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Abstract 

 

In the present contribution, four classes of Ln(III) complexes (Ln = Eu and Tb) have been synthesized 

and characterized in aqueous solution. They differ by charge, Ln(bpcd)+ [bpcd2- = N,N′-bis(2-

pyridylmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate] and Ln(bQcd)+ (bQcd2- = N,N′-bis(2-

quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate) being positively charged and 

Ln(PyC3A) (PyC3A3- = N-picolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetate) and 

Ln(QC3A) (QC3A3- = N-quinolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetate) neutral. 

Combined DFT, spectrophotometric and potentiometric studies reveal the presence, in physiologic 

condition (pH 7.4), of a couple of equally and highly stable isomers differing by the stereochemistry 

of the ligands (trans-N,N and trans-O,O for bpcd2- and bQcd2-; trans-O,O and trans-N,O for PyC3A3- 

and QC3A3-). Their high logβ values (9.97 <logβ< 15.68), the presence of an efficient antenna effect 

and the strong increase of the Ln(III) luminescence intensity as a function of the hydrogen carbonate 

concentration in physiologic solution, candidate these complexes as very promising optical probes 

for a selective detection of HCO3
- in cellulo experiments or in extracellular fluid. This particularly 

applies to the cationic Eu(bpcd)+, Tb(bpcd)+ and Eu(bQcd)+ complexes, which are capable to guest 
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up to two hydrogen carbonate anions in the inner coordination sphere of the metal ion, so that they 

show an unprecedented affinity towards HCO3
- (logK for the formation of the adduct in the 4.6-5.9 

range). 

  

  

Introduction 

Eu(III) and Tb(III) complexes have been broadly exploited as efficient optical probes in the field of 

bioimaging and sensing1–6 due to the peculiar properties of their f↔f transitions, such as long 

luminescence lifetime and large energy difference between the absorbing and emissive states. These 

advantageous properties allow to mitigate the interference of background fluorescence originating 

from the biological sample and to remove self-absorption issues, respectively. Thanks to both the lack 

of self-absorption and the usual low concentration of the optical probe, which ensures absorbance 

below 0.1 at the excitation wavelength, the intensity of the luminescence signal of the complexes is 

proportional to their concentration over a wide range of values. With this in mind, lanthanide-based 

molecular probes have been employed for the detection of the pH7 and intracellular analytes such as 

ATP.8 The optical properties of the complexes are strongly dependent on the nature of the ligand; the 

luminescence stemming from the metal ion can be conveniently sensitized if the ligand is capable to 

strongly absorb and efficiently transfer the UV excitation to the metal ion (antenna effect). 

Furthermore, solvent molecules usually give rise to competitive non-radiative mechanisms such as 

the multiphonon relaxation process. On the basis of the “energy gap law”, if the gap between the 

emitting level and the one below is bridged by less than four vibrational quanta, the multiphonon 

relaxation process significantly works and the luminescence quantum yield will be low.9,10 The high 

energy of the O-H vibrations in the water molecules is particularly efficient in the non-radiative 

quenching of the emitting level and this phenomenon is especially relevant for applications in 

biomedicine, where aqueous media are commonly employed. Nevertheless, Eu(III) and mainly 

Tb(III) are less affected by the multiphonon relaxation process as the energy gap between the emitting 

level and the lower lying ones is relatively large [about 12400 cm-1 for Eu(III) and 14800 cm-1 for 

Tb(III)].11 

As far as optical sensing experiments based on luminescent lanthanide complexes are concerned, the 

displacement of water molecules from the inner coordination sphere of the metal ion by the target 

molecule is often employed. This displacement gives rise to an increase of the quantum yield and the 

concomitant increase of the luminescent intensity could be linked to the concentration of the analyte 

in solution.   
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Another important factor that must not be neglected when the compounds are used in in vitro 

experiments is the impact of the hydrophobicity and charge of lanthanide metal complexes on the cell 

viability and cell association,12 including their membrane permeability.13–17 The in vitro localization 

of the optical probe affects the type of analytes that can be detected. For example, a probe with an 

extracellular location is particularly suitable to detect analytes such as group I ions, polysaccharides, 

hormones, or other signaling molecules.12 

Another crucial aspect to consider is the selectivity of the optical response towards a particular 

analyte. In this context, the modulation of the structure of the side pendants within the DO3A-based 

complexes gave the best results when serum proteins and biological relevant ions are taken into 

account.18–21  

In summary, charge and lipophilicity of the probe and selectivity towards a particular target analyte 

are crucial properties that must be considered when designing a complex with potential application 

in optical sensing of biological relevant species. In line with a natural extension of a recent structural 

and spectroscopic study, performed by some of us, on a promising chiro-optical probe based on a 

Tb(III) complex of a polyaminocarboxylate ligand [N,N′-bis(2-pyridylmethyl)-trans-1,2-

diaminocyclohexaneN,N′-diacetic acid (H2bpcd)]18,19, we propose a new library of ligands and its 

relative Eu(III) and Tb(III) complexes, based on the chiral diaminocyclohexane (DACH) motif 

(Figure 1).22–25  

 

The proposed water-soluble complexes differ: i) by charge, since Ln(bpcd)+ and Ln(bQcd)+ are 

cationic whilst Ln(PyC3A) and Ln(QC3A) are neutral, ii) by steric hindrance at the metal ion, which 

is big in the case of Ln(bQcd)+ and small in the case of Ln(PyC3A) and iii) by lipophilicity, the 

molecules containing the quinoline fragment being more hydrophobic than the relative pyridine-

based ones. Total charge and steric hindrance are expected to have a strong impact on the stability of 

both the complexes and their adducts with target analytes so as to enable the opportunity of a selective 

probe-target interaction. In addition, in the light of the lower number of donating atoms (6-fold 

coordination) for ligands in figure 1 than in the case of ligands commonly employed for Ln(III)-based 

luminescence anion sensing (NOTA and DOTA-like possessing 7-fold coordination), we expect a 

higher number of target analyte molecules bound to the metal ion and a concomitant higher affinity 

towards them. This should be particularly true when non-sterically demanding anion are considered. 

Apart from monoatomic anions, also hydrogen carbonate (HCO3
-) meets this requirement and, in 

addition, it plays a crucial role in many physiologic processes26 including intracellular pH 

homeostasis, kidney function and sperm maturation, and therefore must be considered an important 

target in probe development. Moreover, the HCO3
- concentration is critical in assessing metabolic 
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acidosis, that is abnormally increased hydrogen ion concentration. Patients with chronic kidney 

disease due to metabolic acidosis show low serum hydrogen carbonate concentrations.27,28 For all 

these reasons, in the present contribution we present the synthesis, the optical spectroscopy, the 

thermodynamic and structural characterization in aqueous solution of the Eu(III) and Tb(III) 

complexes presented in figure 1. The good performance of these molecules for the optical detection 

of hydrogen carbonate anion in physiological conditions is also documented and analyzed in relation 

to the aforementioned properties of the complexes (i.e. total charge, steric hindrance, etc.)  

  

 

 

 

 

 Figure 1. Library of the complexes presented in this contribution: Ln(bQcd)+ and Ln(bpcd)+ are cationic 

complexes; Ln(QC3A) and Ln(PyC3A) are neutral complexes. The solvent molecules bound to the metal 

ion are omitted for the sake of clarity. 
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Experimental Section 

 

All commercially available reagents were used as received from their respective suppliers. Solvents, 

(Sigma-Aldrich) were dried when required using an appropriate drying agent. Reactions requiring 

anhydrous conditions were carried out using Schlenk-line techniques under an atmosphere of dry 

argon. Water and H2O refer to high purity water obtained from the ‘Millipore Elix 10’ purification 

system. Eu(CF3SO3)3 and TbCl3∙6H2O (Aldrich, 98%) were stored under vacuum for several days at 

80°C and then transferred to the glove box. All other chemicals were purchased from Alfa Aesar. 

Thin-layer chromatography was carried out on neutral alumina plates (Fluka Analytical) or silica 

plates (Sigma-Aldrich) and visualized under UV lamp (254 nm). The cationic exchange 

chromatography was performed on SCX cartridges (1g) purchased from “Agilent Technologies-

sample Prep solutions”. 

 

  

N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′- tert-butyl diacetate (1R, 2R)(2): 

Ligand 1 (1.8 g, 4.54 mmol) was dissolved in a mixture of anhydrous acetonitrile (80 mL) and 

anhydrous potassium carbonate under inert condition (Argon). Then, a solution of tert-Butyl 2-

bromoacetate (1.68 ml, 11.4 mmol), in anhydrous acetonitrile (15 mL) was added dropwise over ten 

minutes. After stirring 12 h at room temperature dichloromethane was added and the reaction mixture 

was washed with brine solution. The organic phase was evaporated under reduced pressure to give 

3.3 g of a yellowish oil. The crude product was purified by chromatography on activated neutral 

alumina (Al2O3, Cy:AcOEt from 9:1 to 1:9) giving 2.50 g of a yellowish oil (yield: 88%). 1H-NMR 

(CDCl3) δ (ppm) 8.07-8.04 (m, 4H, quinoline), 7.92 (d, J=7.76 Hz, 2H, quinoline), 7.75 (d, J= 7.10 

Hz, 2H, quinoline), 7.69 (7, J=7.68 Hz, 2H, quinoline), 7.50 (t, J=7.40 Hz, 2H, quinoline), 4.16 (m, 

2H, methylene-ester), 3.86 (d, JGEM=13.75 Hz, 2H, methylene-ester), 3.49 (d, JGEM=17.22 Hz, 2H, 

methylene-quinoline), 3.31 (d, JGEM=17.22 Hz, 2H, methylene-quinoline), 2.71 (m, 2H, methylene-

cyclohexane), 2.18-1.12 (m, 8H, cyclohexane), 1.46 (s, 18H). 13C-NMR (CDCl3) δ (ppm) 173.0, 

159.3, 148.5, 135.3, 129.4, 129.0, 127.1, 125.8, 125.0, 122.0, 73.5, 57.8, 55.1, 53.7, 29.2, 26.7, 22.0. 

Elemental Anal. Calc. for C38H48N4O4 (MW 624,8): C, 73.05; H, 7.74; N, 8.97; O, 10.24 Found: C, 

72.89 ; H, 7.51; N, 9.03; O, 10.36 

N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetic acid (1R, 2R) (H2bQcd, 

ligand 3 as ammonium salt): 2 (1.20 g, 1.92 mmol) was dissolved in HCl aq (6 M, 30 ml); the obtained 

reaction mixture was stirred for 12 h at 80°C. The reaction mixture was washed with ethyl acetate 

and the aqueous phase was evaporated under reduced pressure. The obtained brownish oil (2.47 g) 
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was suspended in 10 ml of methanol, aqueous ammonia solution was added until pH 8-9 was reached 

and 1.05 g of a yellowish solid were obtained after chromatography [(C18 column; eluent 

H2O:Acetonitrile 4:6 +0.1% NH4OH aq 30% w/w (50 ml)]. This solid was further purified by 

trituration in DCM:AcOEt:EtOH 1:2:2 at 80 °C for 30 minutes, obtaining 548 mg of a yellowish solid 

(ligand 3, yield: 52%). UV-Vis absorption spectroscopy (water:methanol 9:1): ε(316 nm): 6728 M-

1cm-1. 1H-NMR (CD3OD) δ (ppm) 8.05-7.48 (m, 12H, quinoline), 3.74-3.55 (m, 8H, methylene-

ester/quinoline), 2.39 (m, 2H, cyclohexane), 1.98 (m, 2H, cyclohexane), 1.67-1.28 (m, 6H, 

cyclohexane). INSERIE C13. UV-Vis spectroscopy: 316 nm)= 6248 M-1cm-1 (methanol). 

Elemental Anal. Calc. for C30H38N6O4 (MW 546.7): C, 65.91; H, 7.01; N, 15.37; O, 11.71 Found: C, 

65.79 ; H, 7.09; N, 15.27; O, 11.59 

The triflate of the cationic complex Eu(bQcd) (complex 4) has been synthesized as follows: Ligand 

3 (100 mg, 0.182 mmol) was dissolved in hot (60°C) 2-propanol (7 ml). Upon cooling, europium(III) 

trifluoromethanesulfonate 98% (109 mg, 0.182 mmol) was added portion-wise, and a yellowish 

suspension was formed. After neutralization with KOH 2M aq (pH ≈7), the reaction mixture was 

stirred at room temperature for 2h. The suspension was centrifuged, and the solid collected was 

suspended in methanol (5 ml). The resulting solid was removed by centrifugation, and the filtrate was 

concentrated under reduced pressure to give 44 mg of the desired product as a beige solid (yield: 

30%). UV-Vis spectroscopy: (319 nm): 8808 M-1cm-1 (water). Elemental Anal. Calc. for 

C31H30EuF3N4O7S∙(H2O)2 (MW 847.6): C, 43.93; H, 4.04; N, 6.61; O, 16.99; S, 3.78 Found: C, 43.87; 

H, 4.00; N, 6.48; O, 17.04; S, 3.89  

{2-[(Pyridyl-2-ylmethyl)-amino]-cyclohexyl}-carbamic acid tert-butyl ester 6 and {2-[(Quinolyl-2-

ylmethyl)-amino]-cyclohexyl}-carbamic acid tert-butyl ester 10 : Compound 5 (0.670 g, 3.13 mmol) 

was added to a solution of 2-quinolinecarboxyaldehyde or 2-pyridinecarboxyaldehyde (3.13 mmol) 

in ethanol (35 ml) and stirred at room temperature for 12h. Sodium borohydride was slowly added to 

the mixture. The reaction was monitored by TLC (SiO2, Cyclohexane:Ethyl acetate 7:3+ NH4OH 

30% w/w) and after 4h the mixture was extracted twice with dichloromethane and the solvent 

removed under reduced pressure to give respectively the compound 6 and 10 as yellowish oils, in 

quantitative yield, which were used in next step without further purification. 

N-Pyridyl-2-ylmethyl-cyclohexane-1,2-diamine (7) and N-Quinolyl-2-ylmethyl-cyclohexane-1,2-

diamine (11): Compound 6 or 10 (3.13 mmol) was added to a trifluoroacetic acid 98% w/w (13 ml) 

and dichloromethane (40 ml) solution and stirred at room temperature for 12h. The solvent was 

removed under reduced pressure, and the obtained trifluoroacetate salt (≈3 g) was purified by cationic 

exchange chromatography (eluent: NH3 3M in MeOH) to give 398 mg (yield 61%) of the ligand 11. 

1H-NMR (CDCl3) δ (ppm) 8.13 (d, J= 8.33 Hz, 1H), 8.08 (d, J= 8.56 Hz, 1H), 7.81 (d, J= 8.33 Hz, 



7 

 

1H), 7.71 (t, J= 7.74 Hz, 1H), 7.55-7.48 (m, 2H), 4.25 (dd, JGEM= 14.55 Hz, 1H), 4.07 (dd, JGEM= 

14.55 Hz, 1H), 3.71 (m, 1H), 2.50 (m, 1H), 2.18 (m, 2H), 1.92 (m, 1H), 1.75 (m, 1H), 1.70 (m, 1H), 

1.35-1.04 (m, 5H). 13C-NMR (CDCl3) δ (ppm) 160.2, 148.2, 135.4, 129.0, 128.8, 127.3, 126.1, 125.1, 

122.1, 57.1, 53.2, 52.1, 31.4, 28.9, 22.3. Elemental Anal. Calc. for C16H21N3 (MW 255.4): C, 75.26; 

H, 8.29; N, 16.46 Found: C, 75.21 ; H, 8.22; N, 16.39    

Compound 7: Yield 38%. 1H-NMR (CDCl3) δ (ppm) 8.52 (m, 1H), 7.62 (t, J= 7.54 Hz, 1H), 7.34 (d, 

J= 7.70 Hz, 1H), 7.13 (t, J= 5.90 Hz, 1H), 4.03 (dd, JGEM= 14.09 Hz, 1H), 3.83 (dd, JGEM= 14.09 Hz, 

1H), 3.64 (m, 1H), 2.43 (m, 1H), 2.18 (m, 2H), 1.88 (m, 1H), 1.75 (m, 1H), 1.70 (m, 1H), 1.35-1.04 

(m, 5H). 13C-NMR (CDCl3) δ (ppm) 159.5, 149.0, 136.0, 123.5, 120.6, 57.8, 52.1, 31.5, 29.4, 22.3, 

21.5. Elemental Anal. Calc. for C12H19N3 (MW 205.3): C, 70.20; H, 9.33; N, 20.47 Found: C, 70.15 

; H, 9.19; N, 20.44    

N-picolyl-N,N’,N’-trans-l,2-cyclohexylenediamine-tert-butyl triacetate (8) and N-quinolyl-N,N’,N’-

trans-l,2-cyclohexylenediamine-tert-butyl triacetate (12). Under inert atmosphere, compound 7 or 11 

(1.94 mmol, 1.20 mmol, respectively) was dissolved in an anhydrous acetonitrile (40 ml or 25 mL) 

solution of N,N-Diisopropylethylamine (6.8 mmol or 4.19 mmol,). Then, tert-Butyl 2-bromoacetate 

(6.8 mmol or 4.19 mmol) in anhydrous Acetonitrile (10 mL or 5 mL) was added dropwise. The 

reaction was monitored using TLC (SiO2, Rf: 0.47, DCM:MeOH 95:5+ 0.5% NEt3) and after 12 h, 

water (approx. 25 mL) was added and the reaction mixture was extracted twice with dichloromethane. 

The combined organic phases were dried on anhydrous Na2SO4 and the solvent was evaporated under 

reduced pressure to give 0.580 g of crude product which was purified by chromatography (on Silica 

gel, DCM/MeOH 95:5 + 0.5% Triethylamine, Rf: 0.47) giving rise to compounds 8 (yield 58%) and 

12 (yield = 55%). 

Compound 8: 1H-NMR (CDCl3) δ (ppm) 9.97 (d, J=6.56, 1H), 8.79 (d, J=7.91, 1H), 8.34 (t, J=7.91, 

1H), 7.94 (t, J=6.56, 1H), 6.30 (dd, JGEM= 17.64 Hz, 1H), 5.94 (dd, JGEM= 17.64 Hz, 1H), 4.55 (dd, 

JGEM= 16.93 Hz, 2H), 3.53 (m, 2H), 3.44 (dd, JGEM= 16.93 Hz, 2H), 2.66 (m, 3H), 2.08 (m, 2H), 1.78 

(m, 2H), 1.45 (s, 27H), 1.12 (m, 3H). 13C-NMR (CDCl3) δ (ppm) 172.4, 171.0, 170.5, 159.4, 149.4, 

136.0, 121.3, 123.0, 72.9, 73.3, 73.5, 57.3, 55.5, 55.3, 54.0, 54.2, 30.5, 30.1, 29.4, 27.3, 26.9, 22.2. 

Elemental Anal. Calc. for C30H49N3O6 (MW 547): C, 65.78; H, 9.02; N, 7.67; O, 17.53 Found: C, 

65.70; H, 8.95; N, 7.73; O, 17.41 

Compound 12: 1H-NMR (CDCl3) δ (ppm) 8.12 (m, 2H), 8.07 (d, 1H), 7.81 (d, J=7.92, 1H), 7.67 (t, 

J=7.71, 1H), 7.51 (t, J=7.29, 1H), 4.32 (dd, JGEM= 13.79 Hz, 1H), 3.94 (dd, JGEM= 13.79 Hz, 1H), 

3.60 (m, 2H), 3.52 (m, 4H), 2.81 (m, 1H), 2.67 (m, 1H), 2.15 (m, 1H), 2.09 (m, 1H), 1.74 (m, 2H), 

1.45 (s, 27H), 1.14 (m, 4H). 13C-NMR (CDCl3) δ (ppm) 173.1, 172.9, 172.1, 160.2, 148.0, 134.0, 

130.3, 127.5, 126.0, 124.7, 123.0, 74.5, 74.1, 73.3, 58.2, 57.4, 56.0, 55.3, 55.0, 54.1, 33.0, 32.3, 32.1, 
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28.1, 27.3, 22.8, 22.1. Elemental Anal. Calc. for C34H51N3O6 (MW 597.8): C, 68.31; H, 8.60; N, 7.03; 

O, 16.06 Found: C, 68.27; H, 8.51; N, 7.00; O, 15.97 

N-picolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetic acid (H3PyC3A, 9 as ammonium salt) 

and N-quinolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetic acid (H3QC3A, 13 as ammonium 

salt). Compound 8 or 12 (1.12 mmol, 0.652 mmol, respectively) was added to an aqueous HCl (6 M, 

22 ml or 13 ml) solution and stirred at ≈80°C for 12 h. After neutralization with NaOH, extraction 

with DCM was performed and the resulting aqueous solution was evaporated under reduced pressure. 

The solid was washed with ethanol for 1h at 80°C. Upon cooling, the suspension was filtered to 

remove all the insoluble inorganic salts and the resulting solution was evaporated under reduced 

pressure and the crude product was purified by ionic exchange chromatography to give the 

corresponding product 9 or 13, (yield = 24% for 9 and 40% for 13). Compound 9: ESI-MS(Scan ES+; 

m/z): 468 (100%); 469 (20%) ([Na4(PyC3A)]+). Elemental Anal. Calc. for C18H34N6O6 (MW 430.5): 

C, 50.22; H, 7.96; N, 19.52; O, 22.30 Found: C, 50.18 ; H, 7.90; N, 19.47; O, 22.18. 

Compound 13: ESI-MS(Scan ES+; m/z): 513 (100%); 514(25%) ([(NH4)Na3(QC3A)]+). Elemental 

Anal. C22H36N6O6 (MW 480.6): C, 54.99; H, 7.55; N, 17.49; O, 19.98 Found: C, 54.90 ; H, 7.46; N, 

17.42; O, 20.01. 

 

 

Eu(PyC3A) (14a) [and Tb(PyC3A) (14b)] has been synthesized as follows: Ligand 9 (60 mg, 0.140 

mmol was partially dissolved in a mixture of 2-propanol:ethanol 1:1 (4 ml) by heating at ≈60°C. 

Then, europium(III) trifluoromethanesulfonate 98% (83.6 mg, 0.140 mmol) was added portion-wise 

and the pH of the solution was carefully adjusted to 7 by addition of KOH 2 M aq. The obtained 

suspension was stirred at room temperature for 12h. The collected solid (≈94 mg) was re-crystallized 

in methanol (≈10 ml) and Et2O (≈30 ml) solution to yield 70 mg (yield 95%) of a whitish solid (14a). 

UV-Vis spectroscopy: ε(265 nm): 3390 M-1cm-1 (water). ESI-MS(Scan ES+; m/z): 552 (100%); 550 

(90%) ([NaEu(PyC3A)]+). Elemental Anal. Calc. for C18H22EuN3O6∙(H2O)2 (MW 564.4): C, 38.31; 

H, 4.64; N, 7.45; O, 22.68 Found: C, 38.28; H, 4,54; N, 7.40; O, 22.51.  

Ligand 9 (27 mg, 0.063 mmol) was dissolved in water (3 ml), then Terbium(III) chloride hexahydrate 

(23.5 mg, 0.063 mmol) was added portion-wise and the pH of the solution was carefully adjusted to 

7 by addition of KOH 2M aq. The obtained solution was stirred at room temperature for 12h. The 

solvent was removed under reduced pressure and the residue was re-crystallized in methanol (≈2 ml) 

and Et2O (≈15 ml) solution yielding a white solid after centrifugation (34 mg of 14b, quantitative 

yield). UV-Vis spectroscopy: ε(266 nm): 4008 M-1cm-1 (water). ESI-MS(Scan ES+; m/z): 558 (100%) 

([NaTb(PyC3A)]+). Elemental Anal. Calc. for C18H22TbN3O6∙(H2O)2 (MW 571.3): C, 37.84; H, 4.59; 

N, 7.35; O, 22.40 Found: C, 37.78; H, 4.50; N, 7.30; O, 22.37. 
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Eu(QC3A) (15) has been synthesized as follows: compound 13 (60 mg, 0.125 mmol) was partially 

dissolved in a mixture of 2-propanol:ethanol 8:2 (6 ml) at ≈ 60°C. Then, Eu(CF3SO3)3 98% (75 mg, 

0.125 mmol) was added portion-wise followed by KOH 2M aq until pH ≈ 7. The obtained suspension 

was stirred at room temperature for 12h. The solid was removed under centrifugation, and the solution 

were dried under reduced pressure to give ≈112 mg of a white solid, which was re-crystallized in 

ethanol (≈10 ml) and Et2O (≈40 ml) solution, yielding a white solid after centrifugation (55 mg; yield 

76%). UV-Vis spectroscopy: ε (319 nm) = 3725 M-1cm-1(water). ESI-MS(Scan ES+; m/z): 602 

(100%); 600 (92%) ([NaEu(QC3A)]+). Elemental Anal. Calc. for C22H24EuN3O6∙(H2O)2 (MW 614.4): 

C, 43.00; H, 4.59; N, 6.84; O, 20.83 Found: C, 42.97; H, 4.54; N, 6.74; O, 20.76. 

 

1H-NMR spectroscopy 

  

Nuclear magnetic resonance (NMR) experiments were performed at 298.15 K using a 600 MHz 

Bruker Avance III spectrometer equipped with a triple resonance TCI cryogenic probe. Spectra were 

usually recorded in CDCl3 and, unless otherwise noted, chemical shifts are expressed as ppm and 

referenced to the internal standard tetramethylsilane (TMS). One dimensional NMR spectra were 

recorded with 8 or 16 scans and a spectral width of 12019 Hz. All spectra were manually phased and 

baseline corrected using TOPSPIN 3.2 (Bruker, Karlsruhe, Germany). Chemical shift, multiplicity (s, 

singlet; d, doublet; t, triplet; m, multiplet; b, broad), coupling constants and integration area are 

reported.  

 

Elemental analysis  

Elemental analyses were carried out by using a EACE 1110 CHNOS analyzer. 

 

Potentiometric titrations  

The protonation constants of the ligands (bQcd (3), PyC3A (9) and QC3A (13)) were determined by 

acid-base potentiometric titrations. The titration cell was maintained at constant temperature (298.15 

± 0.1 K) using a circulatory bath. A computer-controlled potentiometer (Amel Instruments, 338 pH 

Meter) collected the electromotive force (emf) values measured by means of a combined glass 

electrode (Metrohm Unitrode 6.0259.100). Before each titration the electrode was calibrated by an 

acid-base titration with standard HCl and NaOH solutions and the carbon dioxide contamination in 

solution was checked by Gran’s method.29 Titrations were performed in duplicate on solutions 

containing the ligand (typical concentration around 0.9 mM for 3, 0.6 mM for 9 and 0.7 mM for 13) 
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and an excess of standard HCl by adding standard NaOH solution. The pH range was varied from an 

initial approximate value of 2.3 to about pH 11.5. All the solutions were prepared with ultrapure water 

(>18 MΩ cm) from a Milli-Q system (ELGA Purelab Option-Q) and the ionic strength (μ) was 

adjusted to 0.1 M by using appropriate amounts of NaCl (Sigma-Aldrich). Among 50-70 points were 

collected in each titration and processed with Hyperquad.30 

 

Spectrophotometric titrations  

The formation constants of all the L-Ln(III) complexes (L=3, 9, 13; Ln = Eu, Tb) were determined 

by UV-Vis spectrophotometric acid-base titrations.31 A Varian Cary 50 instrument equipped with a 

fibre optic (optical path of 10 mm) was used. The wavelength range investigated was 240-300 nm for 

9 and 275-355 nm for 3 and 13 in the same pH range and μ as in the potentiometry. The titration cell 

was maintained at T = 298.15 ± 0.15 K by means of a circulatory bath, and contained both the ligand 

(ligand 3, 0.08 mM with Eu(III), 0.03 mM with Tb(III); ligand 9, 0.13 mM with Eu(III), 0.15 mM 

with Tb(III); ligand 13, 0.09 mM with both, Eu(III) and Tb(III)) and the Ln(III) (1:1 L:Ln(III) ratio, 

with a slight metal excess). The NaOH and HCl stock solutions were the same used during the 

potentiometric titrations. The stock solutions of Eu(III) and Tb(III) were prepared by dissolving their 

chloride hexahydrate salts (Sigma-Aldrich). The lanthanide content in the stock solutions was 

determined by EDTA titration, using xylenol orange as indicator.32 Free acid concentrations in 

lanthanide solutions were checked by Gran’s method.29 Formation constants were calculated by 

simultaneous fit of the absorbance values at several wavelengths using HypSpec.30   

  

ESI-MS   

Electrospray ionization mass spectra (ESI-MS) were recorded with a Finnigan LXQ Linear Ion Trap 

(Thermo Scientific, San Jose, CA, USA) operating in positive ion mode. The data acquisition was 

under the control of Xcalibur software (Thermo Scientific). A MeOH solution of sample was properly 

diluted and infused into the ion source at a flow rate of 10 μL/min with the aid of a syringe pump. 

The typical source conditions were transfer line capillary at 275°C; ion spray voltage at 4.70 kV; 

sheath, auxiliary and sweep gas (N2) flow rates at 10, 5 and 0 arbitrary units, respectively. Helium 

was used as the collision damping gas in the ion trap set at a pressure of 1 mTorr.  

 

 

DFT calculations 
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As the paramagnetic Eu(III) and Tb(III) complexes are rather difficult to model computationally, the 

analogues of the diamagnetic Y(III) ion were studied. It has been shown that Y(III) complexes may 

serve as suitable models for the Eu(III) analogues,33–36 consistently with the fact that its ionic radius 

differs from that of Eu(III) ion by about 0.05 Å [and less for Tb(III)]. Geometry optimizations of the 

[Y(L)(H2O)n] complexes were carried out at DFT level in vacuum using the B3LYP exchange–

correlation functional.37,38 The 6-31+G(d) basis set was employed for the ligand atoms, while Y(III) 

ion was described by the quasi-relativistic small core Stuttgart-Dresden pseudopotential and the 

relative basis set.39 This level of theory was previously demonstrated to provide correct geometries 

and thermochemical properties, maintaining the calculation feasible also with similar complex 

systems.23,33 All final geometries were checked to be minima by vibrational analysis. Solvent effects 

were included by means of the PCM model.40 All calculations were carried out with Gaussian16.41 

The complexes studied were the trans-O,O and trans-N,N isomers of the Y(III) complexes ([Y(trans-

O,O-bQcd)(H2O)5]
+ and [Y(trans-N,N -bQcd)(H2O)5]

+), as the cis-O,O, cis-N,N isomer was 

demonstrated to be much less stable in the case of bpcd.33 As previously done33 for the analogues 

with bpcd, five water molecules were initially placed near the metal ion. During the geometry 

optimization only two of them were retained in the first coordination sphere. Also in the case of the 

complexes with the triacetate ligands ([Y(PyC3A)(H2O)3] and [Y(QC3A)(H2O)3]) one water was 

always expelled from the starting structure to provide a final complex with only two inner sphere 

waters. Since the final number of coordinated water molecules was 2 in all cases, the [Y(L)(H2O)2] 

complexes were considered for structural comparisons. The calculations have been performed on the 

two possible coordination geometries of the ligands (Figure S1) giving rise to [Y(trans-O,O-

L)(H2O)2] and [Y(trans-N,O-L)(H2O)2] isomeric complexes. Andrea: dettagli sui calcoli degli addotti 

qui? 

 

Luminescence and decay kinetics 

Room temperature luminescence was measured with a Fluorolog 3 (Horiba-Jobin Yvon) 

spectrofluorometer, equipped with a Xe lamp, a double excitation monochromator, a single emission 

monochromator (mod. HR320) and a photomultiplier in photon counting mode for the detection of 

the emitted signal. All the spectra were corrected for the spectral distortions of the setup.  

In decay kinetics measurements, a Xenon microsecond flashlamp was used and the signal was 

recorded by means of multichannel scaling method. True decay times were obtained using the 

convolution of the instrumental response function with an exponential function and the least-square-

sum-based fitting program (SpectraSolve software package). The total quantum yields (Tot) have 

been obtained by secondary methods described in the literature42 by measuring the Visible emission 
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spectrum of quinine bisulfate in 1N H2SO4 solution, a fluorescence quantum yield reference sample 

( = 54.6%). Tot for the complexes has been calculated by [(As∙Fu∙n
2)/( Au∙Fs∙no

2)]∙ s equation; 

were: u subscript refers to unknown and s to the standard and other symbols have the following 

meanings:  is quantum yield, A is absorbance at the excitation wavelength, F the integrated emission 

area across the band and n’s are respectively index of refraction of the solvent containing the unknown 

(n) and the standard (n0) at the sodium D line and the temperature of the emission measurement (see 

ESI, figures S15-S20). 

 

Luminescence sensing of HCO3
- 

 

The binding interactions between hydrogen carbonate and the Eu(III) complexes were studied using 

the double reciprocal plot following the Benesi-Hildebrand equation43 adapted to the values of the 

asymmetry ratio (R) of the Eu(III) emission spectra: 

𝑅0
𝑅 − 𝑅0

=
𝑅0

𝑅 − 𝑅0
+

𝑅0
{𝐾(𝑅 − 𝑅0)[𝐻𝐶𝑂3

−]𝑛}
 

 

where R0, R, and R∞ are the asymmetry ratio of Eu(III) in the complexes considered in the absence of 

hydrogen carbonate, at an intermediate hydrogen carbonate concentration and at a concentration of 

complete interaction, respectively. In the above equation, K is the binding constant and n the number 

of hydrogen carbonate anion bound to the metal center and [HCO3
-] is the hydrogen carbonate 

concentration. The models have been validated by the statistical tests present in the MS-Excel cEST 

program here adapted to treat fluorescence data.44 

 

 

 

 

 

 

Results and discussion 

 

Synthesis  

The synthesis of the ligands and the relative Ln(III) complexes discussed in this paper are presented 

in schemes 1 and 2. 
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For the synthesis of the C1-symmetric ligands 9 and 13, we exploit the straightforward chemistry of 

the t-Butyloxycarbonyl (BOC) protective group. In this context, the derivative 5 (scheme 2) can be 

obtained in good yield as previously reported.45 All the ligands (9 and 13) and the relative Ln 

complexes (14 and 15) have been obtained in good yield and with a high degree of purity (see 

experimental section for details).. 

The chlorides of the cationic complexes Eu(bpcd) and Tb(bpcd) were synthesized as reported 

previously.33 The synthesis of 1 (scheme 1) has already been reported previously,24 as well as the 

synthesis of 5.45 

 

Scheme 1. Synthetic protocol for the synthesis of H2bQcd (3) and Eu(bQcd)(CF3SO3) (4).(a) tert-

butyl bromoacetate 3 eq, K2CO3 3.2 eq, MeCN, room temperature, 12 h; (b) HCl 6 M aq. 80°C, 

12 h; (c) Eu(OTf)3 1 eq, 2-propanol, room temperature, 12 h. 
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Scheme 2. Synthetic protocol for the synthesis of the ligands H3PyC3A (9), H3QC3A (13), the 

Eu(III) complexes Eu(PyC3A) (14a), Eu(QC3A) (15) and the Tb(III) complex Tb(PyC3A) (14b). 

(a) Pyridine-2-carbaldehyde 1eq, absolute ethanol, room temperature, 12 h; NaBH4 1.2 eq, 

MeOH, room temperature, 12 h; (b) Quinoline-2-carbaldehyde 1eq, absolute ethanol, room 

temperature, 12 h; NaBH4 1.2 eq, MeOH, room temperature, 12 h (c) Trifluoroacetic 

Acid:dichloromethane (1:3), room temperature, 12 h; (d) tert-butyl bromoacetate 3.5 eq, N,N-

Diisopropylethylamine 3.5 eq, MeCN, room temperature, 12 h; (e) HCl 6 M aq. 80°C, 12 h; (f) 

Eu(OTf)3 1 eq, 2-propanol:ethanol (8:2), room temperature, 12 h; (1 g) Eu(OTf)3 1 eq, 2-

propanol:ethanol (1:1), room temperature, 12 h (2 g) TbCl3∙6H2O 1 eq, water, room temperature, 

12 h. 

 

 

Protonation constants 

The best fit of the potentiometric data was obtained for all three ligands (3, 9 and 13) when four 

protonated species were considered. The obtained logKn are reported in Table 1 along with the 

constants for similar ligands containing the chiral DACH backbone: bpcd,33 PyC3A (9)46 and CDTA46 
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(1,2-cyclohexanediaminetetraacetic acid). The titration curves for ligand 3, 9 and 13 are displayed in 

Figure S2, S3 and S4 respectively, together with the speciation plots calculated by using the 

protonation constants in Table 1.  

 

 

Table 1 Protonation constants (logKn, Kn = [LHn]/([H]·[LHn−1]) of the ligands 3, 9 and 13 with their 

confidence intervals (T = 298.15 K and μ = 0.1 M NaCl,). Additional protonation data for similar 

ligands are also reported. Charges omitted for clarity.  

 

 bQcd (3) PyC3A (9) QC3A (13) bpcda PyC3Ab CDTAb 

logK1 9.37 ± 0.03 10.26 ± 0.02 10.53 ± 0.03 9.72 ± 0.02 10.16 ± 0.02 9.43 ± 0.02 

logK2 5.85 ± 0.07 6.33 ± 0.07 6.29 ± 0.09 5.87 ± 0.07 6.39 ± 0.04 6.01 ± 0.02 

logK3 3.46 ± 0.10 3.67 ± 0.11 3.60 ±0.16 2.94 ± 0.12 3.13 ± 0.03 3.68 ± 0.02 

logK4 1.79 ± 0.31 2.01 ± 0.14 2.81 ± 0.16 2.22 ± 0.17 - 2.51 ± 0.05 

a) ref.33 ; b) ref.46, μ = 0.15 M NaCl   

 

 

 

The logK values reported in Table 1 indicate that two fairly strong acidic and two weakly acidic sites 

are present. In particular, the values for the first protonation constant of the ligands 3, 9 and 13 (Table 

1) are in agreement with those reported for tertiary amines (logK ∼ 6.9-10.7, depending on the 

substituents).47 This suggests that the first protonation constant can be assigned to an aliphatic amino 

group, as previously reported for bpcd33 and CDTA.48  

Spectrophotometric acid-base titrations were performed in order to study the species distribution of 

the ligand as a function of the pH. The molar absorbance (ε) variations are reported in Figure 2, for 

the ligand 3. 
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Figure 2 Species distribution of the ligand 3 (L) along with the molar absorbance values at λ= 318 

nm obtained by acid-base spectrophotometric titration (T = 298.15 K, μ = 0.1 M NaCl). The speciation 

was calculated by using the fitted protonation constants (table 1) and the concentration of 3 ([L] = 

0.09 mM dm-3). Charges omitted for clarity. 

 

 Similar plots are reported for the ligands 9 and 13 in figures S5 and S6. For the ligand 3 (Figure 2), 

ε is nearly constant in the range 11-8.5 and then increases below pH∼8.5 with the formation of the 

bi- and tri-protonated species (logK2 = 5.85, logK3 = 3.46). This change is related to the protonation 

of the quinoline moieties, and is compatible with the protonation constant of quinoline (logK = 

4.97).49 The ε values of 9 and 13 increase below pH ~ 8 together with the formation of LH2 species, 

presumably related to the protonation of the pyridine and quinoline moieties. The associated 

protonation values (logK2 = 6.33 for 9, logK2 = 6.29 for 13) are in line with the protonation constants 

of 2-methylpyridine (picoline) and quinoline (logK = 6.06 for picoline, logK = 4.97 for quinoline).49,50 

The remaining protonation constants (logK4 for 3, logK3 and logK4 for 9 and 13) could be ascribed to 

acetate moieties.51  

 

Ln(III) complex formation  

 

The formation constants of the Eu(III) and Tb(III) complexes with the ligands 3, 9 and 13 were 

determined by acid-base spectrophotometric titration. In Figure S7 the absorbance changes upon 

addition of base to equimolar solutions of Eu(III) and the ligands 9 and 13 are shown. The spectra for 

the complexes containing the same chromophore are very similar (Figure S8).  
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In Figure 3, the speciation diagram for each studied Eu(III) complex along with the ε changes for 

quinoline- (λ = 318 nm) and pyridine- (λ = 260 nm) based ligands are reported as a function of pH. 

The same plots for the Tb(III) complexes are very similar to its Eu(III) analogues and are reported in 

Figure S9. In all plots, the formation of the complex is accompanied by a steep decrease of ε.   

The best fit of the spectrophotometric data has been obtained when only the ML species was 

considered and the formation constants obtained for Eu(III) and Tb(III) are reported in Table 2 along 

with those available for similar ligands for comparison. According to this model, at pH = 7.4 the ML 

species is largely predominant in all cases (>99%). 

 

a)  

 

 

 

 

b)  
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c)  

 

 

 

 

Figure 3. Species distribution of the complexes for the ligands a) 3 (0.08 mM), b) 9 (0.13 mM) and 

c) 13 (0.09 mM) with Eu(III) (ratio 1:1 M:L, with a little excess of metal), along with the molar 

absorbance values at λ=318 nm (for the ligands 3 and 13) and λ=265 nm (for ligand 9) obtained by 

acid-base spectrophotometric titration at T = 298.15K and μ = 0.1 M. Charges and negligible species 

(below 5%) omitted for clarity.    

 

Table 2 Formation constants (logβ) complexes of the ligands 3, 9 and 13) with Eu(III) and Tb(III) at 

T = 298.15 K and μ = 0.1 M NaCl. Other similar complexes have been added for comparison. Charges 

omitted for clarity. 

 

a) ref.33; b) ref.52, μ = 0.16 M NaCl; c) ref.53; d) ref. 54   

 

 

As expected on the basis of the strong oxophilicity of Ln(III) ions,55 the stability constants for the 

triacetate ligands [PyC3A (9) and QC3A (13)] are higher than their diacetate analogues [bpcd and 

bQcd (3) respectively]. Besides, the stability constants of the Ln(III) complexes with the quinoline-

substituted ligands (3 and 13) are lower than for their pyridine analogues (bpcd and 9, respectively). 

This result could be due to a weaker interaction of the quinoline moieties with respect to the pyridine 

ones and also to the increased steric hindrance. In the perspective of in vitro application experiments, 

Complex bQcd (3) PyC3A (9) QC3A (13) bpcda bpedb PEDTAc CDTAd 

Eu(III)L 9.97 ± 0.08 15.682 ± 0.009 12.55 ± 0.16 11.19 ± 0.32 - - 19.6 

Eu(III)L(OH) - - - 2.18 ± 0.57 - - - 

Tb(III)L 9.80 ± 0.13 15.70 ± 0.02 12.08 ± 0.28 11.36 ± 0.15 - - 20.0 

Tb(III)L(OH) - - - 2.04 ± 0.33 - - - 

Gd(III)L - - - - 12.37 15.56 19.6 

Gd(III)L(OH) - - - - 2.1 - - 
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the values of these formation constants appear promising, in particular for triacetate-based ligands (9 

and 13) whose stability is close to that of macrocyclic ligands possessing similar coordination ability 

and already employed in molecular imaging applications (i.e. DO3A derivatives with logβ values in 

the 18-21 range).56 

Molecular models obtained by DFT calculations show that Y(III) is 8-fold coordinated in all cases 

and additional water molecules were expelled in the second-sphere as can be seen from the minimum 

energy structures in Figure S10. On this basis, further geometry optimizations were performed on the 

[Y(L)(H2O)2] complexes in presence of PCM water. The increase of steric crowding when passing 

from pyridine- to the quinoline-substituted ligands can be clearly seen in Figure 4.  

From the obtained bond distances (Table 3) it emerges that the substitution of pyridine by quinoline 

has nearly no effect on the Y(III)-Oacetate bonds (average variation, Py→Q ~ -0.001 and +0.005 Å 

for the di- and tri-acids, respectively), and also the Y(III)-Namine distances are marginally affected 

(Py→Q ~ -0.019 and -0.006 Å). It can be noted also that Y(III)-Owater bonds are slightly longer in 

the pyridine triacid isomers as it could be expected on the basis of the decreased charge on the metal 

ion, while in the quinoline complexes they are only slightly affected. However, the most remarkable 

finding is that the average Y(III)-Nheterocycle bond distance increases significantly (Py→Q ~ +0.11 

Å), indicating the weaker interaction of the quinoline with respect to pyridine ligands with the metal 

ion; this possibly contributes to the drop of stability of the quinoline complexes with respect to the 

pyridine analogues (on average ~1.4 and 3.4 log units for the di and tri-acetate ligands). However, it 

is expected that quinoline has also a notable impact on the solvation properties of the complex which 

often have a strong influence on the stability.  

 

Table 3 Selected bond distances (Å) of the complexes in Figure 4.  

 

Complex Y-Oacetate Y-Namine Y-Nheterocycle Y-Owater 

[Y(trans-O,O bpcd)(H2O)2]
+ 2.262 2.550 2.525 2.448 

[Y(trans-N,N bpcd)(H2O)2]
+ 2.292 2.610 2.503 2.492 

[Y(trans-O,O bQcd)(H2O)2]
+ 2.268 2.557 2.661 2.464 

[Y(trans-N,N bQcd)(H2O)2]
+ 2.284 2.567 2.594 2.482 

[Y(trans-O,O PyC3A)(H2O)2] 2.286 2.568 2.550 2.474 

[Y(trans-N,O PyC3A)(H2O)2] 2.300 2.595 2.546 2.539 

[Y(trans-O,O QC3A)(H2O)2] 2.286 2.574 2.654 2.458 

[Y(trans-N,O QC3A)(H2O)2] 2.290 2.576 2.642 2.478 
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Figure 4. Minimum energy structures of (a) [Y(trans-O,O-bpcd)(H2O)2]
+; (b) [Y(trans-N,N-

bpcd)(H2O)2]
+; (c) [Y(trans-O,O-bQcd)(H2O)2]

+; (d) [Y(trans-N,N-bQcd)(H2O)2]
+; (e) [Y(trans-

O,O-PyC3A)(H2O)2]
+; (f) [Y(trans-N,O-PyC3A)(H2O)2]

+; (g) [Y(trans-O,O-QC3A)(H2O)2]
+; (h) 

[Y(trans-N,O-QC3A)(H2O)2]
+. 
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Luminescence 

 

 

Excitation spectra of the complexes 4, 14a, 15 and Eu(bpcd)Cl dissolved in water upon monitoring 

the 5D0 →
7F2 transition of Eu(III) (em = 612-615 nm) are shown in the Figures 5 and 6 (left). In the 

case of Tb(III) complex 14b, the excitation spectrum has been recorded monitoring the 5D4 →
7F5 

transition of Tb(III) (em = 545 nm, Figure 6). As all the spectra are superimposable with the 

corresponding absorption ones, a ligand to metal energy transfer mechanism works in all the 

complexes under investigation. As already observed33 the pyridine ring is capable to sensitize both 

Eu(III) and Tb(III) luminescence. On the other hand, the quinoline ring effectively sensitizes only 

Eu(III) ion. 

 

 

Figure 5. Luminescence excitation spectra (left) and emission spectra (right) of Eu(III) complex 4 

and 15 in water solution (10-4 M) at 298 K.  
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Figure 6. Luminescence excitation spectra (left) and emission spectra (right) of Eu(III) complex 14a 

and Eu(bpcd)Cl and Tb(III) complex 14b in water solution (10-4 M) at 298 K. *data from ref. 33.  

 

As far as the luminescence emission spectra are concerned (Figures 6 and 7, right), the typical Eu(III) 

or Tb(III) luminescence originating from f-f transitions is clearly detected for all the complexes. Upon 

excitation of the pyridine ring (exc = 265 nm) the complexes 14a and Eu(bpcd)Cl showed a visual 

red luminescence while the complex 14b a green one. Upon excitation of the quinoline ring (exc = 

319 nm) a red luminescence is detected for the complexes 4 and 15. In all the Eu(III) emission spectra, 

the hypersensitive 5D0 →
7F2 transition dominates the spectrum and one strong 5D0 →

7F0 band is also 

detected (in particular in the case of quinoline-based complexes). All this is compatible with the 

presence of emitting species where the point symmetry of Eu(III) deviates from the inversion 

symmetry and is characterized by an axial character.57 The Cn, Cnv or Cs are the only possible point 

symmetry in the presence of sizeable intensity of the 5D0 →
7F0 transition57 even though in our case, 

the Cs symmetry can be ruled out due to the presence of the chiral ligand.  

The luminescence decay curves of the 5D0 and 5D4 excited states of Eu(III) and Tb(III), respectively 

were recorded in aqueous solution for all the complexes under investigation; in Figure S12 we report 

only a representative selection. All the curves are well fitted by a single exponential function and the 

observed lifetimes, in water and deuterium oxide, are reported in Table 4, together with the values of 

the hydration number (q), the radiative lifetime (rad), the intrinsic (Ln), the total (Tot) quantum 

yields and the efficiency of the sensitization of the lanthanide luminescence by the ligand (ηsens). The 

hydration number is the number of water molecule in the close proximity of the metal ion and can be 

calculated by means of the Horrock’s equation58–60 that is based on the values of obs in H2O and D2O.  
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Table 4. Observed and radiative excited state lifetimes (ms) for Eu(III) and Tb(III) complexes along 

with the number of water molecules (q) obtained from data fitting. Intrinsic (Ln), total (Tot) 

quantum yields and ηsens are also reported. a) estimated from the analysis of the Eu(III) emission 

spectra by using the formula reported by Werts et al.61 b) calculated by rad = obs /Ln; obs and Ln 

have been determined in H2O. c) estimated in aqueous solution thanks to the formula obs/rad. d) 

determined by using the reference standard.  

 

Complex obs rad q Ln(%) Tot(%)  ηsens(%) 

 H2O D2O       

Eu(bpcd)Cl 0.30(1) 1.70(1) 3.00a 2.7(1) 10.0c 6.1  61 

Eu(bQcd)Cl 0.29(1) 1.68(1) 3.22 a 2.8(1) 9.0 c 2.6  29 

Eu(PyC3A) 0.33(1) 3.56(1) 3.66 a 2.7(1) 9.0 c 5.67  63 

Eu(QC3A) 0.33(1) 2.15(1) 3.34 a 2.5(1) 9.9 c 4.0  40 

Tb(bpcd)Cl 0.94(1) 2.15(1) 5.98 b 2.6(5) 15.7 d 10.0  64 

Tb(PyC3A) 1.16(1) 3.53(1) 6.86 b 2.4(5) 16.9 d 11.2  66 

 

It is worth to be noted that the number of water molecules in the inner coordination sphere of the 

metal ion in each complex is, in practice, the same (around 2.5). This result seems to be in partial 

agreement with the DFT structures reported in Figure 6 where always two water molecules are 

retained in the first coordination sphere of the metal ion. Nevertheless, as already observed for the 

complexes Eu(bpcd)Cl and Tb(bpcd)Cl, this is compatible with the presence of an equilibrium in 

solution interconverting two species having one 6-fold coordinating ligand molecule and a different 

number of water molecules (2 or 3) in the inner coordination sphere of the metal ion.33 In addition, it 

has to be reminded that the hydration number (q), calculated by the Horrock’s equation, is also slightly 

sensitive to the presence of water molecules in the outer coordination sphere.58  

The intrinsic quantum yield of the lanthanide ion (Ln), defined by number of emitted/absorbed 

photons, when lanthanide ions is directly excited, is around 10% and 16% for the Eu(III) and Tb(III) 

complexes, respectively (Table 4). The higher values of the intrinsic quantum yield for the Tb(III)-

based complexes is due to the energy gap between the emitting level and the lower lying ones, that is 

bigger in the case of Tb(III) so as to limit the multiphonon relaxation process. On the other hand, to 

estimate ηsens, we need to know the total quantum yield (Tot), that is defined by the number of 

photons emitted by the lanthanide ion/number of photons absorbed by the ligand. Since, Tot = ηsens∙ 

Ln, then ηsens = Tot /Ln. The values of ΦTot for all the complexes have been determined by using a 
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reference standard of known quantum yield (quinine bisulfate;  = 54.6%; see experimental section 

for details). The obtained ηsens is in the 60-70% range for all Eu(III) and Tb(III) complexes containing 

the pyridine chromophore, whilst the Eu(III) complexes containing the quinoline fragment show a 

significantly lower sensitization efficiency (in particular for Eu(bQcd)OTf, ηsens = 29%). This seems 

to be related to the longer Y-Nheterocycle bond distances found by DFT calculations, in the case of 

quinoline-based complexes. In this context, it is useful to remember that the probability of the energy 

transfer from an antenna ligand (S = sensitizer) to a metal ion (A = acceptor) is strongly dependent 

on the S-A distance, for both the most common energy transfer processes taking place in lanthanide-

based complexes (dipole-dipole and exchange mechanisms).62 In particular, the longer is the distance, 

the lower is the energy transfer probability and the sensitization efficiency. The seemingly low total 

quantum yields (Tot in the 3-11% range) must be reassessed in the light of the following statements: 

i) The quantum yield of many lanthanide and d-block compounds used for cellular imaging is in the 

4-10% range;63,64 ii) the total quantum yield of our complexes, is expected to grow upon interaction 

of the complex with a target analyte thanks to the concomitant displacement of water molecules from 

the metal ion. For these reasons, we believe that the class of complexes under investigation can be 

considered a promising family of optical probes for sensing application. 

 

Sensing of HCO3
- 

 

As can be seen from the inspection of the Figure 7, the intensity of the 5D0→
7F0 and 5D0→

7F2 Eu(III) 

transitions are significantly affected by the addition of the hydrogen carbonate ion to the complex 

14a (chosen as representative example). As it is reasonable to assume that HCO3
- anion is capable to 

coordinate the Eu(III) ion, displacing the water molecules from the inner coordination sphere, we can 

claim that the interaction between Eu(III) and the target anion produces an increase of the intensity 

of 5D0→
7F2 transition and a decrease of intensity of the 5D0→

7F0 one. This means that during the 

titration with HCO3
-, the geometry of the Eu(III) environment is undercoming a change in symmetry. 

In fact, the values of the asymmetry ratio: 

R = 
)(

)(

1

7

0

5

2

7

0

5

FDI

FDI




 

indicative of the degree of asymmetry of the coordination polyhedron around the Eu(III) ion, increase 

upon addition of the anion.  



25 

 

 

Figure 7. Eu(III) luminescence emission spectra of the complex 14a (limited to 570-640 nm range) 

upon addition of hydrogen carbonate ion. The concentration of the anion is reported. 

 

The value of R during the titration with hydrogen carbonate also increases for all the Eu(III) 

complexes under investigation (Figure 8). 

 

 

Figure 8. Asymmetry ratio (R) for the Eu(III) complexes vs. [HCO3
-] concentration plots. The 

employed ligands are reported in each plot (reference labels in Figure 1).  

 

In all cases, a logarithmic-like trend is observed, and an asymptote is reached after the addition of 10 

mM of anion for Eu(III) complex with bpcd ligand (Figure 8). On the other hand, the asymptotic 

value is reached only after the addition of hydrogen carbonate at 15-20 mM, in the case of all the 

other complexes [Eu(bQcd)OTf, Eu(PyC3A) and Eu(QC3A)]. The sensitivity of the optical response 

to the HCO3
- concentration can be qualitatively evaluated by analyzing the slope of the graph in the 
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range of biological interest where the hydrogen carbonate concentration is related to serious metabolic 

acidosis (0-10 mM). As can be seen in figure 8, Eu(bpcd)Cl and Eu(QC3A) (15) complexes show the 

best sensitivity. The binding interactions between hydrogen carbonate and the Eu(III) complexes were 

studied using the Benesi-Hildebrand equation adapted to the values of the asymmetry ratio, as 

described in the experimental section. Since there is linearity in the plot of R0/(R – R0) vs. [HCO3
-]−2 

for Eu(bpcd)Cl and Eu(bQcd)OTf (Figure 9 and S13) and in the plot of R0/(R – R0) vs. [HCO3
-]−1 for 

of Eu(PyC3A) and Eu(QC3A) (Figure 10), the stoichiometry of the hydrogen carbonate adducts is 

1:1 for Eu(PyC3A) and Eu(QC3A) complexes and 1:2 for Eu(bpcd)Cl and Eu(bQcd)OTf ones. 

  

Figure 9. Benesi–Hildebrand plot vs [HCO3
-]2- (M-2) for (a) [Eu(bpcd)]+ and (b) [Eu(bQcd)]+ 

complexes. R0 is the asymmetry ratio of the starting complex; R is the asymmetry ratio after each 

addition of the analyte. R and R0 have been calculated from the relative Eu(III) luminescence emission 

spectrum. 

 

  

Figure 10. Benesi–Hildebrand plot vs [HCO3
-]−1 (M-1) for (a) Eu(PyC3A) and (b) Eu(QC3A) 

complexes. R0 is the asymmetry ratio of the starting complex; R is the asymmetry ratio after each 

addition of the analyte. R and R0 have been calculated from the relative Eu(III) luminescence emission 

spectrum. 
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Since the affinity of the anion for the Ln(III) centre is mainly determined by coulombic attraction it 

is not surprising that the cationic complexes Eu(bpcd)Cl and Eu(bQcd)OTf can coordinate the 

hydrogen carbonate anion with high affinity constants (calculated from the ratio of intercept/slope of 

the Benesi-Hildebrand plot, Table 5). To the best of our knowledge, a value of logK higher than 4, in 

the case of hydrogen carbonate ion, is unprecedented in the literature and this is probably related to 

the unusual number of target anions bound to the metal center. The Eu(III) in these complexes can 

bind up to 2 hydrogen carbonate units, likely due, as discussed in the introduction, to the lower 

number of donating atoms (6-fold coordination) than in the case of ligands commonly employed for 

Ln(III)-based luminescence anion sensing (NOTA and DOTA-like possessing 7-fold coordination). 

The possible structures of the 1:2 hydrogen carbonate adducts to [Y(trans-O,O-bpcd)(H2O)2]
+ 

obtained by DFT calculations (Figure 11) show two possible coordination modes. However, the bis-

monodentate hydrogen carbonate seems to be the only possible isomer being 10.3 kcal mol-1 more 

stable than the bis-bidentate one (also the latter presents an imaginary vibrational mode corresponding 

to the opening of two Y-O bonds). The optimization of the 1:2 adduct with both hydrogen carbonate 

coordination modes (one bi- and one mono-dentate) led always to a bis-monodentate structure. 

 

 

a) b) 

  

 

Figure 11. Minimum energy structures of the [Y(trans-O,O-bpcd)(HCO3)2]
- complexes obtained in 

PCM water with a) bis-monodentate and b) bis-bidentate hydrogen carbonate coordination modes. 

 

Due to the neutral charge of Eu(PyC3A) and Eu(QC3A) complexes, it is not surprising to find in their 

adducts with hydrogen carbonate lower binding constants and a 1:1 stoichiometry. It is also 

reasonable to assume that the negative charge of the 1:1 adduct hampers the formation of the bis-

anionic 1:2 species. Furthermore, it is worth to be underlined that the presence of the quinoline ring 
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affects the stability of the adduct with hydrogen carbonate. In the case of cationic complexes, the 

adduct with quinoline is less stable than the one with pyridine. On the contrary, an opposite trend is 

observed for the neutral complexes. The reasons of such behavior in the case of the diacid ligand 

could be found in the high steric hindrance of the heteroaromatic ring which, at least for the trans-

O,O-bQcd isomer (Figure 4c), presents two hydrogen atoms pointing towards the inner coordination 

sphere, thus likely to hinder the coordination of hydrogen carbonate and maybe giving rise to an 

affinity constant one order of magnitude lower than for the pyridine-based analog. Here, we 

demonstrate how, thanks to a modulation of the steric hindrance at the metal ion using the different 

ligands in figure 1, it is possible to tune the affinity (and the selectivity) of the complexes towards 

HCO3
-. 

As far as the affinity of the analogous Tb(III) complexes towards hydrogen carbonate is concerned, 

we expect a behavior similar to the one observed for Eu(III) derivatives, since Eu(III) and Tb(III) 

complexes are often isostructural due to the similarity of their ionic radii.55 As expected, the 

calculated affinity constant for Tb(bpcd)Cl complex, chosen as representative example, is similar to 

the one of Eu(bpcd)Cl (Table 5 and Figure S14).   

The most efficient and selective optical probes for hydrogen carbonate, capable to detect this anion 

in cellulo or in extracellular fluid, are based on charged and neutral Eu(III) and Tb(III) complexes of 

heptadentate ligands.21,65–67 As far as their affinity towards hydrogen carbonate in physiological 

conditions is concerned, they show a logK values in the 2.6 - 3.85 range. The surprising higher affinity 

of Eu(bQcd)(CF3SO3) and Eu(bpcd)Cl (logK 4.62 and 5.76, respectively) promises a better selectivity 

towards HCO3
-. In this context, since both the enantiomers of the analog Tb(bpcd)Cl weakly interact 

with L-lactate (logK = 1.3 - 1.45),34 a strong selectivity for hydrogen carbonate is expected in a solution 

containing both analytes.   

 

 

 

 

 

 

 

Table 5. Apparent equilibrium constants (logK) constant for the formation of the adducts with 

hydrogen carbonate (HCO3
-), [complex] + n∙hydrogen carbonate ⇆ [complex(hydrogen carbonate)n] 

(T = 298 K, pH 7.40 (±0.05), I = 0.1M NaCl, 40 μM complex), determined through fluorimetric 

titration. Charges omitted for clarity 
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Complex n logK 

Eu(bpcd)Cl/Tb(bpcd)Cl 2 5.76(8)/5.94(8) 

Eu(bQcd)(CF3SO3) 2 4.62(8) 

Eu(PyC3A) 1 2.06(8) 

Eu(QC3A) 1 3.11(8) 

 

 

          

Conclusions 

 

The cationic Ln(bpcd)+ and Ln(bQcd)+ complexes and the neutral Ln(PyC3A) and Ln(QC3A) ones 

are highly stable in aqueous solution (9.97 < log < 15.68) and they exist as a couple of isomeric 

compounds differing by the ligand stereochemistry (trans-N,N and trans-O,O for bpcd2- and bQcd2-; 

trans-O,O and trans-N,O for PyC3A3- and QC3A3-).  

For all the complexes, the Ln(III) luminescence intensity increases as a function of the hydrogen 

carbonate concentration in physiologic solution. The best sensitivity of the optical response towards 

HCO3
- in the concentration range related to metabolic acidosis has been observed for Eu(bpcd)+ and 

Eu(QC3A) complexes. It has been possible to obtain an unprecedented affinity towards hydrogen 

carbonate ion by simply playing with several features of the investigated complexes such as: i) the 

relatively low coordination number of the ligands, which have 6 donating atoms; ii) the positive or 

neutral charge and iii) the steric hindrance at the metal ion. The positively charged Eu(bpcd)+ and 

Tb(bpcd)+ complexes, which possesses a small steric hindrance at the metal ion, reveal the highest 

logK values (5.76 and 5.94, respectively) reported up to now in the literature, for the formation of an 

adduct with HCO3
- characterized by an uncommon 1:2 stoichiometry. With regard to the state-of-art 

of the optical sensing of hydrogen carbonate ion in extracellular fluid and in cellulo experiments, 

Ln(bpcd)+ (Ln = Tb and Eu) can be considered as very promising optical probes with an enhanced 

selectivity.       
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