters for metal adsorption by 

SPION@3-MPA. 

 

Metal 
∆Gads 

(kJ mol-1) 

∆Hads 

(kJ mol-1) 

∆Sads 

(J mol-1K-1) 

Ag+  -28.3 ±0.5   -27.2 ±0.7  4 ± 4 

Hg2+ -29.3 ±0.5 -17 ±1 41 ± 4 

Pb2+  -24.5 ±0.8  6.4 ±0.1  104 ±1  

Table 2. Thermodynamic parameters obtained for metal ion adsorption on SPION@3-

MPA. 
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Metal Adsorbent 
S content  

(mmol g-1) 

Initial Mn+  

(mM) 

Adsorbent 

dosage  

(g L-1) 

pH 

Temp. 
Contact time  

(h) 

Adsorption capacity b ∆Hads 

Ref. 
(K) (mmol g-1) (M-1) (kJ mol-1) 

Ag+ 
Silica Nanoparticles Modified 

with Trithiocyanuric Acid 
- 

0.46 – 4.63 
(50-500mg L-1) 

2.0 5.0 298 5 
0.75 

(81.30 mg g-1) 
806 

(7.4711 g L-1) 
- [67] 

Ag+ Thiol functionalized silica 
1.2 

(3.79%) 
0.9 – 13.3 

(96-1436mg L-1) 
6.7 6.0 298 48 

0.703 
(75.8 mg g-1) 

- - [68] 

Ag+ 
Thiol-functionalized 

polysilsesquioxane microspheres 
7.60 1 – 150 2 - 273 24 

10.57 
(1140 mg g-1) 

- - [69] 

Ag+ SPION@3-MPA 1.4 0.1 – 1.0 0.5 5.0 298 1a 1.5 ±0.1 92481 ±21320 -27.2 ±0.7 
This 

work 

Hg2+ Fe3O4@SiO2–SH 
0.8 

(2.64%) 
0.02 – 0.50  

(5-100mg L-1) 
0.2 6.5 303 4 

0.74 
(148.8mg g-1) 

155  
(1.290 g L-1) 

- [70] 

Hg2+ 

Thiol-functionalized 

superparamagnetic carbon 

nanotubes 

6% 
0.02 - 0.45 
(5-90mg L-1) 

1 6.5 298 24 
0.33 

(65.52mg g-1) 
7883 

(0.0393 L mg-1) 
 [71] 

Hg2+ CoFe2O4@SiO2–SH  - 
0.1 – 1.0 

(20-200mg L-1) 
0.05 8 298 12h 

3.19 
(641.0mg g-1) 

14241 
(0.071 L mg-1) 

-11.6 [72] 

Hg2+ SPION@3-MPA 1.4 0.1 – 1.0 0.5 5.0 298 1a 1.7 ±0.1 137727 ±32392 -22.3 ±0.8 
This 

work 

Pb2+ 

Thiol-functionalized 

superparamagnetic carbon 

nanotubes 

6% 
0.02 – 0.43(5-

90mg L-1) 
1 6.5 298 24 

0.33 
(65.40mg g-1) 

9375 
(0.04525 L mg-1) 

- [71] 

Pb2+ 
Poly-thiolated magnetic nano-

platform 
0.2 

0.29 – 1.93  
(60-400mg L-1) 

1.67 - - 12 
0.39 

(390µmol g-1) 
1100  

(1.1L mmol-1) 
- [73] 

Pb2+ ɣ-Fe2O3/MPTES - 
0 – 1.16  

(0-240mg L-1) 
6.67 - 298 24 

0.46 
(96.2mg g-1) 

- - [69] 

Pb2+ SPION@3-MPA 1.4 0.1 - 1.0 0.5 5.0 298 1a 0.14 ±0.01 20799 ±7168 6.5 ±0.1 
This 

work 

Table 3. Parameters of metal adsorption for several thiol-functionalized adsorbents. The original values in the cited references are reported in 

parentheses. aDelay time between metal solution additions. 


