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Abstract

This paper proposes a method to construct well-calibrated frequentist prediction regions,

with particular regard to highest prediction density regions, which may be useful for multi-

variate spatial prediction. We consider, in particular, Gaussian random fields and, using a

calibrating procedure introduced by Beran (1990) and developed by Fonseca et al. (2014),

we effectively improve the estimative prediction regions, since the coverage probability

turns out to be closer to the target nominal value. Whenever a close form expression for

the well-calibrated prediction region is not available, we may specify a simple bootstrap-

based estimator. Particular attention is dedicated to the associated improved predictive

distribution function, which can be usefully considered for identifying spatial locations

with extreme or unusual observations. A simulation study is proposed in order to com-

pare empirically the calibrated predictive regions with the estimative ones. The proposed

method is then applied to the global model assessment of a deterministic model for the

prediction of PM10 levels using data from a network of air quality monitoring stations.
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1 Introduction

In this paper we consider the problem of constructing well-calibrated frequentist prediction

regions, with particular regard to highest prediction density regions, which may be useful in

many geostatistical applications, whenever we aim at predicting unknown spatial observations

based on the available data at a finite set of sampling locations. In this context, at least

when we assume a Gaussian model, we usually define prediction intervals or prediction regions

by considering the kriging predictors, with the associated kriging variance, and by replacing

the unknown model parameters with the corresponding estimates. However, these so-called

estimative or plug-in prediction intervals and, in general, prediction regions present a coverage

probability which may differ substantially from the target nominal value, since the additional

uncertainty introduced by the plug-in procedure is not adequately taken into account. This

may lead to unreliable predictive conclusions, in particular when the dimension of the random

vector to be predicted is high with respect to the dimension of the observed sample.

With concern to univariate prediction intervals, assuming a Gaussian random field, Sjöstedt-

de Luna and Young (2003) proposes a parametric bootstrap calibration method which improves

the estimative solution so that the coverage probability turns out to be closer to the nominal

value. Extensions of the method for improved univariate prediction within non-Gaussian spatial

models are presented in De Oliveira and Rui (2009) and Schelin and Sjöstedt-de Luna (2010).

The application of these calibration methods to multivariate spatial prediction regions does not

seem to have been considered so far, even if the problem of jointly predicting new observations

at multiple spatial locations is of considerable interest in applications.

We acknowledge that improved multivariate procedures have been already defined in a more
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general setting (see, for example, Beran, 1990; Fonseca et al., 2012) and therefore the purpose of

this paper is to use one of these calibrating procedures in order to improve the coverage proba-

bility of the estimative prediction regions, and in particular of the estimative highest prediction

density regions, defined within a Gaussian random field. More precisely, we apply to this spatial

framework the improved predictive procedure suggested by Beran (1990) and developed also by

Fonseca et al. (2014). This approach is similar that one considered in Fonseca et al. (2012), but

it mainly relies on bootstrap methods instead of asymptotic arguments. Particular attention

is dedicated to the predictive distribution giving improved prediction intervals and improved

prediction regions, since it can be usefully considered for the specification of the thresholds iden-

tifying spatial locations with extreme or unusual observations. A simulation study, concerning

some Gaussian random fields, is proposed in order to compare the coverage probabilities of the

calibrated and the estimative prediction regions. Finally, the proposed method is then applied

to the global model assessment of a deterministic model for the prediction of PM10 levels using

data from a network of air quality monitoring stations.

2 Estimative prediction regions

Let us consider a stochastic process {Y (s), s ∈ ∆} with ∆ ⊂ Rp, where s indicates a spa-

tial location and p is usually not greater than 3. In particular, we assume that the pro-

cess defines a Gaussian random field with mean function µ(s; θ) = E{Y (s)} and covariance

function σ(s, t; θ) = Cov{Y (s), Y (t)}, which both exist for all s, t ∈ ∆, with θ ∈ Θ ⊆ Rk,

k ≥ 1, an unknown k-dimensional parameter. We suppose that the spatial process is ob-

served at locations s1, . . . , sn ∈ ∆ and we aim at predicting the observations at the fur-
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ther points sn+1, . . . , sn+m ∈ ∆, with n,m ≥ 1. Thus we observe the random vector Y =

(Y1, . . . , Yn)T = (Y (s1), . . . , Y (sn))T and our objective is to predict the not yet observed ran-

dom vector Z = (Z1, . . . , Zm)T = (Y (sn+1), . . . , Y (sn+m))T .

Although prediction problems may be studied from different perspectives, we focus on the

specification of a suitable α-prediction region Rα(Y ) ⊂ Rm for Z, such that

PY,Z{Z ∈ Rα(Y ); θ} = α,

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is called coverage probability

and it is calculated by considering that (Y, Z) follows a multivariate Gaussian distribution with

mean vector µ = µ(θ) = (µ1, . . . , µn+m)T and covariance matrix Σ = Σ(θ) = (σi,j)i,j=1,...,n+m,

abbreviated as (Y, Z) ∼ Nn+m(µ,Σ). Here, µi = µ(si; θ) and σi,j = σ(si, sj; θ), i, j = 1, . . . , n+

m. In the univariate case, namely when m = 1, we usually consider α-prediction intervals for

Z = Z1 or, in particular, α-prediction limits lα(Y ) such that

PY,Z{Z ≤ lα(Y ); θ} = α, (1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1).

The simplest way for making prediction on Z is to consider the joint Gaussian distribution

of (Y, Z) in order to specify a reliable prediction region, where the unknown parameter θ is

replaced by an asymptotically efficient estimator θ̂ based on Y . However, it is well-known that

prediction regions based on this estimative (plug-in) procedure are not entirely adequate predic-

tive solutions. Their effective coverage probability differs from the required value α by a term

usually of order O(n−1) and prediction statements may be rather inaccurate for small n and/or

large m or k. Hereafter, we consider the maximum likelihood estimator or any asymptotically
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equivalent alternative estimator and, for the validity of the large sample results presented in

what follows, we implicitly assume that the conditions such that θ̂− θ = Op(n
−1/2) are verified.

However, we recall that, in the spatial context, the asymptotic properties of parameter esti-

mators strongly depend on the asymptotic regime which is considered. Namely, the increasing

domain framework where the spatial domain of observation is unbounded and it grows in size

with the sample dimension n and the fixed (or infill) domain where the spatial domain is fixed

and bounded and the density of the sampling locations increases with n. Whereas under the

former regime the maximum likelihood estimators are consistent and asymptotically normal,

subject to some regularity conditions (see, for example, Mardia and Marshall, 1984), under the

latter analogous results do not hold and model parameters could not be consistently estimated

(see, for the case of Matérn covariance functions, Zhang, 2004).

Within Gaussian random field models, it is quite usual to construct estimative prediction in-

tervals from the kriging predictor and the associated minimum mean square error of prediction,

both evaluated at θ = θ̂ (see, for example, Sjöstedt-de Luna and Young, 2003). Suitable gener-

alizations of this approach are considered also for the case of multivariate prediction where the

solution is usually obtained by combining univariate kriging prediction intervals. In this case,

the associated prediction region is of rectangular form and, in addition to an unsatisfactory

coverage accuracy, it has the further drawback that the dependence among the observations to

be predicted is not adequately taken into account.

In this paper, we shall specify estimative prediction regions directly from the conditional

distribution of Z given Y = y, with density f(z|y; θ), which is an m-dimensional Gaussian dis-

tribution Nm(µZ|Y ,ΣZ|Y ), with µZ|Y = µZ +ΣZY Σ−1Y Y (y−µY ) and ΣZ|Y = ΣZZ−ΣZY Σ−1Y Y ΣY Z .
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Here, the mean vector and the covariance matrix of (Y, Z) are partitioned according to the

components Y and Z so that

µ =

 µY

µZ

 , Σ =

 ΣY Y ΣY Z

ΣZY ΣZZ

 ,

and AT and A−1 indicate, respectively, the transpose and the inverse of a matrix A.

With regard to the univariate case, where Z = Z1, it is immediate to see that Z|Y = y

follows a univariate Gaussian distribution with conditional density and distribution functions

given, respectively, by

f(z|y; θ) =
1

σZ1|Y
φ

(
z − µZ1|Y

σZ1|Y

)
, F (z|y; θ) = Φ

(
z − µZ1|Y

σZ1|Y

)
,

where µZ1|Y = µZ1|Y (θ, y) and σ2
Z1|Y = σ2

Z1|Y (θ) are given, respectively, by µZ|Y and ΣZ|Y with

Z1 instead of Z. Indeed, φ(·) and Φ(·) denote the standard normal density and distribution

functions and qα indicates the corresponding α-quantile, so that Φ(qα) = α. Then the estimative

α-prediction limit for Z corresponds to ẑα = zα(θ̂; y), which is the α-quantile of Z given Y = y

specified by zα = zα(θ; y) = µZ1|Y + qασZ1|Y and evaluated at θ = θ̂.

In the multivariate case, as suggested by Beran (1990), a simple procedure for generating a

multivariate prediction region Rα is to define a suitable real function D(z; y, θ), called the root

of the prediction region, such that

Rα = Rα(θ; y) = {z ∈ Rm : D(z; y, θ) ≤ dα},

where dα = dα(θ; y), that is the limit of the region, satisfies the following relation

F (dα|y; θ) = PZ|Y {D(Z;Y, θ) ≤ dα|Y = y; θ} = α.
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Here, with a slight abuse of notation, F (d|y; θ) is the conditional distribution function of D =

D(Z;Y, θ) given Y = y and PZ|Y (·|Y = y; θ) corresponds to the probability distribution of Z

given Y = y under the true parameter value θ. Since Rα depends on the unknown parameter

θ, we consider the associated plug-in estimator R̂α = Rα(θ̂; y), called estimative (plug-in)

prediction region. Note that this multidimensional predictive procedure is quite general and

the only practical requirement for the root D(z; y, θ) is that the resulting region turns out to

be bounded.

In particular, if we are interested in highest prediction density regions, we may define a

region by profiling the conditional density of Z given Y = y, that is by assuming D(z; y, θ) =

−f(z|y; θ), or equal to any decreasing function of f(z|y; θ). Then, for a Gaussian random

field, we can equivalently consider D(Z;Y, θ) = (Z − µZ|Y )TΣ−1Z|Y (Z − µZ|Y ), which is a pivotal

quantity with respect to θ, following a chi-squared distribution with m degrees of freedom,

abbreviated as χ2(m). Thus, we have that

Rα = {z ∈ Rm : (z − µZ|Y )TΣ−1Z|Y (z − µZ|Y ) ≤ dα},

where the limit dα is now free of θ and corresponds to χ2
α, namely the α-quantile of the χ2(m)

distribution. Since Rα depends on the unknown parameter θ, we use the associated plug-in

estimator R̂α = Rα(θ̂; y), called estimative highest prediction density region. Although we

follow here the frequentist approach, we adopt this terminology, which is commonly used in the

Bayesian context for posterior distributions, also for the estimated conditional density of the

future random vector Z. Note that, at least in the Gaussian case, this region for m = 2 has an

elliptical form, while, for m = 1, we obtain a prediction interval which corresponds to that one

derived from the estimative prediction limits defined above. Moreover, this choice for the root
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D(Z;Y, θ) is very convenient, since the associated conditional distribution is known under the

true parameter value θ.

Finally, we mention the fact that, also within a non-Gaussian spatial model it is possible

to specify highest prediction density regions, even if the conditional distribution of the root

D(Z;Y, θ) could be difficult or impossible to obtain. In this case we may approximate the

unknown probability distribution using a bootstrap procedure, as suggested by Beran (1990),

or we may consider an alternative expression for D(Z;Y, θ), usually a simple approximation for

−f(z|y; θ) with a known probability distribution (see, for the case with Y and Z independent,

Fonseca et al., 2012, Section 5.2). Furthermore, it could be useful to specify the root as

a different univariate summary statistic of the not yet observed random vector Z, such as∑m
i=1 hi(Zi), with hi(·) a suitable real-valued function. Although prediction may not be simple,

since we could not apply directly the Gaussian process theory, in this case the problem comes

back in the univariate framework and it may be solved by considering the univariate conditional

distribution of the summary statistic given Y = y, which can be known at lest approximatively

or, if necessary, estimated using simulation-based methods. As a remarkable example, we

may consider the problem of predicting the spatial average of a Gaussian random field over

a subset of the region of interest ∆ (see, for example, De Oliveira and Kone, 2015). In this

case, according to the L2 integration theory for random fields, the spatial average is a random

variable defined as a stochastic integral, which can be approximated by a weighted average of

(future) observations for the random field in suitable multiple locations inside the integration

domain.
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3 Calibrated prediction regions and distributions

The calibrating approach proposed by Fonseca et al. (2014), extending that one suggested by

Beran (1990), provides predictive distribution functions which give, as quantiles, prediction

limits with well-calibrated coverage probability. Thus, the coverage error turns out to be

substantially reduced, with respect to that one given by the estimative solution. This proposal

is here applied to the case of Gaussian random fields, by considering the estimative prediction

limit ẑα and the estimative prediction region R̂α defined in the previous section.

We initially consider the univariate case. The estimative prediction limit may be interpreted

as the α-quantile of the estimative distribution function F (z|y; θ̂), namely ẑα = F−1(α|y; θ̂),

where F−1(·|y; θ̂) is the inverse of function F (·|y; θ̂). The associated coverage probability is

such that

PY,Z(Z ≤ ẑα; θ) = EY {F (ẑα|Y ; θ); θ} = C(α, θ), (2)

where the expectation is with respect to the distribution of Y under θ. An explicit expression

for the coverage probability is rarely available, but it is known that it does not match the target

value α. Whenever the asymptotic behaviour of the estimator θ̂ is such that θ̂− θ = Op(n
−1/2),

we find that C(α, θ) = α + Er(α, θ) + o(n−1), as n → +∞. Thus, there is a coverage error

Er(α, θ), usually of order O(n−1), which is not negligible. For Gaussian models, a general

expression for the first-order error term may be obtained (see, for example, Sjöstedt-de Luna and

Young, 2003; Giummolè and Vidoni, 2010) but its explicit specification requires a substantial

computational effort.
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In this framework, Fonseca et al. (2014) prove that the function

Fc(z|y; θ̂, θ) = C{F (z|y; θ̂), θ},

obtained by substituting α with F (z|y; θ̂) in C(α, θ), is a proper predictive distribution function,

at least in regular parametric models. Moreover, it gives, as quantiles, prediction limits zcα =

zcα(θ̂, θ; y) having coverage probability exactly α, for all α ∈ (0, 1). The proof is straightforward,

since, for each α ∈ (0, 1),

zcα = F−1c (α|y; θ̂, θ) = F−1{C−1(α, θ)|y; θ̂} = ẑαc ,

with αc = C−1(α, θ), where C−1(·, θ) and F−1c (·|y; θ̂, θ) are the inverse of functions C(·, θ) and

Fc(·|y; θ̂, θ), respectively. The limit zcα corresponds to the calibrated prediction limit defined by

Beran (1990) and it fulfils relation (1) exactly.

Although interesting from a theoretical point of view, the calibrated predictive distribution

Fc(z|y; θ̂, θ), depending on the unknown parameter θ, is in fact useless. For this reason, we may

consider the corresponding plug-in estimator

F̂c(z|y; θ̂) = C{F (z|y; θ̂), θ̂},

which gives, for each α ∈ (0, 1), prediction limits ẑcα = zcα(θ̂, θ̂; y) improving the estimative

ones, since they satisfy (1) with an error term of order o(n−1), as proved by Beran (1990) under

suitable regularity conditions.

This predictive procedure is easily applicable when an explicit expression for the coverage

probability C(α, θ) is available, at least to order O(n−1). In this case, F̂c(z|y; θ̂) corresponds,

to the relevant order of approximation, to the predictive distribution proposed by Barndorff-

Nielsen and Cox (1996) and Vidoni (1998), using asymptotic calculations. However, these
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asymptotic solutions are usually not easy to obtain, so that, as a useful, simpler alternative,

we can define a parametric bootstrap estimator for Fc(z|y; θ̂, θ). Let y∗b , b = 1, . . . , B, be

parametric bootstrap samples generated from the distribution of Y , assuming θ = θ̂, and let θ̂∗b ,

b = 1, . . . , B, be the corresponding maximum likelihood estimates. Since C(α, θ) is defined in

(2) as a suitable expectation, we may calculate the bootstrap-calibrated predictive distribution

as

F̃c(z|y; θ̂) =
1

B

B∑
b=1

F (ẑ∗α,b|y∗b ; θ̂)|α=F (z|y;θ̂),

where ẑ∗α,b = zα(θ̂∗b ; y
∗
b ). The corresponding α-quantile defines, for each α ∈ (0, 1), a prediction

limit having coverage probability equal to the target value α, with an error term which depends

on the efficiency of the bootstrap simulation procedure.

This approach can be readily applied for improving the estimative prediction region R̂α =

Rα(θ̂;Y ), which has coverage probability

PY,Z{Z ∈ Rα(θ̂;Y ); θ} = EY [PZ|Y {Z ∈ Rα(θ̂;Y )|Y ; θ}; θ]

= EY {F̂ (d̂α|Y ; θ); θ} = K(α, θ).

Here, F̂ (d|y; θ) is the conditional distribution function of D̂ = D(Z;Y, θ̂) given Y = y, with

θ the true parameter value, and the quantity, d̂α is such that F̂ (d̂α|Y ; θ̂) = α. Note that,

with the highest prediction density region, d̂α = χ2
α and both the conditional distribution

of D = (Z − µZ|Y )TΣ−1Z|Y (Z − µZ|Y ) under θ and the conditional distribution of D̂ = (Z −

µ̂Z|Y )T Σ̂−1Z|Y (Z − µ̂Z|Y ) under θ̂ follow a χ2(m) distribution. On the other hand, this is not

true for the conditional distribution of D̂ under θ. Here, as usual, a hat means evaluation at

θ = θ̂. Furthermore, the coverage probability K(α, θ), as already mentioned, does not match

the target value α, since F̂ (d̂α|Y ; θ) turns out to be different from α. Thus, as expected, we
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find for R̂α the same drawback of the estimative prediction limit introduced in the univariate

case.

A simple general procedure, which gives calibrated estimative prediction regions, achieving

exactly the target coverage probability α, for all α ∈ (0, 1), can be derived as in the unidi-

mensional case. In particular, we define the calibrated conditional distribution function for D̂

as

F̂c(d|y; θ̂, θ) = K{F̂ (d|y; θ̂), θ}, (3)

which is obtained by substituting α with F̂ (d|y; θ̂) in K(α, θ). Function (3) is a proper distribu-

tion function and the associated α-quantile dcα = dcα(θ̂, θ; y) determines the calibrated estimative

prediction region

Rc
α = Rc

α(θ̂, θ; y) = {z ∈ Rm : D(z; y, θ̂) ≤ dcα},

having coverage probability equal to the target value α. The proof is straightforward and it is

similar to that one presented for the calibrated estimative prediction limit.

Since an explicit, exact or approximate, expression for the coverage probability K(α, θ) is

usually not available, also function (3) is not explicitly known. Thus, it has to be properly

estimated using, for example, a parametric bootstrap simulation procedure similar to that

one previously outlined for the univariate case. More precisely, let (y∗b , z
∗
b ), b = 1, . . . , B, be

parametric bootstrap samples generated from the distribution of (Y, Z), assuming θ = θ̂, and

let θ̂∗b , b = 1, . . . , B, be the corresponding maximum likelihood estimates based on y∗b . If we

consider the highest prediction density region, the bootstrap estimator for (3) is

F̃c(d|y; θ̂) =
1

B

B∑
b=1

1E∗
b
(z∗b )|α=F̂ (d|y;θ̂), (4)
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with 1E∗
b
(·) the indicator function of the set E∗b = {z ∈ Rm : D(z; y∗b , θ̂

∗
b ) ≤ χ2

α}. Note that

F̃c(d|y; θ̂) may be viewed as the empirical distribution function obtained from the bootstrap

sample d∗b = D(z∗b ; y
∗
b , θ̂
∗
b ), b = 1, . . . , B. The associated α-quantile defines, for each α ∈ (0, 1), a

quantity which specifies a prediction region with the required coverage probability, with an error

term which depends on the efficiency of the bootstrap simulation procedure. The bootstrap-

based estimate (4) is different from that one considered in the univariate case and it is more

involved, since the simulated values for Z are also required. As emphasized before, using the

highest prediction density region, the conditional distribution of D̂ under θ is not a χ2(m)

distribution and then, contrary to the univariate case, the function F̂ (d|y; θ), which is required

for calculating K(α, θ), is not available.

Moreover, it is important to notice that the computation of the bootstrap estimate (4)

for the calibrated conditional distribution function does not require neither assumptions on

the regularity of the parametric model nor the validity of the usual asymptotic results for

the estimator θ̂. Thus, it provides a generalization with respect to the improved predictive

procedures based on asymptotic arguments and it can be usefully considered also when the

spatial asymptotic regime, as in the fixed domain case, does not assure the validity of the

standard large sample properties for θ̂. In this bootstrap-based predictive framework, the

accuracy of the predictive solution mainly depends on the efficiency of the bootstrap simulation

technique, which is clearly related to the quality of the estimator for the model parameter θ.

A further interesting application of these improved predictive distributions concerns the

problem of identifying spatial locations where the process of interest presents an extreme or an

unusual observed value. In this context, whenever a threshold defining the exceedance is not
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specified or not even rationally specifiable, we could qualify a new univariate or multivariate

observation zobs, related to further locations, according to the associated predictive distribution

for Z given the observed spatial data y. With a slight abuse of notation, we set as zobs this

vector of further observations even though, in this case, it is actually part of a larger observed

dataset, which includes also the observations y.

More precisely, in the univariate case, we shall classify zobs as an unusual high or low

observation by considering the probability of observing a value for Z higher or lower than zobs,

which can be efficiently estimated by 1− F̃c(zobs|y; θ̂) or F̃c(zobs|y; θ̂), respectively. A low value

for one of these probabilities identifies a potential extreme observation. In the multivariate case,

using the highest prediction density region, the observation zobs is considered as extreme with

regard to the probability of observing a value for D̂ higher than dobs = (zobs− µ̂Z|Y )T Σ̂−1Z|Y (zobs−

µ̂Z|Y ), which is accurately estimated by 1 − F̃c(dobs|y; θ̂). Here, the exceedance is interpreted

as a substantial distance from the mean µ̂Z|Y , without specifying a particular direction. In

both cases, we evaluate these probabilities by considering the calibrated predictive distribution

function, usually estimated using a bootstrap-based procedure, which provides more accurate

predictive statements than those given by the estimative predictive distribution function.

Finally, although in this paper we consider Gaussian models and functions D(z; y, θ) which

are usually pivotal quantities, we underline that the improved procedures presented in this

section can be applied also to non-Gaussian models and to more general root functions D. An

additional computational effort will be usually required in order to estimate, using simulation-

based methods, the conditional distribution function of D̂ under θ̂, from which we obtain the

estimative limit d̂α.
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4 A review of further calibration procedures

The bootstrap calibrated procedure considered in the present paper, for improved prediction in

Gaussian random fields, is quite general, relatively simple to apply and effective in a number of

applications, including potentially also the case of observations collected under the fixed domain

asymptotic regime. However, other calibration procedures have been proposed in the spatial

framework, with particular regard to the one-dimensional case. All these procedures share the

objective of improving the estimative predictive solution and they are based on the evaluation

of the associated coverage probability, which is usually different from the target probability α.

In this review section, we focus on prediction intervals and prediction limits, since the problem

of specifying multivariate prediction regions reduces to a problem in one dimension, by using a

suitable root function defined as a univariate summary of the future sample Z.

As emphasized at the beginning of Section 3, with concern to the univariate case, the

coverage probability of the estimative prediction limit ẑα is a quantity C(α, θ), defined as in (2),

which does not match the target value α. A first calibration strategy consist in finding the value

αc ∈ (0, 1) such that C(αc, θ) = α, exactly or approximately, and using ẑαc instead of ẑα, since

in this case we obviously achieve the target probability α. Whenever the coverage probability is

not explicitly known, it can be estimated using, for example, a parametric bootstrap procedure.

This simple calibration technique, called indirect by Ueki and Fueda (2007), was discussed in

Beran (1990) and applied by Sjöstedt-de Luna and Young (2003) and De Oliveira and Rui

(2009) to Gaussian and log-Gaussian random field models, respectively.

The improved predictive solution considered in this paper generalizes, in some sense, this

first simple solution, since the calibrated predictive distribution Fc(z|y; θ̂, θ) is defined as C(α, θ)
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evaluated at α = F (z|y; θ̂) and it gives, as quantiles, prediction limits zcα = zcα(θ̂, θ; y) having

coverage probability exactly α, for all α ∈ (0, 1). In Section 3 we prove that zcα = ẑαc and then

we conclude that the improved prediction limits defined before can be obtained as quantiles of

this improved predictive distribution. Note that these two strategies do not involve asymptotic

arguments and they are widely applicable. Whenever the coverage probability is unknown, the

accuracy of the improved prediction limits depends on the efficiency of the simulation-based

procedure which is considered for estimating C(α, θ).

A further calibration strategy, called direct by Ueki and Fueda (2007), aims at defining

an explicit modification for the estimative prediction limit, so that the associated coverage

probability turns out to be equal to the target α with a high degree of accuracy. These

solutions are based on suitable asymptotic expansions and they require regularity assumptions,

assuring the usual large sample properties for the estimator θ̂. More precisely, assuming the

√
n-consistency for θ̂, we find that C(α, θ) = α + Er(α, θ) + o(n−1), where the coverage error

term Er(α, θ) is usually of order O(n−1).

In order to improve the estimative solution, Barndorff-Nielsen and Cox (1996) and Vidoni

(1998) define the modified estimative prediction limit ẑα − Er(α, θ̂)/f(ẑα|y; θ̂), which reduces

the coverage error to order o(n−1). Moreover, it is not difficult to prove that the distribution

function which gives this modified limit as α-quantile is F (z|y; θ̂) + Er(F (z|y; θ̂), θ̂), which is

an high-order approximation for the calibrated predictive distribution Fc(z|y; θ̂, θ).

Although with this strategy we improve the coverage accuracy of the estimative solution, the

evaluation of the fundamental term Er(α, θ) may require complicated asymptotic calculations.

For Gaussian models, a general expression for this term is obtained by Sjöstedt-de Luna and

16



Young (2003) and Giummolè and Vidoni (2010). To overcame this computational difficulty,

Ueki and Fueda (2007) define the following asymptotically equivalent expression for the modi-

fying term of the estimative prediction limit, namely Er(α, θ)/f(zα|y; θ) = zC(α,θ)−zα+o(n−1),

and consequently the equivalent expression 2ẑα − ẑC(α,θ) for the modified estimative prediction

limit. Here the computation is greatly simplified, since we need only a simulation-based estimate

for the coverage probability C(α, θ). With regard to this particular predictive strategy, Fonseca

et al. (2012) find a simplified expression for the associated predictive distribution function and

present an application to multivariate prediction regions based on univariate summaries, by

considering the case of independence between Y and Z.

5 A simple simulation study

In this section we carry out a simple simulation study in order to compare the coverage prob-

ability of the plug-in highest prediction density regions with that one of the well-calibrated

highest prediction density regions specified in this paper. In particular, we repeatedly simulate

realizations of a Gaussian random field at n sampling locations uniformly distributed over a

region ∆ ⊂ R2. We consider a mean function µ(s; θ) = β0 +β1sx +β2sy, with s = (sx, sy) ∈ ∆,

β0, β1, β2 ∈ R, an isotropic exponential covariance function σ(s, t; θ) = σ2 exp(− ‖ s− t ‖ /φ),

with s, t ∈ ∆, σ2, φ > 0 and ‖ · ‖ the Euclidean norm, and a nugget effect specified by τ 2 ≥ 0.

Thus, following the notation adopted in Section 2, we consider a particular Gaussian random

field with model parameter θ = (θ1, . . . , θ6) = (β0, β1, β2, σ
2, φ, τ 2).

We run the simulation experiments using two alternative designs that mimic, respectively,

the increasing domain and the fixed domain asymptotic regimes. In the first case, we simulate
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data at n = 50, 100, 200 sampling locations in the corresponding nested regions ∆50 = [4, 6]×

[4, 6], ∆100 = [2, 8] × [2, 8] and ∆200 = [0, 10] × [0, 10]. In the second case, we generate n =

50, 100, 200 observation, uniformly distributed in the same fixed sampling region ∆ = [4, 6] ×

[4, 6]. In both sampling designs, we aim at predicting m = 1, 5, 10, 25 observations at the further

m locations uniformly distributed over the smallest nested region ∆. Notice that, whenever

m = 1, we obtain one-dimensional centred prediction intervals.

We estimate the coverage probabilities for the estimative and the calibrated highest predic-

tion density regions of level α = 0.9, 0.95 using 1, 000 Monte Carlo samples from the Gaussian

random field previously defined with β0 = 1, β1 = 2, β2 = 1.5, σ2 = 1 and (a) φ = 0.3,

τ 2 = 0.25, (b) φ = 0.3, τ 2 = 0, (c) φ = 0.8, τ 2 = 0.25, (d) φ = 0.8, τ 2 = 0. In order to obtain

the calibrated prediction regions, we generate, for each simulated sample, B = 500 further

parametric bootstrap samples. Indeed, the unknown parameters are estimated using maximum

likelihood estimators, which are proved to be consistent under the increasing domain asymp-

totic regime. As we recall in Section 2, this is not valid under the fixed domain asymptotic

regime.

The results are presented in Table 1, for the increasing domain case, and in Table 2, for

the fixed domain case. They show that, in almost all the sampling experiments, the improved

prediction regions remarkably improve on the estimative ones. However, when we consider

τ 2 = 0, we observe that, for large m values, also the improved prediction regions fail to reach

the target coverage probability, even if this unsatisfactory behaviour reduces as n increases. In

general, we note that both coverage probabilities deteriorate when n is low and m grows, but

the deterioration is substantially reduced for calibrated prediction regions. Since the simulation
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procedure is very time-consuming, we are forced to consider a moderate number simulated

samples and this causes a non negligible variability in the estimation procedure.

The theoretical findings presented in the preceding sections turn out to be confirmed by

this simple Monte Carlo experiment. Moreover, at least for the parameter values specified in

this simulation study, the coverage results for both the estimative and the calibrated prediction

regions do not seem influenced by the different asymptotic regimes. These empirical findings do

not have general validity and they confirm that, in some situations, the asymptotic performance

of the predictive procedure improves as n increases also within the fixed domain asymptotic

regime (see, for example, Sjöstedt-de Luna and Young, 2003, Section 8).

[Table 1 about here.]

[Table 2 about here.]

Furthermore, in Figure 1, we display the plug-in conditional distribution functions of D̂ given

Y = y, which corresponds in this case to χ2(m) distributions, and the associated calibrated

conditional distribution functions of D̂ given Y = y, defined by (3) and estimated using a

parametric bootstrap procedure based on 10, 000 simulated samples.

[Figure 1 about here.]

We base our analysis on a single sample of dimension n = 50 obtained from a Gaussian

random field, defined as before, with β0 = 1, β1 = 2, β2 = 1.5, σ2 = 1, φ = 0.3, τ 2 = 0.25. We

consider highest prediction density regions of dimension m = 1, 5, 10, 25. It is immediate to

see that the two distribution functions are definitely different and that the difference notably
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increases with m. In particular, given a future observation zobs, the probability of observing a

value for D̂ not greater than dobs = (zobs − µ̂Z|Y )T Σ̂−1Z|Y (zobs − µ̂Z|Y ) is systematically overesti-

mated whenever we use the plug-in distribution function instead of the calibrated one. Similar

results are obtained by assuming different values for the parameters and the unsatisfactory per-

formance of the plug-in solution substantially maintains, even if we consider observed samples

with a larger dimension n.

6 An application to air quality prediction

The spatial prediction of air quality levels is a relevant issue both under the regulatory point

of view (Parliament of the European Union and Council of the European Union, 2008) and in

terms of public health impact evaluation (WHO, 2004, 2006a,b).

Eulerian deterministic air pollution models combine meteorology records, emission invento-

ries, characterization of chemical and physical processes in the atmosphere to give predictions

of air pollution levels usually over a fine grid of locations. They are an essential tool to evaluate

the impact of pollution control strategies or of new sources of air pollution (e.g. road, power

plants, etc.). A deterministic model needs to be assessed using observed pollution data (Fuentes

et al., 2003) usually measured by a network of air quality monitoring stations.

The use of the improved prediction method previously described is here illustrated by con-

sidering the annual average concentration levels of PM10 in the Lombardy region, Italy (Cecconi

et al., 2016). The Lombardy region is located in Northern Italy and it is historically character-

ized, at least in its flat and more densely populated part (the Po river basin), by high levels of

air pollution and, more specifically, by very high levels of PM10 (Baccini et al., 2015).
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Predicted values of PM10 concentration levels have been derived, using a deterministic

Eulerian photochemical model (Silibello et al., 2008), over a regular 16×16 km grid (which

was, originally, a 4×4 km grid) covering the flat part of the region (see Figure 2 (a)). Thus, a

total of 65 prediction points have been considered.

Observed data, referred to 2007, are based on 58 monitoring stations mainly located in

urban areas (see Figure 2 (b)).

[Figure 2 about here.]

The present analysis aims at assessing the prediction ability of the Eulerian photochemical

model using observed data from monitor stations. Following the proposal of Fuentes et al.

(2003), we will use monitor data to predict pollution levels on the same grid used for deter-

ministic prediction. Then, using both the estimative predictive distribution and the calibrated

predictive distribution proposed in this paper, we will obtain two different evaluations of the

degree of consistency of the predictions given by the deterministic model.

In accordance with the literature on spatial modeling of air pollution levels (see, for example,

Cameletti et al., 2013), we assume that the logarithm transformations of the PM10 concentra-

tion levels, measured at the monitoring stations, are a realization of a Gaussian random field

with unknown covariance function. Figure 3 reports the empirical variogram and the maxi-

mum likelihood estimate of the most frequently used variogram models based on the available

concentration levels. Goodness of fit of the fitted models was evaluated using cross-validation.

Both the exponential and the complete Matérn models show a good fit (indeed the difference

between them is negligible), and the first one is used for the specification of the Gaussian

random field. We have then considered the predicted concentration levels referred to the 65
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prediction points, computed according to the Eulerian photochemical model, as a new multi-

variate observation zobs. Its agreement with monitor data has been appraised by computing

the corresponding pivotal quantity dobs and evaluating it under both the plug-in χ2 distribution

and the calibrated predictive distribution (3), estimated by using 10, 000 parametric bootstrap

simulated samples.

[Figure 3 about here.]

As can be seen from Figure 4, the value of the pivotal quantity dobs can be considered high

under both the distributions. However, the order of magnitude is completely different. Indeed,

the probability of observing a value greater than the observed one is 0.006 under the plug-in

distribution, clearly showing a very high degree of inconsistency of the multivariate value zobs

given by the deterministic model. On the contrary, the same probability corresponds to 0.091,

when we consider the calibrated conditional distribution. Although low, this value is higher

than the conventional 0.05 level, generally used as a cut-off.

Thus, the estimative and the improved procedures can bring two different results: with the

first, we would conclude against the validity of the Eulerian model, while with the second we

get a sufficient level of agreement between the Eulerian and the spatial statistical model. This

evidence supports as-well the relevance and the necessity of a suitable calibration technique in

order to improve the accuracy of predictive methods.

[Figure 4 about here.]
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7 Conclusion

Spatial prediction is one of the main tasks of geostatistics. The usual procedure when a Gaus-

sian model is defined is based on kriging prediction, using estimates in place of the unknown

parameter values. As a consequence, the uncertainty on the estimated parameter values is not

taken into account, and this leads to prediction intervals and regions with coverage probability

usually lower than the nominal one.

We have developed a method to construct well-calibrated frequentist prediction regions

based on the calibrating procedure proposed by Beran (1990) and developed by Fonseca et al.

(2014). The performance of the proposed procedure has been evaluated by means of a simula-

tion study that clearly indicates that the proposed calibration method outperforms the standard

estimative procedure. The two methods have also been used to compare geostatistical predic-

tions of PM10 annual mean levels based on a network of monitoring stations and those coming

from a deterministic Eulerian photochemical model. Again, the results indicate the need for

calibration to avoid inaccurate conclusions based on too narrow prediction regions.

This calibration method can be easily generalized to more complex situations, such as the

joint prediction of more than one variable (Ver Hoef and Cressie, 1993) and prediction in spatial

regression models and in a more general space-time framework (Heuvelink et al., 2015).
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Table 1: Gaussian random field with isotropic exponential covariance function and β0 = 1,

β1 = 2, β2 = 1.5, σ2 = 1 (a) φ = 0.3, τ 2 = 0.25, (b) φ = 0.3, τ 2 = 0, (c) φ = 0.8, τ 2 = 0.25, (d)

φ = 0.8, τ 2 = 0. Coverage probabilities for the plug-in and the calibrated highest prediction

density regions of level α = 0.9, 0.95, with m = 1, 5, 10, 25. Estimation is based on 1,000 Monte

Carlo samples of dimension n = 50, 100 and further B = 500 bootstrap samples. Estimated

standard errors are smaller than 0.015. Asymptotic regime: increasing domain.

(a) (b) (c) (d)

α n m Plug-in Calib Plug-in Calib Plug-in Calib Plug-in Calib

0.9 50 1 0.848 0.897 0.846 0.901 0.856 0.905 0.868 0.905

5 0.837 0.893 0.865 0.912 0.835 0.900 0.889 0.913

10 0.804 0.898 0.854 0.922 0.791 0.895 0.870 0.927

25 0.738 0.912 0.793 0.924 0.716 0.903 0.829 0.935

100 1 0.904 0.907 0.896 0.910 0.905 0.909 0.909 0.913

5 0.881 0.908 0.908 0.918 0.878 0.897 0.920 0.914

10 0.853 0.885 0.876 0.889 0.849 0.881 0.901 0.899

25 0.811 0.887 0.871 0.918 0.811 0.880 0.903 0.913

200 1 0.892 0.889 0.892 0.891 0.897 0.889 0.896 0.888

5 0.887 0.894 0.902 0.906 0.886 0.894 0.913 0.903

10 0.860 0.898 0.893 0.898 0.859 0.888 0.905 0.899

25 0.846 0.888 0.878 0.901 0.834 0.886 0.906 0.909

0.95 50 1 0.920 0.941 0.918 0.940 0.917 0.949 0.921 0.950

5 0.903 0.953 0.919 0.951 0.904 0.953 0.926 0.960

10 0.873 0.949 0.913 0.962 0.866 0.940 0.926 0.966

25 0.811 0.959 0.862 0.963 0.793 0.954 0.886 0.969

100 1 0.951 0.957 0.948 0.955 0.955 0.956 0.954 0.953

5 0.936 0.953 0.946 0.955 0.930 0.951 0.954 0.954

10 0.909 0.932 0.928 0.940 0.899 0.933 0.939 0.942

25 0.882 0.939 0.921 0.956 0.877 0.937 0.942 0.955

200 1 0.948 0.950 0.945 0.946 0.947 0.944 0.953 0.947

5 0.935 0.941 0.947 0.946 0.930 0.942 0.952 0.944

10 0.926 0.942 0.947 0.951 0.919 0.945 0.953 0.951

25 0.899 0.934 0.935 0.953 0.893 0.931 0.951 0.955
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Figure 1: Conditional distribution functions of D̂ given Y = y based on a sample of dimension

n = 50 obtained from a Gaussian random field with isotropic exponential covariance function

and β0 = 1, β1 = 2, β2 = 1.5, σ2 = 1, φ = 0.3, τ 2 = 0.25: calibrated conditional distribution

function (solid line), estimated using 10, 000 parametric bootstrap simulated samples, and plug-

in conditional distribution function (dashed line) for m = 1, 5, 10, 25.
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Table 2: Gaussian random field with isotropic exponential covariance function and β0 = 1,

β1 = 2, β2 = 1.5, σ2 = 1 (a) φ = 0.3, τ 2 = 0.25, (b) φ = 0.3, τ 2 = 0, (c) φ = 0.8, τ 2 = 0.25, (d)

φ = 0.8, τ 2 = 0. Coverage probabilities for the plug-in and the calibrated highest prediction

density regions of level α = 0.9, 0.95, with m = 1, 5, 10, 25. Estimation is based on 1,000 Monte

Carlo samples of dimension n = 50, 100 and further B = 500 bootstrap samples. Estimated

standard errors are smaller than 0.015. Asymptotic regime: fixed domain.

(a) (b) (c) (d)

α n m Plug-in Calib Plug-in Calib Plug-in Calib Plug-in Calib

0.9 50 1 0.870 0.899 0.888 0.908 0.868 0.901 0.899 0.909

5 0.850 0.901 0.863 0.902 0.836 0.891 0.883 0.914

10 0.809 0.908 0.862 0.924 0.808 0.902 0.891 0.929

25 0.742 0.895 0.820 0.918 0.729 0.886 0.857 0.928

100 1 0.896 0.910 0.895 0.908 0.902 0.907 0.908 0.910

5 0.889 0.911 0.900 0.915 0.891 0.911 0.905 0.914

10 0.876 0.896 0.882 0.902 0.872 0.900 0.898 0.904

25 0.820 0.895 0.869 0.910 0.821 0.897 0.890 0.914

200 1 0.893 0.891 0.892 0.890 0.898 0.897 0.892 0.891

5 0.900 0.909 0.915 0.912 0.905 0.914 0.914 0.911

10 0.879 0.901 0.905 0.909 0.880 0.903 0.909 0.910

25 0.865 0.891 0.897 0.905 0.869 0.895 0.903 0.905

0.95 50 1 0.932 0.946 0.938 0.947 0.931 0.949 0.944 0.948

5 0.905 0.951 0.918 0.955 0.896 0.949 0.934 0.955

10 0.887 0.957 0.920 0.962 0.881 0.952 0.941 0.965

25 0.815 0.941 0.872 0.960 0.803 0.931 0.906 0.967

100 1 0.952 0.961 0.954 0.960 0.953 0.957 0.953 0.960

5 0.936 0.954 0.938 0.954 0.941 0.957 0.946 0.957

10 0.923 0.944 0.927 0.945 0.922 0.944 0.936 0.948

25 0.887 0.948 0.918 0.953 0.890 0.948 0.934 0.956

200 1 0.942 0.946 0.942 0.950 0.947 0.948 0.947 0.946

5 0.940 0.945 0.948 0.947 0.939 0.946 0.950 0.949

10 0.929 0.945 0.939 0.941 0.934 0.949 0.944 0.943

25 0.909 0.942 0.941 0.952 0.913 0.946 0.949 0.952
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Figure 2: (a)Grid with 65 spatial locations used for prediction with PM10 concentration lev-

els derived from the Eulerian photochemical model and (b) Monitor locations and measured

concentration levels of PM10 (µg/m3) in the Lombardy region in 2007.
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Figure 3: Empirical variogram (dots) and maximum likelihood estimates of theoretical vari-

ograms based on alternative models. Data on the concentration levels of PM10 (µg/m3) in the

Lombardy region in 2007.
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Figure 4: Conditional distribution functions of D̂ given Y = y based on a sample of dimension

n = 58 obtained from a Gaussian random field with isotropic exponential covariance function

and parameters equal to the estimated ones: calibrated predictive distribution function (solid

line), estimated using 10, 000 parametric bootstrap simulated samples, and plug-in predictive

distribution function (dashed line). The vertical line corresponds to the observed value of the

pivotal quantity dobs, computed using the predicted values given by the Eulerian photochemical

model.
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