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Evolution of prostate MRI: from
multiparametric standard to less-is-better
and different-is better strategies
Rossano Girometti* , Lorenzo Cereser, Filippo Bonato and Chiara Zuiani

Abstract

Multiparametric magnetic resonance imaging (mpMRI) has become the standard of care to achieve accurate and
reproducible diagnosis of prostate cancer. However, mpMRI is quite demanding in terms of technical rigour, patient’s
tolerability and safety, expertise in interpretation, and costs. This paper reviews the main technical strategies proposed
as less-is-better solutions for clinical practice (non-contrast biparametric MRI, reduction of acquisition time, abbreviated
protocols, computer-aided diagnosis systems), discussing them in the light of the available evidence and of
the concurrent evolution of Prostate Imaging Reporting and Data System (PI-RADS). We also summarised
research results on those advanced techniques representing an alternative different-is-better line of the still
ongoing evolution of prostate MRI (quantitative diffusion-weighted imaging, quantitative dynamic contrast
enhancement, intravoxel incoherent motion, diffusion tensor imaging, diffusional kurtosis imaging, restriction
spectrum imaging, radiomics analysis, hybrid positron emission tomography/MRI).

Keywords: Contrast media, Magnetic resonance imaging, Positron-emission tomography, Prostate imaging
reporting and data system (PI-RADS), Prostatic neoplasms

Key points

� Multiparametric magnetic resonance imaging is the
standard of care for assessing prostate cancer.

� Alternative protocols are emerging to increase
availability and offer a patient-centred approach.

� Less-is-better strategies are promising for clinical
practice, but require validation.

� Different-is-better strategies are a matter for intensive
research.

� Prostate MRI technical standard and interpretation
rules are still evolving.

Background
Until recent times, prostate magnetic resonance imaging
(MRI) was a poorly available examination reserved to stage
prostate cancer (PCa). Enormous advances in MRI technol-
ogy and wider availability of 3-T magnets contributed to an

ever-increasing demand for the examination, as supported
by the evidence-based expansion of indications. Prostate
MRI is becoming of central importance in the contem-
porary management of PCa by improving the detection
of clinically significant cancer (csPCa) while minimising
overdiagnosis and overtreatment of indolent disease [1].
MRI is gaining acceptance in detecting and localising
csPCa lesions, triaging biopsy, guiding targeted biopsy
or focal therapy, stratifying the risk before treatment,
monitoring patients during active surveillance, planning
and choosing surgery or radiation therapy techniques,
and assessing recurrence [2–8].
Expansion of prostate MRI has been accompanied by

the definition of a substantially standardised examin-
ation technique named multiparametric MRI (mpMRI)
[9, 10], providing anatomic, functional, and physiologic
parameters for image analysis. However, mpMRI is a
demanding approach in terms of execution, patient’s
tolerability and safety, expertise in interpretation, and
costs, as we will discuss in this review. Clinical practice
and research are soliciting the adoption of different MRI
protocols to face the above challenges, following a general
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less-is-better strategy leading to a faster and cheaper
examination in which essential parameters are retained
for analysis.
In this review, we describe the current multiparametric

standard for prostate MRI, together with the limitations
inherent to its ongoing evolution. We also discuss les-
s-is-better strategies as potential solutions according to
the available literature and also describe novel advanced
techniques for image acquisition and/or interpretation
that can be considered as different-is-better strategies.

The multiparametric standard
mpMRI: towards simplification
The first attempt to establish minimal technical re-
quirements for mpMRI came in 2012 from the European
Society of Urogenital Radiology (ESUR) guidelines, which
defined mpMRI as the combination of anatomic T2-
weighted imaging (T2WI) with at least two functional
MRI techniques [9]. The definition was supported by pre-
vious studies showing that two functional techniques
complement T2WI better than one in terms of lesions
characterisation, with diffusion-weighted imaging (DWI)
and magnetic resonance spectroscopic imaging (MRSI)
improving specificity and dynamic contrast-enhanced
(DCE) imaging improving sensitivity [9]. ESUR guidelines
proposed detailed and stringent technical requirements
for detection and staging, with DWI and DCE to be used
mandatorily and MRSI optionally. Since the guidelines
were intended as mean to standardise imaging acquisition,
interpretation, and reporting, protocols were presented to-
gether with the first version of the prostate imaging
reporting and data system (PI-RADS), in which each of
the sequences was scored separately to assess the risk that
an MRI finding was a csPCa.
The second version of the guidelines (PI-RADS version

2) was updated in late 2014 by a Steering Committee
established the American College of Radiology, ESUR, and
the AdMeTech Foundation [10]. PI-RADS version 2 led to
consistent simplification of several technical and interpret-
ation aspects compared to PI-RADS version 1. First, MRSI
was excluded from the examination, restricting the multi-
parametric standard to the use of T2WI, DWI, and DCE.
MRSI was classified as an advanced research tool, thus
recognising the impractical use in everyday clinical prac-
tice. Accordingly, the PI-RADS version 2 score no longer
included qualitative and quantitative assessment of tissue
choline and citrate. Second, PI-RADS version 2 proposed
less (even if stringent) technical parameters to obtain an
acceptable mpMRI examination, leaving space for proto-
cols optimisation based on the available equipment, as
well as for tailoring MRI protocols on the basis of clinical
questions and patients’ characteristics. Finally, the inter-
pretation system was modified by introducing the concept
of dominant sequence, according to which the likelihood

that an image finding represents csPCa, expressed on a 1
to 5 scale, mainly depends on its appearance on DWI for
the peripheral zone (PZ) (Fig. 1) and on T2WI for the
transition zone (TZ) (Fig. 2) (Table 1). DCE was assigned
a secondary role, i.e., to act as a tiebreaker to upgrade to
category PI-RADS 4 those PZ findings initially categorised
as PI-RADS 3, when they exhibit focal early contrast
enhancement on visual analysis [10]. Similarly, DWI was
identified as the tiebreaker for TZ findings with am-
biguous appearance on T2WI. This approach no longer
included the quantitative evaluation of the apparent dif-
fusion coefficient (ADC) as a contributor to PI-RADS
categorisation.
Moreover, the semiquantitative assessment of the en-

hancement curves (type 1, type 2, and type 3) proposed
by the PI-RADS version1 was abandoned in favour of a
simpler dichotomic rule (presence versus absence of focal
enhancement of the category 3 finding), as supported by
the evidence that visual analysis performs similarly to semi-
quantitative methods [11]. PI-RADS version 2 will be used
in this review as the ideal framework to discuss the tech-
nical standard of mpMRI, though the document does not
cover the whole spectrum of indications (e.g., PI-RADS cat-
egorisation does not apply to the evaluation of recurrent
disease or progression during surveillance). State-of-
the-art mpMRI should include T2WI, DWI, and DCE
T1-weighted imaging, whose mail technical aspects are
summarised in Table 2 [10, 12–14]. DCE-unrelated T1-
weighted imaging is also part of mpMRI, showing an
ancillary role in assessing regional anatomy, post-biopsy
changes, as well as the nodal status and possible presence
of metastatic bone lesions. Of note, 3-T field strength and/
or endorectal coils are no longer considered indispensable
for mpMRI if protocols are adequately optimised [10, 12].

Disadvantages of mpMRI
PI-RADS version 1 and version 2 were elaborated as
expert-consensus documents needing subsequent clinical
validation. PI-RADS version 2 guideline reported a high
pooled sensitivity (0.85–0.89) and an acceptable pooled
specificity (0.71–0.79) for PCa according to meta-analyses
[15, 16]. The proposed methodology was found to be ef-
fective as a risk stratification tool, with cancer rates for
PI-RADS categories 3, 4, and 5 of 33.1%, 70.5%, and
90.7%, respectively [17].
However, PI-RADS version 2 suffers from several weak

points [1], including questioned interpretation criteria
for TZ cancers [18], lack of definite rules for the central
zone or anterior fibromuscular stroma involvement [1],
and moderate inter-reader agreement [19], especially for
TZ assignments and DCE [20]. In general, there is a
relatively low positive predictive value for category 3
findings, a false-negative rate for csPCa ranging typically
from 5 to 15%, and a false-positive rate up to 60–80%
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for PI-RADS 4 lesions in some series [3]. While
PI-RADS version 2 shows limited sensitivity for less rele-
vant cancers (e.g., low-risk Gleason score 3 + 3 lesions
with tumour volume lower than 0.5 mL), index csPCa le-
sions with a Gleason score equal to or greater than 3 +
4 and a volume equal to or greater than 0.2 mL (i.e.,
about 7–8 mm in size) can be detected [1]. However,
some series found limited accuracy for csPCa (i.e., with
Gleason score 4 + 3 or higher) with a tumour volume
equal to or lower than 0.5 mL [21].
Not surprisingly, PI-RADS version 2 is a living document,

with the incoming 2.1 version aiming to refine mpMRI cat-
egorisation (e.g., size cut-off for categories 4 and 5, role for
DWI and DCE in the TZ) and improved inter-reader agree-
ment [1].
From a technical point of view, there are some disadvan-

tages as mpMRI stands. First, the examination is poorly
patient-centred, because it presents as a plug-and-play tool
that does not account for different scenarios of application
(e.g., clinical research in tertiary referral or academic centres
versus clinical routine) or specific clinical questions (e.g.,
detection in men with elevated PSA level, staging, or active

surveillance). Additionally, mpMRI requires prolonged
time in the magnet (up to 30–45 min [22]), which has
been identified as the major source of stress in patients
undergoing MRI [23]. The use of endorectal coil can
further emphasise this aspect [24], suggesting that the
examination is far from being perfect in terms of pa-
tient’s tolerability.
Second, the use of intravenous gadolinium-based contrast

agents is associated to the risk of adverse events such as
allergic-like/hypersensitivity reactions and nephrogenic sys-
temic fibrosis in patients with advanced chronic kidney dis-
ease, as well as to gadolinium deposition in the brain of
subjects undergoing repeated exposure [25]. Although the
frequency and clinical relevance of those conditions is a
matter of debate [25], radiologists should take care in iden-
tifying patients at risk and avoid unjustified contrast-related
risks in those cases where DCE is not supposed to provide
any added value. One should also take into account those
complications occurring after the insertion of a peripheral
intravenous catheter such as discomfort and phlebitis,
which—though mild in nature—show a frequency up to
27% in some series [26].

Fig. 1 Application of the Prostate Imaging Reporting and Data System (PI-RADS) version 2 in interpreting a finding in the peripheral zone (PZ) of
a biopsy-naïve 62-year-old man undergoing prostate multiparametric magnetic resonance imaging (mpMRI) for elevated prostate specific antigen
(PSA) level. The dominant sequence, i.e., a transverse diffusion-weighted imaging (DWI) sequence, showed an area (< 15mm in size) of restricted
water diffusion in the left midgland PZ, as testified by high signal intensity on the b = 2000 s/mm2 image (arrow in a) and corresponding marked
hypointensity on the apparent diffusion coefficient (ADC) map (b). This finding was classified as PI-RADS 4 accordingly, with additional ancillary
suspicious features such as hypointensity on transverse T2-weighted imaging (c) and focal early contrast enhancement on subtracted T1-weighted
imaging (d). Pathology after radical prostatectomy found a Gleason score 7 (3 + 4) T3a N0 cancer
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Fig. 2 Use of PI-RADS version 2 criteria to categorise a transition zone (TZ) finding in a 67-year-old patient with elevated PSA (7.80 ng/mL) and
previous negative biopsies. On transverse (arrow in a) and sagittal (arrowhead in b) T2-weighted images, there was an anterior, right-sided TZ
focal area with lenticular shape, ill-defined margins, and capsular bulging (< 15mm in size), close to the anterior fibromuscular stroma. This
finding was scored as PI-RADS 4 and confirmed to be a Gleason score 6 (3 + 3) cancer on biopsy and subsequent radical prostatectomy (T2b N0).
DWI supported the suspicion of malignancy by showing restricted diffusion as corresponding, focal hyperintensity on b = 2000 s/mm2 image (c)
and marked hypointensity on the ADC map (d)

Table 1 PI-RADS version 2 interpretation rules for mpMRI to detect csPCa

Peripheral zone PI-RADS category Transition zone

Finding appearance on DWI DCE DWI Finding appearance on T2WI

Score 1: no abnormalities on ADC
and high b value DWI

– 1 – Score 1: Uniform hyperintense signal intensity

Score 2: indistinct hypointensity
on ADC

– 2 – Score 2: Linear or wedge-shaped hypointensity
or diffuse mild hypointensity

Score 3: focal hypointensity on
ADC and isointensity on high
b value DWI

No focal and early
enhancement

3 If DWI score ≤ 4 Score 3: Heterogeneous signal intensity or non-
circumscribed, rounded, moderate hypointensity

Focal and early
enhancement

4 If DWI score = 5

Score 4: focal markedly hypointensity
on ADC and markedly hyperintensity
on high b value DWI

– 4 – Score 4: Circumscribed, homogenous moderate
hypointense focus/mass confined to prostate,
and < 1.5 cm in greatest dimension

Score 5: same as 4 but ≥ 1.5 cm in
greatest dimension or definite
extraprostatic extension/invasive
behaviour

– 5 – Score 5: Same as 4 but ≥ 1.5 cm in greatest
dimension or definite extraprostatic extension/
invasive behaviour

csPCa Clinical significant prostate cancer, DCE dynamic contrast-enhanced imaging, DWI diffusion-weighted imaging, PI-RADS Prostate Imaging Reporting and Data
System, T2WI T2-weighted imaging. Probability of csPCa: category 1 = very low, category 2 = low, category 3 = intermediate/equivocal, category 4 = high,
category 4 = very high
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Finally, mpMRI implies high examination- and patient
management-related costs, which are a relevant factor in
determining whether to implement it systematically in a
clinical setting [27]. Theoretically, mpMRI can save the
costs related to inconclusive diagnoses (e.g., in patients
with cancer and repeated negative biopsies) or unnecessary
biopsy [28] and was recently shown to be cost-effective as
the first test for PCa diagnosis [5, 29]. However, it is still
unclear how to refine or change the mpMRI standard in
order to balance cost saving with the diagnostic accuracy
required by different clinical scenarios such as initial
diagnosis, fusion biopsy, active surveillance, staging, or
recurrence.

Less-is-better strategies
Different strategies are emerging as a potential solution
for the limitations and challenges discussed above. They
can be qualified as various forms of a less-is-better ap-
proach, in which one or more aspects of current mpMRI
are considered redundant, especially in the PCa detec-
tion setting, thus being eliminated or changed as dis-
cussed below.

Non-contrast biparametric MRI
Whether DCE should be included in the multiparametric
standard has always been a controversial issue [28], show-
ing both supporters and opposers. Pros and cons of DCE
are summarised in Table 3 [13, 28, 30–33].
DCE has been classically assumed to improve the sen-

sitivity of T2WI alone or T2WI combined with DWI,
based on studies showing an average added value of
about 10–15% [28]. While acknowledging this, opposers
argue that this technique is redundant in most examina-
tions, since it improves T2WI alone, while showing no
relevant added value compared to the combination of
T2WI and DWI [13]. This statement is supported by the
results of several single-centre studies [34–36] and of a
recent meta-analysis [37], as well as by the empirical experi-
ence from large-volume centres. Furthermore, a csPCa can
present with different contrast enhancement patterns, over-
lapping at a significant extent with those of other benign
conditions such as prostatitis or benign hypertrophy nod-
ules in the TZ [13]. As aforementioned, PI-RADS version 2
acknowledged those limitations by circumscribing the role
for DCE to PZ only and limiting it to a qualitative evalu-
ation on a binary base for problem-solving purpose [10].

Table 3 Pros and cons of performing DCE imaging in prostate mpMRI compared to the combination of T2WI and DWI

Pros Cons

Detection and localisation Gain in sensitivity for cancers located in hypovascular
and fibrous zones (anterior fibromuscular stroma,
central zone) or showing challenging appearance
such as non-nodular infiltrating lesions in the
peripheral zone

Gain in sensitivity compared to T2WI alone, but no added
value compared to T2WI and DWI

Gain in specificity (up to 17%) in differentiating
cancer from atrophy, necrosis, haemorrhage,
prostatitis, calcifications

Variable enhancement patterns in cancer, overlapping
with benign conditions

Problem solver in PI-RADS version 2 for peripheral
zone lesions

–

Rescue of examinations with inadequate or absent
T2WI and/or DWI

–

Primary role in detecting recurrence after treatment –

Research: prediction of tumour volume, prediction
of biological aggressiveness (microvessel tissue density
or Gleason score)

–

Staging Gain in accuracy in less experienced readers
(“first localise, then stage” approach), especially
for seminal vesicle invasion

Conflicting results in literature

Gain in assessing extraprostatic extension by
detecting extraprostatic contrast enhancement

False positives related to inflammation

Patient-centred care Negligible extra time in magnet Extra time in magnet reducing patient comfort and
compliance

Adverse reactions to gadolinium-based contrast
agents are rare and usually of limited clinical significance

Safety issues related to gadolinium-based contrast
agents, including adverse reactions and gadolinium
deposition in the brain

Costs – Increased costs (up to 20–30% of the whole examination).

See references: [13, 28, 30–33]. DCE dynamic contrast-enhanced, DWI diffusion-weighted imaging, mpMRI multiparametric magnetic resonance imaging, PI-RADS
Prostate Imaging Reporting and Data System, T2WI T2-weighted imaging
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The MRI protocol excluding DCE is usually named
biparametric MRI (bpMRI), being composed of anatomic
T2WI coupled with DWI as the only retained functional
technique (Fig. 3). This simplified approach is ever-in-
creasingly used in clinical practice for the detection/local-
isation or staging of csPCa lesions, as testified by its
incorporation into some guidelines as the technical stand-
ard for those indications [38]. In this approach, DCE is
only used in the case of non-diagnostic DWI and/or
T2WI, as happens because of artefacts from motion, air in
the rectum, or hip prosthesis.
How does bpMRI work in detecting and localising

cancer? A myriad of studies tried to answer this ques-
tion, using PI-RADS or different interpretation criteria
[39]. A meta-analysis by Woo et al. [40] focused on
head-to-head comparisons between bpMRI and mpMRI,
including 2142 patients from 20 papers. The analysis found
comparable pooled sensitivity (0.74 versus 0.76), specificity
(0.90 versus 0.89), and area under the curve (0.90 versus
0.90), without clinically relevant or statistically significant
differences at subgroup analysis stratifying for a variety of
factors, including field strength (1.5 T versus 3.0 T), type of

standard of reference (radical prostatectomy versus biopsy),
PI-RADS version (version 1 versus version 2), or type of
DCE analysis (qualitative, semiquantitative, or quantita-
tive). Of note, most of the included studies were based
on small retrospective cohorts, showing great heterogen-
eity and a variable definition of csPCa. Thus, bpMRI
should be validated with large, prospective multicentric
trials aimed to confirm whether the two technical ap-
proaches are really equally effective in different clinical
scenarios, and the rate of cancers missed by avoiding DCE
is as minimal as reported in previous studies, e.g. by Var-
gas et al. [21] (4 out of 125).
A recent paper by Junker et al. [30] raised the question of

which interpretation rules should be used with bpMRI.
Those authors compared 236 bpMRI and mpMRI readings
performed by a single experienced observer within a unique
reading session, showing that 94.1% of cancers were scored
identically using PI-RADS version 2 rules. Assuming that
PI-RADS 3 findings in the PZ could not be further
upgraded with bpMRI, the above authors observed a shift
from category 4 to category 3 in 5.9% of cases when moving
from mpMRI to bpMRI. All those findings included

Fig. 3 Example case of mpMRI in which the information given by dynamic contrast-enhanced (DCE) imaging was redundant. A 54-year-old man
with slightly elevated PSA level (3.43 ng/mL) and suspicious digital rectal examination underwent the examination to target biopsy, showing right
midglandular < 15 mm in size PZ finding categorised as PI-RADS 4 because of focal restricted diffusion well visible as hyperintensity on the high
b value image (a) and hypointensity on the ADC map (b), associated to hypointensity on a transverse T2-weighted image (arrows in c). Cancer
was proven by biopsy and then by pathology after surgery with Gleason score 7 (4 + 3). Of note, transverse subtracted DCE (d) had no role in
detecting and localising cancer, showing no differences in contrast enhancement compared to the surrounding PZ
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low-risk cancers with a predominant Gleason score 3 pat-
tern, suggesting that a few cancers with limited clinical sig-
nificance were missed by bpMRI. However, the majority of
category 3 findings do not harbour malignancy [17], thus
posing the problem of how to manage them [30, 41] and
emphasising the risk that bpMRI can induce an increased
number of unnecessary biopsies. To overcome this problem,
different rules for upgrading category 3 findings have been
proposed, including low ADC values [41] or volumes equal
to or greater than 0.5 cm3 [42]. However, those methods are
prone to low reproducibility. Rules for upgrading and man-
aging category 3 lesions are still a matter of debate and will
be probably refined by future PI-RADS versions.
Importantly, bpMRI does not apply to the setting of

tumour recurrence after radical prostatectomy, radiation
therapy, or focal therapy. DCE still plays a key-role in this
scenario, as contrast enhancement is one of the most reli-
able features of disease in a context in which the prostate
is no longer present or shows relevant therapy-induced
changes making the PI-RADS inapplicable. The imaging
of PCa recurrence is beyond the purpose of this review
and has been treated comprehensively elsewhere [8].

Reduced acquisition time
T2WI is obtained with two dimensional (2D) turbo (or fast)
spin-echo sequences, which usually require long acquisition
time. This makes T2WI the main time-consuming phase of
the examination, given the need to acquire transverse,
sagittal, and coronal planes separately. Alternatively,
three-dimensional (3D) volumetric T2WI provides a unique
slab with isotropic voxels (e.g., 0.8 × 0.8 × 0.8mm) to be re-
constructed in any plane, thus shortening the acquisition
time up to 44% [43, 44]. Additionally, 3D T2WI is supposed
to reduce volume-averaging artefacts, leading to better de-
lineation of subtle anatomic features affecting the diagnosis
at a relevant extent (e.g., the so-called “erased charcoal sign”
around TZ nodules, or prostate capsule integrity) (Fig. 4)
[12].
Using a special sequence named “sampling perfection

with application-optimised contrast using different
flip-angle evolutions” (SPACE), Polanec et al. [44] re-
cently showed similar accuracy between 2D T2WI and
3D T2WI in assessing PCa with PI-RADS version 2 cri-
teria. This sequence was found to provide similar results
to those given by 2DT2WI (κ = 0.76) also in assessing

Fig. 4 Three-dimensional (3D) T2-weighted imaging in a biopsy-naïve 69-year-old patient with elevated PSA (5.39 ng/mL) undergoing mpMRI for
the purpose of targeted biopsy. The examination showed a nodule in the right TZ showing moderate hypointensity on transverse two-
dimensional T2-weighted imaging and somewhat ill-defined margins (arrow in a). 3D T2-weighted imaging better delineated the nodule margins
as a “charcoal” peripheral rim (arrow in b) by reducing image blurring, thus contributing to characterise it as a benign prostate hyperthropy (BPH)
fibrostromal nodule. The nodule showed restricted diffusion (hypointensity on the ADC map in c) and intense, early contrast enhancement on
transverse fat-saturated T1-weighted imaging (d)
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extraprostatic extension of PZ cancers [45]. On the
other hand, other authors [46] showed that 3D T2WI—
volume isotropic T2-weighted acquisition (VISTA)—per-
formed worse than 2D T2WI in assessing extraprostatic
extension if including TZ cancers.
It should be pointed that a 3D slab can be generated

in a reasonable acquisition time by paying the price of
several trade-offs compared to 2D imaging, including
lower signal-to-noise ratio, reduced soft tissue contrast,
change in image contrast by incorporating T1-weighting
as the repetition time is reduced, blurring and loss of
resolution even for subtle motion during the scan, and
greater motion artefacts in 3D sequences with longer
acquisition time [12, 13, 43, 45]. Moreover, although
radiologists can perceive 2D and 3D images similarly
in terms of image quality, anatomic detail, and tumour
conspicuity, the preference for a given T2WI sequence
seems based on strong individual preference rather
than objective factors [43]. Not surprisingly, 3D T2WI
is not yet accepted as a state-of-the-art tool for detect-
ing and staging PCa [13], as exemplified by the recom-
mendation from PI-RADS version 2 to use it as an
adjunct to 2D T2WI rather than a stand-alone alterna-
tive [10].

Abbreviated protocols
One might argue that a less-is-better strategy in prostate
MRI might consist of cutting redundant scans while pre-
serving the informative core of the examination for a
certain clinical question. Such an approach showed
promising results in screening and staging breast MRI
[22] and has been advocated as a mean to improve pa-
tients’ compliance, reduce direct costs, and extend avail-
ability of the examination.
Kuhl et al. [22] retrospectively compared an abbrevi-

ated 3.0 T bpMRI protocol and a full mpMRI in detect-
ing csPCa in 542 men with PSA level > 3 ng/mL and
previous negative US-guided systematic biopsy. Abbrevi-
ated bpMRI consisted of transverse T2WI and DWI
only, with total acquisition time of 8 min 45 s (compared
to 34 min 19 s of mpMRI). Using MRI-guided biopsy of
category 3–5 findings according to PI-RADS version 2,
abbreviated bpMRI detected 138 out of 139 csPCas
found with mpMRI, corresponding to a similar cancer
detection rate (25.5% versus 25.6%, respectively), and
similar sensitivity (93.9% versus 94.6%) and specificity
(87.3% versus 84.8%). Inter-reader agreement in attribut-
ing category 3 or greater was substantial (κ = 0.81), in
spite of different readers’ experience.

Fig. 5 A 66-year-old man with a serum PSA of 14.3 ng/mL. Axial T2-weighted imaging (a), ADC map (b), and calculated b = 1500 s/mm2 image (c)
showed a lesion in the left mid TZ (asterisk in a, b, c). In addition, note a BPH nodule in the right mid TZ (long arrow in a, b, c) and an ectopic
BPH nodule in the left mid PZ (short arrow in a, b, c). Computer-aided diagnosis map overlaid on the T2-weighted image (d) showed a high
cancer probability within the left mid TZ lesion (dashed arrow), whereas it showed low cancer probability within the right mid TZ BPH nodule
(long arrow) and the ectopic BPH nodule in the left mid PZ (short arrow). Final pathology revealed a Gleason 7 (3 + 4) prostate cancer within the
left mid TZ lesion (image courtesy of Dr. Baris Turkbey and Dr. Stephanie Harmon from Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA)
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Abbreviated bpMRI has been advocated as a technical
solution to face the increasing demand for prostate im-
aging [35] or to improve the effectiveness of PSA screen-
ing, as recently suggested by some authors using a
5-min MRI protocol [47]. On the other hand, abbrevi-
ated prostate MRI needs further validation and should
be investigated in terms of cost-effectiveness by balan-
cing saved costs (shorter duration and reading time, lack
of contrast injection, early diagnosis of csPCa, and re-
duced number of biopsies using the MRI-guided ap-
proach) versus those that are induced by the procedure
(examinations costs and biopsy-related costs) [22]. Fur-
thermore, it is still unknown whether abbreviated MRI is
applicable to different clinical scenarios (e.g., cancer sta-
ging) and which sequences and planes should be in-
cluded accordingly.

Less variability from human readers
Standardising the interpretation of prostate MRI with
the PI-RADS did not solve the problem of suboptimal
inter-reader agreement [19], nor eliminate cancer miss-
ing (miss rate up to 30% in some series) [48]. This might
partly depend on limitations inherent to the PI-RADS

lexicon and interpretation rules [1]. Computer-aided
diagnosis (CAD) algorithms have been increasingly studied
as a mean to potentially overcome those problems. CAD is
a form of machine learning technology, trained on real
cases to extract and classify image features, and in turn rec-
ognise intermediate- to-high-risk cancers. From a practical
point of view, CAD has the task to prompt image markers
where csPCa is likely to be present (Fig. 5) [3, 49].
In most studies, this tool has been evaluated as a radi-

ologist’s assistant, with the human reader assuming the
final decision on the nature of the findings prompted by
CAD. There are plenty of promising results in literature
in this regard, as exemplified by a recent multicentre
and multireader study in which CAD-assisted readings
across different vendors and institutions showed a sensitiv-
ity for index-lesions comparable to that of non-assisted
readings using PI-RADS version 2 [48]. CAD also helped
less experienced readers to diagnose more TZ cancers, and
reduced reading time. Whether the increase in sensitivity
affects specificity is a matter of debate, with works report-
ing it as unaltered, improved, or decreased [48, 49]. Contro-
versial results also exist about the accuracy for TZ cancers
[48], and the capability to act as a stand-alone reader

Fig. 6 Quantitative DCE imaging in a 71-year-old man undergoing pre-biopsy mpMRI for a left mid PZ cancer (Gleason score 3 + 3 on pathology
after radical prostatectomy), showing restricted diffusion on the ADC map (a) and hypointensity on T2-weighted imaging (b) (arrows). DCE
parametric maps obtained using the extended Tofts model showed markedly increased Ktrans (arrowhead in c) and Kep (arrowhead in d)
compared to the surrounding PZ (see Table 4 for details)
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compared to radiologists of variable experience [49]. Of
note, CAD is of particular help to less experienced readers
[48] and can increase inter-reader agreement [50].
CAD is a topic of the greatest interest, especially as a

tool to improve the cost-effectiveness of prostate cancer
screening. The ideal goal of CAD is to assess more csPCa
and fewer low-grade cancers [3]. Litjens et al. [51] showed
that combining PI-RADS version 1 with CAD improves
the differentiation between indolent and aggressive can-
cers compared to PI-RADS version 1 alone (area under
the curve 0.88 versus 0.78, respectively) and that this com-
bination correlates strongly with cancer grade. Moreover,
early experience with CAD suggests the potential to better
identify, compared to the human eye, the site of csPCa
showing higher aggressiveness or true tumour extension.
This might translate into guiding the biopsy to more bio-
logically relevant cancer’s foci, as well as a more precise
targeting of focal therapy to avoid incomplete ablation [3].
It should be pointed that experiences on CAD differ in

terms of algorithms, study populations, standard of ref-
erence, use or not use of PI-RADS to interpret images,
and definition of csPCa. The role for this tool is far from
being firmly established. Importantly, one can ask
whether CAD impacts on prostate MRI protocol com-
position (e.g., bpMRI versus mpMRI). As a matter of
fact, CAD includes a variety of technologies, each with
its unique approach and reference sequences to analyse
(e.g., T2WI alone, DCE alone, T2WI and DWI, T2WI
and DCE) [49]. It is difficult to establish whether pros-
tate MRI protocols should be tailored to the available
CAD model and concept, or, in contrast, CAD should be
modelled on a standard protocol.

Different-is-better strategies
One might argue that a less-is-better strategy can help pros-
tate MRI to gain wider availability for well-established clin-
ical indications. However, there is a parallel pathway of
prostate MRI development, searching for objective and
reproducible MRI-related biomarkers for the prediction of
PCa aggressiveness or overcoming inter-reader variability
[52]. Quantitative DWI- or DCE-derived techniques and
radiomics are the most exemplificative fields of research in
this regard (Fig. 6). At the same time, the increasing devel-
opment of hybrid imaging solutions prompts positron
emission tomography/MRI (PET/MRI) as a powerful com-
bination of superior soft tissue contrast with information
on tumour biology and/or nodal and bone disease [53].
Once current technical challenges will be solved, one can
regard PET/MRI as the ideal all-in-one examination to as-
sess PCa both in locoregional and panoramic terms.
Table 4 shows an overview of goals, derived parameters,

and promising achievements of these new strategies as can
be appreciated from relevant literature results [52–60]. In
general, studies on advanced techniques provide conflicting

results and are affected by limitations in design (most of
them are based on small single-centre cohorts) and lack of
technical standardisation, thus emphasising the need for
further and robust validation. Furthermore, advanced tech-
niques imply several challenges in terms of costs, availabil-
ity of technology and software for analysis, need for
expertise, scan duration, and, importantly, the number of
additional parameters that might be included in the ana-
lysis. While representing an exciting and promising frontier,
advanced techniques should be currently regarded as a
matter for research with limited probability of being incor-
porated into clinical practice in the next future.

Conclusions
The evolution of PI-RADS testifies that prostate MRI
technique and interpretation were simplified over the last
years, in line with the need to support the ever-increasing
expansion of the examination in clinical practice, and
achieve robust standardisation across different centres and
readers. Although well validated in terms of diagnostic ac-
curacy, state-of-the-art prostate MRI is based on a multi-
parametric approach combining anatomic and functional
imaging, which represents a costly, time consuming, and
somewhat poorly patient-centred standard.
Several less-is-better strategies have been proposed to

overcome the limitations of mpMRI. Of them, bpMRI is
becoming increasingly popular for detection/localisation
and staging of PCa. At the same time, parameters derived
from advanced techniques are a matter for intensive re-
search, especially as potentially reproducible imaging bio-
markers to be included, in the future, within a revised
multiparametric standard. Both approaches imply the
need for refined interpretation rules compared to those
developed by the PI-RADS using mpMRI as a reference,
thus emphasising the strict correlation between image ac-
quisition, interpretation, and reporting.
A crucial point for the evolution of prostate MRI is

how to accomplish for patient needs and the increasing
demand for the examination. The scenario in which
prostate MRI is performed will probably make the differ-
ence. Indeed, while less-is-better strategies are promising
for cancer detection, localisation, and staging in clinical
practice, different-is-better strategies better reflect the
context of academic centres, in which the investigation
of multiple parameters is supported by research activity.
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