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Abstract

In the present PhD thesis we deal with the study of the existence, multiplicity and complex
behaviors of solutions for some classes of boundary value problems associated with second
order nonlinear ordinary differential equations of the form

u′′ + f(u)u′ + g(t, u) = s, t ∈ I, (?)

or
u′′ + g(t, u) = 0, t ∈ I, (??)

where I is a bounded interval, f : R → R is continuous, s ∈ R and g : I × R → R is a
perturbation term characterizing the problems.

The results carried out in this dissertation are mainly based on dynamical and
topological approaches. The issues we address have arisen in the field of partial differential
equations. For this reason, we do not treat only the case of ordinary differential equations,
but also we take advantage of some results achieved in the one dimensional setting to
give applications to nonlinear boundary value problems associated with partial differential
equations.

In the first part of the thesis, we are interested on a problem suggested by Antonio
Ambrosetti in “Observations on global inversion theorems” (2011). In more detail, we
deal with a periodic boundary value problem associated with (?) where the perturbation
term is given by g(t, u) := a(t)φ(u)− p(t). We assume that a, p ∈ L∞(I) and φ : R→ R
is a continuous function satisfying lim|ξ|→∞ φ(ξ) = +∞. In this context, if the weight
term a(t) is such that a(t) ≥ 0 for a.e. t ∈ I and

∫
I a(t) dt > 0, we generalize the

result of multiplicity of solutions given by C. Fabry, J. Mawhin and M.N. Nakashama
in “A multiplicity result for periodic solutions of forced nonlinear second order ordinary
differential equations” (1986). We extend this kind of improvement also to more general
nonlinear terms under local coercivity conditions. In this framework, we also treat in
the same spirit Neumann problems associated with second order ordinary differential
equations and periodic problems associated with first order ones.

Furthermore, we face the classical case of a periodic Ambrosetti-Prodi problem with a
weight term a(t) which is constant and positive. Here, considering in (??) a nonlinearity
g(t, u) := φ(u)−h(t), we provide several conditions on the nonlinearity and the perturbative
term that ensure the presence of complex behaviors for the solutions of the associated
T -periodic problem. We also compare these outcomes with the result of stability carried
out by Rafael Ortega in “Stability of a periodic problem of Ambrosetti-Prodi type” (1990).
The case with damping term is discussed as well.

In the second part of this work, we solve a conjecture by Yuan Lou and Thomas Nagylaki
stated in “A semilinear parabolic system for migration and selection in population genetics”
(2002). The problem refers to the number of positive solutions for Neumann boundary value
problems associated with (??) when the perturbation term is given by g(t, u) := λw(t)ψ(u)
with λ > 0, w ∈ L∞(I) a sign-changing weight term such that

∫
I w(t) dt < 0 and

ψ : [0, 1]→ [0,∞[ a non-concave continuous function satisfying ψ(0) = 0 = ψ(1) and such
that the map ξ 7→ ψ(ξ)/ξ is monotone decreasing.

In addition to this outcome, other new results of multiplicity of positive solutions are
presented as well, for both Neumann or Dirichlet boundary value problems, by means of
a particular choice of indefinite weight terms w(t) and different positive nonlinear terms
ψ(u) defined on the interval [0, 1] or on the positive real semi-axis [0,+∞[.





Acknowledgements

Today I am looking back at my PhD and I am happy to affirm how it has been a really
life-changing experience which would not have been possible without many people I have
met in this awesome academic journey.

I would like to pay very special thankfulness to my advisor, professor Fabio Zanolin,
for his invaluable guidance and support, for the countless hours devoted to me and for all
the incredible opportunities to collaborate with other people. I have learned a lot from him,
and in particular how great it feels to do research.

I would like to express my sincere gratitude to professors Carlota Rebelo e Alessandro
Margheri from Lisbon for their constant source of help and encouragement. I am glad for
the visit to their department for six months leading me working on an exciting issue.

I would also like to thank professor Eduardo Liz for the invitation to visit his department
in Vigo. I am grateful for the opportunity he gave me to share discussions with him and
professor Frank Hilker on a new challenging project.

Heartfelt thanks to Tobia Dondè, Guglielmo Feltrin and Paolo Gidoni, first of all,
friends but also the greatest traveling companions that I could wish. I cannot forget the
time spent together writing papers and projects, discussing on possible jobs applications or
just chatting.

My thanks also go to Alberto Boscaggin, Chiara Corsato, Maurizio Garrione, Andrea
Sfecci, Andrea Tellini, and Professors Dimitri Breda, Alessandro Fonda, Roberta Musina,
Franco Obersnel, Pierpaolo Omari, Duccio Papini, Rodica Toader, Rossana Vermiglio, all
the members of DEG1 and the professors of the Department of Mathematics, Computer
Science and Physics of the University of Udine, because they have kept and still help to
maintain the mathematical research environment alive and dynamic.

In addition, I express my appreciation also to professors Reinhard Bürger, Pasquale
Candito, Julian López-Gómez, Yuan Lou and Luisa Malaguti for their unconditioned
kindness. I wish to sincerely thank all the professors I have met in these three years, for
the valuable advice they always have given me.

To my colleagues-mates, Davide Liessi, Edda Dal Santo and Luca Rizzi thanks for the
fun and support.

Last but not least, a very big thank goes to my parents, Mariarosa and Alessandro,
and by my side Corrado, for their almost unbelievable support despite everything that’s
happened in these three years. They are the most important people in my world.





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Motivations ix

Main contributions xi

Outline xvi

Notation & terminology xvi

I Ambrosetti-Prodi problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 AP problems: brief overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Periodic AP problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Generalization of the result by Fabry, Mawhin & Nkashama 10
2.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Existence and multiplicity results under local coercivity conditions . . . 14
2.1.3 Non-sign definite weighted Liénard equation . . . . . . . . . . . . . . . . . . . . 18

2.2 Complex dynamics 19
2.2.1 Phase-plane analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Smale’s horseshoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Topological horseshoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Neumann AP problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Multiplicity result via shooting method 40

3.2 Multiplicity result via topological degree 44



viii

4 Further developments from Part I . . . . . . . . . . . . . . . . . . . . . . . 47

II Indefinite weight problems . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Indefinite weight problems: focused overview . . . . . . . . . . . 51

6 Nonlinearities with linear-sublinear growth . . . . . . . . . . . . . . 55

6.1 Remarks on uniqueness and multiplicity of positive solutions 56

6.2 Revisiting the sublinear case 60
6.2.1 Time-mapping estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.2 Bifurcation branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.3 Applications with more general differential operators . . . . . . . . . . . . . 74

7 Nonlinearities with oscillatory potential at infinity . . . . . . . . 77

7.1 Multiplicity of positive solutions: one-dimension 79
7.1.1 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1.2 Multiplicity result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Multiplicity of positive solutions: radial domains 90
7.2.1 Neumann problem for an annular domain . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 Neumann problem for a ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Nonlinearities arising in population genetics . . . . . . . . . . . . 95

8.1 Answer to a conjecture of Lou and Nagylaki 99
8.1.1 First example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.1.2 Second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2 Three positive solutions for a class of Neumann problems 105
8.2.1 Technical lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.2 Multiplicity of positive solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 Further developments from Part II . . . . . . . . . . . . . . . . . . . . . . 115

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Mawhin’s coincidence degree . . . . . . . . . . . . . . . . . . . . . . . . 119

B Basics on chaotic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



Introduction

“ . . . nonlinear systems are surely the rule, not the exception, not only in
research, but also in the everyday world. ”

Robert M. May, Simple mathematical models with very complicated
dynamics, Nature (1976).

It is generally recognized that phenomena occurring in our world have nonlinear
features so that the field of Nonlinear Analysis becomes essential in the study of several
kinds of problems in mathematics, biology, mechanics, and so on . . .

The research carried out through the PhD program did explorations in this exciting
field. In fact, we have examined qualitative aspects for classes of nonlinear ordinary
differential equations (ODEs) and some related issues for nonlinear partial differential
equations (PDEs). In the present dissertation, we devote our attention to the study of
existence, multiplicity and complex behaviors of solutions for a selection of boundary
value problems (BVPs). More precisely, we consider concrete problems associated with
differential equations characterized by “jumping nonlinearities” or, alternatively, by non-
linear terms with “indefinite weights”, for which it has been a case of love at first sight.
Among them, there are two challenging questions that were raised in the early 2000’s in
the context of Ambrosetti-Prodi problems and indefinite weight problems, respectively.

We now introduce the reader to the issues tackled, highlighting two questions, with
the purpose to figure out the class of problems considered. Afterwards, we will point out
the main contributions achieved and we will briefly discuss the content of the thesis.

Motivations
One of the goals of the present manuscript is to discuss and give answers on two previously
open problems coming from the field of PDEs. These problems firstly appeared in the
following works:

¶1. “Observations on global inversion theorems” by A. Ambrosetti [Amb11];

¶2. “A semilinear parabolic system for migration and selection in population genetics”
by Y. Lou and L. Nagylaki [LN02].
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These works were motivating new perspectives of investigations on this field of research.
With special emphasis to the papers just reported, we are going to summarize as follows
the main questions to which we have sought solutions.

^

Part ¶1. The first question addressed regards the periodic case of the so-called Ambrosetti-
Prodi problem. This problem is part of a classical topic in Nonlinear Analysis which involved,
at the beginning, a Dirichlet problem of the following type

{
∆u+ φ(u) = h(x) in Ω,

u = 0 on ∂Ω,

where Ω ⊆ RN , N ≥ 1, is a bounded domain with boundary of class C2,α, ∆ denotes the
Laplace operator, h ∈ C0,α(Ω) for α ∈ ]0, 1[ and φ ∈ C2(R) a strictly convex function such
that φ(0) = 0 and 0 < limξ→−∞ φ′(ξ) < λD1 (−∆; Ω) < limξ→+∞ φ′(ξ) < λD2 (−∆; Ω) with
λD1 (−∆; Ω), λD2 (−∆; Ω) the first two eigenvalues of −∆ with Dirichlet boundary conditions
on ∂Ω (see [AP72]). A precise description of the set of the solutions for this Dirichlet BVP
was carried out in the groundbreaking work [AP72] and it provided the classical alternative
of zero, one or two solutions, depending on the position of the function h with respect
to a suitable manifold of codimension 1 in the space C0,α(Ω). The main feature which
characterizes this problem is the interference of the derivative of the nonlinear term φ
with the spectrum of the linear operator. Nowadays, it is well known that this interference
has a strongly influence on the number of solutions for the problem. Beyond the Dirichlet
BVP just mentioned, such kinds of PDEs have stimulated further investigations that
consider different boundary conditions. In particular, addressing the periodic case, an
open question is pointed out in [Amb11] and, in our context, it states:

To study the periodic BVP for the second order ODE given by

u′′ + φ(u) = h(x)

where h is T -periodic, for some T > 0, and φ satisfies

−∞ < lim
ξ→−∞

φ(ξ)

ξ
< λ1 < lim

ξ→+∞
φ(ξ)

ξ
< λ2

for λ1, λ2 the first two eigenvalues associated with the differential operator
−u′′ with T -periodic boundary conditions [Amb11, p. 13].

In the mathematical literature, a great deal of work has already done for Ambrosetti-
Prodi problems under periodic boundary conditions, concerning existence, multiplicity
and stability of periodic solutions (e.g. [FMN86; NO03; Ort90; PMM92]).

Despite all this, there are still new directions to undertake in research. One of these
could be the possibility to improve some assumptions, which are standard in this subject
starting from the Eighties, up to guarantee the same (weak) alternative of zero, one or two
solutions [FMN86], typical for periodic Ambrosetti-Prodi problems. Another one could be
querying about the observation of complex behaviors due to high multiplicity results of
periodic solutions starting from [PMM92].

^^

Part ¶2. The second question attacked take place in the context of population genetics
and deals with PDEs of reaction-diffusion type. At this juncture, the interest is in the
following class of parabolic PDEs with no flux on the boundary:





∂u

∂t
= ∆u+ λw(x)ψ(u) in Ω×]0,+∞[,

∂u

∂n
= 0 on ∂Ω×]0,+∞[,
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where Ω ⊆ RN is a bounded open connected set with boundary of class C2, n is the
outward unit normal vector on ∂Ω, λ is a positive real parameter, w ∈ L∞(Ω) a sign
changing function and ψ : [0, 1]→ R is a function of class C2 such that

ψ(0) = 0 = ψ(1), ψ(ξ) > 0 for all ξ ∈ ]0, 1[ and ψ′(1) < 0 < ψ′(0).

Since the function w is allowed to change its sign, we enter in the classical topic of indefinite
weight problems.

Under the additional hypothesis of concavity for the function ψ, it is known that for λ
sufficiently large and

∫
Ω
w(x) dx < 0 this problem admits a unique nontrivial equilibrium,

i.e. positive stationary nontrivial solution (see [Hen81]). Close to this achievement, there
are results of multiplicity of nontrivial equilibria when ψ is not concave and the map
ξ 7→ ψ(ξ)/ξ is not monotone decreasing (see [LNS10]).

Taking advantage of the above preface, we are ready to introduce the open problem
pointed out in [LN02] which involves the study of the number of equilibria for indefinite
problems when the concavity assumption of ψ is weakened to the decreasing monotonicity
of the map ξ 7→ ψ(ξ)/ξ. This way, in our framework, the question reads as follows.

Conjecture. Suppose that w(x) > 0 on a set of positive measure in Ω and∫
Ω
w(x) dx < 0 then, if the map ξ 7→ ψ(ξ)/ξ is monotone decreasing in ]0, 1[,

the considered parabolic problem has at most one nontrivial equilibrium
0 < u(t, x) < 1 for every x ∈ Ω, which, if it exists, is globally asymptotically
stable [LNN13, p. 4364].

This conjecture can be interpreted as win-win, in the sense that either a positive or a
negative answer would be a great advance in this field leading to further directions of
work. Accordingly, giving a reply to this open problem, it motivates in turn the interest
in addressing new issues on BVPs associated with differential equations characterized by
the presence of an indefinite weight function.

Main contributions
All the results we are going to present are collected in the papers written during the PhD
program [FS18; Sovbm; Sov17; Sov18; SZ15; SZ17b; SZ17c; SZ17d; SZ17a].

First of all, from Part ¶1 and Part ¶2, we notice how some of the addressed issues
have been born on the broad and active field of PDEs. Nevertheless, to give answers, we
will almost restrict ourselves to treat the corresponding cases in an ODE environment.
This way, we will take advantage of the one-dimensional setting to face the problems we
are interested in, from several points of view, which are mainly based on dynamical or
topological approaches. For this reason, our attention in this dissertation will be principally
directed to second order nonlinear ODEs of the form

u′′ + f(u)u′ + g(t, u) = s with t ∈ I, (?)

or
u′′ + g(t, u) = 0 with t ∈ I, (??)

where I is a bounded open interval, s ∈ R, f : R → R is a continuous function and
g : I ×R→ R is a perturbation term which gathers the features of the considered problems
and it will be discussed step by step in the following two parts.

^

Contributions Part ¶1. Investigations in the context of periodic Ambrosetti-Prodi
problems are primarily carried out by considering a T -periodic BVP associated with an
ODE of the form in (?). In this setting, thanks to the work of [FMN86], equation (?)
has no T -periodic solutions, at least one T -periodic solution or at least two T -periodic
solutions according to s < s0, s = s0 or s > s0, provided that

lim
|u|→+∞

g(t, u) = +∞, uniformly in t.
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A first achievement in this thesis is the weakening of the above condition of coercivity
in order to still guarantee a weak alternative of Ambrosetti-Prodi type for the T -periodic
solutions (cf. [SZ17b]). As a consequence of this improvement, there is the possibility to
treat cases in which the coercivity condition g(t, u)→ +∞ holds only locally. To illustrate
the point, let us look at the following result.

Corollary. Let φ : R→ R be a continuous function such that

(Hφ) lim
|u|→+∞

φ(u) = +∞.

Let a, p : R→ R be continuous and T -periodic functions with

(Ha) a(t) ≥ 0 for all t ∈ [0, T ] and a 6≡ 0.

Then, there exists s0 ∈ R such that equation

u′′ + f(u)u′ + a(t)φ(u) = s+ p(t),

has no T -periodic solutions, at least one T -periodic solution or at least two T -periodic
solutions according to s < s0, s = s0 or s > s0.

In the previous result, we have considered an ODE involving a nonlinearity

g(t, u) := a(t)φ(u)− p(t),

that does not suit to be treat in a classical handling, since the uniform requirement is not
satisfied. In this manner we highlight how we considerably relax the requirement assumed
in [FMN86].

Finally, our main goal is to explore the number of T -periodic solutions for the parameter
dependent equation (?) in a Carathéodory setting under local coercivity conditions on
g(t, u). In [FMN86], the uniformity condition is essential to construct upper and lower
solutions for equation (?) (see [DCH06]). This construction is then used to proceed within
the topological degree theory in function spaces presented in [GM77]. Indeed, the scheme
proposed in [FMN86], produce bounded sets in the Banach space of continuous and
T -periodic functions where the topological degree is different form zero, that lead to the
existence of T -periodic solutions, depending on the parameter s. Without uniformity on
the limits at infinity the search of a lower solution becomes a tricky and delicate question.
In [SZ17b], the novelty in our approach is to provide some lower bounds for the solutions,
by using a Villari’s type condition (see [Vil66]). In this manner, we offset the apparently
loss of a lower solution and go ahead with the same approach of [FMN86]. As a result, in
this periodic framework, we recover the alternative of Ambrosetti-Prodi with more general
assumptions in comparison to the ones treated up to now.

We also extend this kind of results to the case of periodic problems associated with
first order ODEs of the form u′ + g(t, u) = s. In more detail, we generalize in [SZ17a]
previous works appeared in this area (cf. [Maw87b; Maw87a; Maw87c; Nka89]) including
the case of a locally coercive nonlinearity g. As a first example, we consider the generalized
Riccati differential equation, and so the result performed reads as follows.

Corollary. Let a, b, c : R → R be continuous and T -periodic functions and let α > 1.
Assume that a(t) satisfies (Ha). Then, there exists s0 ∈ R such that equation

u′ + a(t)|u|α + b(t)u+ c(t) = s,

has no solutions, at least one solution or at least two solutions according to s < s0, s = s0

or s > s0.

As a second example, we achieve an analogous result to the one provided for the second
order case.
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Corollary. Let φ : R→ R be a continuous function satisfying (Hφ). Let a, p : R→ R be
continuous and T -periodic functions. Assume that a(t) satisfies (Ha). Then, there exists
s0 ∈ R such that equation

u′ + a(t)φ(u) = s+ p(t),

has no solutions, at least one solution or at least two solutions according to s < s0, s = s0

or s > s0.

We also notice that the previous corollaries are actually proved assuming the more general
Carathéodory context and so we obtain a generalization of the results in [Nka89] (cf.
[SZ17a, Corollary 4.1 and Corollary 4.2]).

At this point the well-known connection between periodic problems and problems
under Neumann boundary conditions leads to the natural question whether we are allowed
to weak the uniform condition also in the Neumann context. In this respect a second
contribution in this thesis involves the case of Neumann BVPs and gives an affirmative
answer to the previous question (cf. [Sov18; SZ17b]). As an application, here we report a
result of Ambrosetti-Prodi type for a Neumann problem associated to (?) with no damping
term for a locally coercive nonlinear term.

Corollary. Let φ : R→ R be a continuous function satisfying (Hφ). Let a, p : [0, T ]→ R
be continuous functions. Assume that a(t) satisfies (Ha). Then, there exists s0 ∈ R such
that problem {

u′′ + a(t)φ(u) = s+ p(t),

u′(0) = u′(T ) = 0,

has no T -periodic solutions, at least one T -periodic solution or at least two T -periodic
solutions according to s < s0, s = s0 or s > s0.

To demonstrate the previous result of multiplicity we follow two different arguments.
One is still within the framework of topological degree by means of simple modifications
of the approach just presented (cf. [SZ17b]). Another one exploits the shooting argument
which has the advantage of being more elementary nevertheless it requires the uniqueness of
the solutions for the associated initial value problems and their continuability (cf. [Sov18]).

Further analyses are carried out by considering a T -periodic BVP associated with a
second order nonlinear ODE of the form (??), or associated with the analogous equation
having damping term u′′ + cu′ + g(t, u) = 0, where c > 0. A third achievement in this
thesis is the discussion of chaotic dynamics when the nonlinearity is given by

g(t, u) := φ(u)− h(t)

with h(t) a T -periodic forcing term and φ a function containing the principal features
about the crossing of the first eigenvalue λ1 = 0. Namely, we consider a convex function
φ ∈ C2 such that φ(0) = 0, φ(ξ) > 0 for all ξ 6= 0 and satisfying (Hφ). The intent is to
show the existence of many periodic solutions (harmonic and subharmonic) for

u′′ + φ(u) = h(t),

as well as, “chaos” for the Poincaré map Φ (or for its iterate) associated to the previous
equation (cf. [SZ17d]).

A first case study is when the ODE considered may be treated as a small perturbation
of the associated autonomous system, e.g. h(t) = ε sin(ωt) with ω > 0 arbitrary and ε > 0
sufficiently small. This way, by exploiting a Melnikov type approach [GH83], we detect
complex behaviors for a suitable iterate of the map Φ defined on the interval [0, T ].

A second case study is when the perturbation h(t) is not necessary small. In this
case, we take into account two different methods to address the issue. Firstly, we base
our approach on the works [Ged+02; KMO96] settled in Conley index theory. In this
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vein, assuming that h(t) = εh0(ωt) with h0 an arbitrary T -periodic function and both
ω > 0 and ε > 0 sufficiently small, we detect complex behaviors for a suitable iterate
of the map Φ defined on the interval [0, T/ω]. Secondly, given 0 < τ < T , we assume
h(t) := k11[0,τ [(t) + k21[τ,T ](t), where 0 ≤ k1 < k2 and 1A denotes the indicator function
of the set A. In other words, we treat the case of “switched systems” that is a matter
of general interest in the field of control theory [Bac14]. Consequently, we consider a
topological argument called “stretching along the paths” method [MPZ09] and, assuming
that τ and T − τ are sufficiently large, we detect complex behaviors for the map Φ defined
on the interval [0, T ]. This way, we deduce that the chaotic region found out require
limξ→+∞ φ(ξ)/ξ > λ2, where λ2 is the first positive eigenvalue of −u′′ with T -periodic
boundary conditions. This fact is not surprising looking at stability results achieved in
this framework in [Ort89; Ort90].

^^

Contributions Part ¶2. Investigations on the topic of indefinite weight problems are
carried out mainly with respect to BVPs associated with (??), where g(t, u) := w(t)ψ(u),
involving different boundary conditions, for instance Dirichlet or Neumann ones. This way
the indefinite problems we face became

(IP)

{
u′′ + w(t)ψ(u) = 0,

BC(u, u′) = 0R2 ,

with BC(u, u′) = (u(ω1), u(ω2)) or BC(u, u′) = (u′(ω1), u′(ω2)), ω1 < ω2. In this context,
the weight term w : [ω1, ω2]→ R is a sign-changing function and the nonlinearity ψ satisfies
one of the following two conditions:

(ψ1) ψ : R+ → R+ continuous and such that ψ(0) = 0, ψ(ξ) > 0 ∀ ξ ∈ R+
0 and

limξ→+∞ ψ(ξ)/ξ = 0, i.e. ψ is sublinear at ∞,

(ψ2) ψ : [0, 1]→ R+ continuous and such that ψ(0) = 0 = ψ(1) and ψ(ξ) > 0 ∀ ξ ∈ ]0, 1[.

Our main goal is to discuss the number of positive solutions for problem (IP) with
respect to the features of the nonlinear term ψ or of the indefinite weight term w. This way
further achievements in the present thesis regard multiplicity results of positive solutions
for indefinite weight problems of the form (IP) when ψ satisfies either (ψ1) or (ψ2).

First of all, let us start by considering Neumann boundary conditions and functions ψ
satisfying (ψ2). Here, we give two counterexamples to a conjecture by Lou and Nagylaki
in population genetics [LN02]. More specifically, we construct two explicit non concave
functions ψ(ξ) which satisfy the decreasing monotonicity of ξ 7→ ψ(ξ)/ξ so that for a
certain weight function w the migration-selection model can have at least three positive
steady states. We point out one of our counterexamples as follows.

Proposition. Let ψ : [0, 1] → R be such that ψ(ξ) := ξ(1 − ξ)(1 − 3ξ + 3ξ2). Assume
w : [ω1, ω2]→ R be defined as w(t) := −1[ω1,0[(t)+1[0,ω2](t) with ω1 = −0.21 and ω2 = 0.2.
Then, for λ = 45 the Neumann problem associated with u′′ + λw(x)ψ(u) = 0 on [ω1, ω2]
has at least 3 solutions such that 0 < u(t) < 1 for all t ∈ [ω1, ω2].

It is worth noting that the concavity of ψ is a sufficient condition to ensure the
uniqueness of a nontrivial positive solutions for indefinite problems (IP) when ψ satisfies
either (ψ1) or (ψ2). Accordingly, aimed by the works of [BH90; BO86], we face also the
question whether the result of uniqueness under the monotonicity request on ξ 7→ ψ(ξ)/ξ
is still true for Dirichlet problems of the form (IP) when ψ satisfies (ψ1) and we give a
negative answer as well.

Proposition. Let ψ : R+ → R+ be such that ψ(ξ) := 10ξe−3ξ2 + ξ/(|ξ| + 1). Assume
w : [ω1, ω2] → R be defined as w(x) := (1 − |x|)5 cos

(
9π
2 |x|1.2

)
with ω1 = −1, ω2 = 1.

Then, for λ = 80 the Dirichlet problem associated with u′′ + λw(x)ψ(u) = 0 on [ω1, ω2]
has at least 5 solutions such that 0 < u(t) for all t ∈ ]ω1, ω2[.
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As a next direction of research we focus on the features of the weight term w, considering
as starting point of investigation the works by López-Gómez [LG97; LG00]. So that, let us
typify the weight term as follows. We suppose that there exist σ, τ with ω1 < σ < τ < ω2

such that
w(t) ≥ 0, w 6≡ 0, for a.e. t ∈ [ω1, σ],

w(t) ≤ 0, w 6≡ 0, for a.e. t ∈ [σ, τ ],

w(t) ≥ 0, w 6≡ 0, for a.e. t ∈ [τ, ω2],

and, given two real positive parameters λ and µ, we set

w̃λ,µ(t) := λw+(t)− µw−(t),

with w+(t) and w−(t) denoting the positive and the negative part of the function w(t),
respectively. Hence the shape of the graph of w is characterized by a finite sequence of
positive and negative humps. This description is exploited in the literature to study BVPs
with nonlinearities ψ satisfying (ψ1) which are superlinear at zero, i.e. limξ→0+ ψ(ξ)/ξ = 0.
As a results one can find high multiplicity of positive solutions for the rispectively problem
(IP), depending on the number of humps of the weight term [BFZ16].

To our knowledge, this framework is completely new for the case of superlinear
nonlinearities at zero satisfying (ψ2). In this manner, at least for the ODE case, we refine
a result already available in literature [LNS10].

Theorem. Let ψ : [0, 1]→ R+ be a locally Lipschitz continuous function satisfying (ψ2)
and such that limξ→0+ ψ(ξ)/ξ = 0. Let w ∈ L1(ω1, ω2). Then, there exists λ∗ > 0 such
that for each λ > λ∗ there exists µ∗(λ) > 0 such that for every µ > µ∗(λ) the Neumann
problem associated with u′′+ w̃λ,µ(x)ψ(u) = 0 on [ω1, ω2] has at least 3 solutions such that
0 < u(t) < 1 for all t ∈ [ω1, ω2].

As a last direction of work we take into account a nonlinear function ψ satisfying (ψ1)
and we replace the sublinear growth condition at ∞ by a more general one as follows

(ψ3) ψ : R+ → R+ continuous and such that ψ(0) = 0, ψ(ξ) > 0 ∀ ξ ∈ R+
0 and

lim infξ→+∞
∫ ξ

0
ψ(s) ds/ξ2 = 0.

The interest in nonlinearities with growth condition on the potential at ∞ is mainly aimed
by the classical work of [Ham30]. In a context of an oscillatory potential, results of high
multiplicity of positive solutions for indefinite weight problems of the form (IP) under
Dirichlet boundary conditions follow from [OZ96; OO06; MZ93]. Instead, the Neumann
problem is not completely explored and we provide a result of high multiplicity for the
ordinary case, that reads as follows.

Theorem. Let ψ : R+ → R+ be a locally Lipschitz continuous function satisfying (ψ3) with
lim supξ→+∞ 2

∫ ξ
0
ψ(s) ds/ξ2 > 0 and ξ 7→ ψ(ξ)/ξ upper bounded in a right neighborhood

of 0. Let w : [ω1, ω2]→ R be a bounded piecewise continuous function satisfying w(t) ≥ 0,
w 6≡ 0, for a.e. t ∈ [ω1, σ], and w(t) ≤ 0, w 6≡ 0, for a.e. t ∈ [σ, ω2]. Then, there exists
λ∗ ≥ 0 such that, for each λ > λ∗, r > 0 and for every integer k ≥ 1, there is a constant
µ∗ = µ∗(λ, r, k) > 0 such that for each µ > µ∗ the Neumann problem associated with
u′′ + w̃λ,µ(x)ψ(u) = 0 has at least k solutions which are nonincreasing on [ω1, ω2] and
satisfy 0 < u(t) ≤ r, for each t ∈ [σ, ω2]. Moreover, if lim supξ→+∞ 2

∫ ξ
0
ψ(s) ds/ξ2 = +∞

the result holds with λ∗ = 0.

Remark. At first glance, the problems faced in the previous two parts could seem not
related. Instead, we stress the fact that most of the applications, introduced in the present
PhD thesis, involve nonlinearities which are interlinked by the presence of non-sign-definite
weight functions. For instance, the results aimed by Part ¶1 apply to ODEs with a weight
term a(·) such that a(t) ≥ 0 with a 6≡ 0. On the other hand, the achievements motivated
by Part ¶2 deal with BVPs characterized by a weight term w(·) which change its sign.
Therefore, the treatment of non-sign-definite weight problems will be the main character
of all the manuscript. C
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Outline
Keeping the classes of problems presented above in mind, we divide the dissertation into
two parts. The first part consists of four chapters and is devoted to study the problem of
Ambrosetti-Prodi. The second part includes five chapters and is concerned on indefinite
weight BVPs. Let us now quickly describe the content of each chapter separately.

^

Chapter 1 contains a systematic overview on the literature of Ambrosetti-Prodi problems.

Chapter 2 is dedicated to Ambrosetti-Prodi problems under periodic boundary condi-
tions. In Section 2.1 we improve standard assumptions in this subject, starting from
the Eighties, up to consider new local coercivity conditions, in order to still guarantee
the Ambrosetti-Prodi alternative for periodic solutions (cf. [SZ17b]). In Section 2.2 we
highlight how such kind of problems could be a valuable source of complex behaviors, so
that we present a comparison of different level of “chaos” detected by means of several
approaches available in literature (cf. [SZ17d]).

Chapter 3 treats the ordinary case of Ambrosetti-Prodi problems under Neumann bound-
ary conditions with local coercivity conditions (cf. [Sov18; SZ17b]).

Chapter 4 collects possible perspectives of investigations that have been arisen through
the study of this topics.

^^

Chapter 5 introduce on the indefinite weight BVPs faced in this dissertation presenting
a survey on the state of the art.

Chapter 6 concerns the discussion of positive solutions of Dirichlet problems for indefinite
PDEs having a positive nonlinearity, defined on the positive real line, with liner-sublinear
growth or satisfying more general growth conditions on his primitive (cf. [SZ15]).

Chapter 7 deals with indefinite Neumann BVPs associated to ODEs with a positive
nonlinearity, defined on the positive real line, whose primitive presents oscillations at
infinity. We propose a multiplicity result of positive solutions that we extend also to the
case of PDEs in radially symmetric domains (cf. [SZ17c]).

Chapter 8 focuses on indefinite Neumann problems associated to ODEs with positive
nonlinearities, defined on the interval [0, 1], that arise in the field of population genetics.
In Section 8.1 the negative answer to a conjecture proposed in [LN02] showing multiplicity
of positive solutions (cf. [Sov17]). In Section 8.2 we pursue the study of these kind of
problems providing a new multiplicity result of positive solutions which highlight the
possibility that the number of positive solutions could be related with the features of the
weight term.

Chapter 9 collects open questions that, as far as we know, are still unresolved.

Appendix A and Appendix B complete this thesis with several mathematical notions
and tools that have been used to prove the collected results.

Notation & terminology
Let us introduce some standard notation. N0 := N \ {0}, R+ := [0,+∞[ is the set of
non-negative real numbers and R+

0 :=]0,+∞[ is the set of positive real numbers. We
denote the restriction of a given function f on a subset A of its domain by f |A. By 1A we
mean the indicator function of a set A.

Given X ⊆ Rn and Y ⊆ Rm, by Ck(X,Y ) we indicate the space of continuous
maps from X to Y with continuous k − th derivative. Given 0 < α ≤ 1, we denote by
C0,α(X) the space of Hölder continuous functions with exponent α in X. Given p ≥ 1,
we indicate by Lp(X,Rm) the Lp-space and by W k,p(X,Rm) the Sobolev space with
H1(X) = W 1,2(X,Rm). By CkT , L

p
T and W k,p

T we mean the space of maps f defined
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on R which are T -periodic and such that f |[0,T ] belongs to Ck([0, T ]), Lp([0, T ]) and
W k,p([0, T ]), respectively. | · | denotes the usual Euclidean norm in RN .

Given an interval J ⊆ R, we say that a map f : J × R → R satisfies Carathéodory
conditions if for a.e. t ∈ J the function f(t, ·) is continuous and for every ξ ∈ R the
function f(·, ξ) is measurable. If, moreover, for each r > 0 there exists ` ∈ L1(J ,R+)
such that |f(t, ξ)| ≤ `(t) for a.e. t ∈ J and for every |ξ| ≤ r, we say that f satisfies
L1-Carathéodory conditions.

We denote by ∆ the Laplace operator in a given domain Ω ⊆ RN and n the outward
unit normal vector on ∂Ω.

We denote the positive and the negative real parts of a given function f ∈ L1(J ) by
f+ := (f + |f |)/2 and f− := (−f + |f |)/2, respectively.





Part I

Ambrosetti-Prodi problems





1. AP problems: brief overview

The roots of the problem of Antonio Ambrosetti and Giovanni Prodi comes from 1972
with the seminal paper [AP72] that can be considered as a milestone in the mathematical
literature. It is a classical problem in the theory of nonlinear differential equations and it
has influenced the research in the field of Nonlinear Analysis up to the present days. In
this chapter we shall present a historical viewpoint of this problem and we shall introduce
both notations and definitions concerning the first part of the present dissertation.

The focus in [AP72] was the study of the inversion of functions with singularities in
Banach spaces, which led to a different line of work able to face new elliptic BVPs. Indeed,
in [AP72; AP93], Ambrosetti and Prodi dealt with the Dirichlet problem

(PAP72)

{
∆u+ φ(u) = h(x) in Ω,

u = 0 on ∂Ω,

where Ω ⊆ RN , N ≥ 1, is a bounded domain with boundary of class C2,α and h ∈ C0,α(Ω)
with α ∈]0, 1[. An application of their approach to problem (PAP72) with an asymmetric
nonlinearity φ whose derivative crosses the first eigenvalue of the associated linear problem
lead to the following result of existence and multiplicity of solutions.

Theorem 1.1 (Ambrosetti and Prodi, 1972). Let φ ∈ C2(R) a strictly convex function
such that φ(0) = 0 and

0 < lim
ξ→−∞

φ′(ξ) < λD1 (−∆; Ω) < lim
ξ→+∞

φ′(ξ) < λD2 (−∆; Ω) (HpAP72)

with λD1 (−∆; Ω), λD2 (−∆; Ω) the first two eigenvalues of −∆ with Dirichlet boundary
conditions on ∂Ω. Then, there exists a C1 manifoldM of codimension 1 which separates
C0,α(Ω) into two disjoint open regions A0 and A2 such that C0,α(Ω) = A0 ∪M∪A2 and
the following alternative holds:

1◦ problem (PAP72) has zero solutions if h ∈ A0;

2◦ problem (PAP72) has exactly one solution if h ∈M;

3◦ problem (PAP72) has exactly two solutions if h ∈ A2.

The previous result received much attention by the mathematical community and since
then problems with these kinds of nonlinearities are called “Ambrosetti-Prodi problems”
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(briefly written here as AP problems). Our main intent is now to outline chronologically
how the classical assumption (HpAP72) have changed, in order to still guarantee the result
of multiplicity which characterizes this topic.

In this respect, the same statement of Theorem 1.1 was obtained by Manes and
Micheletti in [MM73], by requiring that

−∞ ≤ lim
ξ→−∞

φ′(ξ) < λD1 (−∆; Ω) < lim
ξ→+∞

φ′(ξ) < λD2 (−∆; Ω), (HpMM73)

instead of the assumption in (HpAP72). From condition (HpMM73), we can thus observe that
the positivity of limξ→−∞ φ′(ξ) is not necessary. On the contrary, the main assumption
is that the derivative of the nonlinearity has to cross the first eigenvalue when u goes
from −∞ to +∞ (from which the name of “asymmetric crossing nonlinearity” or “jumping
nonlinearities”, see [Fuč75; Fuč76]).

Another pioneeristic work in that context was done by Berger and Podolak [BP74],
where the previous abstract description of the solution set was proposed in a different
formulation by splitting the term h as

h = su1 + p

with u1 the normalized positive eigenfunction associated with λD1 (−∆; Ω), s ∈ R and p
the orthogonal component of h, namely

∫
Ω
u1(x)p(x) dx = 0. This way, they proved the

existence of a unique value s0 = s0(p) ∈ R such that, if s < s0 then h ∈ A0, if s = s0 then
h ∈M and if s > s0 then h ∈ A2.

The next important contribution to the study of problem (PAP72) comes form the
work [KW75] by Kazdan and Warner, who exploited the technique of upper and lower
solutions, to obtain an existence result generalizing the assumptions on the nonlinear term.
Indeed, they considered a problem of the following form

(PKW75)

{
∆u+ Υ(x, u) = su1(x) in Ω,

u = 0 on ∂Ω,

where the function Υ is sufficiently smooth and satisfies

−∞ ≤ lim sup
ξ→−∞

Υ(x, ξ)

ξ
< λD1 (−∆; Ω) < lim inf

ξ→+∞
Υ(x, ξ)

ξ
≤ +∞, (HpKW75)

uniformly in x. Notice that the assumptions in (HpKW75) are weaker than the ones in
(HpMM73). Moreover, in [KW75], it was proved the existence of s0 ∈ R such that problem
(PKW75) has zero solutions if s < s0 and at least one solution if s > s0, provided that
(HpKW75) holds.

The multiplicity result typical of AP problems was then obtained by many other
authors, combining this latter tool with the degree theory or the fixed point index theory
(see [AH79; BL81; Dan78] and the survey [Fig80] for a complete list of references). After
these classical results, several outcomes were obtained, for example, by exploring the set
of the solutions for problems with nonlinearities whose derivates cross higher eigenvalues
than the first one or by changing the boundary conditions.

In the first case, wondering that nonlinearity jumps over λD1 (−∆; Ω), further investi-
gations led to results of higher multiplicity of solutions (see Lazer and McKenna [LM81],
Solimini [Sol85]). Moreover, such kind of questions about resonance and non-resonance
for jumping nonlinearities can be also interpreted in the light of the interaction with the
so-called Dancer-Fučik spectrum starting with the works of Dancer [Dan76a; Dan76b] and
Fučik [Fuč76] (see [Maw07] for a detailed presentation of this topic). In the second case,
issues concerning periodic boundary conditions or Neumann boundary conditions were
addressed as well (see [FMN86; FS17; Maw87a; Maw06; Ort89; Ort90]).

Looking at the periodic problem, for a fixed period T > 0 and the differential operator
−u′′ (or−u′′−cu′), it follows that zero is the first eigenvalue of the associated linear problem
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with periodic boundary conditions and the function constantly 1 is the corresponding
eigenfunction. In this manner the splitting proposed by Berger and Podolak becomes now

h = s+ p,

with p a T -periodic function with mean value zero in a period. Notice also that, in the
periodic setting, condition (HpMM73) implies

(Hφ) lim
|u|→+∞

φ(u) = +∞.

Avoiding the convexity assumption and dealing with the periodic problem associated with
the Liénard equation

(LE s) u′′ + f(u)u′ + g(t, u) = s,

a relevant contribution in this direction is contained in the work of Fabry, Mawhin and
Nkashama [FMN86].

Theorem 1.2 (Fabry, Mawhin and Nkashama, 1986). Suppose that f : R → R and
g : R× R→ R are continuous functions, g is T -periodic in t and satisfies hypothesis

lim
|u|→+∞

g(t, u) = +∞, uniformly in t. (HpFMN86)

Then, there exists s0 ∈ R such that

1◦ for s < s0, equation (LE s) has no T -periodic solutions;

2◦ for s = s0, equation (LE s) has at least one T -periodic solution;

3◦ for s > s0, equation (LE s) has at least two T -periodic solutions.

In this periodic environment, the settings considered in Theorem 1.2 are more general
with respect to the classical ones introduced by Ambrosetti and Prodi. As a result, we lose
the sharp alternative of Ambrosetti-Prodi type, in favor of a weaker one, due to minimal
conditions assumed on g. An immediate consequence of Theorem 1.2 is the following
result, which involves a generalized Liénard equation with a weighted restoring term.

Corollary 1.3. Let f, φ : R→ R be continuous functions. Let a, p : R→ R be continuous
and T -periodic functions with

min
t∈[0,T ]

a(t) > 0.

Assume (Hφ). Then, for equation

(WLE s) u′′ + f(u)u′ + a(t)φ(u) = s+ p(t),

the following result holds. There exists s0 ∈ R such that

1◦ for s < s0, equation (WLE s) has no T -periodic solutions;

2◦ for s = s0, equation (WLE s) has at least one T -periodic solution;

3◦ for s > s0, equation (WLE s) has at least two T -periodic solutions.

Still in the periodic case, an Ambrosetti-Prodi type result can be recovered by replacing
condition (HpMM73) with an analogous one that take into account the periodic setting
of the problem. This was done by Ortega in [Ort89; Ort90] where sharp results about
the stability of the T -periodic solutions were obtained as well. In more detail, the case
of equation (LE s) with a constant damping term was studied in [Ort89; Ort90]. In
particular, for a periodic problem associated with

(EO89) u′′ + cu′ + g(t, u) = s

where c > 0, we can state the following result.
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Theorem 1.4 (Ortega, 1990). Let g : R × R → R be a continuous function, T -periodic
in t and strictly convex in u:

(gu(t, v)− gu(t, w))(v − w) > 0 , if v 6= w, t ∈ R.

Assume (HpFMN86) and

lim
ξ→+∞

gu(t, ξ) ≤
( π
T

)2

+
( c

2

)2

, t ∈ R. (HpOrt89)

Then, there exists s0 ∈ R such that

1◦ for s < s0, every solution of equation (EO89) is unbounded;

2◦ for s = s0, equation (EO89) has a unique T -periodic solution, which is not asymptot-
ically stable;

3◦ for s > s0, equation (EO89) has exactly two T -periodic solutions, one asymptotically
stable and another unstable.

Furthermore, studying T -periodic solutions of equation

(EO90) u′′ + cu′ + φ(u) = h(t),

with c > 0, condition (HpOrt89) can be improved and an analogous version of Theorem 1.1
for an AP periodic problem reads as follows.

Theorem 1.5 (Ortega, 1990). Let h : R → R be a continuous and T -periodic function.
Let φ ∈ C2(R) a strictly convex function such that

−∞ ≤ lim
ξ→−∞

φ′(ξ) < 0 < lim
ξ→+∞

φ′(ξ) ≤ Γ1 :=

(
2π

T

)2

+
( c

2

)2

, (HpOrt90)

Then, in the space C0
T of T -periodic and continuous solutions, there exists a C1 manifold

M of codimension 1 which separates C0
T into two disjoint open regions A0 and A2 such

that C0
T = A0 ∪M∪A2 and the following alternatives hold:

1◦ equation (EO90) has zero T -periodic solutions if h ∈ A0;

2◦ equation (EO90) has exactly one T -periodic solution if h ∈M;

3◦ equation (EO90) has exactly two T -periodic solutions if h ∈ A2.

In (HpOrt90) the constant Γ1 plays the role of the second eigenvalue in self-adjoint problems
(which is exactly the first positive one). This way we notice, reflected in (HpOrt90), the
same condition of crossing eigenvalues inherent in AP problems.

At this point a natural state of progress in the study of periodic AP problems was
to investigate on the relation between the number of periodic solutions with the number
of eigenvalues crossed by the derivative of the nonlinearity φ′(ξ) as ξ tends to +∞. A
contribution in this direction arises from the work [PMM92] by Del Pino, Manásevich
and Murua which generalizes the results in [LM90]. This way, the study of problems with
asymmetric nonlinearities has stimulated a great deal of works on the investigation of the
existence and the multiplicity of periodic and subharmonic solutions (see [BZ13; FG10;
NO03; Ort96; Reb97; RZ96; Wan00; ZZ05] and the references therein). These researches
find also motivation from both issues on the periodic Dancer-Fučik spectrum and topics
related to the Lazer-McKenna suspension bridge models [LM90]. In this respect, due to
the stability results achieved in [Ort89; Ort90], one could wonder what can happen to the
behavior of the T -periodic solutions when limξ→+∞ φ′(ξ) in (HpOrt90) skips away from
Γ1. In this case, high multiplicity results of T -periodic solutions are expected in accord to
the literature already recalled. Nevertheless, we highlight that the possibility to recover
“complex behaviors”, as far as we know, has not yet been discussed in detail.
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Furthermore, it is significant to consider AP problems under Neumann boundary
conditions in view of the strict relation between periodic and Neumann problems. Indeed,
solving the Neumann problem on an interval of length T , one can provide solutions also
for the 2T -periodic problem associated with ODEs presenting suitable symmetries in the
variable t. In particular, the Neumann problem on the interval [0, T ] can be viewed as a
subproblem of the periodic problem on the interval [0, 2T ], since one can find a 2T -periodic
solution starting from a solution to the Neumann problem on the interval [0, T ] via a even
reflection and a periodic extension. So that, for completeness, we recall here the work
by Mawhin [Maw87a] in the case of second order differential equations with Neumann
boundary conditions:

(NMa87)

{
u′′ + g(t, u) = s,

u′(0) = u′(T) = 0.

For problem (NMa87) a result of Ambrosetti-Prodi type is the following.

Theorem 1.6 (Mawhin, 1987). Let g : [0, T ]×R→ R be a continuous function satisfying
(HpFMN86). Then, there exists s0 ∈ R such that

1◦ for s < s0, problem (NMa87) has no solutions;

2◦ for s = s0, problem (NMa87) at least one solution;

3◦ for s > s0, problem (NMa87) at least two solutions.

At last, in parallel to periodic problems associated with second order ODEs, we give a
look at such a kind of periodic problems associated with first order equations. Namely, we
consider a problem of the form

(PMa87)

{
u′ + g(t, u) = s,

u(0) = u(T ) = 0.

Results involving an Ambrosetti-Prodi alternative for such a kind of first order peri-
odic ODEs date back from the works [Maw87b; MS86; Vid87]. Moreover, a version of
Theorem 1.2 is given in [Maw87b] and it reads as follows.

Theorem 1.7 (Mawhin, 1987). Suppose g : R× R→ R is a continuous and T -periodic
in t. Assume (HpFMN86). Then, there exists s0 ∈ R such that

1◦ for s < s0, problem (PMa87) has no T -periodic solutions;

2◦ for s = s0, problem (PMa87) has at least one T -periodic solution;

3◦ for s > s0, problem (PMa87) has at least two T -periodic solutions.

Notwithstanding these original contributions, the periodic AP problem is still a subject
that deserves to be studied further, as observed by Ambrosetti in his note concerning
“some global inversion theorems with applications to semilinear elliptic equations”, (see
[Amb11, p. 13]). Up to the present days, as far as we know, the uniform condition firstly
assumed in [FMN86] was then considered also by all other authors interested in this topic.
Looking at new perspectives concerning periodic AP problems, as well as AP problems
under Neumann boundary conditions, from Theorem 1.2, Theorem 1.6 and Theorem 1.7,
the natural question arises is whether the uniform coercivity condition in (HpFMN86) can
be weakened. In particular, with respect to Corollary 1.3, one could wonder where the
result still holds when a(t) ≥ 0 and it vanishes somewhere. In other words, a novel interest
is in the study of periodic problems associated with (WLE s) when the weight term a(t) is
non-sign definite.





2. Periodic AP problems

The present chapter, which is based on [SZ17b; SZ17d], is concerned in periodic AP
problems

(P)

{
u′′ + φ(u) = h(t),

u(0)− u(T ) = u′(0)− u′(T ) = 0,

whose comprehensive picture is given in Chapter 1. In particular, we recall the peculiar
hypotheses involving the eigenvalues crossing:

(Hφ1) −∞ ≤ lim
ξ→−∞

φ(ξ)

ξ
< λ1 < lim

ξ→+∞
φ(ξ)

ξ
< λ2,

where λ1 = 0 and λ2 = (2π/T )2 are the first two eigenvalues associated with the differential
operator −u′′ subject to T -periodic boundary conditions. Condition (Hφ1) is included, as
special case, in the following one

(Hφ2) lim
|u|→+∞

φ(u) = +∞.

As pointed out in the Introduction, we are going to treat these kinds of problems from
two point of views which take into account (Hφ1) or (Hφ2), respectively.

On the one hand, in Section 2.1, we will face periodic AP problems in the classical
framework of Fabry, Mawhin and Nakashama [FMN86]. Recalling the splitting proposed
by Berger and Podolak, namely

h(t) = s+ p(t)

where s is a real parameter and p is a T -periodic function such that
∫ T

0
p(t) dt = 0, we will

face periodic problems of more general type than the ones in (P) which are associated
with

u′′ + f(u)u′ + g(t, u) = s.

This way the periodic AP problem becomes a sub-case of the previous ones. Therefore,
we will study the set of the T -periodic solutions for equations with locally coercive
nonlinearities g, by improving the classical assumption

(Hg1) lim
|u|→+∞

g(t, u) = +∞, uniformly in t,
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that reflects (Hφ2). In more detail, we will obtain in Theorem 2.1.9 the same (weak)
alternative of Ambrosetti-Prodi type achieved in [FMN86] under global coercive conditions
and in Corollary 2.1.10 an application to a weighted Liénard equation with non sign-definite
weight term.

On the other hand, in Section 2.2, we will study the existence of infinitely many periodic
solutions along with the detection of complex behaviors for problem (P), by varying the
conditions on the perturbative term h(t) in accord with the approaches considered. In
particular by means of Theorem 2.2.12, we will show an example of “chaotic dynamics”
for problem (P) for λ3 < limξ→+∞ φ(ξ)/ξ < λ4, where λ3 and λ4 are the third and the
fourth eigenvalue of the associated linear problem, respectively. This conclusion will be at
the end compared with the stability results for problem (P) carried by Ortega in [Ort90].

2.1 Generalization of the result by Fabry, Mawhin & Nkashama
In this section we study the periodic BVP associated with the Liénard differential equation
given by

(LE s) u′′ + f(u)u′ + g(t, u) = s,

where we tacitly assume in the sequel that s is a real parameter, f : R→ R is a continuous
function and g : [0, T ]× R→ R satisfies Carathéodory conditions.

In order to discuss the number of T -periodic solutions for the parameter dependent
equation (LE s), we will collect in Section 2.1.1 some basic facts by exploiting coincidence
degree theory, which is a powerful tool developed by Jean Mawhin in [GM77; Maw79;
Maw93]. All the notations and results in coincidence degree theory needed for our
discussion are collected in Appendix A. Furthermore, we will introduce conditions of
Villari’s type [Vil66] that are useful to provide lower bounds for the solutions. These
preliminary studies will be then applied in the proofs of our main results in Section 2.1.2,
which yield an alternative of Ambrosetti-Prodi type for the periodic solutions of equation
(LE s).

2.1.1 Preliminary results
First of all we are interested in providing an existence result of periodic solutions for the
second order ODE

u′′ + f(u)u′ + ν(t, u) = 0, (2.1.1)

where ν : [0, T ]×R→ R is a Carathéodory function. In this setting, a T -periodic solution
of equation (2.1.1) is meant in the generalized sense, namely a solution u of equation
(2.1.1) under periodic boundary conditions

u(0) = u(T ), u′(0) = u′(T ),

is an absolutely continuous (AC) function u : [0, T ] → R such that u′ is AC and u(t)
satisfies (2.1.1) for a.e. t ∈ [0, T ]. Equivalently, we could also extend the map ν(·, u) on R
by T -periodicity and so consider T -periodic solutions u : R→ R such that u′ is AC.

At this point our intent is to enter in the framework of Mawhin’s coincidence (see
Appendix A). For that reason, we define the space

X = C1
T := {u ∈ C1([0, T ]) : u(0) = u(T ), u′(0) = u′(T )},

endowed with the norm
‖u‖X := ‖u‖∞ + ‖u′‖∞

and the space Z = L1(0, T ) with the norm ‖u‖Z := ‖u‖L1 . We consider also the operator
L : X ⊇ domL→ Z defined as Lu := −u′′, with

domL = W 2,1
T := {u ∈ X : u′ ∈ AC}.
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In accord to [Maw72a], as a natural choice for the projections, we take

Qu :=
1

T

∫ T

0

u(t) dt, ∀u ∈ Z,

and
Pu := Qu, ∀u ∈ X.

Thus, we have kerL = ImP = R and cokerL = ImQ = R. As linear isomorphism J , we
take the identity in R. Notice that, for each w ∈ Z, the vector v = KP (Id−Q)w is the
unique solution of the linear boundary value problem

{
−v′′(t) = w(t)− 1

T

∫ T
0
w(t) dt,

v(0) = v(T ), v′(0) = v′(T ),
∫ T

0
v(t) dt = 0.

At last, as nonlinear operator N , we take the associated Nemytskii operator, namely

(Nu)(t) := f(u(t))u′(t) + ν(t, u(t)), ∀u ∈ X.

By a standard argument, it is possible to verify that the operator N is L-completely
continuous and, moreover, the map ũ(·) is a T -periodic solution of (2.1.1) if and only if
ũ ∈ domL with Lũ = Nũ. Analogously, solutions to the abstract coincidence equation
Lu = λNu, with 0 < λ ≤ 1, correspond to T -periodic solutions of

u′′ + λf(u)u′ + λ ν(t, u) = 0, 0 < λ ≤ 1. (2.1.2)

In the next two lemmas we provide some a priori bounds for the solutions of the
parameter dependent equation (2.1.2).

Lemma 2.1.1. Let ν : [0, T ]×R→ R be a Carathéodory function satisfying the following
condition:

(A1) ∃ γ ∈ L1([0, T ],R+) : ν(t, u) ≥ −γ(t), ∀u ∈ R and a.e. t ∈ [0, T ].

Then, there exists a constant K0 = K0(γ) such that any T -periodic solution u of (2.1.2)
satisfies maxu−minu ≤ K0 .

Proof. Without loss of generality, we extend the map ν(·, u) by T -periodicity on R and
we suppose that the solutions satisfy u(t + T ) = u(t) for all t ∈ R. Let t∗ be such that
u(t∗) = maxu.We also define x(t) := maxu−u(t), which satisfies x′ = −u′ and x′′ = −u′′.
From (2.1.2) we have

−x′′(t) = u′′(t) = −λf(u(t))u′(t)− λν(t, u(t)) ≤ λf(u(t))x′(t) + γ(t), for a.e. t.

Multiplying the previous inequality by x(t) ≥ 0 and integrating on [t∗, t∗ + T ], after an
integration by parts, we obtain

‖x′‖2L2 =

∫ T

0

x′(t)2 dt =

∫ t∗+T

t∗
x′(t)2 dt = −

∫ t∗+T

t∗
x′′(t)x(t) dt

≤ λ
∫ t∗+T

t∗
f(u(t))x(t)x′(t) dt+

∫ t∗+T

t∗
γ(t)x(t) dt.

Since
∫ t∗+T

t∗
f(u(t))x(t)x′(t) dt =

∫ t∗+T

t∗
f(u(t))u(t)u′(t) dt−maxu

∫ t∗+T

t∗
f(u(t))u′(t) dt = 0,

it follows that
‖x′‖2L2 ≤ ‖γ‖L1‖x‖∞. (2.1.3)
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Using the fact that x(t∗) = 0, for a suitable embedding constant c1, we have

‖x‖∞ ≤ c1‖x′‖L2 . (2.1.4)

From (2.1.3) and (2.1.4), we obtain ‖x′‖L2 ≤ c1‖γ‖L1 and then

‖x‖∞ ≤ K0 := c21‖γ‖L1 .

The thesis follows, since maxu−minu = ‖x‖∞ .

Lemma 2.1.2. Let ν : [0, T ] × R → R be a Carathéodory function. Let [a, b] ⊂ R and
ρ ∈ L1([0, T ],R+) be such that |ν(t, u)| ≤ ρ(t) for all u ∈ [a, b] and a.e. t ∈ [0, T ]. Then,
there exists a constant κ = κ(a, b, ρ) such that any T -periodic solution u of (2.1.2), with
a ≤ u(t) ≤ b for all t ∈ [0, T ] satisfies ‖u′‖∞ ≤ κ.

Proof. The thesis follows straightforward from [DCH06; FMN86; Maw81, Chapter 1,
Proposition 4.7] because the term f(u)u′ + ν(t, u) satisfies a Bernstein-Nagumo condition.
Indeed, |f(u)u′+ ν(t, u)| ≤ γ(t)ψ(|u′|) where γ(t) := (K + ρ(t)) for some positive constant
K (depending on a and b) and ψ(ξ) := (ξ + 1) with

∫∞
0
dξ/ψ(ξ) =∞.

To proceed with our discussion it is useful, at this point, to introduce the following
definitions.

Definition 2.1.3. We say that ν(t, u) satisfies the Villari’s condition at −∞ (respectively,
at +∞) if there exists a constant d0 > 0 such that

∃δ = ±1 : δ

∫ T

0

ν(t, u(t)) dt > 0

for each u ∈ C1
T such that u(t) ≤ −d0, ∀ t ∈ [0, T ] (respectively, u(t) ≥ d0, ∀ t ∈ [0, T ]).

We notice that Definition 2.1.3 is adapted here from [Vil66]. Moreover, we refer to [BM07;
MM98; MSD16], for more information about these conditions as well as generalizations in
different contexts.

Definition 2.1.4. We say that a function β ∈W 2,1
T is a strict upper solution for equation

(2.1.1) if
β′′(t) + f(β(t))β′(t) + ν(t, β(t)) < 0, for a.e. t ∈ [0, T ] (2.1.5)

and if u is any T -periodic solution of (2.1.1) with u ≤ β, then u(t) < β(t) for all t.

We warn that Definition 2.1.4 is a particular case of the definition of strict upper solution
considered in [DCH06]. Furthermore, we stress the fact that if ν is a function which
is continuous and T -periodic in t and β ∈ C2

T satisfies (2.1.5) for all t, then β is strict.
Indeed, from [DCH06, Chapter 3, Proposition 1.2], if u is a T -periodic solution of (2.1.1)
with u ≤ β then u < β.

We are now in position to state our main result in this section, which makes use of
Theorem A.1 in Appendix A and provides an existence result of T -periodic solutions for
equation (2.1.1).

Theorem 2.1.5. Let f : R → R be a continuous function. Let ν : [0, T ] × R → R be
a Carathéodory function satisfying (A1) and the Villari’s condition at −∞ with δ = 1.
Suppose there exists β ∈W 2,1

T which is a strict upper solution for equation (2.1.1). Then,
(2.1.1) has at least a T -periodic solution ũ such that ũ < β. Moreover, there exist R0 ≥ d0

and M0 > 0, such that for each R > R0 and M > M0, we have

DL(L−N,Ω) = 1

for Ω = Ω(R, β,M) := {u ∈ C1
T : −R < u(t) < β(t), ∀ t ∈ [0, T ], ‖u′‖∞ < M}.
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Proof. First of all we use the upper solution β to truncate the problem as usual in the
theory of upper and lower solutions. Accordingly, we define the truncated function

ν̂(t, u) :=

{
ν(t, u) for u ≤ β(t),

ν(t, β(t)) for u ≥ β(t),

and consider the parameter dependent equation

u′′ + λf(u)u′ + λ ν̂(t, u) = 0, 0 < λ ≤ 1. (2.1.6)

By condition (A1), we have ν̂(t, u) ≥ −γ(t) for all u ∈ R and a.e. t ∈ [0, T ], thus ν̂
satisfies (A1), too. Hence we are in position to apply Lemma 2.1.1, with ν̂ in place of
ν, and so we obtain the existence of a constant K0 (which depends on γ) such that any
T -periodic solution u of (2.1.6) satisfies maxu−minu ≤ K0 .

Now we claim that maxu > −d1 , for some fixed constant d1 ≥ d0 with d1 > ‖β‖∞.
Accordingly, if we suppose by contradiction that u(t) ≤ −d1 for all t ∈ [0, T ], then
u(t) < β(t) for all t ∈ [0, T ] and so u(t) is a T -periodic solution of (2.1.2). Hence, an
integration on [0, T ] of (2.1.2) (divided by λ > 0), yields to

∫ T
0
ν(t, x(t)) dt = 0, which

clearly contradicts Villari’s condition at −∞ as −d1 ≤ −d0 . Since u(t) > −d1 for some
t ∈ [0, T ] and hence maxu > −d1 , we immediately obtain that

minu > −R0 , for R0 := K0 + d1 .

At this point, we claim that there exists t̄ ∈ [0, T ] such that u(t̄) < β(t̄). If, by
contradiction, u(t) ≥ β(t) for all t ∈ [0, T ], then u turns out to be a T -periodic solution of

u′′ + λf(u)u′ + λ ν(t, β(t)) = 0, 0 < λ ≤ 1.

Hence, an integration on [0, T ] of the previous equation (divided by λ > 0), yields to∫ T
0
ν(t, β(t)) dt = 0. However, since β is T -periodic and satisfies (2.1.5), an integration

of (2.1.5) on [0, T ] gives
∫ T

0
ν(t, β(t)) dt < 0, which leads to a contradiction. Since

u(t) < ‖β‖∞ for some t ∈ [0, T ] and hence minu < ‖β‖∞ , we immediately obtain that

maxu < ‖β‖∞ +K0 .

By Lemma 2.1.2, applied to ν̂ in place of ν, we find a constant m0 which depends on R0,
‖β‖∞ +K0 and a L1-function bounding |ν̂(t, u)| on [0, T ]× [−R0, ‖β‖∞ +K0], such that
‖u′‖∞ ≤ m0 .

Writing equation
− u′′ = f(u)u′ + ν̂(t, u) (2.1.7)

as a coincidence equation of the form Lu = N̂u in the space C1
T , from the a priori bounds,

we find that the coincidence degree DL(L−N̂ ,O) is well defined for any open and bounded
set O ⊂ C1

T of the form

O := {u ∈ C1
T : −R < u(t) < C, ∀ t ∈ [0, T ], ‖u′‖∞ < m}

where R ≥ R0, C ≥ ‖β‖∞ +K0 and m > m0 .
Finally, we consider the averaged scalar map

ν̂# : R→ R, ν̂#(ξ) :=
1

T

∫ T

0

ν̂(t, ξ) dt, ∀ ξ ∈ R,

and we observe that the following holds

−JQN̂ |kerL = −ν̂#.

Indeed, kerL is made by the constant functions which are identified with the real numbers.
Moreover, we have

ν̂#(−R) > 0 > ν̂#(C).
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In fact, the first inequality comes from Villari’s condition and the choice R ≥ d1, while
the second inequality follows from

∫ T
0
ν(t, β(t)) dt < 0 and the choice C ≥ ‖β‖∞ . Thus,

an application of Theorem A.1 guarantees that DL(L − N̂ ,O) = 1 and hence equation
(2.1.7) has a T -periodic solution ũ with −R < ũ(t) < C, for all t ∈ [0, T ].

To conclude with the proof we have only to check that ũ < β. This fact comes from
standard arguments in the theory of strict upper solutions. For sake of completeness,
we give a short proof. At this point we know that any T -periodic solution of (2.1.6) is
below β, at least for some t. Since ũ is a solution of (2.1.6) for λ = 1, we have that there
exists t∗ such that ũ(t∗) < β(t∗). Suppose by contradiction that there exists a t∗ such that
ũ(t∗) > β(t∗). By the T -periodicity of v(t) := ũ(t)− β(t), there exists an interval [t1, t2]
such that t1 < t∗ < t2 with v(t) > 0 for all t ∈ ]t1, t2[ and, moreover, v(t1) = v(t2) = 0 with
v′(t1) ≥ 0 ≥ v′(t2). On the interval [t1, t2], we have that ũ′′(t)+f(ũ(t))ũ′(t)+ν(t, β(t)) = 0.
Therefore, recalling (2.1.5), we have

v′′(t) + f(ũ(t))ũ′(t)− f(β(t))β′(t) > 0, for a.e. t ∈ [t1, t2].

An integration on [t1, t2] gives a contradiction, because
∫ t2

t1

v′′(t) dt = v′(t2)− v′(t1) ≤ 0

and, for F ′ = f, we have
∫ t2

t1

f(ũ(t))ũ′(t) dt = F (ũ(t2))− F (ũ(t1)) = F (β(t2))− F (β(t1)) =

∫ t2

t1

f(β(t))β′(t) dt.

Hence, we obtain ũ(t) ≤ β(t) for all t ∈ [0, T ] and so ũ is a T -periodic solution of (2.1.1)
satisfying ũ ≤ β. Since β is strict (cf. Definition 2.1.4), we conclude that ũ(t) < β(t) for
all t ∈ [0, T ].

Applying Lemma 2.1.2, we can find a positive constant M0, depending on R0, ‖β‖∞
and a L1-function bounding |ν(t, u)| on [0, T ]× [−R0, ‖β‖∞], such that ‖u′‖∞ ≤M0 . The
conclusion follows from the excision property of coincidence degree (cf. Appendix A).

2.1.2 Existence and multiplicity results under local coercivity conditions
Now we are ready to provide a (weak) Ambrosetti-Prodi type alternative for T -periodic
solutions of equation (LE s). Since we are dealing in a Carathédory setting, we need also
to assume the following condition:

(A2) for all t0 ∈ [0, T ], u0 ∈ R and ε > 0 , there exists δ > 0 such that |t − t0| < δ,
|u− u0| < δ ⇒ |g(t, u)− g(t, u0)| < ε.

Taking into account [DCH06, Chapter 3, Proposition 1.5], we notice that assumption (A2)
contains the regularity conditions needed for g to guarantee that any function β satisfying
(2.1.5) is a strict lower solution for (2.1.1).

Moreover, in the sequel, the following working hypotheses will be considered as well:

(Hg2) ∃ γ0 ∈ L1([0, T ],R+) : g(t, u) ≥ −γ0(t), ∀u ∈ R and a.e. t ∈ [0, T ];

(Hg3) ∃ g0 : g(t, 0) ≤ g0 for a.e. t ∈ [0, T ];

(Hg−4 ) for each σ there exists dσ > 0 such that 1
T

∫ T
0
g(t, u(t)) dt > σ for each u ∈ C1

T

such that u(t) ≤ −dσ for all t ∈ [0, T ];

(Hg+
4 ) for each σ there exists dσ > 0 such that 1

T

∫ T
0
g(t, u(t)) dt > σ for each u ∈ C1

T

such that u(t) ≥ dσ for all t ∈ [0, T ].

Remark 2.1.6. Let us make some comments on the previous assumptions. If the function
g : R × R → R is continuous and T -periodic in the variable t, then hypothesis (Hg3)
and condition (A2) are always satisfied, and moreover the solutions of (LE s) become of
class C2 (see [DCH06]). This situation is the one studied in [FMN86], instead, in our
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framework, we do not require g(t, u)→ +∞ for |u| → +∞, uniformly in t. In this respect,
the uniform condition is replaced by assuming the existence of a lower bound as in (Hg2)
and the Villari’s type conditions (Hg−4 ) and (Hg+

4 ). C

Theorem 2.1.7. Assume (A2), (Hg2), (Hg3) and (Hg−4 ). Then, there exists s0 ∈ R such
that:

1◦ for s < s0, equation (LE s) has no T -periodic solutions;

2◦ for s > s0, equation (LE s) has at least one T -periodic solution.

Proof. The proof follows the scheme proposed in [FMN86, Theorem 1] which is adapted
from [KW75]. For any given parameter s ∈ R, we set

νs(t, u) := g(t, u)− s, (2.1.8)

so that equation (LE s) is of the form (2.1.1).
Let us start by fixing a parameter s1 > g0 . In this situation, the constant function

β(t) ≡ 0 is a strict upper solution. Indeed, we have

β′′(t) + f(β(t))β′(t) + g(t, β(t))− s1 = g(t, 0)− s1 ≤ −(s1 − g0) < 0

and then condition (A2) guarantees our claim, according to [DCH06, Section 3, Proposi-
tion 1.6]. On the other hand, for σ = s1 , condition (Hg−4 ) implies the Villari’s condition
at −∞ with δ = 1. Hence, an application of Theorem 2.1.5 guarantees the existence of at
least one T -periodic solution u of (LE s) for s = s1 with u < 0.

As a second step, we claim that if, for some s̃ < s1 the equation has a T -periodic
solution (that we will denote by w), then equation (LE s) has a T -periodic solution for
each s ∈ [s̃, s1]. Clearly, it will be sufficient to prove this assertion for s with s̃ < s < s1 .
Writing equation (LE s) as

u′′ + f(u)u′ + g(t, u)− s̃− (s− s̃) = 0,

we find that β(t) ≡ w(t) is a strict upper solution of (LE s). Indeed, we have

β′′(t) + f(β(t))β′(t) + g(t, β(t))− s = w′′ + f(w(t))w′(t) + g(t, w(t))− s = −(s− s̃) < 0

and then property (A2) guarantees our claim, according to [DCH06, Section 3, Proposi-
tion 1.6]. On the other hand, for σ = s , condition (Hg−4 ) implies the Villari’s condition at
−∞ with δ = 1. Again, an application of Theorem 2.1.5 guarantees the existence of at
least one T -periodic solution u of (LE s) with u < w and the claim is proved.

If u is any T -periodic solution of (LE s), then, taking the average of the equation on
[0, T ], we have 1

T

∫ T
0
g(t, u(t)) dt = s and, using (Hg2), we obtain

s ≥ α0 := − 1

T

∫ T

0

γ0(t) dt. (2.1.9)

Hence, if s < α0, equation (LE s) has no T -periodic solution.
At this point, we have proved that the set of the parameters s for which equation

(LE s) has T -periodic solutions is an interval which is bounded from below. Let

s0 := inf{s ∈ R : (LE s) has at least one T -periodic solution}.

By the previous discussion, we know that α0 ≤ s0 ≤ g0 and the thesis follows.

Remark 2.1.8. Let us make some comments on the parameter s0 in relation with Theo-
rem 2.1.7. Indeed, at this point no information is given about existence or nonexistence of
T -periodic solutions of (LE s) when s = s0. Without supplementary conditions, we are
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not able to determine whether the equation (LE s) has T -periodic solutions. For instance,
let us consider the T -periodic problem associated with

u′′ + φ(u) = s with φ(u) = 2α
(√

1 + u2 − u
)
, for 0 < α < (π/T )2.

The T -periodic solutions of the considered equation are only the constant ones, namely the
real solutions of φ(u) = s. In this case, s0 = 0 and no solutions exist for s = s0 . Similar
examples of equations admitting T -periodic solutions for s = s0, can be provided too. C

To state our multiplicity result of T -periodic solutions now we are going to assume
both the two Villari’s condition at −∞ and +∞.

Theorem 2.1.9. Assume (A2), (Hg2), (Hg3), (Hg−4 ) and (Hg+
4 ). Then, there exists s0 ∈ R

such that:

1◦ for s < s0, equation (LE s) has no T -periodic solutions;

2◦ for s = s0, equation (LE s) has at least one T -periodic solution;

3◦ for s > s0, equation (LE s) has at least two T -periodic solutions.

Proof. Without loss of generality, we can suppose that the map σ 7→ dσ is defined on
[0,+∞) and is monotone non-decreasing. The proof of our result follows the outline in
[FMN86, Theorem 2]. As before, using (2.1.8), we write equation (LE s) in the form of
(2.1.1). Following the functional-analytic approach introduced in Appendix A, we also
denote by Ns the corresponding Nemytskii operator, namely

(Nsu)(t) := f(u(t))u′(t) + νs(t, u(t)), ∀u ∈ C1
T .

Let us start by fixing a parameter s1 > max{0, g0} . We claim that it is verified the
following property:

(P) there exist a positive constant Λ = Λ(s1) such that for each s ≤ s1 any solution of
Lu = λNsu, with 0 < λ ≤ 1, satisfies ‖u‖∞ < Λ.

In order to prove property (P) , we observe that, by (Hg2) and s ≤ s1, it follows that
νs(t, u) ≥ −γ0(t)− s1 for a.e. t ∈ [0, T ]. In this manner, condition (A1) of Lemma 2.1.1
holds for γ := γ0(t)− |s1| and there exists a constant K = K(s1) such that, any possible
T -periodic solution of

u′′ + λf(u)u′ + λνs(t, u) = 0, 0 < λ ≤ 1, (2.1.10)

satisfies
maxu−minu ≤ K(s1).

Next, we observe that any possible T -periodic solution of (2.1.10) satisfies

maxu > −ds1 .

Indeed, if u(t) ≤ −ds1 for all t, taking the average of the equation on [0, T ] (and dividing
by λ > 0), we obtain

0 =
1

T

∫ T

0

νs(t, u(t)) dt =
1

T

∫ T

0

g(t, u(t)) dt− s

≥ 1

T

∫ T

0

g(t, u(t)) dt− s1 > 0,

as a consequence of (Hg−4 ) and so a contradiction is achieved. Similarly, from (Hg+
4 ) it

follows that
minu < ds1 .

By the above inequalities we conclude that ‖u‖∞ < Λ(s1) := K(s1) + ds1 , proving (P).
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As a next step, we observe that there is no T -periodic solution for equation (2.1.10)
for s < α0 , where α0 is the constant introduced in (2.1.9) in Theorem 2.1.7.

Let us fix now a constant s2 < s0. Let also ρg a non-negative L1-Carathéodory
function bounding |g(t, u)| for |u| ≤ Λ(s1), so that

|νs(t, u)| ≤ ρg(t) + max{s1, |s2|}, for a.e. t ∈ [0, T ], ∀ s ∈ [s2, s1], ∀u ∈ [−Λ(s1),Λ(s1)].

An application of Lemma 2.1.2 along with property (P), leads to the existence of a constant
η(s1, s2) > 0 such that, for each s ∈ [s2, s1], any solution of Lu = λNsu with 0 < λ ≤ 1,
satisfies ‖u′‖∞ < η(s1, s2).

Following [FMN86], we define the set

Ω1 = Ω1(R1, R2) := {u ∈ C1
T : ‖u‖∞ < R1, ‖u′‖∞ < R2},

which is open and bounded in C1
T . Putting λ = 1 and moving s ∈ [s2, s1] as an homotopic

parameter, we obtain that

DL(L−Ns1 ,Ω1) = DL(L−Ns2 ,Ω1) = 0, ∀R1 ≥ Λ(s1), ∀R2 ≥ η(s1, s2).

From Theorem 2.1.7 we already know that, for s = s1 there is at least one solution
and, if there is a solution for some s̃ < s1, then also for every s ∈ [s̃, s1] a solution exists.
We claim now that a second solution exists for s ∈ ]s̃, s1].

Let w be a T -periodic solution of (LE s) for s = s̃ < s1. Let now s̃ < s ≤ s1. Writing
equation (LE s) as

u′′ + f(u)u′ + g(t, u)− s̃− (s− s̃) = 0,

we have that β(t) ≡ w(t) is a strict upper solution of (LE s) (as proved in Theorem 2.1.7).
On the other hand, for σ = s , condition (Hg−4 ) implies the Villari’s condition at −∞ with
δ = 1. Given any constant R1 ≥ Λ(s1) + 1 and by fixing a constant R2 ≥ η(s1, s2), we
have that

Ω := Ω(R1, w,R2) ⊆ Ω1 := Ω1(R1, R2),

with
DL(L−Ns,Ω) = 1, DL(L−Ns,Ω1) = 0.

Then, the additivity property of the coincidence degree theory (cf. Appendix A) implies
that, besides a solution w(1)

s ∈ Ω, there exists also a second solution w(2)
s ∈ Ω1 \ Ω.

As in the proof of Theorem 2.1.7, let us define again

s0 := inf{s ∈ R : (LE s) has at least one T -periodic solution}.

By the above discussion, we know that α0 ≤ s0 ≤ g0 and, moreover:

for every s < s0 , there is no T -periodic solution of (LE s) and for every s > s0 , there are
at least two T -periodic solutions of (LE s).

To conclude with the proof we have to check that, for s = s0, there is at least one
T -periodic solution. We thus follow an argument in accord to [FMN86]. Let s2 < s0 < s1

be fixed and let θn be a decreasing sequence of parameters with θn → s0 and θn ∈ ]s0, s1]
for all n. By the previous estimates, we have, for each n, the existence of at least one
(actually two) T -periodic solution wn of equation

u′′ + f(u)u′ + g(t, u) = θn

with
‖wn‖∞ ≤ Λ(s1), ‖w′n‖∞ ≤ η(s1, s2).

An application of the Ascoli-Arzelà theorem, passing to the limit as n → ∞, provides
the existence of at least one T -periodic solution of (LE s) for s = s0 . This completes the
proof.
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2.1.3 Non-sign definite weighted Liénard equation

We present now an application of Theorem 2.1.9 with the aim of treat examples classical
in literature. In particular, we consider a generalized Liénard equation with a weighted
restoring term of the form

(WLE s) u′′ + f(u)u′ + a(t)φ(u) = s+ p(t).

This kind of equations can be viewed also as an example of forced Liénard-Mathieu
equations. The interest in the study of these equations has been growing up in recent
years (see [Kal17]) and it can be traced back to Minorsky’s work [Min53].

Corollary 2.1.10. Let f, φ : R→ R be continuous functions and suppose that

(Hφ2) lim
|u|→∞

φ(u) = +∞.

Let a, p ∈ L∞[0, T ] with a(t) ≥ 0 for a.e. t ∈ [0, T ] and
∫ T

0
a(t) dt > 0. Then, there exists

s0 ∈ R such that:

1◦ for s < s0, equation (WLE s) has no T -periodic solutions;

2◦ for s = s0, equation (WLE s) has at least one T -periodic solution;

3◦ for s > s0, equation (WLE s) has at least two T -periodic solutions.

Proof. We apply Theorem 2.1.9 for

g(t, u) := a(t)φ(u)− p(t).

Let us set φ0 := minξ∈R φ(ξ). For any d > max{φ0, 0}, we introduce the following constants:

ζ−(d) := min{φ(u) : u ≤ −d}, ζ+(d) := min{φ(u) : u ≥ d}.

From (Hφ2) it follows that both ζ−(d)→ +∞ and ζ+(d)→ +∞ for d→ +∞. Let u ∈ C1
T

be such that |u(t)| ≥ d for all t ∈ [0, T ]. Clearly, u(t) ≤ −d, ∀ t or u(t) ≥ d, ∀ t. In the
former case we have that

1

T

∫ T

0

g(t, u(t)) dt =
1

T

∫ T

0

a(t)φ(u(t)) dt− 1

T

∫ T

0

p(t) dt

≥ ζ−(d)

T

∫ T

0

a(t) dt− 1

T

∫ T

0

p(t) dt.

In the other case, we analogously have

1

T

∫ T

0

g(t, u(t)) dt ≥ ζ+(d)

T

∫ T

0

a(t) dt− 1

T

∫ T

0

p(t) dt.

This way, both the Villari’s conditions (Hg−4 ) and (Hg+
4 ) are satisfied. Condition (Hg2) is

satisfied by choosing as γ0(t) the positive part of p(t)− a(t)φ0. Hypothesis (Hg3) holds
for any constant g0 ≥ ‖a‖∞φ(0) + ‖p‖∞ . At last, we observe that condition (A2) holds
for this special choice of g(t, u) (see [DCH06]).

As a direct consequence we obtain an improvement of Corollary 1.3, since the weight
term a(t) ≥ 0 vanishes somewhere. So that, the classical coercivity condition in [FMN86]
is weakened to a local one, lim|u|→+∞ a(t)φ(u)− p(t)→ +∞ for a.e. t ∈ [0, T ].
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2.2 Complex dynamics
In this section we study the periodic BVP associated with equation

(E1) u′′ + φ(u) = h(t),

or with equation

(E2) u′′ + cu′ + φ(u) = h(t),

where we tacitly assume in the sequel that the friction coefficient c > 0, the forcing term
h : R→ R is a T-periodic locally integrable function and the nonlinearity satisfies

(Hφ3) φ : R→ R is a locally Lipschitz continuous function with φ(0) = 0, which is strictly
decreasing on ]−∞, 0] and strictly increasing on [0,+∞[ and lim|u|→+∞ φ(u) = +∞.

If c is assumed to be small, equation (E2) can be viewed as a perturbation of the
conservative equation (E1).

Remark 2.2.1. Let us make some comments on condition (Hφ3). The features assumed for
the nonlinearity φ remember the typical ones which appear in AP problems. Indeed, we
notice that any sufficiently smooth strictly convex function satisfying

lim
ξ→−∞

φ′(ξ) < 0 < lim
ξ→+∞

φ′(ξ)

verifies (Hφ2) and it has a unique point of strict absolute minimum ξ = ξm. So that,
without loss of generality (i.e. possibly replacing φ(ξ) with φ(ξ + ξm)− φ(ξm)), we can
suppose to work with a nonlinear function φ having a strict absolute minimum at ξ = 0
and such that φ(0) = 0. Hence, the nonlinearity considered in this section contains the
principal features about the crossing of the first eigenvalue λ1 = 0. C

We are now going to discuss the existence of infinitely many T -periodic solutions as
well as detect “chaotic dynamics” under several conditions on h(t). We will refer to the
different concepts of chaos which are presented in Appendix B. In particular, we will be
interested in the search of “Smale’s horseshoes” (cf. Definition B.1) as well as “topological
horseshoes” (cf. Definition B.2).

A graphical motivation for these investigations is suggested in the phase portrait in
Figure 2.1 where it is represented a very complicated behavior for solutions of a second
order ODE with periodic coefficients and a nonlinearity satisfying our working conditions.
A characteristic displayed by Figure 2.1 is the typical alternation of regions of stability and
instability or randomness that is common in Hamiltonian systems (cf. [Mos73, Chapter 3]).

We will adopt a dynamical system approach, for the investigations on both (E1) and
(E2). In this respect, we will analyze the local flow associated with the corresponding
systems in the phase-plane. In particular, dealing with (E1), we consider the planar
Hamiltonian system

(S1)

{
x′ = y,

y′ = −φ(x) + h(t).

As usual, by the local flow determined by (S1) we mean the map Φt
t0 which associates

to any initial point z0 = (x0, y0) ∈ R2 the point ζ(t), where ζ(·) is the solution of (S1)
satisfying the initial condition ζ(0) = z0 and defined on its maximal interval of existence.
In the sequel, when not otherwise specified, we will take t0 = 0 and we will consider the
Poincaré operator Φ := ΦT

0 . The fundamental theory of ODEs guarantees that Φ is a
homeomorphism defined on an open set domΦ ⊆ R2. Similar considerations can be done
for system

(S2)

{
x′ = y,

y′ = −cy − φ(x) + h(t).
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Figure 2.1: Evolution of u′′ +
√

1 + u2 − 1 = 2 + ε sin(ωt) in terms of the iterates of the
Poincaré map, with ε = 0.01, ω = 10 and varying 500 initial conditions (u(0), u′(0)) where
u(0) is within the interval [−4, 6] and u′(0) = 0.

which is equivalent to (E2). Finally, we will describe the complex behavior of T -periodic
solutions of both equations (E1) and (E2), in terms of chaotic dynamics of the discrete
dynamical system identified by the Poincaré map associated with system (S1) or with
system (S2), respectively.

In more detail, we will observe that the planar phase-portrait associated with the
autonomous equation u′′ + φ(u) = k, for k > 0, is that of a local center enclosed by a
homoclinic trajectory of a hyperbolic saddle point. Owing to this saddle-center geometry,
if (E1) may be treated as a small perturbation of the associated autonomous system, we
will exploit a Melnikov’s type approach. On the contrary, when the perturbation is not
necessarily small, we will discuss two other different methods. One is coming from the
Conley index theory and it is borrowed from [Ged+02; KMO96]. The other one is based
on a topological argument called “stretching along the paths method” (SAP method),
set out in Appendix B. In any case, we will divide our results into two types, according
to the detection of a Smale’s horseshoe or a topological one. In view of the different
methods used, the conditions for φ assumed in (Hφ3) represent the minimum equipment
of requirements which are common in all the different approaches we are going to discuss
and further regularity conditions will be also introduced in the sequel when needed.

2.2.1 Phase-plane analysis
The study of system (S1) should become easier after a preliminary qualitative analysis of
the autonomous system with a constant forcing term. Roughly speaking, this corresponds
to the case in which the time variable is “freezed”. Therefore, let us introduce a model
problem by means of the autonomous ODE

u′′ + φ(u) = k, (2.2.1)

with k a real parameter. The phase-plane analysis and geometric considerations give us
information about the qualitative behavior of the solutions of (2.2.1) and in turn of (E1).

Accordingly, equation (2.2.1) can be written equivalently as a planar system in the
phase-plane (x, y): {

x′ = y,

y′ = −φ(x) + k.
(2.2.2)
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First of all, let us find the equilibria of (2.2.2) by solving φ(x) = k. In view of
minξ∈R φ(ξ) = φ(0) = 0, we consider from now on only the case k ≥ 0.

If k = 0, the origin is an unstable equilibrium of the system. In particular, it is
the coalescence of a saddle point with a center. It seems interesting to observe that in
literature such a geometry appears in the so called Bogdanov-Takens bifurcation (see
[GH83]). On the other hand, if k > 0, the properties of the function φ lead to the existence
of exactly two equilibria. Under the assumption (Hφ3) made on φ, we can define two
homeomorphisms

φl := φ|]−∞,0] :]−∞, 0]→ [0,+∞[,

φr := φ|[0,+∞[ : [0,+∞[→ [0,+∞[,

such that φl is strictly decreasing and φr is strictly increasing. Therefore, the inverse
functions of both φl and φr are well defined and we denote them by φ−1

l and φ−1
r ,

respectively. By setting

xu = xu(k) := φ−1
l (k), xs = xs(k) := φ−1

r (k),

we have xu < xs. The equilibria are the points (xu, 0) and (xs, 0) where the first one has
got the topological structure of an unstable saddle and the second one is a stable center.

The system (2.2.2) is a hamiltonian system with total energy given by

Ek(x, y) :=
1

2
y2 + F (x)− kx, (2.2.3)

where F is defined by

F (x) :=

∫ x

0

φ(ξ) dξ.

Notice that F (±∞) = ±∞.
To describe the associated phase portrait, for each ρ ∈ R, we define the energy level

lines of (2.2.2) as follows

Lρ := {(x, y) ∈ R2 : Ek(x, y) = ρ}.

In order to study the geometry of each Lρ it is useful to introduce the auxiliary function

Λk(x) := F (x)− kx. (2.2.4)

Observe that, for each k > 0, the graph of the function Λk is that of a N -shaped curve
passing through the origin with negative slope.

Proposition 2.2.2. Let Λk be defined as in (2.2.4) for k = 0. Then, Λ0(x) = ρ has a
unique solution for every ρ ∈ R. In particular, the following hold.

• If ρ = 0 the solution is x = 0.

• If ρ < 0 we denote it by x∗(ρ) and it is such that x∗(ρ) < 0.

• If ρ > 0 we denote it by x∗(ρ) and it is such that x∗(ρ) > 0.

Proof. From (Hφ3) we obtain that Λ0 is strictly increasing on R and also Λ0(0) = 0.
Hence, thanks to the monotonicity of Λ0, the conclusions follow straightaway.

Proposition 2.2.3. Let k be a fixed positive real number and Λk defined as in (2.2.4).
Then, the following hold.

• If ρ = Λk(xu), then Λk(x) = ρ has two solutions. One is xu and the other one,
denoted by xh = xh(k), is such that xs < xh.

• If ρ = Λk(xs), then Λk(x) = ρ has two solutions. One is xs and the other one,
denoted by x∗(ρ), is such that x∗(ρ) < xs.
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Figure 2.2: Phase portraits of the autonomous system (2.2.2) where the nonlinearity is
given by φ(u) =

√
1 + u2 − 1. Right: k = 0. Left: k > 0. In both cases the geometry of

the different energy level lines is pointed out and the arrows show the direction of the flow
along the trajectories.

• If ρ > Λk(xu), then Λk(x) = ρ has a unique solution, denoted by x∗(ρ), and it is
such that x∗(ρ) > xh.

• If Λk(xs) < ρ < Λk(xu), then Λk(x) = ρ has three solutions. These solutions,
denoted by x∗(ρ), x−(ρ) and x+(ρ), are such that x∗(ρ) < xu < x−(ρ) < xs < x+(ρ).

• If ρ < Λk(xs), then Λk(x) = ρ has a unique solution, denoted by x∗(ρ), and it is
such that x∗(ρ) < xu.

Proof. Assumption (Hφ3) leads to Λk(0) = 0. By definition of Λk, its derivative is
Λ′k(x) = φ(x)−k. Thus, limx→±∞ Λ′k(x) = +∞ because of condition lim|x|→∞ φ(x) = +∞.
This way, we have Λk(±∞) = ±∞. Moreover, Λk has exactly two critical points which are
the abscissa of the equilibria of system (2.2.2). From (Hφ3), we deduce that xu is a local
maximum and xs is a local minimum. Therefore, it follows that Λk is strictly decreasing
on [xu, xs] and strictly increasing on ]−∞, xu] and [xs,+∞[. Since 0 ∈]xu, xs[, we have
Λk(xu) > 0 > Λk(xs).

So that, if ρ = Λk(xu), then there exists unique xh ∈]xs,+∞[ such that Λk(xh) =
Λk(xu). Analogously, if ρ = Λk(xs) then there exists unique x∗(ρ) ∈]−∞, xu[ such that
Λk(x∗(ρ)) = Λk(xs). Instead, for every ρ ∈]Λk(xs),Λk(xu)[, there exist x∗(ρ) ∈]−∞, xu[,
x−(ρ) ∈]xu, xs[ and x+(ρ) ∈]xs, xh[ which are zeros of the equation Λk(x) = ρ. At last, if
ρ ∈]Λk(xu),+∞[, or ρ ∈]−∞,Λk(xs)[, the equation Λk(x) = ρ has exactly one solution
x∗(ρ) ∈]xh,+∞[, respectively x∗(ρ) ∈]−∞, xu[.

An application of Proposition 2.2.2 along with Proposition 2.2.3 reveals the geometry of
the phase portrait associated with system (2.2.2) for any given k ≥ 0. Examples of phase
portraits which mimic the behavior of the solutions of (2.2.1) are shown in Figure 2.2.
Moreover, for all ρ ∈ R, we can characterize the energy level lines Lρ according to their
type with respect to the level ρ. Since, the different kinds of energy level lines for case
k > 0 include the ones for k = 0, here we give just a detailed discussion about positive
reals k.

For ρ = Λk(xu), the saddle like structure is characterized by the union of the unstable
equilibrium point with the unstable manifold Wu(xu), the stable manifold W s(xu) and
the homoclinic orbit H(xu). This way, we have

LΛk(xu) = {(xu, 0)} ∪Wu(xu) ∪W s(xu) ∪H(xu),

where

Wu(xu) := {(x, y) ∈ R2 : x < xu, y < 0, Ek(x, y) = Λk(xu)},
W s(xu) := {(x, y) ∈ R2 : x < xu, y > 0, Ek(x, y) = Λk(xu)},
H(xu) := {(x, y) ∈ R2 : x > xu, Ek(x, y) = Λk(xu)}.
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For Λk(xs) < ρ < Λk(xu), the energy level line splits as follows

Lρ∈]Λk(xs),Λk(xu)[ = Oρ ∪ Vρ,

where
Oρ := {(x, y) ∈ R2 : x > xu, Ek(x, y) = ρ} (2.2.5)

is a closed symmetric curve surrounding the center which intersects the x-axis at the
points (x−(ρ), 0) and (x+(ρ), 0) and it is run in the clockwise sense, on the contrary,

Vρ := {(x, y) ∈ R2 : x < xu, Ek(x, y) = ρ} (2.2.6)

is an unbounded symmetric curve which intersects the x-axis at the point (x∗(ρ), 0).
If ρ = Λk(xs), then

LΛk(xs) = {(xs, 0)} ∪ VΛk(xs),

where {(xs, 0)} is the stable equilibrium point and VΛk(xs) is defined according to (2.2.6).
For every ρ < Λk(xs), Lρ is a curve identified by (2.2.6) and so, also in this case, we

denote each energy level line with Vρ.
For every ρ > Λk(xu), Lρ is an unbounded symmetric curve over the saddle like

structure which intersects the x-axis at the point (x∗(ρ), 0) and it is run in the clockwise
sense. In this case, the energy level line is

Uρ := Lρ∈]Λk(xu),+∞[ = {(x, y) ∈ R2 : Ek(x, y) = ρ}. (2.2.7)

We conclude the phase-plane analysis performing a study, depending on k, of the
intersection points between the saddle like structure with the x-axis.

Proposition 2.2.4. Let k1, k2 ∈ R such that 0 ≤ k1 < k2 and Λk1 ,Λk2 defined as in
(2.2.4), then there exist unique xh(ki) for i ∈ {1, 2} such that Λki(xu(ki)) = Λki(xh(ki))
and xu(k2) < xu(k1) < xh(k1) < xh(k2).

Proof. From the growth conditions of φ in (Hφ3) it follows that

xu(k2) < xu(k1) < xs(k1) < xs(k2).

By the definition of Λk, we deduce that

Λk1(x) < Λk2(x), ∀x < 0, (2.2.8)
Λk1(x) > Λk2(x), ∀x > 0. (2.2.9)

Since xu(k2) < xu(k1) < 0, the condition in (2.2.8) and the fact that Λk2 is strictly
decreasing on ]xu(k2), 0], imply

Λk1(xu(k1)) < Λk2(xu(k1)) < Λk2(xu(k2)). (2.2.10)

Thanks to Proposition 2.2.3 there exist exactly two positive real numbers xh(k1), xh(k2)
such that xs(k1) < xh(k1), xs(k2) < xh(k2) and

Λki(xu(ki)) = Λki(xh(ki)), for i = 1, 2.

Using these equalities in (2.2.10) we can get

Λk1(xh(k1)) < Λk2(xh(k2)). (2.2.11)

Whereas xh(k2) > 0, then from the condition in (2.2.9) follows

Λk2(xh(k1)) < Λk1(xh(k1)). (2.2.12)

Combining (2.2.11) and (2.2.12), we obtain Λk1(xh(k1)) < Λk1(xh(k2)). Since Λk1 is
strictly increasing on [xs(k1),+∞[, we conclude that

xh(k1) < xh(k2),

because of xs(k1) < xh(k2).
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Time mapping formulas. Let us introduce some more notation that will be used throughout
this dissertation. Considering (2.2.3) and (2.2.4), the time needed to a solution to move
in the phase-plane (x, y) along an orbit path identified by the energy level ρ, from a point
(x1, y1) to a point (x2, y2), is given by

τ(ρ; x1, x2) :=

∫ x2

x1

1√
2(ρ− Λk(s))

ds. (2.2.13)

The function ρ 7→ τ(ρ; x1, x2) is called time-map associated with the autonomous equation
(2.2.1). The phase-plane analysis has highlighted the presence of a saddle like structure
and also mainly two types of orbits. More in detail, there are the periodic orbits, Oρ, and
the non-periodic ones, Vρ and Uρ. With this in mind, we can characterize the time-map
formulas in three different kinds.

In the case of the periodic orbits, by (2.2.13) we can evaluate the time elapsed to move
along the orbit Oρ which is defined as in (2.2.5). In particular, we set the time needed to
travel from (x−(ρ), 0) to a point (r, 0) on Oρ, with x−(ρ) < r ≤ x+(ρ), as follows

τO(ρ; r) := τ(ρ; x−(ρ), r) =

∫ r

x−(ρ)

1√
2(ρ− Λk(s))

ds. (2.2.14)

This way, since Oρ is a closed symmetric curve, its fundamental period is given by
2 τO(ρ; x+(ρ)). With respect to the non-periodic orbits, firstly we consider the unbounded
curve Vρ defined as in (2.2.6). To evaluate the travel time on Vρ, let us fix a value r
with r < x∗(ρ) < xu. Then, we define two points that belongs to Vρ: one is P+

ρ (r) :=(
r,
√

2(ρ− Λk(r))
)
, in the upper half plane, and the other symmetric one is P−ρ (r) :=(

r,−
√

2(ρ− Λk(r))
)
, in the lower half plane. Therefore, the time needed to move along

Vρ from P+
ρ (r) to (x∗(ρ), 0) is

τ(ρ; r, x∗(ρ)) =

∫ x∗(ρ)

r

1√
2(ρ− Λk(s))

ds,

which is equal to the time needed to travel from (x∗(ρ), 0) to P−ρ (r). It follows that the
time elapsed to go from P+

ρ (r) to P−ρ (r) on Vρ is

τV(ρ; r) := 2

∫ x∗(ρ)

r

1√
2(ρ− Λk(s))

ds. (2.2.15)

In a similar way we face the time-map associated with the orbit Uρ defined as in (2.2.7).
In this case, we fix a value r < x∗(ρ) and so, as before, the time needed to go from P+

ρ (r)
to P−ρ (r) along Uρ is given by

τU(ρ; r) := 2

∫ x∗(ρ)

r

1√
2(ρ− Λk(s))

ds. (2.2.16)

2.2.2 Smale’s horseshoes
Taking into account the phase-plane analysis performed in Section 2.2.1, we are motivated
to exploit the Melnikov’s method which is certainly a powerful tool to detect Smale’s
horseshoes and

“one of the few analytical methods available for the detection and the study
of chaotic motions.”1

This idea is aimed by the existence of a hyperbolic fixed point for system (2.2.2) which
is connected to itself by a homoclinic orbit for k > 0, provided that φ is sufficiently smooth
with φ′(xu) < 0. In order to have satisfied such a condition for every possible choice of
k > 0, we assume, along this subsection a more restrictive condition than (Hφ3), that is
the following one.

1Quotation from [GH83, p.186].
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(Hφ4) φ : R → R is a strictly convex function of class Cr, for r ≥ 2, with φ(0) = 0,
φ(ξ) > 0 for all ξ 6= 0 and lim|u|→+∞ φ(u) = +∞.

The phase-plane analysis shows the presence of an equilibrium point A = Ak := (xs, 0),
which is a center, and a hyperbolic saddle equilibrium point B = Bk := (xu, 0) with a
homoclinic orbit H = H(xu) enclosing A. This is the classical scheme considered in the
Melnikov’s theory, where system (S1) can be viewed as a perturbation of the autonomous
system (2.2.2). In the special case of (S1) we can apply this theory by splitting the forcing
term h(t) as

h(t) = k + εh0(t), k > 0. (2.2.17)

Without loss of generality, we can also suppose that h0(t) changes its sign. In particular,
by transferring the mean value of h0 to the constant k, we can assume

∫ T

0

h0(t) dt = 0. (2.2.18)

Let q(t) = qk(t) be the solution of equation (2.2.1) such that q(0) = xh and q′(0) = 0,
where xh is the solution of Λk(x) = Λk(xu) depending on k with x > xs (equivalently, the
point (xh, 0) is the intersection of the homoclinic trajectory H with the x-axis). The curve
t 7→ (q(t), q′(t)) is a particular parametrization of H and it is unique up to a shift in the
time variable. Our choice, which is the standard one in similar situations, is convenient
because q(t) is an even function. Moreover, by standard results on hyperbolic saddle
points, note that |q(t)− xu|+ |q′(t)| → 0 with exponential decay as t→ ±∞ (cf. [Hal80,
Ch. III.6]). Thus, in particular, the improper integrals

∫ +∞
0

(q(t)−xu) dt and
∫ +∞

0
|q′(t)| dt

are convergent.
Now, the Melnikov function associated with system (S1) for h(t) as in (2.2.17), is

given by

M(α) :=

∫ +∞

−∞
q′(t)h0(t+ α) dt. (2.2.19)

Notice that, by the T -periodicity of h0(t), it turns out that also M(α) is a T -periodic
function. Moreover, from (2.2.18) we have

∫ T
0
M(α) dα = 0, so that either M ≡ 0 or M(α)

changes its sign.
An application of the Melnikov method to system

{
x′ = y,

y′ = −φ(x) + k + εh0(t),
(2.2.20)

gives the following result (cf. [GH83, Th. 4.5.3] or [Wig03, Th. 28.1.7]).

Theorem 2.2.5. Assume (Hφ4) and let (q(t), q′(t)) be the homoclinic solution at the
saddle point B = Bk for the autonomous system (2.2.2) for some k > 0. Let also h0 be a
sufficiently smooth, Cr for r ≥ 2, T -periodic function satisfying (2.2.18). If there exists
α ∈ [0, T [ such that M(α) = 0 and M′(α) 6= 0, then there is ε0 > 0 such that for each ε
with 0 < |ε| < ε0 a Smale horseshoe occurs for some iterate of the Poincaré map associated
with system (2.2.20).

The result expressed in Theorem 2.2.5 is robust for small smooth perturbations. More
in detail, the presence of a Smale horseshoe is guaranteed also for system

{
x′ = y,

y′ = −cy − φ(x) + k + εh0(t),

provided that c is sufficiently small, depending on ε. Hence the result applies to equation

u′′ + cu′ + φ(u) = k + εh0(t)
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as well. More precisely, if we write the coefficient c as

c := εc0 ,

the Melnikov function takes the form

M(α) :=

∫ +∞

−∞

(
q′(t)h0(t+ α)− c0h′(t)2

)
dt

and Theorem 2.2.5 applies to system
{
x′ = y,

y′ = −εc0y − φ(x) + k + εh0(t).

Usually the test of the existence of a simple zero for the Melnikov function is a hard
task, especially if an explicit analytical expression for q(t) is not given. The first important
and pioneering applications of this method to some second order nonlinear ODEs, such as
the pendulum or the Duffing equation, have taken advantage of the fact that the expression
of q(t) was known (see [GH83, p. 191]). On the contrary, when an explicit expression
of q(t) is not given, some results can be still produced by exploiting further qualitative
information about the homoclinic orbit or even about the forcing term, if they are available.
From this point of view, we refer to the work [BF02b] of Battelli and Fečkan since they
have evaluated the Melnikov function when q(t) is a rational function of exp(t). A general
result, which does not require any specific assumption on q(t) by involving only a simply
verifiable condition on h0(t), was obtained by Battelli and Palmer in [BP93]. This result
applies to system (2.2.20) provided that the period of the forcing term is sufficiently large.
For this reason, instead of (2.2.20), it is convenient to consider the system

{
x′ = y,

y′ = −φ(x) + k + ε2h0(εt).
(2.2.21)

In this setting, we can state what follows (cf. [BP93, p. 293, Theorem]).

Theorem 2.2.6. Assume (Hφ4) with φ ∈ Cr+3, for r ≥ 5, and let (q(t), q′(t)) be the
homoclinic solution at the saddle point B = Bk for the autonomous system (2.2.2) for
some k > 0. Let also h0 be a sufficiently smooth, Cr+3 for r ≥ 5, T -periodic function
satisfying (2.2.18). If there exists α ∈ [0, T [ such that

h′0(α) = 0 6= h′′0(α),

then there is ε0 > 0 such that for each ε with 0 < |ε| < ε0 a Smale horseshoe occurs for
some iterate of the Poincaré map associated with system (2.2.21).

By Theorem 2.2.6, if we suppose that h0(t) := sin(ωt) is the periodic forcing term of
period T := 2π/ω for a given ω > 0, then we can state the following result.

Corollary 2.2.7. Assume (Hφ4) and let (q(t), q′(t)) be the homoclinic solution at the
saddle point B = Bk for the autonomous system (2.2.2) for some k > 0. Then, for any
ω > 0 there exists ε0 = ε0(ω) > 0 such that for each ε with 0 < |ε| < ε0 a Smale horseshoe
occurs for some iterate of the Poincaré map associated with system

{
x′ = y,

y′ = −φ(x) + k + ε sin(ωt).

The same result also holds for the damped system
{
x′ = y,

y′ = −εc0y − φ(x) + k + ε sin(ωt),

for c0 sufficiently small.
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Proof. For simplicity, we investigate only the frictionless case because with a similar
argument one can also derive the result when a small friction term c0 is present.

Recalling that q′(t) is an odd function, from (2.2.19) we obtain

M(α) =

∫ +∞

−∞
q′(t) sin(ωt+ ωα) dt = −2ω cos(ωα)η(ω),

for

η(ω) :=

∫ +∞

0

q̃(t) cos(ωt) dt, with q̃(t) := q(t)− xu .

In this manner, we have reduced the search of a simple zero for M(α) to the verification
that η(ω) 6= 0.

Since η′(ω) = −ω
∫ +∞

0
q̃(t) sin(ωt) dt = −

∫ +∞
0

q̃(ξ/ω) sin(ξ) dξ, we find that

−η′(ω) =

∞∑

j=0

(−1)j
∫ (j+1)π

jπ

q̃

(
ξ

ω

)
| sin(ξ)| dξ =

∞∑

j=0

(−1)jΞj

where we have set
Ξj :=

∫ π

0

q̃

(
t+ jπ

ω

)
sin(t) dt.

By observing that q̃(t) is positive and decreasing on [0,+∞[, follows that the sequence (Ξj)j
is positive, decreasing and Ξj → 0 as j → +∞. The theory of alternating series guarantees
that

∑
(−1)jΞj > 0 and hence η′(ω) < 0 for each ω > 0. Since η(ω) →

∫ +∞
0

q̃(t) dt > 0
as ω → 0+, we conclude that either η(ω) > 0 for each ω > 0 or η(ω) vanishes exactly
once. On the other hand, by the Riemann-Lebesgue lemma, it follows that η(ω) → 0
as ω → +∞. This implies that the second alternative never occurs because η is strictly
decreasing. Hence, in view of Theorem 2.2.5 the proof is completed.

Remark 2.2.8. In the statement of Corollary 2.2.7 no condition on ω, and thus on the
period T , is required. This advantage leads limited applicability. Indeed, for a broad family
of periodic functions h0, we should look at Theorem 2.2.6. In this case, however, we warn
that the period of the forcing term is modified by the parameter ε > 0. If h0 is T -periodic,
then the forcing term in (2.2.21) has period Tε := T/ε and the second eigenvalue of the
corresponding periodic problem becomes λ2 := (2π/T )2ε2. As a result, for a sufficiently
small ε > 0 it follows limξ→+∞ φ′(ξ) > λ2 and thus the nonlinearity jumps certainly the
second eigenvalue. In this manner, we enter in a range of parameters for which several
Tε-periodic solutions exist. Accordingly, we recall that at least the Hamiltonian system
(S1) has plenty of periodic solution (see [LM87; LM90; Reb97; Wan00; ZZ05]). Hence, it
is reasonable to expect to find also chaotic-like solutions for forcing terms which are not
necessarily small. This will be discussed in the next section. C

2.2.3 Topological horseshoes
From Section 2.2.2 we notice that the Melnikov’s theory involves the verification of
hypothesis on the simplicity of the zero for the Melnikov function. This task may be
very laborious when an explicit analytical expression of the homoclinic solution is not
available. Consequently, we discuss two different approaches which are more affordable
from applications point of view and require assumption less stringent. Despite all of this,
they lead to the detection of a weaker “level of chaos” given by topological horseshoes,
instead of a Smale horseshoes. The first one is still within the Melnikov’s theory and look
at slowly varying hamiltonian dynamical systems. The second one is called stretching
along the paths method (SAP method) and look at switched systems.

Slowly varying systems
This subsection concerns the case of periodic forcing terms with a very large period. First
of all, we take into account a tool that come from the work by Battelli and Fečkan [BF02a]
where they generalized the hypothesis about the existence of a simple zero for the Melnikov
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function by using topological degree and assuming that M(α) changes it sign (cf. [BF02a,
Theorem 4.4 and Remark 5.4]).

Theorem 2.2.9. Assume (Hφ4) and let (q(t), q′(t)) be the homoclinic solution at the
saddle point B = Bk for the autonomous system (2.2.2) for some k > 0. Let also p0 be a
sufficiently smooth, Cr for r ≥ 2, T -periodic function satisfying (2.2.18). If

M 6≡ 0,

then there is ε0 > 0 such that for each ε with 0 < |ε| < ε0 a topological horseshoe occurs
for some iterate of the Poincaré map associated with (2.2.20).

As a possible application of Theorem 2.2.9, we consider in system (S1) a forcing term
given by h(t) = k + εh0(Ωt) with h0 : R→ R a T -periodic function of class C2 and Ω > 0
a fixed constant. Hence, we deal with

{
x′ = y,

y′ = −φ(x) + k + εh0(Ωt),
(2.2.22)

and prove what follows.

Corollary 2.2.10. Assume (Hφ4) and let (q(t), q′(t)) be the homoclinic solution at the
saddle point B = Bk for the autonomous system (2.2.2) for some k > 0. Suppose that p0

is not constant. Then, there exists Ω0 > 0 such that for every Ω with 0 < Ω < Ω0, there is
ε0 = ε0(Ω) > 0 such that for each ε with 0 < |ε| < ε0 a topological horseshoe occurs for
some iterate of the Poincaré map associated with system (2.2.22). The same result also
holds for the damped system

{
x′ = y,

y′ = −εc0y − φ(x) + k + εh0(Ωt),
(2.2.23)

for c0 sufficiently small.

Proof. We prove now the statement for system (2.2.22). The same conclusion holds for
system (2.2.23) because the result in Theorem 2.2.9 is stable for small perturbations, since
it is based on topological degree theory.

The Melnikov function defined in (2.2.19), associated to (2.2.22), takes here the form
M(α) = −Ω

∫ +∞
−∞ q̃(t)h′0(Ωt + Ωα) dt, where q̃(t) = q(t) − xu . Since h0 is not constant,

there exists s∗ such that h′0(s∗) > 0. Then, there exist a constant δ∗ > 0 and an interval
[s∗−r∗, s∗+r∗] such that h′(ξ) ≥ δ∗ for all ξ ∈ [s∗−r∗, s∗+r∗]. Taking α∗ = α∗(Ω) := s∗/Ω,
we have that

−M(α∗)
Ω

≥
∫ r∗/Ω

−r∗/Ω
q̃(t)h′0(s∗ + Ωt) dt− 2‖h′0‖∞

∫ +∞

r∗/Ω
q̃(t) dt

≥ 2δ∗
∫ r∗/Ω

0

q̃(t) dt− 2‖h′0‖∞
∫ +∞

r∗/Ω
q̃(t) dt.

Since, one can deduce the existence of a constant Ω1 > 0 such that for each Ω with 0 <

Ω < Ω1 it holds that
∫ r∗/Ω

0
q̃(t) dt > (δ∗)−1‖h′0‖∞

∫ +∞
r∗/Ω q̃(t) dt, then we have M(α∗) < 0.

Similarly, there exists s∗ such that h′0(s∗) < 0. Accordingly, there are a constant
δ∗ > 0 and an interval [s∗ − r∗, s∗ + r∗] such that h′(ξ) ≤ −δ∗ for all ξ ∈ [s∗ − r∗, s∗ + r∗].
Taking now α∗ = α∗(Ω) := s∗/Ω, by an argument similar to the previous one, there exists
a constant Ω2 > 0 such that for each Ω with 0 < Ω < Ω2 we have M(α∗) > 0. The
conclusion now follows from Theorem 2.2.9 by taking Ω0 := min{Ω1,Ω2}.

The assumptions in Corollary 2.2.10 involve an arbitrary non-constant periodic function
h0 of class C2 with period TΩ := T/Ω such that its displacement from a constant value
k > 0 is very small and TΩ is very large.
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Avoiding the smallness of the displacement, we consider a topological approach that
comes from the work by Gedeon, Kokubu, Mischaikow and Oka [Ged+02] and is based
on Conley index theory. The method in [Ged+02] is stable for small perturbations and
applies also to systems which are not necessarily periodic in the time variable. Here, we
give an application to system

{
x′ = y,

y′ = −φ(x) + h(εt),
(2.2.24)

where h : R→ R is a non-constant periodic function of class C2 such that h(t) > 0 for all
t ∈ R. First we need to introduce a few definitions from [Ged+02]. Writing (2.2.24) as





x′ = y,

y′ = −φ(x) + h(θ),

θ′ = ε,

(2.2.25)

we set, for a moment, θ as a constant parameter and consider the planar autonomous
Hamiltonian system {

x′ = y,

y′ = −φ(x) + h(θ).
(2.2.26)

Concerning this latter system, for each θ there exist an equilibrium point A(θ) := (xs(θ), 0)
which is a center and also a hyperbolic saddle equilibrium point B(θ) := (xu(θ), 0)
with a homoclinic orbit enclosing A(θ). By definition, φ(xu(θ)) = φ(xs(θ)) = 0, with
xu(θ) < 0 < xs(θ). We denote also with A the set of all the points (A(θ), θ) which is a
curve in R3. A solution X(t) := (x(t), y(t), θ(t)) of system (2.2.25) is said to oscillate k
times over an interval I = [θ−, θ+] with respect to A , if k ∈ N identifies the homotopy
class of the closed loop


 ⋃

θ(t)∈I
X(t) ∪B(θ(t))


 ∪


 ⋃

θ(t)∈∂I
X(t)B(θ(t))




in the fundamental group of R3 \ A (isomorphic to Z). Then, the results in [Ged+02;
KMO96], applied to system (2.2.24), give the following conclusion.

Theorem 2.2.11. Assume (Hφ4) and let also h : R → R be a non-constant periodic
function of class C2 such that h(t) > 0 for all t ∈ R. Then there exists a choice of infinitely
many pairwise disjoint closed intervals Ii := [θ−i , θ

+
i ] with

. . . θ−i−1 < θ+
i−1 < θ−i < θ+

i < θ−i+1 < θ+
i+1 . . . , i ∈ Z,

with the following property: for any given positive integer K there exists ε̄ > 0 such that
for any ε with 0 < ε < ε̄, there are at least two non-negative integers m′i and m′′i (for
i odd) and at least K non-negative integers m1

i , . . .m
K
i (for i even), such that for each

sequence (si)i∈Z of integers with s2i+1 ∈ {m′2i+1,m
′′
2i+1} and s2i ∈ {m1

2i, . . . ,m
K
2i}, there

is at least one solutions of (2.2.25) which oscillates si times over Ii.

Proof. The thesis follows from [Ged+02, Cor. 1.2]. Therefore, let us briefly check that we
enter in the settings of applicability of that result. First of all, we notice that (2.2.24) is
a periodically perturbed planar Hamiltonian system of the form z′ = J∇H(z, εt), where
J is the 2 × 2 symplectic matrix. Let us denote by S(θ) the area of the planar region
containing the elliptic equilibrium point A(θ) and bounded by the homoclinc orbit of
(2.2.26) enclosing it. Then, the intervals Ii are chosen so that S′(θ−i ) > 0 > S′(θ+

i ) for
i odd and S′(θ−i ) < 0 < S′(θ+

i ) for i even. Since the method in [Ged+02] applies also
when the forcing term h is not necessarily periodic, it requires the additional condition
that θ−i+1 − θ+

i is uniformly bounded away from zero. However, in our situation, h is a
non-constant periodic function. By denoting its fundamental period by T , we can choose
the intervals Ii such that θ±i+2 = θ±i + T for all i ∈ Z, without any further hypothesis and
this completes the proof.
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Notice that the result achieved in [Ged+02] is stable under small perturbations. That
being so, Theorem 2.2.11 applies also to system

{
x′ = y,

y′ = −ε2c0y − φ(x) + h(εt),

with c0 ∈ R. Moreover, by Theorem 2.2.11, we stress that chaotic dynamics appears also
in presence of a periodic perturbation h which is no longer required to be small.

Switched systems
This subsection concerns a step-wise periodic forcing terms that yields switched systems,
which is an attractive topic in the field of control theory (see [Bac14]). In this case we take
advantage of the SAP method that is presented in the Appendix (see also [MPZ09; PZ04]
for the details). By considering switched systems, we are looking for a geometry similar to
the one of the “linked twist maps” (see [PZ09; WO04]). More precisely, the configuration
of our problem recalls that of the work [PPZ08], where the interplay between an annulus
and a strip is considered instead of the usual two annuli.

Let us introduce a periodic piecewise constant forcing term of the form which takes
two values as follows

hk1,k2(t) :=

{
k1 for t ∈ [0, t1[,

k2 for t ∈ [t1, t1 + t2[,
(2.2.27)

with k1, k2 ≥ 0, k1 6= k2 and t1, t2 > 0. We will perform our analysis by assuming

0 < k1 < k2.

Notice that, via minor changes in the argument which follow, one can deal also with the
case k1 = 0. We suppose that the fundamental period of h(t) splits as

T := t1 + t2.

In this setting, system (S1) is equivalent to the switched system in the phase-plane (x, y)
which alternates between two subsystems:

(Si)

{
x′ = y,

y′ = −φ(x) + ki,

for i ∈ {1, 2}. In other words, the solution to (S1) which starts from an initial point
z0 = (x0, y0) is governed by the subsystem (S1) for a fixed period of time t1 and then
it is governed by the subsystem (S2) for another fixed period of time t2. At this point,
the switched system may change back to subsystem (S1) until the time elapsed is exactly
t1 + t2. As a consequence, the Poincaré map Φ of system (S1) can be decomposed as
Φ = Φ2 ◦ Φ1, where Φi is the Poincaré map of system (Si) relatively to the time interval
[0, ti], for i ∈ {1, 2}.
Theorem 2.2.12. Assume (A1) and let also h : R→ R be a T -periodic stepwise function,
such that h(t) > 0 for all t ∈ R. Then, there exist τ∗1 and τ∗2 such that a topological
horseshoe occurs for the Poincaré map associated with system (S1) provided that t1 > τ∗1
and t2 > τ∗2 .

Proof. Consider two fixed values k1, k2 and let h(t) = hk1,k2(t) be defined as in (2.2.27).
The idea of the proof is to apply SAP method, namely Theorem B.6. Our task is now
to find two oriented topological rectangles M̃ and Ñ (Definition B.3) where chaotic
dynamics take place (in terms of symbolic dynamics on 2×m symbols). To do this we
divide the analysis into the following two steps which collect the stretching properties
(Definition B.4).

Step I. For any path γ contained in M, connecting the two sides M−l and M−r , there
exist two sub-paths γ0, γ1 such that Φ1(γi) is a path contained in N which joins the two
sides N−l and N−r for each i ∈ {0, 1}.
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Step II. For any path γ contained in N , connecting the two sides N−l and N−r , there
exist m ≥ 2 sub-paths γ0, . . . , γm−1 such that Φ2(γi) is a path contained inM which joins
the two sidesM−l andM−r for each i ∈ {0, . . . ,m− 1}.
We start by giving a suitable construction of these topological oriented rectangles. From
Section 2.2.1 follows the existence of two homoclinc orbits H(xu(k1)) and H(xu(k2)), one
for system (S1) and one for (S2), associated with the energies Λk1(xu(k1)) and Λk2(xu(k2)),
respectively. Moreover, Proposition 2.2.4 leads to

xu(k2) < xu(k1) < xh(k1) < xh(k2),

which is equivalent to said that the region bounded by the homoclinic orbit H(xu(k2))
contains the homoclinc orbit H(xu(k1)).

Let us fix three main energy levels A,B,D ∈ R as follows. Take A < Λk1(xu(k1))
such that the solution a := x∗(A) of the equation Λk1(x) = A belongs to the interval
]xu(k2), xu(k1)[. Choose Λk2(xs(k2)) < D < Λk2(xu(k2)) in a way that the solutions
d := x−(D) and x+(D) of the equation Λk2(x) = D are such that xu(k2) < d < a
and xs(k2) < x+(D) < xh(k2). At last, consider B > Φk1(xu(k1)) so that the solution
b := x∗(B) of Λk1(x) = B is such that xh(k1) < b < x+(D). This way, one can determine
three different energy level lines which are VA, UB for system (S1) and OD for (S2), defined
as in (2.2.6), (2.2.7) and (2.2.5), respectively. Now, we consider the closed regions

SA := {(x, y) ∈ R2 : A ≤ Ek1(x, y) ≤ Λk1(xu(k1)), x ≤ xu(k1)},
SB := {(x, y) ∈ R2 : Λk1(xu(k1)) ≤ Ek1(x, y) ≤ B},

and their union
S := SA ∪ SB .

They are all invariant for the flow associated with system (S1). The region S is topologically
like a strip with a hole given by the part of the plane enclosed by the homoclinic trajectory
H(xu(k1)). We also introduce a closed and invariant annular region for system (S2), given
by

A := {(x, y) ∈ R2 : D ≤ Ek2(x, y) ≤ Λk2(xu(k2))}.
The intersection of S with A determines two disjoint compact sets that we callM (the
one in the upper half-plane) and N (the other symmetric one in the lower half-plane),
that are

M := A ∩ S ∩ {(x, y) ∈ R2 : y > 0}, N := A ∩ S ∩ {(x, y) ∈ R2 : y < 0}.

One can easily check that they are topological rectangles. At last, we give an orientation
as follows

M−l :=M∩VA , M−r :=M∩UB ,
N−l := N ∩OD , N−r := N ∩H(xu(k2)).

See Figure 2.3 for a graphical sketch of M̃ and Ñ .
We are now in position to prove Step I. Let us consider system (S1). Then, thanks to

the analysis performed in Section 2.2.1, we known the time needed to move from the point(
xu(k2),

√
2(A− Λk1(xu(k2)))

)
to the point

(
xu(k2),−

√
2(A− Λk1(xu(k2)))

)
along VA.

This is, in accord with (2.2.15),

τVA := τV(A; xu(k2)).

From (2.2.16), the displacement, from the point
(
xu(k2),

√
2(B − Λk1(xu(k2)))

)
to the

point
(
xu(k2),−

√
2(B − Λk1(xu(k2)))

)
along UB , requires the following time

τUB := τU(B; xu(k2)).
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Figure 2.3: Left: Link of an annulus with a “strip with hole”. Energy level lines for system
(2.2.2) where φ(x) =

√
1 + x2 − 1 are displayed with k = 2 (blue) and k = 4 (red). Right:

Zooming of the topological rectangles with evidence of the boundaries.

As a result of these computations, we fix

τ∗1 := max{τVA , τUB}. (2.2.28)

Note that each solution of a Cauchy problem with initial conditions taken in M
evolves, through the action of (S1), inside the invariant region S. More in detail, at any
time t1 > τVA , all the initial points inM−l will be moved, along the level line VA, to points
with x < xu(k2) and y < 0 by the action of Φ1. Any solution u(t) of u′′ + f(u) = k1 with
(u(0), u′(0)) ∈M−l starts with u(0) > xu(k2) and a positive slope, it is strictly increasing
until it reaches its maximum value umax = a and then it decreases strictly till to the value
u(t1) < xu(k2). Moreover, u′(t) is strictly decreasing on the whole interval [0, t1]. Similarly,
for t1 > τUB , all the initial points in M−r will be moved away along the level line UB.
The final points will be such that x < xu(k2) and y < 0. Analogous considerations can
be made for the solution u(t) of u′′ + φ(u) = k1 with (u(0), u′(0)) ∈M−r which achieves
the maximum value umax = b. In the regionM, any path connectingM−l toM−r must
intersect the stable manifold W s(xu(k1)). Notice that any solution (x(t), y(t)) of system
(S1) starting at a point of W s(xu(k1)), lies on such a manifold and, therefore, y(t) > 0 for
all t ≥ 0.

Let γ : [0, 1]→M be a continuous path with γ(0) ∈M−l ⊆ VA and γ(1) ∈M−r ⊆ UB .
First of all, observe that, by the continuity of γ there exists s̄[, s̄] ∈]0, 1[ with s̄[ ≤ s̄] such
that γ(s̄[), γ(s̄]) ∈W s(xu(k1)) and γ(s) ∈ SA for all 0 ≤ s ≤ s̄[, as well as γ(s) ∈ SB for
all s̄] ≤ s ≤ 1. By the choice of τ∗1 , for each t1 > τ∗1 it follows that

Φ1(γ(0)), Φ1(γ(1)) ∈ {(x, y) : x < xu(k2), y < 0},
Φ1(γ(s̄[)), Φ1(γ(s̄])) ∈ {(x, y) : x > xu(k2), y > 0}.

Thus, the path γ is folded onto itself in the invariant region S by the action of system S1

as shown in Figure 2.4. Now we set

s′′A := max{s ∈ [0, s̄[] : Φ1(γ(s)) ∈ N−l }, s′A := max{s ∈ [0, s′′A] : Φ1(γ(s)) ∈ N−r }.

By definition, γ(s) ∈M∩SA and Φ1(γ(s)) ∈ N for all s ∈ [s′A, s
′′
A] with Φ1(γ(s′A)) ∈ N−r

and Φ1(γ(s′′A)) ∈ N−l . Analogously, we define

s′B := max{s ∈ [s̄], s′′B ] : Φ1(γ(s)) ∈ N−l }, s′′B := max{s ∈ [s̄], 1] : Φ1(γ(s)) ∈ N−r },

and we observe that γ(s) ∈M∩ SB , Φ1(γ(s)) ∈ N for all s ∈ [s′B , s
′′
B ] with Φ1(γ(s′B)) ∈

N−l and Φ1(γ(s′′B)) ∈ N−r .
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Figure 2.4: Left: Representation of a generic path γ (green) in the topological rectangle
M joiningM−l withM−r and its image (black) at time t1 under the action of the system
(S1) where φ(x) =

√
1 + x2 − 1 and k = 2. Right: Zooming of the two crossings between

the image of the curve γ with the topological rectangle N .
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Figure 2.5: Left: Representation of a generic path γ (green) in the topological rectangle N
joining N−r with N−l and its image (black) at time t1 + t2 under the action of the system
(S2) where φ(x) =

√
1 + x2 − 1 and k = 4. Right: Zooming of the crossing between the

image of the curve γ with the topological rectangleM.

For any t1 > τ∗1 fixed, using an elementary continuity argument, we can determine
a (small) open neighborhood W of W s(xu(k1)) ∩M such that y(t) > 0 for all t ∈ [0, t1],
whenever (x(0), y(0)) ∈ W . Thus, finally, if we define

K1,0 :=M∩SA \W , K1,1 :=M∩SB \W ,

then, in accord with Definition B.4, we have determined two disjoint compact sets such
that satisfy the SAP condition with crossing number 2:

(K1,0,Φ2) : M̃ m−→2 Ñ , (K1,1,Φ2) : M̃ m−→2 Ñ .

At last we consider system (S2) and we prove the stretching property formulated in
Step II. Note that each solution of a Cauchy problem with initial conditions taken in N
evolves through the action of (S2) inside the annular region A which is invariant for the
associated flow. Once the point (b, 0) is fixed as a center for polar coordinates, if the time
increases, then all the points of A \ {(xu(k2), 0)} move along the energy level lines of (S2)
in the clockwise sense. For our purposes, it will be convenient to introduce an angular
variable starting from the half-line L := {(r, 0) : r < b} and counted positive clockwise
from the reference axis L. In this manner all the points of N are determined by an angle
ϑ ∈ ]− π/2, 0[ (mod 2π), while those ofM are determined by ϑ ∈ ]0, π/2[ (mod 2π). In
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other words, for our auxiliary polar coordinate system, the region N (respectively,M)
lies in the interior of the fourth quadrant (respectively, first quadrant). Any solution
u(t) of u′′ + φ(u) = k2 with (u(0), u′(0)) ∈ N−r starts with u(0) > xu(k2) and a negative
slope, it tends as t→ +∞ to the saddle point of (S2) along the homoclinic orbit, with u(t)
decreasing and u′(t) increasing. On the other hand, any solution with (u(0), u′(0)) ∈ N−l
is periodic with period equal to the fundamental period of the orbit OD, that we denote
by

TOD := 2 τO(D; x+(D)),

by means of (2.2.14). If we take any path in N connecting N−r to N−l we have that
its image under the action of the flow of (S2) looks like a spiral curve contained in A
which winds a certain number of times around the center. In order to formally prove
this fact and to evaluate the precise number of revolutions, we denote by ϑ(t, z) the
angle at the time t ≥ 0 associated with the solution (x(t), y(t)) of system (S2) such
that (x(0), y(0)) = z ∈ N . By the previous considerations and the choice of a clockwise
orientation, we know that d

dtϑ(t, z) > 0 for all z ∈ N . For our next computations we need
also to introduce the time needed to go from the point

(
b,−

√
2(D − Λk2(b))

)
to the point(

b,
√

2(D − Λk2(b))
)
along OD, which is given by

τOD := τO(D; b),

consistently with (2.2.14). Given m ≥ 1, we fix

τ∗2 := τOD + (m− 1)TOD . (2.2.29)

We claim that for each fixed time t2 > τ∗2 the SAP property holds for the Poincaré map
Φ2 with crossing number (at least) m. A visualization of this step for m = 1 is given in
Figure 2.5.

By the previous observations, we have that

ϑ(t2, z) < 0, ∀ z ∈ N−r ,
ϑ(t2, z) >

π

2
+ 2(m− 1)π, ∀ z ∈ N−l .

This allows us to introduce m nonempty subsets K2,0 , . . . ,K2,m−1 of N which are pairwise
disjoint and compact. They are defined by

K2,i := {z ∈ N : ϑ(t2, z) ∈ [2iπ, (π/2) + 2iπ]}, ∀i ∈ {0, . . . ,m− 1}.

Let γ : [0, 1] → N be a continuous path with γ(0) ∈ N−r ⊆ H(xu(k2)) and γ(1) ∈
N−l ⊆ OD. We fix also an index i ∈ {0, . . . ,m − 1}. First of all, observe that, by the
continuity of γ there exists s̄[i , s̄

]
i ∈ ]0, 1[ with s̄[i < s̄]i such that

ϑ(t2, γ(s̄[i)) = 2iπ, ϑ(t2, γ(s̄]i)) =
π

2
+ 2iπ,

and
2iπ < ϑ(t2, γ(s)) <

π

2
+ 2iπ, ∀ s̄[i < s < s̄]i .

For ease of notation, we define as AI the intersection of A with the first quadrant of the
auxiliary polar coordinate system and we also consider the following two segments

AxI := [xu(k2), d]× {0},
AyI := {b} ×

[√
2(D − Λk2(b)),

√
2(Λk2(xu(k2))− Λk2(b))

]
,

which are on the boundary of AI. By construction, the image Φ2 ◦ γ|[s̄[i ,s̄]i ] is contained in
AI and joins AxI to AyI . On the other hand, the setM as well as its sidesM−l andM−r
separate AxI and AyI inside AI. An elementary connectivity argument, allows to determine
s′i and s′′i with s̄[i < s′i < s′′i < s̄]i such that Φ2(γ(s′i)) ∈ M−l , Φ2(γ(s′′i )) ∈ M−r and,
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Φ2(γ(s)) ∈ M, for all s ∈ [s′i, s
′′
i ]. Moreover, γ(s) ∈ K2,i for all s ∈ [s′i, s

′′
i ]. This way our

claim is verified because

(K2,i,Φ2) : Ñ m−→ M̃, ∀ i ∈ {0, . . . ,m− 1}.

At the end, from Step I and Step II we can conclude that there exists a topological
horseshoe for the Poincaré map Φ = Φ2 ◦ Φ1 with full dynamics on 2×m symbols.

Remark 2.2.13. Let us make some comments on the proof of Theorem 2.2.12. Firstly,
we notice that this result is stable with respect to small perturbations in the following
sense: for any choice of t1 > τ∗1 and t2 > τ∗2 (so that T = t1 + t2 is fixed) there exists
an ε0 > 0 such that, for all c with |c| < ε0 and every forcing term h(t) such that∫ T

0
|h(t) − hk1,k2(t)| dt < ε0, the conclusion of Theorem 2.2.12 holds for system (S2).

Hence we can consider also smooth forcing terms h(t) near to hk1,k2(t) in the L1-norm.
Secondly, the constants τ∗1 and τ∗2 will be explicitly computed in terms of the forcing term
h(t) (cf. (2.2.28) and (2.2.29)). C

We conclude, this discussion with an example of chaotic dynamics by considering the
nonlinearity φ(ξ) = |ξ|. The essential observation consists in the direct computation of
(2.2.28) and (2.2.29), which are not necessarily large, as we are going to see.
Example 2.2.14. Let us consider the second order ODE u′′ + |u| = h0,2(t) for T = t1 + t2,
which is equivalent to the differential system

{
x′ = y,

y′ = −|x|+ h0,2(t),
(2.2.30)

where the forcing term h0,2(t) is defined according to (2.2.27) (one could also consider the
case of a smooth nonlinearity sufficiently near to the absolute value).

Our goal is to show the presence of symbolic dynamics on two symbols for system
(2.2.30). In this respect, using an argument similar to the one used in Theorem 2.2.12, we
consider two regions in the phase-plane defined as follows

S := {(x, y) ∈ R2 : 0 ≤ E0(x, y) ≤ 8},
A := {(x, y) ∈ R2 : ρε ≤ E2(x, y) ≤ 2},

where ρε := (−ε2 + 4ε)/2 with ε > 0 a sufficiently small fixed real value. The strip region
S is obtained from the equation u′′+ |u| = 0 by considering the area between the following
associated level lines: the unbounded orbit U8 passing through the point (4, 0) and the line
x = −|y| made by the unstable equilibrium point (xu(0), 0) = (0, 0), the stable manifold
Ws(0) and the unstable one Wu(0). To construct the annular region A, we consider the
equation u′′+ |u| = 2 and from its phase portrait we select the area between the homoclinic
orbit H(−2) at the saddle point (xu(2), 0) = (−2, 0) and a periodic orbit Oρε that passes
through (ε, 0) which is a point very close to the origin. Dealing with u′′ + |u| = 2 we
can observe that all the periodic orbits enclosing the stable center (2, 0) and contained in
the right-half phase-plane are isochronous with period 2π. Now, we set the topological
rectangles as follows

M := A ∩ S ∩ {(x, y) ∈ R2 : y > 0},
N := A ∩ S ∩ {(x, y) ∈ R2 : y < 0},

and the orientation is analogous to the one just given in the proof of the previous theorem.
To apply the SAP method we require the following time mapping estimates. First,

the time needed to move along U8 from the point (2
√

2, 2
√

2) to the point (2
√

2,−2
√

2),
which is

τU8 := τU(8; 4) = 2

∫ 4

2
√

2

ds√
16− x2

=
π

2
.

Next, the period τOρε of the periodic orbit Oρε , which is τOρε ∼ 2π when ε is chosen small
enough. This way, by fixing t1 > π/2, the image at time t = t1 of any continuous path
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contained in M which connects M−l to M−r , is stretched under the action of system
(2.2.30) in another continuous path and for it one can find a sub-path entirely contained
in N which connects N−l to N−r . Provided that t2 > 4π, the previous sub-path is again
stretched by system (2.2.30) and at time t = T = t1 + t2 its image has revolved at least
twice around the center (2, 0). From this image, which is a spiral-like curve, we can detect
two sub-paths inM that join the two sidesM−l andM−r .

In conclusion, if the period of the forcing term p0,2(t) is such that T > 9π/2, then
Theorem B.6 guarantees dynamics on 1× 2 symbols for system (2.2.30). In other words,
this is the case when a topological horseshoe occurs. Since limξ→+∞ φ(ξ)/ξ = 1 it follows
that the range where complex dynamics take place is between the third and the fourth
eigenvalue of the corresponding periodic linear problem. C

2.2.4 Comparison
In this section we first of all sum up the result achieved in Section 2.2.2 and Section 2.2.3
for the T -periodic BVP associated with

u′′ + φ(u) = h(t)

with the intent to compare the different “level of chaos” detected. To do this, we refer to
Table 2.1.

Moreover, we make some comment on the results achieved with respect to the classical
condition (Hφ1), that we recall as follows

(Hφ1) −∞ ≤ lim
ξ→−∞

φ(ξ)

ξ
< λ1 = 0 < lim

ξ→+∞
φ(ξ)

ξ
< λ2 = (2π/T )2.

Consequently, as first, we set h(t) := k + h0(t) and consider

u′′ + φ(u) = k + εh0(t), (2.2.31)

where h0(t) = sin(ωt) with ω > 0, k > 0, ε sufficiently small and period T = 2π/ω. For the
nonlinearity we assume that φ : R→ R is a convex function of class C2 satisfying φ(0) = 0
and (Hφ1). An application of Corollary 2.2.7 leads to the presence of chaos in the sense
of the Smale’s horseshoe for a suitable iterate of the Poincaré map ΦN associated with
(2.2.31). On the other hand, an application of the abstract theory of Ambrosetti-Prodi
leads to the existence of a number k0 = k0(ε) such that equation (2.2.31) has no T -periodic
solutions, at least one T -periodic solution or at least two T -periodic solutions according
to k < k0, k = k0 or k > k0, respectively. If we assume that limξ→+∞ < ω2/4 < λ2, then
Theorem 1.4 applied to

u′′ + εcu′ + φ(u) = k + εh0(t), (2.2.32)

states that for k > k0 one T -periodic solution is asymptotically stable and the other one
unstable. Finally, since Corollary 2.2.7 holds for equation (2.2.32) without any restriction
on ω, we obtain the coexistence between chaos zones and regions of stability. This is
not in conflict because Melnikov’s method ensure the presence of a Smale horseshoe for
ΦN and so it follows also the existence of a large order of subharmonics. Notice that the
existence of a great amount of subharmonic solutions has already been obtained for similar
Hamiltonian systems in [BZ13; Reb97; RZ96] using the Poincaré-Birkhoff twist theorem
(see also [PMM92; LM87; LM90] for previous contributions in this direction). On the
contrary, the results in [Ort89; Ort90] prevent the existence of subharmonics of order two
for (2.2.32).

At last, we revisit Example 2.2.14 where the forcing term h(t) := h0,2(t) has period
T > 9π/2 and φ(u) = |u|. At this juncture, we observe the presence of chaos in the sense
of the topological horseshoe for the Poincaré map Φ associated with (2.2.30). In this case
the chaotic zones starts when the derivative of the nonlinearity φ crosses also the third
eigenvalue, indeed λ4 > limξ→+∞ = 1 > λ3 > λ2 where, λj = (j − 1)2(2π/T )2 for j ∈ N0.
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3. Neumann AP problems

The present chapter, coming from [Sov18; SZ17b], is devoted to the study of existence
and multiplicity of solutions for Neumann AP problems of the following form

(Ns)

{
u′′ + g(t, u) = s,

u′(0) = u′(T ),

where s is a real parameter and g : [0, T ]× R→ R is a Carathéodory function.
First of all we recall from Chapter 1 that dealing with a continuous function g, under

the additional coercivity hypothesis

(Hg1) lim
|u|→+∞

g(t, u) = +∞ uniformly in t

introduced in [FMN86; Maw87a], then there exists a number s0 such that problem (Ns)
has no solutions, at least one solution or at least two solutions according to s < s0, s = s0

or s > s0 (Theorem 1.6). As for the periodic problem in Chapter 2, the goal is here to
generalize Theorem 1.6 by weakening the usual condition (Hg1) considered in the literature
[BL81; Maw87a; PP16; Rac93] without requiring any uniformity condition in t. In fact, a
typical example that can not be treated within the framework built up in [Maw87a] arises
by considering the non-sign definite Neumann problem given by

(WN s)

{
u′′ + a(t)φ(u) = s+ p(t),

u′(0) = u′(T ),

where φ : R → R is a continuous function satisfying (Hφ2) (i.e. lim|u|→+∞ φ(u) = +∞)
and a, p ∈ L∞(0, T ) with

(Ha1) a(t) ≥ 0 for a.e. t ∈ [0, T ] with
∫ T

0

a(t) dt > 0.

Indeed, in this case, g(t, u) = a(t)φ(u) − p(t) does not tend uniformly to infinity as
|u| → +∞ and can even vanishes identically on sets of positive measure. The question
now is whether a weak alternative of Ambrosetti-Prodi for the solutions of (WN s) still
holds. We first discuss an example to motivate the results in this section.
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Example 3.1. Consider the Neumann BVP associated with the parameter dependent
equation u′′ + a(t)φ(u) = s+ p(t) on [0, 2], where φ(ξ) =

√
1 + ξ2 − 1, p(t) = sin(t) and

a(t) =

{
0 for t ∈ [0, 1[,

1 for t ∈ [1, 2].

Notice that ess inft∈[0,2] a(t) = 0 and so the problem does not belong to the setting of the
works already quoted. Nevertheless, the multiplicity of solutions is not lost, as suggested
in Figure 3.1. In fact, we give numerical evidence of the existence of a number s∗ for
which the corresponding Neumann problem has at least two solutions. C
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Figure 3.1: Numerical approximation of two solution of the Neumann problem on [0, 2]
associated with u′′+a(t)φ(u) = s+p(t) with s = 2 satisfying the framework of Example 3.1.

In the first part of this chapter we will exploit the “shooting method” in order to
provide a multiplicity result of solutions for the non-sign definite Neumann problem (WN s)
according to Theorem 3.1.1. This kind of approach is handy and well gives the idea of the
dynamics of the problem on the phase-plane (u, u′). Nevertheless, apparently does not
permit to recover the complete alternative of Ambrosetti-Prodi type.

For this reason, in the second part we will study both problems (Ns) and (WN s) in
the same spirit of Section 2.1. In particular, by Theorem 3.2.1 and Corollary 3.2.2, we
will give a more detailed description of the set of the solutions for these Neumann BVPs
and we will recover the weaker form of the classical scheme zero, one or two solutions.

3.1 Multiplicity result via shooting method
In this section we deal with a nonlinearity φ : R → R of class C1 which satisfies the
following “crossing condition”

(Hφ5) −∞ < lim
ξ→−∞

φ′(ξ) < 0 < lim
ξ→+∞

φ′(ξ) < +∞,

and a weight term a ∈ L∞(0, T ) satisfying (Ha1). In this framework we state and prove
the following result of multiplicity of solutions for problem (WN s).

Theorem 3.1.1. Let p ∈ L∞(0, T ). Assume that φ ∈ C1(R) is a function which satisfies
(Hφ5). Moreover, suppose that a ∈ L∞(0, T ) is such that conditions in (Ha1) hold. Then,
there exists s0 ∈ R such that the problem (WN s) has at least two solutions for all s > s0.

The proof of Theorem 3.1.1 is performed into two parts. In the first one we present
a result of existence and in the second we conclude with a result of multiplicity. In the
sequel, without loss of generality we assume that

(Hφ6) φ(0) = 0, φ′(ξ) < 0 ∀ξ < 0.

In fact, from (Hφ5) there exists r0 < 0 such that φ′(ξ) < 0 for each ξ < r0. Therefore,
taking z := u− r0, one could also consider the equivalent Neumann problem associated
with z′′ + a(t)φ̃(z) = s+ p̃(t) where p̃(t) = p(t)− a(t)φ(r0) and φ̃(z) := φ(z + r0)− φ(r0)
satisfies (Hφ6).
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Existence result
In this subsection, we present an existence result for (WN s) when the parameter s exceeds
some value s0. Let us consider the truncated Neumann problem associated with the
equation

u′′ + ϕs(t, u) = 0, (3.1.1)

where

ϕs(t, ξ) :=

{
a(t)φ(ξ)− s− p(t) ξ ≤ 0,

−s− p(t) ξ > 0.

Notice that (3.1.1) coincides with (WN s) when u(t) ≤ 0 for all t ∈ [0, T ].
In our framework both uniqueness and global existence for the solutions of the

associated Cauchy problems is guaranteed. Thus, let u(· ;u0, u1) be the unique and
globally defined on [0, T ] solution of the equation (3.1.1) satisfying the initial values

u(0) = u0 ∈ R, u′(0) = u1 ∈ R. (3.1.2)

We recall that, for every fixed s ∈ R, the Poincaré map for (3.1.1) on the interval [0, T ] is
the well defined map

ΦT0 : R2 → R2, (u0, u1) 7→ (u(T ), u′(T ))

where u is the solution of (3.1.1) with the initial values (3.1.2). Moreover, the standard
theory of ordinary differential equations guarantees that the Poincaré map is actually a
global diffeomorphism of the plane onto itself.

Shooting method. The recipe of the shooting method states that a solution of the Neumann
problem associated with equation (3.1.1) can be found by looking for a point (u0, 0) ∈ R2

such that ΦT0 (u0, 0) ∈ R× {0}.

This way our goal is to prove that for any A > 0 the Poincaré map associated
with (3.1.1) is such that ΦT0 (A, 0) ∈ R+ × R+, while for any −B � 0 we have that
ΦT0 (−B, 0) ∈ R−0 ×R−. A continuity argument then leads to the existence of C ∈]−B,A[
such that ΦT0 (C, 0) ∈ R× {0}.

Theorem 3.1.2. Let p ∈ L∞(0, T ). Let a ∈ L∞(0, T ) satisfies (Ha1). Assume that
φ ∈ C1(R) satisfies (Hφ5) and (Hφ6). Then, there exists s0 ∈ R such that for each s > s0

problem (WN s) has at least one solution.

Before proceeding with the proof of Theorem 3.1.2 we need the following two prelimi-
nary lemmas (the prove of the first one follows straightforward by contradiction and so it
is omitted).

Lemma 3.1.3. Let s > ess supt∈[0,T ] − p(t). Then, for any fixed u0 > 0, the solution of
(3.1.1) with initial values u(0) = u0 and u′(0) = 0 is such that u(t) > 0 for all t ∈ [0, T ]
and u′(t) > 0 for all t ∈]0, T ].

Lemma 3.1.4. Let s ∈ R, p ∈ L∞(0, T ). Let a ∈ L∞(0, T ) satisfies (Ha1). Assume that
φ ∈ C1(R) satisfies (Hφ5) and (Hφ6). Then, there exists rs < 0 such that for any fixed
u0 < rs, if u is a solution of (3.1.1) with initial values u(0) = u0 and u′(0) = 0, then
u(t) < 0 for each t ∈ [0, T ] and, moreover, u′(T ) < 0.

Proof. As long as u(t) is negative, integrating equation (3.1.1) two times with respect to t
and taking into account (Hφ6), we obtain

u(t) = u0 −
∫ t

0

(∫ ξ

0

a(z)φ(u(z)) dz

)
dξ +

st2

2
+

∫ t

0

P (ξ) dξ, (3.1.3)
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where P (t) :=
∫ t

0
p(ξ) dξ. Considering again (Hφ6), from equation (3.1.3), we get

u(t) ≤ u0 +
sT 2

2
+ ‖P‖L1 .

For any s ∈ R, we define

Ms = M(s) :=
sT 2

2
+ ‖P‖L1 . (3.1.4)

Then, from the choice of u0 < −Ms, we have that for each t ∈ [0, T ]

u(t) ≤ u0 +Ms < 0. (3.1.5)

Now we prove u′(T ) < 0. An integration on [0, T ] of equation (3.1.1) leads to the
following inequality:

u′(T ) ≤ −
∫ T

0

a(ξ)φ(u(ξ)) dξ + sT + ‖p‖L1 .

Recalling (3.1.5) and (Hφ6), which implies that the function φ is strictly decreasing on
[0,−∞), by using the previous inequality we obtain

u′(T ) ≤ −φ(u0 +Ms)‖a‖L1 + sT + ‖p‖L1 .

From assumption (Hφ5) follows φ(s) → +∞ as s → −∞. Therefore, there exists ms =
m(s) > 0 such that

φ(u) > α :=
sT + ‖p‖L1

‖a‖L1

, ∀u < −ms.

Now, choose rs = r(s) := −(ms + Ms). Then, φ(u0 + Ms) > α for each u0 < rs.
Consequently, taking u0 < rs, we achieve the thesis, since u′(T ) < 0 and u(t) < 0 for all
t ∈ [0, T ].

Proof of Theorem 3.1.2. Let us take s0 := ess supt∈[0,T ] − p(t) and divide the proof in
two steps.

Step I. We claim that for every s > s0 there exists C1 ∈ R× {0} such that ΦT0 (C1, 0) ∈
R× {0}.
This way, the Neumann problem associated with the truncated equation (3.1.1) has at
least a solution for every s > s0.

Let us fix s > s0. We choose a point (A, 0) ∈ R+ × {0} and we denote by uA the
solution of (3.1.1) with initial conditions u(0) = A and u′(0) = 0. An application of
Lemma 3.1.3 leads to

ΦT0 (A, 0) =
(
uA(T ), u′A(T )

)
∈ R+ × R+.

On the other hand, thanks to Lemma 3.1.4 there exists a value rs < 0 such that, if we
select a point (−B, 0) ∈ R− × {0} with −B < rs and we denote by uB the solution of
(3.1.1) with initial conditions u(0) = −B and u′(0) = 0 then

ΦT0 (−B, 0) =
(
uB(T ), u′B(T )

)
∈ R− × R−.

At this point, the continuous dependence of the solutions upon the initial data implies
that there exists C1 ∈ ]−B,A[ such that the solution uC1

of (3.1.1) with initial conditions
u(0) = C1 and u′(0) = 0 verifies ΦT

0 (C1, 0) =
(
uC1

(T ), u′C1
(T )
)
∈ R× {0}, and thus the

claim is proved. The solution uC1 is in turn a solution of the truncated equation (3.1.1)
with Neumann boundary conditions since u′C1

(T ) = 0.

Step II. We claim that uC1
(t) < 0 for every t ∈ [0, T ].

This way, the solution of the truncated problem (3.1.1) under Neumann boundary con-
ditions is a solution of (WN s). The proof of the claim is standard from the theory of
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upper and lower solutions (see [DCH06]), nevertheless, we propose here also an alter-
native argument. If uC1

(t) ≥ 0 for all t ∈ [0, T ], then we achieve a contradiction since
ϕs(t, uC1(t)) < 0 for a.e. t ∈ [0, T ]. Now, using a standard maximum principle argument,
it is easy to prove that there exists δ > 0 (which depends on the fixed parameter s) such
that uC1(t) ≤ −δ for all t ∈ [0, T ].

At this point, having proved for a fixed s > s0 the existence of a solution u for (3.1.1)
satisfying Neumann boundary conditions and such that u(t) < 0 for every t ∈ [0, T ], the
thesis follows.

Multiplicity result
In this subsection, we conclude the proof of Theorem 3.1.1. Let us take a fixed value s
with s > s0 := ess supt∈[0,T ] − p(t). By Theorem 3.1.2 there exists at least a solution of
(WN s), let us call it ũ.

In order to prove the existence of at least a second solution, we need to introduce the
following two preliminary lemmas.

Lemma 3.1.5. Let s > s0, p ∈ L∞(0, T ) and a ∈ L∞(0, T ) satisfies (Ha1). Assume
that φ ∈ C1(R) satisfies (Hφ5) and (Hφ6). Then, there exists ε > 0 such that if uε is a
solution of u′′ + a(t)φ(u) = s+ p(t) with initial values u(0) = ũ(0) + ε and u′(0) = 0, then
u′ε(T ) > 0.

Proof. Let us take vε(t) := uε(t) − ũ(t). The Cauchy problem considered here can be
equivalently described by the differential equation

v′′ε + a(t)(φ(vε + ũ(t))− φ(ũ(t))) = 0 (3.1.6)

with initial conditions vε(0) = ε and v′ε(0) = 0.
We claim that there exists ε > 0 such that v′ε(T ) > 0. To check this assertion, since

φ ∈ C1(R), from equation (3.1.6) we have

v′′ε + a(t)Bε(t)vε = 0 (3.1.7)

where

Bε(t) :=

∫ 1

0

φ′(ũ(t) + θvε(x)) dθ.

Next, by the continuous dependence of the solutions upon the initial data, it follows that
vε(t)→ 0 uniformly in t as ε→ 0+. As a consequence, there exists ε∗ � 1 such that, for
each 0 < ε < ε∗ we have ũ(t) + θvε(t) < 0 for all t ∈ [0, T ] and for all θ ∈ [0, 1]. This way,
recalling (Hφ6), we obtain that Bε(t) < 0 for each 0 < ε < ε∗.

Thus, if we prove that vε(t) > 0 for every t ∈ [0, T ], then the claim is verified. Arguing
by contradiction, let us suppose that there exists a first point t∗ ∈ ]0, T ] such that vε(t∗) = 0.
Then, from (3.1.7) we deduce that vε(t) ≥ vε(0) = ε > 0 for all t ∈ [0, t∗], a contradiction
with respect to vε(t∗) = 0. The proof is concluded since u′ε(T ) = v′ε(T ) > 0.

Lemma 3.1.6. Let s > s0, p ∈ L∞(0, T ) and a ∈ L∞(0, T ) satisfies (Ha1). Assume that
φ ∈ C1(R) satisfies (Hφ5) and (Hφ6). Then, there exists Rs > 0 such that for any fixed
u0 > Rs, if u is a solution of u′′ + a(t)φ(u) = s+ p(t) with initial values u(0) = u0 and
u′(0) = 0, then u′(T ) < 0.

Proof. From assumptions (Hφ6) and (Hφ5), it follows that there exists a global minimum
φmin of φ on R such that

φmin = min
ξ∈[0,+∞[

φ(ξ) ≤ g(0) = 0.

Accordingly, from
u′′ = −a(t)φ(u) + s+ p(t), (3.1.8)
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we get the differential inequality

u′′ ≤ −a(t)φmin + s+ p(t).

Now, integrating on [t1, t2] ⊆ [0, T ], we have

u′(t2) ≤ u′(t1)− φmin‖a‖L1 + sT + ‖p‖L1 .

Then, we fix a constant Ks = K(s) > 0 such that

Ks > −φmin‖a‖L1 + sT + ‖p‖L1 .

We claim that there exists t1 ∈ [0, T ] such that u′(t1) < −Ks. From this fact, it immediately
follows that u′(T ) < 0. To check the claim, suppose by contradiction that u′(t) ≥ −Ks

for every t ∈ [0, T ]. It clearly follows that u(t) ≥ u0 −KsT for every t ∈ [0, T ].
From assumption (Hφ5) we deduce that φ(ξ)→ +∞ as ξ → +∞, which implies that

there exists ks = k(s) > 0 such that

φ(ξ) > β :=
Ks + sT + ‖p‖L1

‖a‖L1

, ∀ξ > ks.

Now, choose Rs = R(s) := ks + KsT > 0 and take u0 > Rs. In this manner we obtain
u(t) > ks for every t ∈ [0, T ]. An integration on [0, T ] of (3.1.8) yields to a contradiction,
since

u′(T ) ≤ − inf
u>ks

φ(u)‖a‖L1 + sT + ‖p‖L1 < −β‖a‖L1 + sT + ‖p‖L1 = −Ks.

Our claim is thus verified and this completes the proof.

Remark 3.1.7. We stress the fact that the assumption φ of class C1 is crucial only in the
proof of Lemma 3.1.5. For all the other auxiliary lemmas in this section, the condition
(Hφ2) is enough to achieve the conclusions.

We are now in position to prove our main theorem for this section. Moreover, in
Figure 3.2, we illustrate with an example the results reached.

Proof of Theorem 3.1.1. For ease of notation, we still denote by ΦT
0 the Poincaré map

associated with the differential equation in (WN s). Let s > s0 be fixed and ũ the solution
to problem (WN s), coming from Theorem 3.1.2. In view of Lemma 3.1.5, there exists
a sufficiently small constant ε such that, if we choose a point (D, 0) ∈ R × {0} with
D := ũ(0) + ε and we denote by uD the solution of u′′ + a(t)φ(u) = s+ p(t) with initial
conditions u(0) = D and u′(0) = 0, then we have ΦT0 (D, 0) =

(
uD(T ), u′D(T )

)
∈ R× R+.

Clearly, we can take D < 0.
On the other hand, in view of Lemma 3.1.6, we can find a sufficiently large constant

E depending on s such that, if we choose the point (E, 0) ∈ R+ × {0} and we denote by
uE the solution of u′′ + a(t)φ(u) = s+ p(t) with initial conditions u(0) = E and u′(0) = 0,
then it follows ΦT0 (E, 0) =

(
uE(T ), u′E(T )

)
∈ R× R−.

Finally, the existence of a second solution to problem (WN s) follows again by the
continuous dependence of the solutions upon the initial data. Indeed, there exists a value
C2 ∈]D,E[ such that the solution uC2

of u′′ + a(t)φ(u) = s+ p(t) with initial conditions
u(0) = C2 and u′(0) = 0 verifies ΦT

0 (C2, 0) =
(
uC2

(T ), u′C2
(T )
)
∈ R× {0}. The proof is

thus completed.

3.2 Multiplicity result via topological degree
In this section we start by considering problem (Ns) and we prove an Ambrosetti-Prodi
type alternative. More precisely, we propose a generalization of Theorem 1.6 (from
[Maw87a]) replacing the coercivity condition (Hg1) by a local one. We consider again
Villari’s type conditions introduced in Section 2.1.2. The technique we employ exploits the
Mawhin’s coincidence degree (see Appendix A) and combines some arguments borrowed
by [Maw87a] with other ones newly introduced in Chapter 2.2.
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Figure 3.2: In the phase-plane (u, u′) application of the shooting method to the Neumann
problem on [0, 2] associated with u′′ + a(t)φ(u) = s + p(t) satisfying the framework of
Example 3.1. It is displayed the images of the segment [−9, 5] ⊆ R× {0} (gray) through
the action of the Poincaré map varying the parameter s. Considered values: s = −2 (red),
s = −0.7 (yellow) and s = 2 (green). Consistently with Theorem 3.1.1, for s sufficiently
large, the green line intersects the u-axis two times. Instead, for s sufficiently small no
intersection point could be expected (red line).

Theorem 3.2.1. Let g : [0, T ]× R→ R be a Carathéodory function satisfying (A2), (G0)
and (G1). Assume also the Villari’s type conditions (Hg−4 ) and (Hg+

4 ) with reference to
x ∈ C1

# . Then, there exists s0 ∈ R such that:

1◦ for s < s0, problem (Ns) has no solutions;

2◦ for s = s0, problem (Ns) has at least one solution;

3◦ for s > s0, problem (Ns) has at least two solutions.

Proof. Let us introduce the space

X = C1
# := {x ∈ C1([0, T ]) : x′(0) = x′(T ) = 0}

endowed with the norm ‖u‖X := ‖u‖∞ + ‖u′‖∞.
This way we enter in the framework of coincidence degree as done in Section 2.1.1 and

so, the proof follows exactly like that of Theorem 2.1.7 and Theorem 2.1.9.

Notice that the abstract result in Theorem 3.2.1 allows us to treat also (WN s). This
way we can state the following corollary whose proof is omitted since follows straightway
from Theorem 3.2.1.

Corollary 3.2.2. Let φ : R → R be a continuous function satisfying (Hφ2). Let a, p ∈
L∞[0, T ] with a(t) ≥ 0 for a.e. t ∈ [0, T ] and

∫ T
0
a(t) dt > 0. Then, there exists a number

s0 ∈ R such that:

1◦ for s < s0, problem (WN s) has no solutions;

2◦ for s = s0, problem (WN s) has at least one solution;

3◦ for s > s0, problem (WN s) has at least two solutions.

Finally, we have validate the scheme of zero, one or two solutions for (WN s) that we
suggested by means of Example 3.1 and Figure 3.2 in the previous section.





4. Further developments from Part I

In Chapter 2 we dealt with the existence of infinitely many periodic solutions for the
periodic problem BVP associated with equation

u′′ + φ(u) = h(t)

where h is a T -periodic forcing term and φ : R→ R is a locally Lipschitz continuous function
with φ(0) = 0, which is strictly decreasing on ]−∞, 0], strictly increasing on [0,+∞[ and
lim|u|→+∞ φ(u) = +∞. From the analysis carried out arises a question about the location
of the “chaotic region.” More precisely, from the prototypical nonlinearity considered in
Example 2.2.14 the main observation is that complex behaviors can be detected for a range
of parameters such that λ3 < limξ→+∞ φ(ξ)/ξ < λ4, where λj = (j − 1)2(2π/T )2 denotes
the j-th eigenvalue of the associated linear problem. At this point, the question still open is
whether we could find “chaos” for such kind of problems when λ2 < limξ→+∞ φ(ξ)/ξ < λ3?

In Chapter 3 we dealt with the parameter dependent Neumann BVP
{
u′′ + g(t, u) = s,

u′(0) = u′(T ),

where g : [0, T ] × R → R satisfies a local coercivity condition. In this context we have
proved the existence of a number s0 such that the previous problem has zero, at least
one or at least two solutions provided that s < s0, s = s0 or s > s0, respectively (cf.
Theorem 3.2.1).

A still open problem concerns the extension of our result to the Neumann problem for
an elliptic PDE 




∆u+ g(x, u) = s in Ω,
∂u

∂n
= 0 on ∂Ω.

Notice that in [Maw87a] an Ambrosetti-Prodi type alternative is obtained for that BVP
if lim|u|→+∞ g(x, u) = +∞ uniformly in Ω and limu→+∞ g(x, u)/uσ = 0 uniformly in
Ω with σ = N/(N − 2) if N ≥ 3 and σ finite if N = 2. The open problem is now to
recover the same alternative for the solutions of this problem weakening the uniformity
condition in Ω up to work, for example, with nonlinearities g(x, u) = a(x)φ(u) such that
lim|u|→+∞ φ(u) = +∞ and a(x) ≥ 0 with

∫
Ω
a(x) dx > 0 and so also give an extension of

Corollary 3.2.2.





Part II

Indefinite weight problems





5. Indefinite weight problems:
focused overview

This chapter guides the reader through a selection of BVPs, which are motivated by
biological applications, to hopefully justify the abstract formulations in the next chapters.
In particular, we take a look to reaction-diffusion equations, which describe, among others,
phenomena of population dispersal (see [Bel97; Hen81; LG16; Mur89]). The main aspect
that we take into account is the effect of the heterogeneity of a finite habitat on the
analysis of persistence/extinction/coexistence of species. In this context, modeling density
of a given population u = u(x, t), most common formulations could lead to semilinear
parabolic problems of the form

(RD)





∂u

∂t
− d∆u = w(x)ψ(u) in Ω× (0,∞),

u(x, 0) = u0 in ∂Ω,

Bu = 0 on ∂Ω× (0,∞),

where d > 0 represents the diffusion rate, Ω ⊆ RN is a bounded domain, N ≥ 1, w : Ω→ R
is a weight term, ψ : I → R+ is a nonlinear function with I = [0, 1] or [0,+∞[ such that
ψ(0) = 0 and B is the boundary operator, that it could be of Dirichlet type, i.e. Bu = u,
or of Neumann type, i.e. Bu = ∂u/∂n (no-flux across the boundary).

About boundary conditions, the Dirichlet one means that the exterior habitat is
hostile, instead, the Neumann one means that there exists a inescapable barrier for the
population. With respect to the function w we assume that changes its sign, namely we
consider the so-called case of an indefinite weight problems. In other words, we involve a
weight term which is positive, zero or negative in several parts of Ω, this way, one can
thought to a “food source” for the population which, in different regions of the habitat, is
good (favorable), neutral or worst (unfavorable), respectively.

Dispersal processes are important in the context of population dynamics since describe
the distribution of a population and its interaction between the resources in a habitat, up
to generate evolutionary selection [BC95]. In this context turns out to be crucial, for the
analysis of the dynamics of (RD), the search of steady states of (RD) and the study of
their stability. It follows that it is essential for the understanding of (RD) deal with the
study of the following nonlinear eigenvalue problem with indefinite weight

(IP)

{
−∆u = λw(x)ψ(u) in Ω,

Bu = 0 on ∂Ω,
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where λ := 1/d is a positive real parameter. Due to the biological reason, most problems in
population dynamics concern the study of existence or nonexistence as well as uniqueness
or multiplicity of non-trivial positive solutions for (IP), at the varying of λ, under either
Dirichlet or Neumann boundary conditions.

The case of an indefinite weight has attracted much attention during the past decades
from the pioneering works of Manes and Micheletti [MM73], Hess and Kato [HK80], Brown
and Lin [BL80] and López-Gómez [LG96] concerning the properties related to the principal
eigenvalue. Assuming several types of boundary conditions or different features for the
weight function w along with a wide variety of nonlinear functions ψ, classified according
to growth conditions, the research on positive solutions for (IP) has grown up at the
end of the Eighties (see, for instance, [AT93; ALG98; BPT87; BPT88; BCDN94; BH90;
BO86; BCDN94; BCDN95; Sen83]). Nowadays, it is still a very active area of investigation.
Indeed, the recent literature about multiplicity results for positive solutions of indefinite
weight problems under Dirichlet or Neumann boundary conditions is really very rich and,
in order to cover most of the results achieved with different techniques so far, we quote
the following works and the references therein [GRLG00; GHZ03; BGH05; OO06; GG09;
FZ15b; Bos11; BG16; BFZ16; LN02; LNN13; LNS10]. Focus on biological applications,
from the quoted papers, relevant families of nonlinearities for problem (IP) are the
following ones:

Type 1. ψ : R+ → R+ such that ψ(0) = 0, ψ(ξ) > 0 ∀ ξ ∈ R+
0 and limξ→+∞ ψ(ξ)/ξ = 0,

Type 2. ψ : [0, 1]→ R+ such that ψ(0) = 0 = ψ(1) and ψ(ξ) > 0 ∀ ξ ∈ ]0, 1[.

Remark 5.1. Let us make some comments on the above types of functions. First of all,
as long as ψ satisfies the conditions of Type 1, we say that the nonlinearity is sublinear
at infinity. Secondly, we notice that nonlinearities verifying conditions of Type 2 are
very common in the field of population genetics, starting from the pioneering work by
W.H. Fleming [Fle75]. Indeed, here u(x) denotes the gene frequency of a population at
location x ∈ Ω and w is a local selective term. In this case, the dynamics see the existence
of a positive trivial solution u ≡ 1 and the study of positive solutions is meant avoiding
the trivial one. C

For both the two nonlinearities of Type 1 and Type 2, the choice of Neumann boundary
conditions in the model lead to necessary conditions for the weight w in order to ensure
the existence of positive solutions. Indeed, for the Neumann BVPs the existence or
nonexistence of positive solutions is influenced by the sign of

∫
Ω
w(x) dx, instead for the

Dirichlet ones further assumptions are not needed. On the other hand, the dichotomy
between uniqueness or multiplicity of non-trivial positive solutions for problem (IP) is
strictly related with conditions of concavity or convexity on ψ. These two conditions are
the main features that distinguish the results in this topic. For convenience of the reader,
we summarize related work in Table 5.1 and we highlight the lack of knowledge that
arises in some cases. It is interesting to note that the question mark regarding Neumann
BVP with nonlinearity of Type 2 is exactly the translation in this context of a conjecture
appeared in [LN02] (see the Introduction).

At last, by considering the work by Hammerstein [Ham30], we recall other interesting
branches of research which are strictly related with Type 1 nonlinearities that consider an
oscillatory behavior at infinity for the potential instead of a sublinear growth of ψ. Such
features can be provided introducing conditions of the following form

lim inf
ξ→+∞

2
∫ s

0
ψ(ξ) ds

ξ2
= 0 < lim sup

ξ→+∞

2
∫ s

0
ψ(ξ) ds

ξ2
,

as in [OZ96; OO06; MZ93]. In this situation, usually one is interested in results of high
multiplicity of positive solutions. In accord, that is already done for indefinite weight
problems (IP) under Dirichlet boundary (see for instance [OO06]). Nevertheless, with
respect to problems (IP) under Neumann boundary conditions, these kinds of issues
turned out to be open.
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6. Nonlinearities with
linear-sublinear growth

The present chapter, whose content comes from [SZ15], is concerned with Dirichlet problems
of the form

(IDλ,N )

{
−∆u = λw(x)ψ(u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 1, is a bounded domain with smooth boundary, λ is a positive real
parameter, the nonlinearity ψ : R+ → R+ is a continuous function satisfying

(Hψ1) ψ(0) = 0, ψ(ξ) > 0 for every ξ > 0

and, for the weight term, we assume that

(Hw1) w ∈ C(Ω) is such that there exists x0 ∈ Ω with w(x0) > 0

as in [HK80] or, otherwise,

(Hw2) w ∈ L∞(Ω) with
∣∣{x ∈ Ω : w(x) > 0}

∣∣ > 0.

In these settings we deal with positive solutions of (IDλ,N ), for instance weak, strong
or classical solutions (depending on the properties of w, ψ and the domain Ω) such that
u(x) > 0 for every x ∈ Ω.We carry out a parallel analysis when the nonlinear term satisfies

(Hψ2) ψ0 := lim
ξ→0+

ψ(ξ)

ξ
> 0 = ψ∞ := lim

ξ→+∞
ψ(ξ)

ξ

or the more general condition

(Hψ3) ψ0 > 0 = lim inf
ξ→+∞

∫ ξ
0
ψ(s) ds

ξ2
.

Notice that, if we assume (Hψ2), then the nonlinearity ψ becomes of Type 1. This is
the case treated in Section 6.1 where we compare two classical results of positive solutions
for sublinear elliptic Dirichlet problems, namely the theorem by Brezis and Oswald [BO86]
and the one by Brown and Hess [BH90]. Furthermore, by focusing on related results of
uniqueness, we will give answer at one of the question mark in Table 5.1. More precisely, we
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will restrict ourselves to the one-dimensional case and we will provide in Proposition 6.1.6
an example of multiplicity of positive solutions for a function ψ not concave even if the
map ξ → ψ(ξ)/ξ is decreasing on the positive real line.

In Section 6.2 we mainly consider, as underlying assumption, (Hψ3). As first step, we
will show in Proposition 6.2.3 the existence of positive solutions for every λ sufficiently
large in the one-dimensional setting with a constant weight, exploiting some time-mapping
estimates achieved by Opial [Opi61]. As second step, in the frame of Rabinowitz’s global
bifurcation theorem, we will provide in Theorem 6.2.8 the existence of a bifurcation branch
of positive solution pairs (λ, u) which is unbounded both in the λ and the u components.
The conditions we found are, in some sense, optimal (cf. Remark 6.2.15). Our proof is
inspired by some arguments developed in [HK80; Coe+12; OO06].

6.1 Remarks on uniqueness and multiplicity of positive solutions
Let us start by considering the following Dirichlet problem

{
−∆u = q(x)ψ(u) in Ω,

u = 0 on ∂Ω.
(6.1.1)

We can perform a first analysis of (6.1.1) exploiting the main result by Brezis and
Oswald [BO86] that leads to the following theorem.

Theorem 6.1.1. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and let
q ∈ L∞(Ω) \ {0}. If ψ0 and ψ∞ are finite and

λD1 (−∆− q(x)ψ0; Ω) < 0 < λD1 (−∆− q(x)ψ∞; Ω) (6.1.2)

holds, then there exists at least one positive solution u to (6.1.1) with u ∈ C1
0 (Ω). Moreover,

if q(x) > 0 for a.e. x ∈ Ω and ξ 7→ ψ(ξ)/ξ is decreasing on R+
0 , then the positive solution

is unique and condition (6.1.2) is necessary, too.

Proof. In order to enter the general setting of [BO86, Theorem 2], we consider

f(x, ξ) := q(x)ψ(ξ)

and, in such a situation, all the hypotheses are fulfilled. For completeness, we list here
the assumptions required in [BO86, Theorem 2]: the map ξ 7→ f(x, ξ) is continuous on
R+ for a.e. x ∈ Ω; the map x 7→ f(x, ξ) belongs to L∞(Ω) for every ξ ≥ 0; there exists a
constant C > 0 such that f(x, ξ) ≤ C(ξ + 1) for a.e. x ∈ Ω and for every ξ ≥ 0; for each
δ > 0 there exists a constant Cδ > 0 such that f(x, ξ) ≥ −Cδ for a.e. x ∈ Ω and for every
ξ ∈ [0, δ] and, moreover,

λD1

(
−∆− lim

s→0+

f(x, ξ)

ξ
; Ω

)
< 0 < λD1

(
−∆− lim

s→+∞
f(x, ξ)

ξ
; Ω

)
.

The first two conditions are obviously satisfied. Also, the growth conditions are verified
since, ψ(ξ)/ξ is continuous and positive on R+

0 with finite ψ0 and ψ∞ and so, we can
find a positive constant K := supξ>0{ψ(ξ)/ξ} <∞ such that |f(x, ξ)| ≤ ‖q‖∞Kξ, for all
ξ ≥ 0 and for a.e. x ∈ Ω. The last conditions clearly follows from (6.1.2). At this point,
[BO86, Theorem 2] applies and ensures the existence of a non-trivial (weak) nonnegative
solution u to problem (6.1.1). By elliptic regularity theory, such a solution belongs to
C1

0 (Ω) and, moreover, is strictly positive on Ω with negative outward derivative on ∂Ω (cf.
also [BO86, Lemma 1]). About the uniqueness of the positive solution, we just observe
that the conditions q(x) > 0 on Ω and ψ(ξ)/ξ decreasing on R+

0 , imply that the map
ξ 7→ f(x, ξ)/ξ is decreasing on R+

0 . Therefore, as a result of [BO86, Theorem 1], the
conclusion follows.
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||u||∞

λΛ∗

(a) ψ(ξ) =
2ξ+6 sin(ξ)

10+ξ2−6 cos(ξ)

||u||∞

λΛ∗

(b) ψ(ξ) = 2ξ+12ξ3

1+ξ2+3ξ4

||u||∞

λΛ∗

(c) ψ(ξ) = 10(1−cos(ξ))+ ξ√
10(ξ+1)

Figure 6.1: Bifurcation diagrams for one-dimensional Dirichlet (two-point boundary)
problems of the form u′′ + λψ(u) = 0, u(0) = 0 = u(π).

A second analysis of (6.1.1) comes form the work by Brown and Hess [BH90]. A
theorem on the existence and uniqueness of classical positive solutions for problem (6.1.1)
holds by assuming, among other conditions, that ψ and q are smooth functions and ψ is
concave with a sublinear growth at infinity, ψ∞ = 0.

Now, a direct application of Theorem 6.1.1 to the Dirichlet boundary value problem
(IDλ,N ) yields the next results.

Corollary 6.1.2. Let w satisfy (Hw1) and ψ : R+ → R+ be a continuous function sat-
isfying (Hψ1) and (Hψ2). Then, there exists Λ∗ > 0 such that problem (IDλ,N ) has a
positive solution for each λ > Λ∗.

Proof. We start by observing that the second inequality in (6.1.2) is trivially satisfied as
it refers to the positivity of the first eigenvalue of −∆ with Dirichlet boundary conditions.
Therefore, we have only to check, for λ > 0 sufficiently large, the negativity of the first
eigenvalue µ1 of the problem

−∆u− λψ0w(x)u = µu, u|∂Ω = 0. (6.1.3)

This fact is contained in [Hes82; HK80], here we present the argument of the proof for
completeness. To this aim we recall some basic facts from the weighted eigenvalue problem

−∆u = νw(x)u, u|∂Ω = 0. (6.1.4)

Under assumption (Hw1) (or, respectively, (Hw2)), according to [BL80; Fig82; HK80;
MM73], there exists a sequence of real eigenvalues

0 < ν1 < ν2 ≤ ν3 ≤ . . .

to problem (6.1.4), with νn →∞. Moreover, the principal eigenvalue ν1 is simple with an
associated positive eigenfunction (see, for instance, the work [Fig82, Proposition 1.11 (c)
and Theorem 1.13]). In such a situation, we can prove the thesis by taking

Λ∗ := ν1/ψ0 . (6.1.5)

Indeed, let us fix λ > Λ∗ and check that the principal eigenvalue µ1 of (6.1.3) is negative.
Let ϕ be the corresponding positive eigenfunction, so that ϕ satisfies

−∆ϕ(x)− νw(x)ϕ(x) = µ1ϕ(x) := h(x), ϕ|∂Ω = 0, ϕ(x) > 0 for x ∈ Ω,

with ν := λψ0 > Λ∗ψ0 = ν1 . If, by contradiction, µ1 ≥ 0, then h ≥ 0 and we enter in the
setting of [HK80, Proposition 3] which, in turns, implies that h = 0 and ν = ν1 . The last
equality clearly contradicts our choice of λ. Hence, µ1 < 0 and also the first inequality in
(6.1.2) is satisfied. By Theorem 6.1.1 we are done.

Remark 6.1.3. Corollary 6.1.2 is basically a subcase of general results by Brown and Hess
(see for instance [BH90, Theorem 3 (ii) and Theorem 4]). Actually, in [BH90] the authors
obtain a result of existence and uniqueness of positive classical solutions if and only if
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λ > ν1/ψ0 = Λ∗ , provided that w and ψ are smooth functions with ψ′′(ξ) < 0 for all ξ > 0.
However, in absence of concavity type condition, we cannot guarantee (in general) the
uniqueness of the positive solution (see Figure 6.1 (a)) or the fact that positive solutions
exist only if λ > ν1/ψ0 (see Figure 6.1 (b)). Even more complex situations may arise (see
Figure 6.1 (c)). C
Corollary 6.1.4. Let w satisfy (Hw1) and ψ : R+ → R+ be a continuous function satis-
fying (Hψ1) and (Hψ2).

• If w(x) > 0 for a.e. x ∈ Ω and ξ 7→ ψ(ξ)/ξ is decreasing on R+
0 then problem

(IDλ,N ) has a positive solution if and only if λ > ν1/ψ0 and such a positive solution
is unique [BO86].

• If w(x) changes sign and Ω+ is a set of positive measure and, moreover, ψ(ξ) is
smooth on R+

0 with ψ′′(ξ) < 0 for all ξ > 0, then problem (IDλ,N ) has a positive
solution if and only if λ > ν1/ψ0 and such a positive solution is unique [BH90].

Proof. The first part of the statement follows from Theorem 6.1.1, with the condition
λ > ν1/ψ0 obtained in the same manner as (6.1.5) in the proof of Corollary 6.1.2. The
second part of the statement is precisely [BH90, Theorem 4].

If we restrict ourselves to the autonomous case, i.e. the case of a constant weight
w(x) ≡ 1, problem (IDλ,N ) reduces to the following one

{
−∆u = λψ(u) in Ω,

u = 0 on ∂Ω,
(6.1.6)

where λ > 0. As already observed in [BO86, page 56], the next result holds.

Corollary 6.1.5. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and (Hψ2).
Then, problem (6.1.6) has a positive solution if

λ > λ∗1 :=
λD1 (−∆; Ω)

ψ0
. (6.1.7)

Moreover, if the map ξ 7→ ψ(ξ)/ξ is decreasing on R+
0 such positive solution is unique and

(6.1.7) is also a necessary condition.

Notice that if ψ(ξ) is any strictly concave function satisfying (Hψ1), then the map
ξ 7→ ψ(ξ)/ξ is decreasing on R+

0 . The converse does not hold, a simple example is given by
ψ(ξ) = ξ/(1 + ξ2). In this respect, a natural question is whether the result of uniqueness
under the monotonicity request for the map ξ 7→ ψ(ξ)/ξ is still true also if the weight
coefficient is sign-changing. More precisely, when the weight function w is positive, the
hypothesis of Brezis-Oswald, concerning the monotonicity of ξ 7→ ψ(ξ)/ξ, is more general
than the requirement of Brown-Hess about the concavity of ψ. On the other hand, the
monotonicity of ξ 7→ ψ(ξ)/ξ is not enough to guarantee the uniqueness of positive solutions
for an indefinite weight. Here we present an illustrative result in this direction, with the
aid of some numerical computations. Furthermore, this example suit well also to deal with
the same question in the case of Neumann boundary conditions.

Proposition 6.1.6. Let ψ : R+ → R+ be such that

ψ(ξ) := Aξe−Bξ
2

+
ξ

|ξ|+ 1
, A,B > 0.

Assume w : R→ R be defined as

w(x) := (1− |x|)5 cos

(
9π

2
|x|1.2

)
. (6.1.8)

If A = 10, B = 3, then, for λ = 80, the following two-point BVP

u′′ + λw(x)ψ(u) = 0, u(−1) = 0 = u(1), (6.1.9)

has at least five solution u such that u(x) > 0 for all x ∈ ]− 1, 1[.
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−1 1

(a) Graph of the function w as defined in
(6.1.8) in the interval Ω =]− 1, 1[.

−1 1

(b) Five positive solutions of (6.1.9) for
λ = 80.

Figure 6.2: Multiplicity of positive solutions for the two-point BVP as in Proposition 6.1.6

It is straightforward to check that ψ0 = A+ 1, ψ∞ = 0, thus ψ satisfies (Hψ1) and
(Hψ2). Moreover, the map ξ 7→ ψ(ξ)/ξ is strictly decreasing on R+

0 ; however, the function
ψ is not concave. We show now the effect that our indefinite weight, whose graph is
in Figure 6.2 (a), has in relation to the number of positive solutions. We observe that
multiple positive solutions can be obtained also for different sign-changing weights.

In our case, we give numerical evidence of at least five positive solutions for the
Dirichlet problem (6.1.9) on the domain Ω =]− 1, 1[ , via an adaptation of the shooting
method already introduced in Section 3.1 at p. 40 to the case of Dirichlet boundary
conditions. We start our analysis, for a fixed value of λ = 80, by shooting solutions
from x = −1 with initial slope between r0 = 0.38 and r1 = 10. In more detail, for each
r ∈ [r0, r1], let (u(·;−1, 0, r), y(·;−1, 0, r)) be the solution of

{
u′ = y,

y′ = −λw(x)ψ(u),
(6.1.10)

satisfying the initial condition u(−1) = 0, y(−1) = r. Then, in the phase-plane (u, y) =
(u, u′), we consider the arc

Γ := {(u(1;−1, 0, r), y(1;−1, 0, r)) : r ∈ [r0, r1]}

which is the image of the set {0} × [r0, r1] through the Poincaré map associated with
(6.1.10). Then, we look for points p ∈ Γ ∩ {(0, y) : y < 0}. The resulting curve Γ is shown
in Figure 6.3 (a) where we have also put in evidence the five intersection points.

For each intersection point p = (0, ρ) ∈ Γ ∩ {(0, y) : y < 0}, we then solve the initial
value problem

u′′ + λw(x)ψ(u) = 0, u(−1) = 0, u′(−1) = −ρ,
and finally we find a solution of the Dirichlet problem (6.1.9). The symmetry of the
weight function, namely w(−t) = w(t), guarantees that the solution u(·,−ρ) is a positive
solution of problem (6.1.9) on ]− 1, 1[ . The corresponding five solutions are represented
in Figure 6.2 (b). Notice that, three of these solutions are even functions, while the other
two (called u1 and u2) are symmetric each other, that is u2(−t) = u1(t).

Our example may have some interest also with respect to the result of Gidas, Ni and
Nirenber [GNN79] on the symmetry of positive solutions. Notice that [GNN79, Theorem 1]
does not applies because the function [0, 1] 3 ξ 7→ λw(ξ)ψ(u) is not decreasing.

Another point of view, in order to distinguish between symmetric and asymmetric
solutions, is to consider the intersections points between the curves

Γ+ := {(u(0, r), y(0, r)) : r ∈ [r0, r1]},
Γ− := {(u(0, r),−y(0, r)) : r ∈ [r0, r1]}.

The curve Γ− can be equivalently described as the locus of the points at the time t = 0,
shooting back from the negative y-axis with slope r ∈ [−r1,−r0] at the time t = 1. In
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(a) Shooting of {0} × [0.38, 10] forward over
[−1, 1].

ææ

ææ

ææ

ææ

ææ

Γ+

Γ−

−0.38

−10

0.38

10

(b) Shooting of: {0}× [0.38, 10] forward over
[−1, 0]; {0}×[−10,−0.38] backward over [0, 1].

Figure 6.3: Phase plane (u, u′): dynamics of the Poincaré map associated with system
(6.1.10) in the setting of Proposition 6.1.6.

this way the set of intersection points p ∈ Γ+ ∩ {(α, 0) : α > 0} = Γ− ∩ {(α, 0) : α > 0}
is in bijection with the even positive solutions, while the set of intersection points q ∈
Γ+ ∩ Γ− \ {(α, 0) : α > 0} correspond to the positive solutions symmetric to each other
but not even. This point of view is illustrated in Figure 6.3 (b).

6.2 Revisiting the sublinear case
In this section we study (IDλ,N ) by assuming (Hψ3). First investigations on bifurcation
analysis are carried out in the case of ODEs with constant weight terms. The intent is to
discuss bifurcation diagrams for positive solutions in term of the analysis of time-mappings.

6.2.1 Time-mapping estimates
Let us consider an open interval Ω := ]a, b[, a < b, and reduce problem (6.1.6) to the
two-point boundary value problem

{
u′′ + λψ(u) = 0,

u(a) = 0 = u(b),
(6.2.1)

with λ > 0. As usual in this case, we indicate by x = t the independent variable.
The set of positive solutions pairs is given by

S = {(λ, u) ∈ R+
0 × C1

0 ([a, b]) : u is a positive solution of (6.2.1)}.

Without loss of generality (due to the autonomous nature of system (6.2.1)) we also set
L := b− a and observe that problem (6.2.1) is equivalent to

{
u′′ + λψ(u) = 0,

u(−L/2) = 0 = u(L/2).

In such a simplified setting, we can provide an interpretation of Corollary 6.1.5 in
terms of time-mappings associated to planar autonomous system

u′ = y, y′ = −g(u), (6.2.2)

which is equivalent to the scalar equation

u′′ + ψ(u) = 0. (6.2.3)

Since up to now we have assumed ψ(ξ) to be defined only for ξ ≥ 0, for convenience
we take an odd extension of ψ on R in order to have the solutions (u(t), y(t)) of (6.2.2)
globally defined in the plane.
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System (6.2.2) is conservative with energy

E(u, y) :=
1

2
y2 + P (u),

where

P (ξ) :=

∫ ξ

0

ψ(s) ds.

Observe that the map P : R+ → R+ satisfies P (0) = 0 and is strictly increasing. For every
c > 0, the solution (u(t), y(t)) of (6.2.2) satisfying the initial condition (u(0), y(0)) = (c, 0)
is unique, periodic and defined on the whole real line. We denote such a solution with
(uc, yc) only when we want to stress its dependence on the parameter c.

At this point, as already done in Section 2.2.1 at p. 24, we introduce the time-mapping
formula associated with equation (6.2.3). In this framework, it is a continuous function
τ : R+

0 → R+
0 defined by

τ(c) := 2

∫ c

0

dξ√
2(P (c)− P (ξ))

. (6.2.4)

In more detail, τ(c) is the distance of two consecutive zeros of the solution u of (6.2.3),
where u(t) ≥ 0 for all t ∈ R and ||u||∞ = maxt∈R u(t) = c. By a rescaling in the time
variable, it is straightforward to check what follows.

Proposition 6.2.1. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and let
R > 0 be a fixed constant. For each c > 0, let us define

vc,R(t) := uc

(
τ(c)
R

(
t− a+b

2

))
.

Then, vc,R(t) is a solution of the equation

v′′ +
(
τ(c)
R

)2

ψ(v) = 0

with
v
(
a+b

2

)
= c, v′

(
a+b

2

)
= 0

and, moreover, the following cases occur:

• vc,R(t) > 0 ∀ t ∈ [a, b] if and only if R > L,

• vc,R(t) > 0 ∀ t ∈ ]a, b[ with vc,R(a) = 0 = vc,R(b) if and only if R = L,

• vc,R(t) vanishes in ]a, b[ if and only if R < L.

Considering the second instance in the above proposition, we get immediately what
follows.

Proposition 6.2.2. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1). Then,
problem (6.2.1) has a positive solution u for some λ > 0 if and only if

λ = T(c) :=

(
τ(c)

L

)2

, for c = ||uc||∞ .

Moreover, the set S of positive solution pairs is the Cartesian graph of a continuous curve

c 7→ (T(c), vc(·)),

where
vc(t) := uc

(
τ(c)
L

(
t− a+b

2

))
.



62 Chapter 6. Nonlinearities with linear-sublinear growth

Proposition 6.2.2 permits to study the global bifurcation branches for positive solutions
of problem (6.2.1) by analyzing the behavior of the time-mapping τ(·). This approach has
been already widely exploited by many authors under several different conditions on the
nonlinearity (see, for instance, the classical works [Lae70; Sch90; SW81]). The behavior of
τ(c) as c→ 0+ or c→ +∞, as well as other qualitative properties, like monotonicity, has
been analyzed by Opial in [Opi61]. In particular, according to [Opi61], if the limits ψ0

and ψ∞ exist, then

lim
c→0+

τ(c) =
π√
ψ0

and lim
c→+∞

τ(c) =
π√
ψ∞

.

Moreover, τ is increasing (respectively, decreasing) on R+
0 provided that ξ 7→ ψ(ξ)/ξ is

decreasing (respectively, increasing) on R+
0 .

If both ψ0 and ψ∞ are positive real numbers, then, by Proposition 6.2.2 we can recover
a bifurcation result of Ambrosetti and Hess [AH80, Theorem A (iii)]. In fact, in this case,
the set S turns out to be a Cartesian graph joining the bifurcation point (π/L)2/ψ0 from
the trivial solution to the bifurcation point (π/L)2/ψ∞ from infinity.

On the other hand, from (Hψ2) we obtain

lim
c→0+

τ(c) =
π√
ψ0

and lim
c→+∞

τ(c) = +∞.

Moreover, under the assumptions of Corollary 6.1.5, the map R+
0 3 c 7→ T(c) ∈ R+

0 is
monotone with

inf T =
(π
L

)2

/ψ0 = λ∗1 and supT = +∞.

From this point of view, one could say that Opial’s monotonicity condition for the
time-mapping is a dynamical interpretation of the uniqueness condition of Brezis-Oswald.

The inversion of T complements Corollary 6.1.5 with a global bifurcation result in the
sense that it ensures also the continuity of the map

]λ∗1,+∞) 3 λ 7→ uλ(·),

where uλ is the unique positive solution of (6.1.6) for a given λ (compare with [Hes82;
HK80]).

The time-mapping approach based on Proposition 6.2.2 suggests the possibility of
improving condition (Hψ2). More precisely, if we are looking for positive solution pairs
(λ, u) of (6.2.1) for all λ in an unbounded interval, we can replace the hypothesis ψ∞ = 0
with appropriate assumptions which yet ensure that supT = +∞. For example, if we
are interested in proving that limc→+∞ τ(c) = +∞, it will be sufficient to suppose that
P (ξ)/ξ2 → 0 as ξ → +∞ (cf. [Opi61, Théorème 11]), which is a more general condition
than ψ∞ = 0. With this purpose, we introduce the following constants

P∞ := lim inf
ξ→+∞

2P (ξ)

ξ2
, P∞ := lim sup

ξ→+∞

2P (ξ)

ξ2
.

By the generalized L’Hôpital’s rule, we know that

lim inf
ξ→+∞

ψ(ξ)

ξ
≤ P∞ ≤ P∞ ≤ lim sup

ξ→+∞

ψ(ξ)

ξ
.

Moreover, using [Opi61, Corollaire 11 and Théorème 16], we find that

P∞ = 0 =⇒ lim sup
c→+∞

T(c) = +∞ =⇒ lim inf
ξ→+∞

ψ(ξ)

ξ
= 0. (6.2.5)

In this setting, we obtain the following result which improves Corollary 6.1.5 in the
one-dimensional case.
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Proposition 6.2.3. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and
(Hψ3). Then, the set S of positive solutions pairs (λ, u) to problem (6.2.1) is a continuous
curve which bifurcates from (λ∗1, 0) and such that for each λ > λ∗1 there exists at least one
positive solution u of (6.2.1) with (λ, u) ∈ S. Furthermore, if P∞ > 0, then, for each

λ > η∗ := λD1 (−∆)/P∞

there is an unbounded set of positive solutions u of (6.2.1) with (λ, u) ∈ S.
Proof. From the first implication in (6.2.5) we know that assumption (Hψ3) implies

lim
c→0+

T(c) = λ∗1 and lim sup
c→+∞

T(c) = +∞.

Thus, the continuity of the map T on R+
0 implies that the range of T contains the interval

]λ∗1,+∞). Then the first part of the claim follows from Proposition 6.2.2. On the other
hand, since P is monotone increasing, if we also suppose that P∞ > 0, then necessarily
P (s)→ +∞ as s→ +∞. In this manner, we enter in the setting of [Opi61, Corollaire 12]
and so we have

lim inf
c→+∞

τ(c) ≤ π/
√
P∞.

Hence
lim inf
c→+∞

T(c) ≤
(π
L

)2

/P∞ = η∗.

We conclude that for each λ ∈ ]η∗,+∞) the equation T(c) = λ has infinitely many solutions.
In fact,

lim inf
c→+∞

T(c) < λ < lim sup
c→+∞

T(c)

and, by the intermediate value theorem, there is a sequence cn → +∞ of solutions of
the equation T(c) = λ. To each such a solution cn > 0 it corresponds a unique positive
solution un of (6.2.1) with ||u||∞ = cn . Then also the second part of the claim follows
from Proposition 6.2.2.

The consequence about the existence of infinitely many positive solutions is not related
to the condition ψ0 > 0 as it involves only the behavior of the time-mapping at infinity.
In particular, infinitely many solutions can occur also when P∞ > 0 as one can see in
[FOZ89; MZ93; NZ89; OO06; OZ96]. In this context, the following result can be given for
problem (6.2.1) using Opial’s estimates, where by convention 1/0+ = +∞ and 1/∞ = 0.

Proposition 6.2.4. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and
suppose also that

0 ≤ P∞ < P∞ ≤ +∞.
Then, for each

λ ∈
](π
L

)2

/P∞,
(π
L

)2

/P∞

[

there is an unbounded set of positive solutions u of (6.2.1).

Proof. We define

η∗ :=
(π
L

)2

/P∞ and η∗ :=
(π
L

)2

/P∞ .

As in the preceding proof, we also note that P (s) → +∞ as s → +∞. From [Opi61,
Corollaire 12] we find

lim inf
c→+∞

τ(c) ≤ π/
√
P∞ < π/

√
P∞ ≤ lim inf

c→+∞
τ(c).

Hence
lim inf
c→+∞

T(c) ≤ η∗ < η∗ ≤ lim sup
c→+∞

T(c).

By the intermediate value theorem, for each λ ∈ ]η∗, η∗[ there is a sequence cn → +∞ of
solutions of the equation T(c) = λ and the proof follows as above.
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||u||∞

λΛ∗

(a) P (ξ) = 2ξ2 + ξ2 cos(2 log(1 + ξ)).

||u||∞

λ

(b) P (ξ) = 2ξ2 + ξ2 cos(2 log( ξ
1+ξ

)).

Figure 6.4: Bifurcation diagrams in logarithmic scale for a two-point boundary problem
associated with u′′ + λP ′(u) = 0.

Example 6.2.5. We exhibit a class of nonlinearities consistent with Proposition 6.2.4. Let
k, θ, A,B be given constants with k,A > 0, θ ∈ [0, 2π[ and

|B| < 2A√
k2 + 4

. (6.2.6)

Define, for every ξ ≥ 0,

P (ξ) := Aξ2 +Bξ2 cos(k log(1 + ξ) + θ) and ψ(ξ) := P ′(ξ).

Then ψ : R+ → R+ is of class C∞ and, by (6.2.6), one can easily check that (Hψ1) holds.
Moreover, P∞ = 2(A−B) < 2(A+B) = P∞ and ψ0 = 2(A+B cos θ) > 0. C

For completeness, let us consider also the case when the conditions at zero and at
infinity are interchanged, namely

ρ∗ :=
(π
L

)2

/P 0 and ρ∗ :=
(π
L

)2

/P0

with

P0 := lim inf
ξ→0+

2P (ξ)

ξ2
, P 0 := lim sup

ξ→0+

2P (ξ)

ξ2
.

Example 6.2.6. We exhibit a class of nonlinearities such that P0 < P 0. Let k, θ, A,B be
given constants with k,A > 0, θ ∈ [0, 2π[ and B as in (6.2.6). Define, for every ξ > 0,

P (ξ) := Aξ2 +Bξ2 cos(k log( ξ
ξ+1 ) + θ), ψ(ξ) := P ′(ξ) and ψ(0) = 0.

Then ψ : R+ → R+ is of class C∞ satisfying (Hψ1) and such that P0 = 2(A − B) <
2(A+B) = P 0 and ψ∞ = 2(A+B cos θ) > 0. C

All the possible combinations of conditions on lower and upper limits for the potential
P yield the following result (the proof is omitted since it follows from analogous arguments
of that used to prove Proposition 6.2.4).

Proposition 6.2.7. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and let
S be the set of positive solutions pairs for (6.2.1). Then, the following statements hold.

• If P 0 > P∞, then for each λ ∈ ]ρ∗, η∗[ there exists at least one positive solution u of
(6.2.1) with (λ, u) ∈ S.
• If P0 < P∞, then for each λ ∈ ]η∗, ρ∗[ there exists at least one positive solution u of
(6.2.1) with (λ, u) ∈ S.
• If P0 < P 0, then for each λ ∈ ]ρ∗, ρ∗[ there is a sequence of positive solutions u of
(6.2.1) which converges uniformly to zero.
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• If P∞ < P∞, then for each λ ∈ ]η∗, η∗[ there is a sequence of positive solutions uλ,n
of (6.2.1) with ||uλ,n||∞ → +∞ for n→∞.

In Figure 6.4 we represent the bifurcation diagrams for two particular potentials P
which belongs to Example 6.2.5 and Example 6.2.6, respectively. We stress that the set of
positive solutions pairs is a Cartesian graph bounded in the λ-component and unbounded
in the u-component, as expected from Proposition 6.2.4 and Proposition 6.2.7. Moreover,
we notice that it is not difficult to combine Example 6.2.5 and Example 6.2.6 in order to
produce a class of functions such that both P 0 > P0 and P∞ > P∞ are valid.

These analyses allows us to use the time-mapping estimates to show in the next section
some possible improvements of Corollary 6.1.2 for the original Dirichlet problem (IDλ,N ).

6.2.2 Bifurcation branches
Let us consider a bounded domain Ω ⊂ RN with boundary of class C1,1. Let X be the
Banach space C1

0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω} with its standard norm, where by
C1(Ω) we mean the set of functions u ∈ C0(Ω)∩C1(Ω) with the partial derivatives having
continuous extension on Ω. We denote by

PX := {u ∈ X : u(x) ≥ 0, ∀x ∈ Ω}

the positive cone in X. For technical reason we suppose also what follows.

(Hw3) There exist an open set Ω1 ⊂ Ω and η > 0 such that w(x) ≥ η for a.e. x ∈ Ω1 .

Condition (Hw3) is always satisfied when (Hw1) holds. Although it is slightly more
restrictive than (Hw2), nevertheless it is a key hypothesis for the study of indefinite
problems (see [LG13, Ch. 9]).

Our goal is still the generalization of Proposition 6.2.3 to problem (IDλ,N ). In view
of the presence of the parameter λ in the differential equation, it seems natural to enter in
a bifurcation setting, in order to obtain both the existence of solutions for each λ in a
certain range and the existence of a continuum of solution pairs with the desired properties.
With this respect, we prove the following result.

Theorem 6.2.8. Let w ∈ L∞(Ω) satisfy (Hw3) and ψ : R+ → R+ be a continuous function
satisfying (Hψ1) and such that ψ0 is finite. Then, the following conclusions hold:

i) If ψ0 > 0, there exists an unbounded continuum C ⊂ R+
0 ×X containing (Λ∗, 0) and

such that C \ {(Λ∗, 0)} is made of positive solution pairs (λ, u) to problem (IDλ,N ).

ii) If ψ0 > 0 and, moreover, P∞ = 0, then for each λ > Λ∗ there is at least one positive
solution u with (λ, u) ∈ C.

iii) If ψ0 > 0 and also P∞ > P∞ = 0, then there exists M∗ such that for each λ > M∗

there is an unbounded set of positive solutions.

Proof of i). The first part closely follows the schemes proposed in [HK80, Theorem 2] and
[Coe+12, Theorem 2.2] which involve the global bifurcation theorem of Rabinowitz [Rab71,
Theorem 1.3]. In [HK80] the theory was developed for a continuous weight function, but
it can be suitably adapted to cover the case in (Hw3).

First of all, we extend ψ by oddness to the whole real line (such extension will be
still denoted by ψ). We fix a constant p > N and consider the Nemytskii operator F
associated to f(x, u) := w(x)ψ(u), namely

F : X → L∞(Ω) ↪→ Lp(Ω), u(·) 7→ f(·, u(·)).

For each v ∈ Lp(Ω) the Dirichlet problem −∆u = v(x) in Ω, with u ∈ W 1,p
0 (Ω), has a

unique solution in W 2,p(Ω). Since p > N, this latter space is compactly embedded in
C1,β(Ω) for 0 ≤ β < 1 − (N/p). Moreover, in this setting, u ∈ W 1,p

0 (Ω) implies that
u ∈ C(Ω) with u = 0 on ∂Ω.
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We denote by

L−1 : Lp(Ω)→W 1,p
0 (Ω) ∩W 2,p(Ω) ↪→ C1

0 (Ω)

the inverse of the Laplacian operator which associates to each v ∈ Lp(Ω) the solution
u ∈ C1

0 (Ω) of −∆u = v(x) in Ω, with u = 0 on ∂Ω. This way, problem (IDλ,N ) can be
settled like a fixed point problem in the space X, as follows

u = λKu, (6.2.7)

where K : X → X is the completely continuous operator defined as

K(u) := L−1F (u).

Following [LG13], we define C1,1−(Ω) :=
⋂

0<θ<1 C
1,θ(Ω). Observe that a solution of (6.2.7)

belongs to C1
0 (Ω) ∩C1,1−(Ω) and is twice classically differentiable almost everywhere in Ω

(see [GT83] and [LG13, Theorem 5.8] to justify our assertions on regularity results).
The existence of a finite ψ0 allows us to express the nonlinearity f as

f(x, ξ) = ψ0w(x)ξ + w(x)γ(ξ), with γ(ξ)/ξ → 0 as ξ → 0.

ThereforeK admits a linearization at u = 0 of the form L−1A, where A is the multiplication
operator induced by the function ψ0w(·). We denote by W the closure in R×X of the set
of non-trivial solution pairs (λ, u) of (6.2.7).

Let Λ∗ be defined as in (6.1.5). According to Hess-Kato [HK80], the point (Λ∗, 0) is
a bifurcation point of the nonlinear problem (6.2.7). An application in this setting of
Rabinowitz’s global bifurcation theorem [Rab71; Rab73a] ensures that the set W contains
a maximal subcontinuum F such that F 3 (Λ∗, 0) and F is either unbounded or contains
a point (λ̂, 0) where λ̂ is a characteristic value of L−1A with λ̂ 6= Λ∗. On account of the
fact that (0, 0) is not a bifurcation point, F is connected and Λ∗ > 0, we firstly observe
that

F ⊂ R+
0 ×X.

We are going now to prove that F contains an unbounded sub-continuum C starting
from (Λ∗, 0), satisfying C \

(
R× {0}

)
⊂ R+

0 × intPX , which does not contain any point
(λ̂, 0) with λ̂ 6= Λ∗. To this aim, we will show that

F \
(
R× {0}

)
⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)

(6.2.8)

and
F ∩

(
R× {0}

)
= {(Λ∗, 0)}. (6.2.9)

In fact, condition (6.2.9) implies that the second alternative of Rabinowitz bifurcation
theorem does not occur and therefore F is unbounded. Then, the continuum we are
looking for can be defined as

C := {(λ, |u|) : (λ, u) ∈ F} ⊂
(
R+

0 × intPX
)
∪ {(Λ∗, 0)}. (6.2.10)

In this manner, assertion i) follows because it is obvious that C is a closed connected
unbounded set of solution pairs to (6.2.7) which contains (Λ∗, 0) and moreover for each
(λ, u) ∈ C \ {(Λ∗, 0)} we have λ > 0 and u > 0.

Our task is now to check conditions in (6.2.8) and (6.2.9). To do this we divide the
proof into some steps.

Step I. There is a neighborhood U of (Λ∗, 0) such that

U ∩ F ⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)
∪ {(Λ∗, 0)}.

Indeed, if by contradiction there is no neighborhood U of (Λ∗, 0) as above, then
one could find a sequence (λn, un) of solutions to (6.2.7) with λn → Λ∗ and un 6∈
−intPX ∪ intPX , such that 0 < ||un|| → 0. Normalizing, we have

vn = λn
K(||un||vn)

||un||
, where vn :=

un
||un||

.
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By compactness, we can assume that vn → v (up to a subsequence). Moreover,

v 6∈ −intPX ∪ intPX .

Using the linearization of K at zero we obtain

v = Λ∗L−1Av, with ||v|| = 1.

This means that v is an eigenfunction corresponding to the positive principal eigenvalue
Λ∗ and therefore

v ∈ −intPX ∪ intPX .
A contradiction is thus achieved. For what follows, notice that U ∩

(
F \

(
R× {0}

) )
is

nonempty.

Step II. It holds that

F ∩
(
R+

0 ×
(
− ∂PX ∪ ∂PX

) )
= {(Λ∗, 0)}.

Suppose that (ζ, u0) ∈ F ∩
(
R+

0 ×
(
− ∂PX ∪ ∂PX

) )
. The odd extension of ψ implies

that also the operator K is odd. Therefore, when u is a solution of (6.2.7), −u is a solution,
too. Accordingly, without loss of generality, we can suppose that (ζ, u0) ∈ F∩

(
R+

0 ×∂PX
)
.

We claim that u0 ≡ 0. If, by contradiction, u0 6≡ 0, then u0 is a non-trivial nonnegative
solution to the problem

−∆u = ζw(x)ψ(u), u|∂Ω = 0,

which is equivalent to

−∆u+ cu = (c+ ζw(x)ϕ(u))u, u|∂Ω = 0,

where we have introduced the auxiliary continuous function

ϕ(ξ) :=

{
ψ(ξ)/ξ for ξ 6= 0,

ψ0 for ξ = 0.
(6.2.11)

Now, if we take
c ≥ ζ||w||∞ sup

0≤s≤||u||∞
ϕ(s),

we obtain that
−∆u0(x) + cu0(x) ≥ 0, u0|∂Ω = 0,

with u0(x) ≥ 0 for all x ∈ Ω and u0 6≡ 0. By the strong maximum principle u0 ∈ intPX
follows and this leads to a contradiction.

Since u0 ≡ 0, now we have (ζ, 0) ∈ F ∩
(
R+

0 × ∂PX
)
. So that, there exists a sequence

(λn, un) of solutions to (6.2.7) with λn → ζ > 0 and un ∈ intPX such that 0 < ||un|| → 0.
Normalizing as in Step I and passing up to a subsequence for vn := un/||un||, we obtain

v = ζL−1Av, with ||v|| = 1 and v > 0.

This means that v is a positive eigenfunction associated with the eigenvalue ζ > 0.
Therefore ζ = Λ∗, as there is a unique positive eigenvalue having a positive eigenfunction.

Step III. It holds that

F ⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)
∪ {(Λ∗, 0)}. (6.2.12)

Indeed, let us consider the set

F ′ := {(λ, u) ∈ F : λ > 0,±u ∈ intPX} ∪ {(Λ∗, 0)}.

By Step I, the set F ′ is open relatively to F . We claim that F ′ is closed in F . To do
this, we consider a sequence (λn, un)→ (ζ, u) with ζ > 0 and un ∈ intPX ∪ −intPX . If
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u ∈ intPX ∪−intPX , we are done. Otherwise, if u ∈ −∂PX ∪ ∂PX , from Step II we have
(ζ, u) = (Λ∗, 0). The claim is thus proved. The connectedness of F implies that F ′ = F
and (6.2.12) is verified.

Finally, the proof of i) is concluded because (6.2.8) and (6.2.9) directly follow from
(6.2.12).

Proof of ii). Having already built up the continuum C, we will prove that it is unbounded
in the λ-component if P∞ = 0. To this aim, we introduce the projection

p1 : R×X → R, (λ, u) 7→ λ

and we show that p1(C) ⊃ [Λ∗,+∞).
Suppose, by contradiction, that the inclusion does not hold. So that there exists

λ̂ > Λ∗ such that λ < λ̂ for each (λ, u) ∈ C.
Let a1, b1 be such that Ω ⊂ ]a1, b1[×RN−1. By hypothesis P∞ = 0 follows that

τ∞ = +∞, where
τ∞ := lim sup

c→+∞
τ(c).

Let us fix a constant R > b1 − a1 and let d > 0 be such that

τ(d)2 > R2λ̂||w||∞.

According to Proposition 6.2.1 the function vd,R(t) is a solution of

v′′ +
( τ(d)
R

)2
ψ(v) = 0

such that vd,R(t) > 0 for all t ∈ [a1, b1]. Finally, from vd,R we define a function on RN as

β(x) := vd,R(x1), ∀x = (x1, . . . , xN ) ∈ Ω.

By construction, for each λ ∈ ]0, λ̂[ , the function β(x) is an upper solution which is not a
solution for problem (IDλ,N ). Indeed, there exists a constant ρ > 0 such that

−∆β(x) ≥ λ̂||w||∞ψ(β(x)) + ρ, ∀x ∈ Ω (6.2.13)

and, moreover,
inf
x∈Ω

β(x) = η > 0. (6.2.14)

Now, we claim that
u(x) < β(x),∀x ∈ Ω, (6.2.15)

for each positive solution u such that (λ, u) ∈ C. To prove this inequality we follow an
argument close to the one in [OO06, Step 4] (for another possible proof, but involving a
locally Lipschitz condition, we refer to [Gám97, Theorem 2.2]).

Let us consider the set

C′ := {(λ, u) ∈ C : u(x) < β(x), ∀x ∈ Ω},

which is nonempty and open relatively to C. In order to prove (6.2.15) we will show that
C′ is also closed relatively to C, so we can conclude by the connectedness of C.

Let U(x) ≤ β(x), for all x ∈ Ω, be a solution of (IDλ,N ) for some λ such that
(λ,U) ∈ C.We notice that U(x) < β(x), ∀x ∈ ∂Ω.We are going to prove that U(x) < β(x),
∀x ∈ Ω. Let us fix ε > 0 such that

4ελ̂||w||∞ < ρ.

By the uniform continuity of ψ(ξ) on the interval [0, ||β||∞], there exists δ > 0 such that
|ψ(ξ′) − ψ(ξ′′)| < ε for each ξ′, ξ′′ ∈ [0, ||β||∞] with |ξ′ − ξ′′| < δ. If there exists a point
x0 ∈ Ω such that U(x0) = β(x0), then we can take a (small) open ball B(x0, r) ⊂ Ω such



6.2 Revisiting the sublinear case 69

that |U(x)− U(x0)| < δ and |β(x)− β(x0)| < δ for all x ∈ B[x0, r]. As a consequence, we
have

|ψ(β(x))− ψ(U(x))| < 2ε, ∀x ∈ B[x0, r].

A comparison between (6.2.13) and −∆U(x) = λw(x)ψ(U(x)) for a.e. x ∈ B(x0, r) (for
0 < λ < λ̂) shows that the function Q(x) := β(x) − U(x) satisfies −∆Q(x) ≥ ρ/2 for
a.e. x ∈ B(x0, r) with Q ≥ 0 on ∂B(x0, r) and Q(x0) = 0. This contradicts the strong
maximum principle on the ball B(x0, r) (cf. [HO96, Lemma 3.2 (interior form)]). Therefore
we conclude that C′ is closed relatively to C.

Therefore, from (6.2.15) we have that

C ⊂ ]0, λ̂[×[0, β(·)].

Hence, C is bounded in the product space and this contradicts the alternatives of Rabi-
nowitz’s global bifurcation theorem. Assertion ii) is thus proved.

Proof of iii). For the latter assertion, concerning the case P∞ > P∞ = 0, we rely to
[OO06, Theorem 2.2] applied to the problem

{
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(6.2.16)

where

f(x, ξ) :=

{
λw(x)ψ(ξ) if ξ ≥ 0,

0 if ξ < 0.

With this respect, we observe that f(x, ξ) ≥ ληψ(ξ) for every ξ ≥ 0 and a.e. x ∈ Ω1

and, moreover, f(x, ξ) ≤ h(ξ) := λ||w||∞ψ(ξ) for every ξ ≥ 0 and a.e. x ∈ Ω. By our
special form of f(x, ξ) (which, in particular, implies f(x, 0) ≡ 0), one can see that the
assumptions (h3) and ψ(ξ) → +∞ as ξ → +∞ required in [OO06, Theorem 2.2] can
be ignored. The condition P∞ = 0 implies lim infξ→+∞(

∫ ξ
0
h(s) ds)/ξ2 = 0 as in (h5) of

[OO06, Theorem 2.2] and thus the existence of a sequence of upper solutions βn tending to
infinity uniformly in Ω is guaranteed. On the other hand, given ρN = NN/(N − 1)(N−1)

for N ≥ 2 otherwise ρ1 = 1 and let R > 0 be the radius of the largest ball contained in
Ω1, according to [OO06, Remark 1] if

λ > M∗ :=
ρ
N

ηP∞

( π

2R

)2

,

then there exists a sequence of lower solutions αn with max(αn) = maxΩ1(αn) tending to
infinity. The rest of the proof is similar to [OO06, Theorem 2.2]. It leads to the existence
of an unbounded sequence of solutions un for (6.2.16) and the strong maximum principle
(cf. [HO96, Lemma 3.2 (global form)]) guarantees that un(x) > 0 for all x ∈ Ω.

The construction of an upper solution using conditions on the lower limit at infinity
of P (ξ)/ξ2 has been already exploited in [FGZ91; OO06; OZ96].

One could argue that functions satisfying (Hψ3) and not (Hψ2) seem really artificial.
Our opinion is that such kind of functions may look slightly unusual but not too weird.
One can easily provide examples of functions in the class (Hψ1) which satisfy

0 = lim inf
ξ→+∞

2P (ξ)

ξ2
< lim sup

ξ→+∞

2P (ξ)

ξ2
.

This can be done in different manners. For example, by selecting an increasing sequence
of positive reals (an)n such that

lim
n→+∞

n−2a2n = ` ∈ ]0,+∞] and lim
n→+∞

n−2a2n+1 = 0.
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Then P (ξ) can be constructed as a smooth function satisfying P (0) = P ′(0) = 0 < P ′′(0),
P ′(ξ) > 0 for all ξ > 0 and such that its graph interpolates the points (n, an). This
procedure, even if it permits to define functions satisfying our requests, still may look
somehow artificial. For this reason, we show below how to define in an analytical manner
suitable maps satisfying (Hψ1) and (Hψ3) by the use of elementary functions. Such
nonlinearities are obtained by a modification of the ones considered in Example 6.2.5.
Example 6.2.9. Let ρ, θ, A, k1, k2, p, q, be positive constants, with θ ∈ [0, 2π], A ≥ e, and
0 < q < 1− p < 1. Define, for every s ≥ 0,

P (ξ) := ρξ2
(

1 + cos
(
k1 logp(A+ ξ) + θ

)
+ k2 log−q(A+ ξ)

)
.

If
k1p+ k2q < 2k2 ,

then ψ : R+ → R+, defined as ψ(ξ) := P ′(ξ), is a function of class C∞ satisfying (Hψ1).
Moreover,

P∞ = 0 < 4ρ = P∞ and ψ0 ∈ ]0,+∞[.

Indeed, to check that ψ(ξ) > 0 for all ξ > 0, we just observe that

P ′(ξ) ≥ ρξ
(

2k2D
−q − k1pD

p−1 − k2qD
−q−1

)
, for D := log(A+ ξ) > 1.

All the other verifications are straightforward. C
Under our assumptions, it is natural to ask wether there are further properties of the

Rabinowitz’s bifurcation continuum C. Indeed, the following result holds.

Proposition 6.2.10. Let w ∈ L∞(Ω) and ψ : R+ → R+ be a continuous function satisfy-
ing (Hψ1) and such that ψ0 is finite. If ψ0 > 0, then the continuum C defined in (6.2.10)
is unbounded in the u-component.

Proof. Let C be the continuum obtained in point i) of Theorem 6.2.8. Suppose, by
contradiction, that there exists M > 0 such that

||u|| ≤M for all (λ, u) ∈ C ⊂ R+
0 ×X. (6.2.17)

This, in turn, implies that 0 < u(x) ≤M for all x ∈ Ω. Then, as a consequence of (Hψ1)
and ψ0 > 0, we find that ψ(u(x)) ≥ CMu(x) for all x ∈ Ω, for

CM := inf
0<s≤M

ψ(s)

s
> 0.

In other words, for ϕ defined as in (6.2.11), we have that ϕ(u(x)) ≥ CM for every (λ, u) ∈ C
and problem (IDλ,N ) can be written as

{
−∆u = λw(x)ϕ(u)u in Ω,

u = 0 on ∂Ω.
(6.2.18)

Now, let z ∈ Ω1 and r > 0 be such that the open ball B = B(z, r) satisfies B ⊂ Ω+

and, moreover, let ρ1 > 0 be the first (positive) eigenvalue of the eigenvalue problem with
positive weight

−∆u = ρw(x)u, u|∂B = 0.

We denote by ν the associated positive eigenfunction with maxB ν(x) = 1.

We fix a constant λ̂ > ρ1/CM such that there exists a (positive) solution û of (6.2.18)
with (λ̂, û) ∈ C. We know that such a pair always exists because C is unbounded in
the product space and we are assuming (6.2.17). Let v(x) = ϑν(x) (with ϑ > 0) be the
maximal eigenfunction of

−∆u = ρ1w(x)u, u|∂B = 0

such that v(x) ≤ û(x), ∀x ∈ B. By definition, we have 0 = v(x) < û(x) on ∂B and
v(x0) = û(x0) for some x0 ∈ B. The function Q(x) := û(x)− v(x) satisfies −∆Q(x) > 0
for a.e. x ∈ B with Q(x) > 0 on ∂B and minB Q(x) = Q(x0) = 0, thus contradicting the
maximum principle. Therefore, our assertion is proved.
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As a consequence of Theorem 6.2.8 and Proposition 6.2.10, we can say that Propo-
sition 6.2.3 for the one-dimensional case is now extended to any sufficiently regular
domain in RN . In particular, also Corollary 6.1.5 extends as follows (where the constant
λ∗1 := λD;Ω

1 (−∆)/ψ0 is the one defined in (6.1.7)).

Corollary 6.2.11. Let w ∈ L∞(Ω) satisfy (Hw3) and ψ : R+ → R+ be a continuous
function satisfying (Hψ1) and (Hψ3). Then, there exists a continuum C containing (λ∗1, 0)
and such that C \ {(λ∗1, 0)} is made of positive solution pairs (λ, u) to problem (6.1.6). The
continuum C is unbounded both in the u-component and the λ-component.

Moreover, if the map ξ 7→ ψ(ξ)/ξ is decreasing on R+
0 since the conditions (Hψ2) and

(Hψ3) are equivalent, then the set of positive solution pairs S coincides with C \ {(λ∗1, 0)}
and is the graph of a continuous map ]λ∗1,+∞[3 λ 7→ uλ ∈ intPX .

From the proof of Theorem 6.2.8 it is also clear that a more general version of Theorem 6.2.8
can be given as follows.

Theorem 6.2.12. Let w ∈ L∞(Ω) satisfying (Hw3) and ψ : R+ → R+ be a continuous
function satisfying (Hψ1) and such that ψ0 is finite. Then, the following conclusions hold:

• If ψ0 > 0, there exists an unbounded continuum C ⊂ R+
0 ×X containing (Λ∗, 0) and

such that C \ {(Λ∗, 0)} is made of positive solution pairs (λ, u) to problem (IDλ,N ).
The continuum C is always unbounded in the u-component.

• If ψ0 > 0 and, moreover, τ∞ = +∞, then the continuum C is also unbounded in the
λ-component and, therefore, for each λ > Λ∗ there is at least one positive solution
u with (λ, u) ∈ C.

The method of producing bounds for a PDEs using the ODE u′′ + ψ(u) = 0 has
been also considered in [OO06] and [Kaj09]. Sufficient conditions for the validity of the
time-mapping hypothesis have been presented in previous papers (see, for instance [FZ92]).

Theorem 6.2.12 is useful to produce other existence results where explicit hypotheses
on ψ(ξ) or P (ξ) at infinity can be employed in order to obtain τ∞ = +∞. From [DIZ91],
one could require that ψ is such that

lim inf
ξ→+∞

ψ(ξ)/ξ = 0 and ξψ′(ξ) ≤Mψ(ξ) for ξ > d, (6.2.19)

for some positive constant M. This hypothesis, according to Omari and Ye [OY92], is said
to be a “desultorily sublinear condition”. For the PDE setting, it has been recently used
for the Neumann problem in [Sfe12]. Condition (6.2.19) is independent on P∞ = 0 as
shown in an example of [DIZ91].

Finally, we notice that the assumption lim infξ→+∞ ψ(ξ)/ξ = 0 alone is not enough
to guarantee the existence of positive solutions to problem (IDλ,N ) for λ ≥ Λ∗ = ν1/k.
Indeed, we are able to provide a counterexample at least for a constant weight and in
one-dimension case. Namely the following results holds.

Proposition 6.2.13. Let Ω ⊂ R be a bounded open interval of length |Ω| = L. For each
positive constant k, there exists a continuous function ψ : R+ → R+ satisfying (Hψ1), with

ψ0 = k and lim inf
ξ→+∞

ψ(ξ)/ξ = 0, (6.2.20)

such that there is no positive solution pair for (6.2.1) when λ ≥ λ∗1 = ( πL )2/k. The function
ψ can be defined so that

lim
ξ→+∞

2P (ξ)/ξ2 = lim sup
ξ→+∞

ψ(ξ)/ξ = K, (6.2.21)

for any prescribed value K ∈ ]k,+∞].
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Proof. Our example is inspired by some analogous considerations in [DIZ93; Njo91],
however the proof here is completely different, since we adopt a time-mapping technique.

We discuss in detail the situation when K is a real number. The case K = +∞ it can
be treated in the same way with simple modifications.

We start by giving the general structure of the example. Let k,K be two given constants
with 0 < k < K. We consider a strictly increasing continuous function q1 : R+ → R+

0 with
q1(0) = k and limξ→+∞ q1(ξ) = K. Then, let τ1 be the time-mapping associated to the
autonomous scalar equation

u′′ + ψ1(u) = 0, for ψ1(s) := s q1(s).

As usual, we set

P1(ξ) :=

∫ ξ

0

ψ1(s) ds.

By the properties recalled in Section 6.2.1, we know that τ1 : R+
0 → R+

0 is a strictly
decreasing function with

lim
c→0+

τ1(c) =
π√
k

and lim
c→+∞

τ1(c) =
π√
K
.

Next, we consider a strictly monotone increasing function ψ2 : R+ → R+ with ψ2(+∞) =
+∞ and such that

lim
ξ→+∞

ψ2(ξ)

ξ
= 0.

By the properties of ψ1 and ψ2 and since ψ1(ξ)/ξ → K > 0 as ξ → +∞, there exists a
constant d > 0 such that

0 < ψ2(ξ) < ψ1(ξ), ∀ ξ ≥ d.
Let ε > 0 be a fixed constant such that

3ε <
π√
k
− π√

K
(6.2.22)

and, subsequently, let us fix a constant θ ∈ ]0, 1[ such that
√
θ ≥

( π√
K

+ ε
)
/
( π√

k
− ε
)
. (6.2.23)

At this moment, we can determine a constant d∗ ≥ d such that

ψ1(ξ) >
1

1− θ , (6.2.24a)

τ1(ξ) <
π√
K

+ ε, (6.2.24b)
√

8/ψ2(ξ) < ε, (6.2.24c)

hold for all ξ ≥ d∗.
Finally, we take two sequences (dn)n and (rn)n of positive real numbers with dn ↗ +∞

and rn ↘ 0+ and d1 − r1 > d∗ + 2.
We also define In := [dn − rn, dn + rn]. The function ψ : R+ → R+ of our example will be
defined as

ψ(ξ) := ψ1(ξ)− ϕ(ξ),

where ϕ : R+ → R+ is a continuous function with

ϕ(ξ) = 0, ∀ ξ ∈ R+ \
( ∞⋃

n=1

In
)
;

max
ξ∈In

ϕ(ξ) = ϕ(dn) := ψ1(dn)− ψ2(dn).
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If we denote by, Q(ξ) :=
∫ ξ

0
ϕ(s) ds , we also impose limξ→+∞Q(ξ) ≤ 1. We notice that

ψ1(ξ) ≥ ψ(ξ) ≥ ψ2(ξ), ∀ ξ ≥ d∗ ≥ d.

Moreover, ψ(ξ) = ψ1(ξ) for all 0 ≤ ξ ≤ d∗ + 2 and ψ(dn) = ψ2(dn). By definition of ψ, we
have also that P (ξ) = P1(ξ)−Q(ξ). Hence (6.2.20) and (6.2.21) follow immediately.
If we denote by τ the time-mapping associated to u′′ + ψ(u) = 0, from the definition of ψ
it is easy to check that

lim
c→+∞

τ(c) = lim
c→+∞

τ1(c) =
π√
K
.

However, we want to prove more. Indeed, we claim that

τ(c) <
π√
k

=
π√
ψ0

, ∀ c > 0. (6.2.25)

By construction, we have that τ(c) = τ1(c) < π/
√
k, for all c ∈ ]0, d∗ + 2]. So, we consider

now c > d∗ + 2 and prove that τ(c) < π/
√
k.

In fact, recalling the time-mapping formula given in (6.2.4) and using the fact that
c− 1 > d∗, we have

τ(c) = 2

∫ c−1

0

dξ√
2(P (c)− P (ξ))

+ 2

∫ c

c−1

dξ√
2(P (c)− P (ξ))

= 2

∫ c−1

0

dξ√
2(P1(c)− P1(ξ)− (Q(c)−Q(ξ)))

+ 2

∫ c

c−1

dξ√
2(
∫ c
s
ψ(s) ds)

≤ 2

∫ c−1

0

dξ√
2(P1(c)− P1(ξ)− 1)

+ 2

∫ c

c−1

dξ√
2(
∫ c
s
ψ2(s) ds)

≤ 2√
θ

∫ c−1

0

dξ√
2(P1(c)− P1(ξ))︸ ︷︷ ︸

P1(c)− P1(ξ)− 1 ≥ θ(P1(c)− P1(ξ)),
by condition (6.2.24a)

+2

∫ c

c−1

dξ√
2(
∫ c
s
ψ2(c− 1) ds)

<
2√
θ

∫ c

0

dξ√
2(P1(c)− P1(ξ))

+

√
2

ψ2(c− 1)

∫ c

c−1

dξ√
c− ξ

=
τ1(c)√
θ

+

√
8

ψ2(c− 1)
<

1√
θ

( π√
K

+ ε
)

︸ ︷︷ ︸
by (6.2.24b)

+ ε︸︷︷︸
by (6.2.24c)

≤ π√
k
− ε

︸ ︷︷ ︸
by (6.2.23)

+ε =
π√
k
.

We have thus verified (6.2.25), so that by Proposition 6.2.2 we know that a positive solution
to (6.2.1) can exist only for λ < λ∗1. In other words, with our choice of the function ψ,
there is no positive solution pair for problem (6.2.1) when λ ≥ λ∗1.

Following the instructions given in the proof, it is easy now to provide a concrete
function ψ.

Example 6.2.14. As a model example, let us consider the following functions:

q1(ξ) =

{
k + 2(K−k)

π arctan(ξ) for K < +∞,
k + ξ arctan(ξ) for K = +∞,

and
ψ2(ξ) =

√
ξ.



74 Chapter 6. Nonlinearities with linear-sublinear growth

The parameters involved in the construction can be explicitly computed once k and K
are given. For instance, let us take k = 1 and K = 25. In this case, we can choose d = 1.
Next, we fix ε = π/4 and θ = 9/25, in order to satisfy (6.2.22) and (6.2.23). With such a
choice of the constants, simple computations show that d∗ = 170 is more than adequate
to have all the three conditions in (6.2.24) fulfilled. At this point, for any positive integer
n, we take

dn = 180 + n and rn =
2−n

25dn
.

We define the function ϕ(s) as a piecewise linear function, namely

ϕ(ξ) =

{
ψ1(dn)− ψ2(dn)− ψ1(dn)−ψ2(dn)

rn
|ξ − dn| for ξ ∈ In,

0 for ξ 6∈ In .

As a last step, we observe that

∫ +∞

0

ϕ(ξ) dξ =
∞∑

n=1

rnϕ(dn) <
∞∑

n=1

rnψ1(dn) <
∞∑

n=1

Krndn =
∞∑

n=1

2−n = 1.

Therefore, all the required conditions are satisfied. C

Remark 6.2.15. The function ψ, whose existence is asserted in Proposition 6.2.13, can
be more than continuous. Indeed, it can be smooth as we like (it is just a matter of
choosing q1, ψ2 and ϕ smooth functions). In particular, in Example 6.2.14 we can easily
modify the choice of ϕ, taking a piecewise polynomial function instead of a piecewise
linear function. Hence, when K is finite and ψ is C1(R+), we have ψ(ξ)/ξ bounded but
supξ>0 ψ

′(ξ) = +∞. In this way our example shows that the second condition in (6.2.19)
cannot be avoided. C

6.2.3 Applications with more general differential operators
Our main results concerning the existence of unbounded connected branches of positive
solution pairs (namely Theorem 6.2.8 and Theorem 6.2.12) involve a nonlinear Dirichlet
problem for the Laplace differential operator. We briefly sketch how to obtain the same
kind of results for problem

{
Lu = λw(x)ψ(u) in Ω,

u = 0 on ∂Ω,
(6.2.26)

where L is a more general linear differential operator of second order of the form

L := −
N∑

j,k=1

αjk(x)DjDk +

N∑

j=1

αj(x)Dj + α0(x).

To obtain the statement i) in Theorem 6.2.8 for this operator, we suppose that

αjk = αkj ∈ C(Ω) and αj , α0 ∈ L∞(Ω), with α0 ≥ 0.

Moreover, we also assume that L is strictly elliptic in Ω, indeed there exists a constant
κ > 0 such that

∑
j,k αjk(x)ξjξk ≥ κ||ξ||2 for all x ∈ Ω and ξ = (ξ1, . . . , ξN ) ∈ RN . Taking

into account these assumptions and following [HK80], we can reproduce the same proof.
In order to obtain the statement ii) in Theorem 6.2.8 we have to prove the existence of

an upper solution β satisfying a condition analogous to (6.2.13). To this purpose, we first
give the following lemma which is presented in a general form so that it can be applied in
principle also in other contexts. We note also that our lemma presents some overlapping
with a preceding result by Grossinho and Omari in [GO97, Lemma 2.1].
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Lemma 6.2.16. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and such
that τ∞ = +∞. Let I := [t0, t1] and B,M > 0 be fixed real constants. Then for every
measurable function b : I → R with |b(t)| ≤ B for a.e. t ∈ I and for every constant K > 0,
there exists k > K, such that any solution u(·) of the initial value problem

{
u′′ + b(t)u′ +Mψ(u) = 0,

u(t0) = k, u′(t0) = 0,
(6.2.27)

is such that u(t) > 0 for all t ∈ I and u′(t) < 0 for all t ∈ ]t0, t1] .

Proof. Let u(·) : J → R+ be a solution of (6.2.27) defined on a right maximal interval of
existence contained in I. For a.e. t ∈ J we have that

d

dt

(
u′(t)eB(t)

)
+MeB(t)ψ(u(t)) = 0, (6.2.28)

where we have set B(t) :=
∫ t
t0
b(ξ) dξ. Integrating on [t0, t], for t ∈ J with t > t0 , it follows

that

u′(t) = −M
∫ t

t0

e
∫ s
t
b(ξ) dξψ(u(s)) ds

holds. This proves that u′(t) < 0 for all t > t0 with t ∈ J.
We claim now that J = I and u(t) > 0 for all t ∈ I. Suppose, by contradiction, that

there exist a function b : I → R satisfying |b(t)| ≤ B and a first point t∗ ∈ J such that
u(t∗) = 0. We multiply equation (6.2.28) by u′(t)eB(t) and so we obtain the relation

1

2

d

dt

(
u′(t)eB(t)

)2

+Me2B(t) d

dt
P (u(t)) = 0, ∀ t ∈ [t0, t

∗]. (6.2.29)

Notice that d
dtP (u(t)) = ψ(u(t))u′(t) < 0 for all t ∈ ]t0, t

∗[ . Integrating equation (6.2.29)
on [t0, t] ⊂ [t0, t

∗[ and after simple manipulations, we obtain

|u′(t)|2 = 2M

∫ t

t0

e2
∫ s
t
b(ξ) dξ d

ds
(−P (u(s))) ds

≤ 2Me2B|I|(P (u(t0))− P (u(t))) = 2Me2B|I|(P (k)− P (u(t))).

Then, recalling that u′(t) < 0 on ]t0, t
∗], it follows that

−u′(t) ≤ eB|I|M 1
2

√
2(P (k)− P (u(t))), ∀ t ∈ ]t0, t

∗[ .

From the previous inequality we have
∫ u(t0)=k

u(t)

ds√
2(P (k)− P (u(s)))

≤ eB|I|M 1
2 (t− t0), ∀ t ∈ ]t0, t

∗[

and then, letting t→ t∗, we find

τ(k)

2
=

∫ k

0

ds√
2(P (k)− P (u(s)))

≤ eB|I|M 1
2 (t∗ − t0) ≤M 1

2 eB|I||I|.

Thus, using the fact that lim supc→+∞ τ(c) = +∞, a contradiction is achieved. As a
consequence, we conclude that J = I and, moreover, u(t) > 0 for all t ∈ I.

By Lemma 6.2.16 we give an upper solution β as in the proof of ii) in Theorem 6.2.8.
Following the same notation, let a1 and b1 be such that Ω ⊂ ]a1, b1[×RN−1. We proceed,
by introducing the constants:

M0 > λ̂||w||∞
and

M :=
M0

κ
, b := sup

x∈Ω

∣∣∣∣
α1(x)

α11(x)

∣∣∣∣ ≤
||α1||∞
κ

.
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Then, according to Lemma 6.2.16, let u ∈ C2([a1, b1]) be such that

u′′(t)− bu′(t) +Mψ(u(t)) = 0, ∀ t ∈ [a1, b1],

u(t) > 0, ∀ t ∈ [a1, b1]

u′(t) < 0, ∀ t ∈]a1, b1].

We define
β(x) := u(x1), ∀x = (x1, . . . , xN ) ∈ Ω.

By the positivity of u on [a1, b1] we have that (6.2.14) holds for a suitable constant η.
The choice of β(x) implies that

Lβ(x) = −
N∑

j,k=1

αjk(x)DjDkβ(x) +
N∑

j=1

αj(x)Djβ(x) + α0(x)β(x)

= −α11(x)u′′(x1) + α1(x)u′(x1) + α0(x)u(x1)

≥ α11(x)
(
− u′′(x1) +

α1(x)

α11(x)
u′(x1)

︸ ︷︷ ︸
using u′ < 0

)

≥ α11(x)(−u′′(x1) + bu′(x1))

= α11(x)Mψ(u(x1)) ≥ κMψ(u(x1)) = M0ψ(u(x1))

= λ̂||w||∞ψ(u(x1)) + (M − λ̂||w||∞)ψ(u(x1))

≥ λ̂||w||∞ψ(β(x)) + ρ,

where ρ is a suitable positive constant such that (M−λ̂||w||∞)ψ(u(t)) ≥ ρ for all t ∈ [a1, b1].
Thus (6.2.13) is proved for L instead of −∆. The rest of the proof of ii) follows in the
same manner and we achieve the same conclusion of Theorem 6.2.8 and Theorem 6.2.12
also for problem (6.2.26).



7. Nonlinearities with oscillatory
potential at infinity

In the present chapter, which is based on [SZ17c], we study indefinite nonlinear Neumann
problems that hold the characteristic to have the primitive of the nonlinearity with an
oscillatory behavior. Nonlinearities of this type have been already introduced in Chapter 6
for Dirichlet BVPs. Here we pursue the investigations with the goal to provide multiplicity
results of positive solutions with respect to the case of Neumann boundary conditions.
More precisely, we deal with Neumann problems of the form

(IN )

{
u′′ + w(t)ψ(u) = 0,

u′(0) = u′(T ) = 0,

where w : [0, T ]→ R is a sign-changing function and ψ : R+ → R+ is a continuous function
still in the frame of Type 1, namely we suppose it satisfies

(Hψ1) ψ(0) = 0 and ψ(ξ) > 0 for all ξ > 0.

In addition to that, we consider also the typifying condition of the problem which is
about a oscillatory behavior for the primitive of ψ. Denoting by P (ξ) :=

∫ ξ
0
ψ(s) ds, we

assume that

(Hψ4) P∞ := lim inf
ξ→+∞

2P (ξ)

ξ2
= 0 < P∞ := lim sup

ξ→+∞

2P (ξ)

ξ2
.

The analysis carried out on the study of positive solutions for problem (IN ), i.e. a
solution u(t) of (IN ) such that u(t) > 0 for all t ∈ [0, T ], leads to a result of multiplicity
as stated in Theorem 7.1.1. In Section 7.1.2, we will prove this result by means of a
shooting-type argument that takes advantage of some technical estimates derived in
Section 7.1.1. At last, we will extend in Section 7.2 our approach to the study of positive
solutions of problem

(IN N )





∆u+ w(x)ψ(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω,

where Ω is a radially symmetric domain (for instance either a ball or an annulus) and w
has radial symmetry.

Remark 7.1. Let us first point out a key comment on the assumption made on the weight
term. If we look for positive solutions for problem (IN N ) under condition (Hψ1) and
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w 6≡ 0, then the assumption ψ(ξ) > 0 for every ξ > 0 implies a necessary condition:
the function w has to change its sign on Ω (see [BPT88]). In fact, by integrating the
differential equation in (IN N ) over Ω, we obtain

0 =

∫

Ω

∆u+ w(x)ψ(u) dx =

∫

∂Ω

∂u

∂n
dx+

∫

Ω

w(x)ψ(u) dx =

∫

Ω

w(x)ψ(u) dx.

Hence, the involvement of an indefinite weight term comes very natural in this framework
when we assume Neumann boundary conditions. C

Overview on differential problems with oscillatory potential
Just to motivate the forthcoming results, we stress the fact that in literature there are
a great deal of works on BVPs associated to PDEs with ψ satisfying (Hψ4) when the
boundary conditions are of Dirichlet type. On the contrary, for Neumann BVPs, there are
lot of multiplicity results for problems having super-linear or sub-linear nonlinearities, but
the case of ψ satisfying (Hψ1) and (Hψ4) looks still not completely explored, even in the
case of one-dimension that is the main topic of this chapter.

Let us justify this preface. Interest, in Dirichlet BVP with an oscillatory potential can
be traced back to 1930 with a classical paper of Hammerstein [Ham30]. In that work, the
Author proved the existence of solutions to a nonlinear integral equation (nowadays called
“Hammerstein equation”) of the form

ϕ(x) =

∫

B

K(x, y)f(y, ϕ(y)) dy,

under a linear growth assumption on the function f defined on B×R and a non-resonance
condition. In our context, such non-resonance condition can be equivalently written as

lim sup
u→±∞

2F (x, u)

u2
< λ1, uniformly for x ∈ B,

where F (x, u) :=
∫ u

0
f(x, ξ) dξ, B is a one-dimensional or multi-dimensional bounded

domain, K(x, y) is a bounded symmetric and positive definite kernel and λ1 is the first
eigenvalue of the associated linear problem.

The pioneering work of Hammerstein stimulated further researches about the solvability
of nonlinear boundary value problems “below the first eigenvalue”, by imposing conditions
on the primitive of the nonlinearity (see [FG88; GO92; GO95; MWW86]). Applications to
the Dirichlet problem, involving these kind of conditions, guarantee the existence of at
least one solution for

(DN )

{
∆u+ ψ(u) = h(x) in Ω,

u = 0 on ∂Ω,

if h ∈ L∞(Ω) and ψ : R→ R is a continuous function with a suitable polynomial growth
(depending on the Sobolev embeddings) such that

lim sup
ξ→±∞

2P (ξ)

ξ2
< λD1 (−∆; Ω),

where Ω ⊆ RN is assumed to be a bounded domain with a sufficiently smooth boundary.
In the one-dimensional case Ω =]0, T [, an improvement of this result was obtained in

[FOZ89, Theorem 1], by replacing the Hammerstein type condition with

lim inf
s→±∞

2P (ξ)

ξ2
<
( π
T

)2

= λD1 (−∆; Ω).

Moreover, in that paper, the study of the one-dimensional Dirichlet BVP, under the
assumptions ψ(ξ)→ +∞ for ξ → +∞ and

P∞ <
( π
T

)2

< P∞,
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leads to the existence of infinitely many solutions u(t) > 0 for all t ∈ ]0, T [ (see [FOZ89,
Theorem 3]). Concerning the multiplicity of positive solutions for Dirichlet problems,
further investigations have been performed from different points of view, considering also
in [MZ93; NOZ00; OZ96] more general (nonlinear) differential operators.

For an indefinite weight nonlinear problem on a general bounded domain Ω ⊆ RN

(IDN )

{
∆u+ w(x)ψ(u) = 0 in Ω,

u = 0 on ∂Ω,

an application of [OO06, Theorem 2.2] yields the existence of two sequences of solutions
(un)n and (vn)n which are strictly positive on Ω and such that limn→+∞ un(x)/dist(x, ∂Ω) =
limn→+∞ vn(x)/dist(x, ∂Ω) = +∞.

On the contrary, dealing with Neumann boundary conditions, the treatment of these
kind of problems presents some peculiar features that it is useful to highlight. For the
following Neumann problem

(NN )





∆u+ ψ(u) = h(x) in Ω,
∂u

∂n
= 0 on ∂Ω,

the Hammerstein non-resonance condition with respect to the first eigenvalue, namely
λN1 (−∆; Ω) = 0, becomes lim supξ→±∞ 2P (ξ)/ξ2 < 0. This fact implies the existence of
two sequences of real numbers (wn)n and (vn)n such that wn → −∞ and ψ(wn)→ +∞,
as well as, vn → +∞ and ψ(vn)→ −∞. Hence, given any h ∈ L∞(Ω) we can find a pair
(α, β) of constant lower- and upper-solutions with α < 0 < β. This way, the problem
becomes easily affordable via the theory of lower- and upper-solutions [DCH06]. The
interesting and more challenging question arises, whether the solvability of the Neumann
problem occurs under a Hammerstein type non-resonance condition with respect to the
second eigenvalue λN2 (−∆; Ω) which is the first positive one. Existence results in this
direction were carried out in [MWW86, Theorem 2] for a nonlinearity of the form f(x, u)
which satisfies a Hammerstein condition without the need of uniformity and in [GO92;
GO95] for problem (NN ) under non-resonance conditions with respect to the eigenvalue
λN2 (−∆; Ω) involving a combination of hypotheses on ψ(ξ)/ξ and 2P (ξ)/ξ2.

We report that several results of multiplicity can be found for Neumann problems
associated with ∆u − k(x)u + w(x)ψ(u) = 0, where k(x) > 0, or even for more general
p-Laplacian type equations (see [BD09] and the references therein). In any case, the
structure of this latter equation is however completely different to the one treated here.
As far as we know, in literature there aren’t works about multiple positive solutions for
the analogous of problem (IDN ) with Neumann boundary conditions. More precisely,
the study of an indefinite Neumann problem as in (IN N ) with ψ satisfying (Hψ1) and
(Hψ4) and u(x) > 0 for every x ∈ Ω, is still an open problem.

7.1 Multiplicity of positive solutions: one-dimension
We are interested in problems (IN N ) with a sign-indefinite weight and a positive non-
linearity with an oscillatory potential, that, for N = 1 and Ω =]0, T [ , lead to problem
(IN ). For ease of discussion, we will focus our study to the simplified situation where the
weight has a “positive hump” followed by a “negative hump”. Actually we can consider
more general cases, by allowing the existence of subintervals where the weight function
identically vanishes. Namely, to fix our framework, we assume that there exists σ ∈ ]0, T [
such that

(Hw4) w(t) ≥ 0, w 6≡ 0 for a.e. t ∈ [0, σ], w(t) ≤ 0, w 6≡ 0 for a.e. t ∈ [σ, T ].

Generally speaking, not any sign-indefinite weight is suitable to guarantee the existence
of solutions to (IN ). For instance, if ψ is continuously differentiable in R+

0 , with ψ
′(ξ) > 0

for all ξ > 0, it is a well-known fact that a positive solution of the Neumann problem on
[0, T ] may exist only if

∫ T
0
w(t) dt < 0. Moreover, other features connected to the graph
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of ψ, can require further conditions on the positive or negative part of w. Hence, it is
convenient to consider a weight of the form

wλ,µ(t) := λw+(t)− µw−(t),

for λ and µ given real positive parameters. A weight term of this type are not new in
literature and the starting interest can be traced back to the works by López-Gómez [LG97;
LG00].

In this manner, problem (IN ) reads as

(IN λ,µ)

{
u′′ + wλ,µ(t)ψ(u) = 0,

u′(0) = u′(T ) = 0.

Through this section, we assume that ψ : R+ → R+ is continuous and satisfies (Hψ1).
We also tacitly extend ψ to the whole real line, by setting ψ(ξ) = 0 for all ξ < 0 (this
extension is still denoted by ψ). Furthermore, we suppose that w ∈ L1(0, T ) is such that
conditions in (Hw4) are satisfied. Therefore, solutions of (IN λ,µ) will be considered in
the Carathéodory sense. We are now in position to state our main result of existence and
multiplicity of positive solutions for problem (IN λ,µ).

Theorem 7.1.1. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1) and (Hψ4)
with ξ 7→ ψ(ξ)/ξ upper bounded in a right neighborhood of 0. Let w ∈ L1(0, T ) satisfies
(Hw4) with w+ ∈ L∞(0, σ). Suppose also that the interval [t1, t2] ⊆ [0, σ] and a constant
δ > 0 such that w+(t) ≥ δ for a.e. t ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such that, for each
λ > λ∗, r > 0 and for every integer k ≥ 1, there is a constant µ∗ = µ∗(λ, r, k) > 0 such
that for each µ > µ∗ the problem (IN λ,µ) has at least 2k solutions which are nonincreasing
on [0, T ] and satisfy 0 < u(t) ≤ r for each t ∈ [σ, T ].

The method of the proof is based on a careful analysis of the trajectories of the
associated phase-plane system

(Sλ,µ)

{
x′ = y,

y′ = −(λw+(t)− µw−(t))ψM (x),

where, given a fixed constant M > 0, we have denoted by ψM (x) the truncated function

ψM (x) =





0, if x < 0,

ψ(x), if 0 ≤ x ≤M,

ψ(M), if x > M.

(7.1.1)

Positive solutions of the Neumann problem will be obtained by means of the shooting-type
method applied to system (Sλ,µ), starting from the positive half-axis

X+ := {(x, 0) : x > 0}

and hitting again X+ at the time t = T (cf. Section 3.1 at p. 41). Notice that, by
construction, the solutions (x(t), y(t)) we find are such that x′(t) = y(t) ≤ 0 on [0, T ].
Hence, u(t) = x(t) is nonincreasing on [0, T ] and therefore is a solution of (IN λ,µ) provided
that u(0) ≤M. We will divide the proof of Theorem 7.1.1 into two parts. In Section 7.1.1
we will provide some estimates for the solutions of (Sλ,µ), while in Section 7.1.2 we will
obtain the desired multiplicity result of positive solutions.

7.1.1 Technical lemmas
The results in this subsection will be done preliminarly for a locally Lipschitz continuous
function ψ : R+ → R+ satisfying (Hψ1). To perform our analysis of (Sλ,µ), we prove
some technical lemmas for understanding the behavior of the solutions of the equations
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u′′ + λw+(t)ψ(u) = 0 and u′′ − µw−(t)ψ(u) = 0, separately. This way, we are going to
study system (Sλ,µ), firstly on the interval [0, σ], and then on the interval [σ, T ].

Let (x(· ; t0, x0, y0), y(· ; t0, x0, y0)) be the solution of the system

(S+
λ )

{
x′ = y,

y′ = −λw+(t)ψ(x),

satisfying the initial condition x(t0) = x0, and y(t0) = y0, for t0 ∈ [0, σ]. By the concavity
of x(t) and the assumption ψ(ξ) = 0 for ξ < 0, it is straightforward to check that the
solution (x(t), y(t)) is globally defined on [0, σ].

Lemma 7.1.2. Let r > 0 be fixed. If (x(t), y(t)) is any solution of (S+
λ ) with x(0) > r

and y(0) = 0, then y(t) ≤ 0 for all t ∈ [0, σ]. Furthermore, there exists t̄ ∈ [0, σ[ such that
y(t) = 0 for all 0 ≤ t ≤ t̄ and y(t) < 0 for all t ∈ ]t̄, σ]. If, moreover, x(0) > (1 + σ)r, then

x(t)2 + y(t)2 > r2, ∀ t ∈ [0, σ].

Proof. To prove the first part of the claim, it is sufficient to observe that

x′(t) = y(t) = −λ
∫ t

0

w+(s)ψ(x(s)) ds ≤ 0, ∀ t ∈ [0, σ].

Furthermore, if x(to) = 0 for some to ∈ ]0, σ], there exists ξo ∈ ]0, to[ such that x′(so) < 0
and therefore, y(t) ≤ y(so) < 0 for all t ∈ [so, σ]. On the other hand, if x(t) > 0 for
all t ∈ [0, σ], then the same conclusion holds since

∫ σ
0
w+(s) ds > 0. Thus, our assertion

follows by taking t̄ := inf{t ∈ ]0, σ] : y(t) < 0}.
To prove the last part of the claim, suppose, by contradiction, that there exists

t# ∈ ]0, σ] such that x(t#)2 + y(t#)2 ≤ r2. Given B(0, r) := {(x, y) : x2 + y2 < r2},
since (x(0), y(0)) 6∈ clB(0, r), let t̃ ∈]0, σ] be the minimum of the t such that (x(t), y(t)) ∈
∂B(0, r). This way, (x(t̃), y(t̃)) ∈ ∂B(0, r) and (x(t), y(t)) 6∈ clB(0, r) for all t ∈ [0, t̃[ .
Recalling that ψ(ξ) = 0 for ξ < 0, we easily deduce that x(t) ≥ 0 for all t ∈ [0, t̃]. The
monotonicity of y(t) implies that |y(t)| ≤ |y(t̃)| ≤ r for all t ∈ [0, t̃]. From x′ = y, we have

x(t) = x(0) +

∫ t

0

y(s) ds > (1 + σ)r −
∫ σ

0

|y(s)| ds ≥ (1 + σ)r − σr = r, ∀ t ∈ [0, t̃].

Hence, for t = t̃, we obtain the contradiction r ≥ x(t̃) > r. The result is thus proved.

Lemma 7.1.2 does not require any special condition on w+ and ψ. On the contrary,
in the next results qualitative information about the solutions will be provided under
additional hypotheses on the weight and the nonlinearity.

Lemma 7.1.3. Suppose that there exist an interval [t1, t2] ⊆ [0, σ] and a constant δ > 0
such that w+(t) ≥ δ for a.e. t ∈ [t1, t2]. If

λδP∞ >

(
π

2(t2 − t1)

)2

, (7.1.2)

then, for any fixed constant ρ with

λδP∞ > λδρ >

(
π

2(t2 − t1)

)2

, (7.1.3)

there exists an increasing sequence of positive real numbers (dj)j with dj ↗ +∞ for which
the following property holds: If (x(t), y(t)) is any solution of (S+

λ ) with x(0) ≥ dj , y(0) = 0
and x(t1) = dj , then there is t̃ ∈ ]t1, t2[ such that

• x(t̃) = 0,

• (y(t)2/λδρ) + x(t)2 ≥ d2
j , ∀ t ∈ [t1, t̃ ].
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Proof. By fixing in (7.1.3) a positive constant ρ with ρ < P∞, from [FOZ89] we know
that by lim supξ→+∞(2P (ξ)− ρξ2) = +∞, there exists an increasing sequence of positive
real numbers (dj)j with dj ↗ +∞ such that the following inequality holds

2 (P (dj)− P (ξ)) > ρ(d2
j − ξ2), ∀ ξ ∈ [0, dj [. (7.1.4)

Assume that (x(t), y(t)) is a solution of (S+
λ ) with x(0) ≥ dj , y(0) = 0 and x(t1) = dj .

Note also that y(t1) ≤ 0 (cf. Lemma 7.1.2). Let [t1, t̃] ⊆ [t1, t2] be the maximal closed
subinterval of [t1, t2] where x(t) ≥ 0 (and, necessarily, also y(t) ≤ 0). From system (S+

λ ),
using the fact that w+(ξ) ≥ δ for a.e. ξ ∈ [t1, t], we have

yy′ + λδψ(x)x′ ≥ 0, a.e in [t1, t̃],

which yields a map ξ 7→ 1
2y(ξ)2 + λδP (x(ξ)) nondecreasing in [t1, t̃]. This in turn implies

that, for all s ∈ [t1, t̃],

y(s)2 + 2λδP (x(s)) ≥ y(t1)2 + 2λδP (x(t1)) ≥ 2λδP (x(t1)) = 2λδP (dj).

Using (7.1.4), in the above inequality, we obtain

x′(s)2 = y(s)2 ≥ λδρ(d2
j − x(s)2), ∀ s ∈ [t1, t̃] (7.1.5)

and, as a further consequence, we also deduce

∫ dj

x(t̃)

1√
d2
j − x2

dx =

∫ t̃

t1

−x′(s)√
d2
j − x(s)2

ds ≥ (t̃− t1)
√
λδρ.

Notice that x(s) < dj for all t1 < s ≤ t̃ as x′ = y is strictly decreasing on [t1, t̃] and hence
also x(t) is strictly decreasing as y(t1) ≤ 0.

We claim that t̃ < t2 . Indeed, otherwise,
∫ dj

0

1√
d2
j − x2

dx ≥
∫ dj

x(t2)

1√
d2
j − x2

dx ≥ (t2 − t1)
√
λδρ.

This provides a contradiction because
∫ dj

0
1/
√
d2
j − x2 dx = π/2, while, according to the

choice of ρ in (7.1.3), we have (t2 − t1)
√
λδρ > π/2.

We have thus proved that x(t) vanishes at some time t̃ ∈ ]t1, t2[ . The inequality
y(t)2/λδρ+ x(t)2 ≥ d2

j , for all t ∈ [t1, t̃ ], follows from (7.1.5).

Lemma 7.1.4. Suppose that w+ ∈ L∞([0, σ]) and let P∞ = 0. For any fixed 0 < θ < 1
and 0 < ν < π/2, there exists an increasing sequence of positive numbers (βj)j with
limβj = +∞ for which the following property holds: If (x(t), y(t)) is any solution of (S+

λ )
with x(0) = βj , y(0) = 0, then

• θβj ≤ x(t) ≤ βj , ∀ t ∈ [0, σ],

• tan(|y(t)|/x(t)) < tan(ν), ∀ t ∈ [0, σ].

Proof. Let θ ∈ ]0, 1[ and ν ∈ ]0, π/2[ be two fixed constants. The assumption P∞ = 0
implies that lim supξ→+∞(εξ2 − 2P (ξ)) = +∞, for every ε > 0. Hence, following [FOZ89],
there exists an increasing sequence of positive real numbers (βεj )j with βεj ↗ +∞ such
that the following inequality holds

2
(
P (βεj )− P (ξ)

)
< ε((βεj )2 − ξ2), ∀ ξ ∈ [0, βεj [ . (7.1.6)

Assume that (x(t), y(t)) is a solution of (S+
λ ) with x(0) = βεj and y(0) = 0. Recall from

Lemma 7.1.2 also that y(t) ≤ 0 for all t ∈ [0, σ], so that x(t) ≤ βεj for all t ∈ [0, σ].
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We claim that x(t) ≥ θβεj for all t ∈ [0, σ]. To prove this claim, suppose, by contradiction
that there exists a maximal interval [0, t̂] ⊂ [0, σ[ such that

θβεj ≤ x(s) ≤ βεj , ∀ s ∈ [0, t̂], with x(t̂) = θβεj . (7.1.7)

From system (S+
λ ), using the fact that w+(s) ≤ ‖w+‖∞ for a.e. s ∈ [0, σ], we have

yy′ + λ‖w+‖∞ψ(x)x′ ≤ 0, a.e in [0, t̂],

which yields a map s 7→ 1
2y(s)2 + λ‖w+‖∞P (x(s)) nonincreasing in [0, t̂]. This in turn

implies that, for all s ∈ [0, t̂],

y(s)2 + 2λ‖w+‖∞P (x(s)) ≤ y(0)2 + 2λ‖w+‖∞P (x(0)) = 2λ‖w+‖∞P (βεj ).

Using (7.1.6), in the above inequality, we obtain that

x′(s)2 = y(s)2 ≤ λ‖w+‖∞ε((βεj )2 − x(s)2) (7.1.8)

holds for all s ∈ [0, t̂]. As a further consequence, we have

∫ βεj

θβεj

1√
(βεj )2 − x2

dx =

∫ t̂

0

−x′(s)√
(βεj )2 − x(s)2

ds ≤ t̂
√
λ‖w+‖∞ε ≤ σ

√
λ‖w+‖∞ε.

Since the left integral in the above inequality can be explicitly computed, as (π/2)−arcsin θ
(independently on βεj ), we obtain

π

2
< arcsin θ + σ

√
λ‖w+‖∞ε,

which is clearly false if ε is chosen sufficiently small, namely

0 < ε <
(π2 − arcsin θ)2

σ2λ‖w+‖∞
. (7.1.9)

For such a choice of ε > 0 we can find a sequence (βεj )j such that θβεj ≤ x(t) ≤ βεj for all
t ∈ [0, σ]. As a consequence, we also know that condition (7.1.8) holds for all s ∈ [0, σ]
and therefore, recalling that y(t) ≤ 0, we deduce

|y(t)| ≤ βεj
√
λ‖w+‖∞ε, ∀ t ∈ [0, σ].

This in turn implies that tan(|y(t)|/x(t)) < tan(ν), for all t ∈ [0, σ], provided that

0 < ε <
(θ tan(ν))2

λ‖w+‖∞
. (7.1.10)

This way the theorem is proved by choosing a sequence (βεj )j for a constant ε satisfying
(7.1.9) and (7.1.10).

Lemma 7.1.5. Given w+ ∈ L∞([0, σ]), suppose that there exist an interval [t1, t2] ⊆ [0, σ]
and a constant δ > 0 such that w+(t) ≥ δ for a.e. t ∈ [t1, t2]. Assume also (Hψ4) and let
λ > 0 be such that (7.1.2) holds. Let also 0 < θ < 1, 0 < ν < π/2 be fixed. Then, there exist
two increasing sequences of positive numbers (αj)j and (βj)j with limαj = limβj = +∞
and

r < α1 < θβ1 < β1 < α2 < . . . αj < θβj < βj < αj+1 < . . . (7.1.11)

for which the following properties hold:

• x(t; 0, αj , 0) vanishes at some t < t2 ,

• θβj ≤ x(t; 0, βj , 0) ≤ βj, tan(|y(t; 0, βj , 0)|/x(t; 0, βj , 0)) < tan(ν) ∀t ∈ [0, σ]
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Proof. We choose a constant ρ > 0 in accord to (7.1.3) and consider a corresponding
sequence (dj)j as in Lemma 7.1.3. Next, we apply Lemma 7.1.4 and find a sequence (βj)j .
We can also suppose that

r < d1 < θβ1 < β1 < d2 < . . . dj < θβj < βj < dj+1 < . . .

up to a subsequence, if necessary. By the intermediate value theorem and the continuous
dependence of the solutions on the initial data, for each j, there exists αj with dj ≤ αj < βj
such that x(t1; 0, αj , 0) = dj . At this point, a direct application of Lemma 7.1.3 and
Lemma 7.1.4 allows to conclude the proof of the theorem.

Until now we have analyzed the behavior of the solutions in the interval [0, σ] where
wλ,µ(t) ≥ 0 for a.e. t. As a next step, we are going to consider the solutions on the interval
[σ, T ]. Due to the sign of wλ,µ(t)ψ(x(t)) which implies the convexity of x(t) in the interval
[σ, T ], in general, we cannot guarantee that the solutions are defined on the whole interval.
For this reason, we introduce a truncation on the nonlinear term of the form

ψM (x) =

{
ψ(x) if x ≤M,

ψ(M) if x > M,

where M > 0 is a given constant. Accordingly, we study the system

(S−µ )

{
x′ = y,

y′ = µw−(t)ψM (x),

on the interval [σ, T ]. In the foregoing results we shall require a further technical condition
on the weight function, namely that w(t) is not identically zero a.e. in each right
neighborhood of σ. This can be equivalently expressed by the following condition:

W−(t) > 0, ∀ t ∈ ]σ, T ],

where we have set

W−(t) :=

∫ t

σ

w−(s) ds. (7.1.12)

This hypothesis is not restrictive in view of (Hw4) (see [BZ12, Remark 2.2] where an
analogous situation is treated). In this framework, we obtain the following result.

Lemma 7.1.6. For any fixed r > 0, q ∈]0, 1[ and C > 0, there is a constant µ̂ > 0 such
that for each µ > µ̂ the following holds: If (x(t), y(t)) is any solution of (S−µ ) with x(σ) = r
and 0 > y(σ) ≥ −C, then
• x(t) > qr for all t ∈ [σ, T ],

• y(t) vanishes at some t ∈ ]σ, T [ .

Proof. First of all, notice that there exists 0 < ε ≤ r(1− q)/C such that x(t) > qr for all
t ∈ [σ, σ + ε[. Indeed,

x(t) = x(σ) +

∫ t

σ

y(s) ds ≥ r −
∫ t

σ

C ds = r − C(t− σ)

> r − Cε ≥ qr, ∀t ∈ [σ, σ + ε[.

Therefore, let us fix ε as above and assume by contradiction that there is t̃ ∈ [σ+ ε, T ]
such that x(t̃) = qr and x(t) > qr for all t ∈ [σ, t̃[. By denoting with κψ,r := min{ψM (ξ) :
qr ≤ ξ ≤ r}, we have

x′′(t) = y′(t) = µw−(t)ψ(x(t)) ≥ µw−(t)κψ,r, for a.e. t ∈ [σ, t̃].
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After a first integration on [σ, t], we get

x′(t) = y(t) ≥ y(σ) + µκψ,rW
−(t) ≥ −C + µκψ,rW

−(t), ∀ t ∈ [σ, t̃].

Integrating again in the same interval we have

x(t) ≥ x(σ)− C(t− σ) + µκψ,r

∫ t

σ

W−(s) ds

≥ r − C(T − σ) + µκψ,r

∫ σ+ε

σ

W−(s) ds.

The evaluation of the above inequality for t = t̃ yields to a contradiction if µ is sufficiently
large, namely

µ ≥ µ1 :=
C(T − σ)

κψ,r
∫ t
σ
W−(s) ds

.

At this step, we have proved that x(t) > qr for all t ∈ [σ, T ].
Suppose now, by contradiction that y(t) never vanishes on ]σ, T ]. Then, since y(σ) < 0,

we have x′(t) = y(t) < 0 for all t ∈ [σ, T ]. Hence the function x(t) is decreasing on [σ, T ] and,
therefore, qr < x(t) < r for all t ∈ ]σ, T ]. Accordingly, the inequality y′(t) ≥ µw−(t)κψ,r
holds for a.e. t ∈ [σ, T ]. With an integration on [σ, t] we obtain

y(t) ≥ −C + µκψ,rW
−(t), ∀ t ∈ [σ, T ].

So that
0 > y(T ) ≥ −C + µκψ,rW

−(T ).

A contradiction occurs whenever µ is sufficiently large, namely

µ ≥ µ2 :=
C

κψ,r
∫ σ+T

σ
w−(s) ds

.

At this point, the conclusion follows by taking µ̂ ≥ max{µ1, µ2}.

7.1.2 Multiplicity result
In this subsection we prove Theorem 7.1.1. Our method of proof is based on the shooting
method and therefore we need to analyze the Poincaré map associated with the planar
system

(Sλ,µ)

{
x′ = y,

y′ = −(λw+(t)− µw−(t))ψM (x),

where ψM is defined as in (7.1.1) for a suitable constant M > 0. In order to have the
Poincaré map well defined, we shall implicitly assume the uniqueness of the solutions for
the associated initial value problems. Obviously, this is guaranteed if ψ is locally Lipschitz
continuous. However, this condition can be removed and this will be discussed at the end
of the proof of Theorem 7.1.1. As in Section 2.2 at p. 20, we recall that, given an interval
[τ0, τ1] ⊆ [0, T ], the Poincaré map Φτ1τ0 for (Sλ,µ) on the interval [τ0, τ1] is the planar map
which, to any point z0 = (x0, y0) ∈ R2, associates the point (x(τ1), y(τ1)) where (x(t), y(t))
is the solution of (Sλ,µ) with (x(τ0), y(τ0)) = z0.

A solution of (IN λ,µ) can be found by looking for a point (x0, 0) ∈ X+ := {(x, 0) :
x > 0} such that x0 ≤M and ΦT

0 (x0, 0) ∈ X+. In this case, the first component u(t) of
the map t 7→ Φt0(x0, 0) is a solution of (Pλ,µ) with u(0) = x0 . More formally, we can state
the following lemma.

Lemma 7.1.7. Suppose that there is (x0, 0) ∈ X+ with x0 ≤M such that ΦT0 (x0, 0) ∈ X+.
Let also (x(t), y(t)) be the solution of (Sλ,µ) with (x(0), y(0)) = (x0, 0). Then, u(t) := x(t)
is a solution of (Pλ,µ) with u(t) ≤M and u′(t) = y(t) ≤ 0 for all t ∈ [0, T ].
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Proof. Consider at first the solution in the interval [0, σ]. As x(t) is concave in such interval,
we have that x(t) ≤ x(0) ≤M and we also claim that x(t) > 0 for all t ∈ [0, σ]. Indeed, if
by contradiction x(t) vanishes somewhere, we take t̂, with 0 < t̂ ≤ σ, as its first zero. As a
consequence of the concavity, y(t̂) = x′(t̂) < 0 and then, x′(t) = x′(t̂) < 0 for all t ∈ [t̂, T ],
because ψM (ξ) = 0 for ξ ≤ 0. Thus, we have the contradiction ΦT

0 (x0, 0) 6∈ X+. From
y′(t) = −λw+(t)ψ(x(t)), with ψ(x(t)) > 0 for all t ∈ [0, σ] and w+ 6≡ 0, we deduce that
x′(σ) = y(σ) < 0. On the other hand, the function x(t) is convex on [σ, T ] with x(T ) > 0
and x′(T ) = 0. Hence, 0 < x(T ) ≤ x(t) < x(σ) for all t ∈ [σ, T ] and this concludes the
proof.

In view of the hypothesis on the weight function, which states that it assumes different
sign on the intervals [0, σ] and [σ, T ], it will be convenient to split the Poincaré map as

ΦT0 := ΦTσ ◦ Φσ0 ,

where Φσ0 and ΦTσ are the Poincaré maps associated with systems (S+
λ ) and (S−µ ), respec-

tively. Consistently with our notation, we observe that for any point (x0, 0) ∈ X+ with
x0 ≤M, we have

Φt0(x0, 0) = (x(t; 0, x0, 0), y(t; 0, x0, 0)), ∀ t ∈ [0, σ].

To formulate the next result, we introduce the following notation. For any real number
η, we denote the negative half-line x = η by

Lη := {(η, y) ∈ R2 : y < 0}.

Given two points (A, 0), (B, 0) ∈ X+, the segment contained in X+ and joining the two
points is denoted by AB.

Proposition 7.1.8. Given w+ ∈ L∞([0, σ]), suppose that there exist an interval [t1, t2] ⊆
[0, σ] and a constant δ > 0 such that w+(t) ≥ δ for a.e. t ∈ [t1, t2]. Assume also (Hψ4)
and let λ > 0 be such that (7.1.2) holds. Furthermore, let r > 0 be fixed. Then, for any
given integer k ≥ 1 there are constants M > r, CM > r and points

r < A′1 < B′1 < B′′1 < A′′1 < A′2 < · · · < A′k < B′k < B′′k < A′′k < M,

such that, setting
Γ′j := Φσ0

(
A′jB

′
j

)
, Γ′′j := Φσ0

(
B′′j A

′′
j

)
,

we have
Γ′j ,Γ

′′
j ⊆

(
[0, r]× [−CM , 0[

)
, (7.1.13)

with
Γ′j ∩ L−0 6= ∅ 6= L−r ∩ Γ′j , Γ′′j ∩ L−0 6= ∅ 6= L−r ∩ Γ′′j , (7.1.14)

for all j = 1, . . . , k.

Proof. Given λ > 0 and r > 0, we choose 0 < θ < 1 and 0 < ν < π/2. So, an application
of Lemma 7.1.5 provides two sequences (αj)j and (βj)j which satisfy (7.1.11). Moreover,
for any integer k ≥ 1, we take a constant M such that

M > αk . (7.1.15)

Since M is now fixed, follows that also the vector field in the system (Sλ,µ) is so. The
constant CM > 0 will be chosen so that any possible solution (x(t), y(t)) of (Sλ,µ) with
0 < x(0) ≤M and y(0) = 0, satisfies

−CM ≤ y(t) ≤ 0, ∀ t ∈ [0, σ].
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Notice that the constant CM depends on the function w+ and the constants λ and M ,
but does not depend on the parameter µ. In fact, we can estimate CM as follows:

CM := λ‖w+‖L1 max
ξ∈[0,M ]

ψ(ξ).

For the rest of the proof we consider the solutions of the system (Sλ,µ) on the interval
[0, σ], with an initial point (c, 0) such that 0 < c ≤ M . These are exactly the solutions
(x(· ; 0, c, 0), y(· ; 0, c, 0)) of the system (S+

λ ).
As a first step, for j = 1, . . . , k, we suppose that αj ≤ c ≤ βj . By Lemma 7.1.5, it

follows that
x(σ; 0, αj , 0) < 0, x(σ; 0, βj , 0) ≥ θβj > r.

By continuity, we can determine a sub-interval [A′j , B
′
j ] ⊆ ]αj , βj [ such that x(σ; 0, A′j , 0) =

0, x(σ; 0, B′j , 0) = r and 0 < x(· ; 0, c, 0) < r for all c ∈ ]A′j , B
′
j [ .

As a second step, for j = 1, . . . , k, we suppose that βj ≤ c ≤ αj+1. By Lemma 7.1.5,
it follows that

x(σ; 0, αj+1, 0) < 0, x(σ; 0, βj , 0) ≥ θβj > r.

Again, by continuity, we can determine a sub-interval [B′′j , A
′′
j ] ⊆ ]βj , αj+1[ such that

x(σ; 0, B′′j , 0) = r, x(σ; 0, A′′j , 0) = 0 and 0 < x(σ ; 0, c, 0) < r for all c ∈ ]B′′j , A
′′
j [ .

Moreover, −CM ≤ y(σ ; 0, c, 0) < 0 (recalling also Lemma 7.1.2).
To conclude, we define

Γ′j := Φσ0

(
A′jB

′
j

)
, Γ′′j := Φσ0

(
B′′j A

′′
j

)
, ∀ j = 1, . . . , k.

This way each arc, Γ′j and Γ′′j with j ∈ {1, . . . , k}, satisfies all the desired properties.

Remark 7.1.9. We observe that the constants βj are precisely determined in Lemma 7.1.4
by means of (7.1.6), instead of the constants αj , for which we know only that they belong
to [dj , βj [ . With this respect, it might be more convenient to fix the constant M in terms
of the values βj . For this reason, one could prefer to replace the condition in (7.1.15) with
M > βk+1. Under this latter choice, notice that a further arc, Γ′k+1 := Φσ

0

(
A′k+1B

′
k+1

)

with [A′k+1B
′
k+1] ⊆ ]αk+1, βk+1[ defined as in the proof, can be determined. Finally, if we

assume M > βk+1, we have 2k + 1 arcs defined as images through the Poincaré map of
pairwise disjoint compact sub-intervals of X+. C

The next result deals with the solutions of the system (Sλ,µ) in the time interval [σ, T ],
or equivalently, the ones of (S−µ ). As previously observed, we will suppose that σ is chosen
so that W−(t) > 0 for all σ < t ≤ T, where W−(t) is defined according to (7.1.12).

Proposition 7.1.10. Given r > 0 and C > r, there exists a constant µ̄ > 0 such that for
each µ > µ̄ the following holds: For any connected set Γ with

Γ ⊆ [0, r]× [−C, 0[, Γ ∩ L−0 6= ∅ 6= L−r ∩ Γ,

there exists at least a solution (x(t), y(t)) of the system (S−µ ) with (x(σ), y(σ)) ∈ Γ,
(x(T ), y(T )) ∈ X+ such that r ≥ x(t) > 0 and y(t) ≤ 0 for all t ∈ [σ, T ].

Proof. For r and C given as above, let us fix a parameter q with 0 < q < 1. From
Lemma 7.1.6, we have that for each µ sufficiently large (i.e. µ > µ̂), any solution
(x(t), y(t)) of (S−µ ) with x(σ) = r and −C ≤ y(σ) < 0 is such that x(t) ≥ qr for all
t ∈ [σ, T ] and y(t) = 0 for some t ∈ ]σ, T ]. Let us fix now µ > µ̂.

We choose a point Q1 ∈ L−r ∩ Γ and denote by (xQ1
(t), yQ1

(t)) the solution of (S−µ )
having Q1 as initial point at the time t = σ. By Lemma 7.1.6 there exists a first time
tQ1 ∈ ]σ, T ] such that y(tQ1) = 0. If tQ1 = T, we are done. Otherwise, yQ1(tQ1) = 0 for
σ < tQ1 < T and, by the convexity of xQ1(t) in the interval [σ, T ], we have yQ1(T ) ≥
yQ1

(tQ1
) = 0.

Similarly, we select a point Q2 ∈ Γ ∩ L−0 and denote by (xQ2
(t), yQ2

(t)) the solution
of (S−µ ) which has Q2 as initial point at the time t = σ. We have xQ2

(σ) = 0 and
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x′Q2
(σ) = yQ2

(σ) < 0. Moreover, ψ(s) = 0 for all s ≤ 0. Hence, yQ2
(t) = yQ2

(σ) for all
t ∈ [σ, T ] and, therefore, yQ2

(T ) < 0.
The continuous dependence of the solutions on the initial data and the connectedness

of Γ imply that there exists a point in Γ \ L−0 from which starts (at the time t = σ) a
solution (x(t), y(t)) of (S−µ ) such that y(T ) = 0. This way, it follows also that x(t) > 0 for
all t ∈ [σ, T ] (in fact, if not, we obtain a contradiction from ψ(ξ) = 0 for all ξ ≤ 0). Finally,
we also observe that y(t) ≤ 0 for all t ∈ ]σ, T ] (otherwise, if we suppose that y(t) > 0 for
some t ∈ ]σ, T [, then a contradiction is reached by a convexity argument). Thus the thesis
is achieved by choosing any µ̄ ≥ µ̂.

Proof of Theorem 7.1.1. Our demonstration will be divided into two parts. In the first
one we let the shooting method work within its classical framework, by assuming ψ locally
Lipschitz continuous. In the second part, we present two possible ways in order to extend
the result obtained to the case in which ψ is only continuous.

Under Lipschitz conditions. We suppose that ψ is locally Lipschitz continuous and so it
follows immediately that ξ 7→ ψ(ξ)/ξ upper bounded in a right neighborhood of 0.

First of all, we define a constant λ∗ ≥ 0 as λ∗ = 0 if P∞ = +∞ or λ∗ = π2/4(t2 −
t1)2δP∞ if P∞ < +∞. In this manner, the inequality in (7.1.2) is satisfied for each
λ > λ∗.

We fix now λ > λ∗, r > 0 and an integer k ≥ 1. In accord to Proposition 7.1.8, there
are constants M > r, CM > r and points

r < A′1 < B′1 < B′′1 < A′′1 < A′2 < · · · < A′k < B′k < B′′k < A′′k < M,

such that conditions in (7.1.13) and (7.1.14) are satisfies for the arcs

Γ′j := Φσ0

(
A′jB

′
j

)
, Γ′′j := Φσ0

(
B′′j A

′′
j

)
.

At this step we apply Proposition 7.1.10 for C := CM and determine a constant µ̄ such
that, for each µ > µ̄, the following holds: for each Γ′j , Γ′′j with j ∈ {1, . . . , k} there exist
points ζ ′j ∈ Γ′j and ζ ′′j ∈ Γ′′j such that

ΦTσ (ζ ′j), ΦTσ (ζ ′′j ) ∈ X+.

Notice that the constant µ̄ does not depend on the particular choice of the arcs Γ′j or Γ′′j .
It depends only on r and CM . The last constant, in turn, depends on M and therefore it
is derived from λ and k.

On the other hand, ζ ′j and ζ ′′j are images through the Poincaré map Φσ
0 of the

initial points Z ′j ∈ A′jB′j and Z ′′j ∈ B′′j A′′j , respectively. Then, we have found 2k points
Z ′j , Z

′′
j ∈ X+ such that ΦT

0 (Z ′j),Φ
T
0 (Z ′′j ) ∈ X+. From Lemma 7.1.7 follows that all the

solutions (x(t), y(t)) starting from these initial points are such that 0 < x(t) < M and
y(t) ≤ 0, for all t ∈ [0, T ]. Hence, they are solutions of the system

{
x′ = y,

y′ = −wλ,µ(t)ψ(x(t)).

In particular, they correspond to positive solutions of the problem (IN λ,µ) with initial
conditions (u(0), u′(0)) = Z ′j or (u(0), u′(0)) = Z ′′j , respectively. All these solutions are
decreasing in [0, T ] by construction and, from Proposition 7.1.10, they satisfy the condition
0 < u(t) ≤ r, for all t ∈ [σ, T ]. Thus, the result is proved by choosing any µ∗ ≥ µ̄ and ψ
locally Lipschitz continuous.

Free from Lipschitz conditions. At this point, usually, one can follow two possible ways in
order to achieve the result for a nonlinearity ψ which is only continuous. A first approach
consists in approximating the nonlinear term ψ with a sequence of locally Lipschitz
functions ψn : R+ → R+ satisfying (Hψ1) and such that ψn → ψ uniformly on compact
sets, for example, using mollifiers as in [Str80, p. 294]. Then, one can prove that each
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approximating equation has a solution un with (un(t), u′n(t)) ∈ K,∀ t ∈ [0, T ], where K is
a compact set which can be chosen independently on n. At last, from the Ascoli-Arzelà
Theorem we obtain a solution (u(t), u′(t)) ∈ K,∀ t ∈ [0, T ] of the original equation, passing
to the limit along a subsequence. This is a standard procedure well described in the book
of Krasnosel’skĭı [Kra68]. Moreover, this approach is also exploited in [Str80; Zan96]
where some specific results of existence and multiplicity of solutions are obtained via the
shooting method without uniqueness of the Cauchy problems. In our case, this method
can be safely applied by choosing the compact intervals A′jB′j and B′′j A′′j for j = 1, . . . , k
pairwise disjoint and observing that the initial points of the solutions of the approximating
problems belong to these intervals (at least for n sufficiently large).

A second possible point of view involves a procedure of “shooting without uniqueness”,
that gives up from the beginning to the hypothesis of uniqueness for the Cauchy problems.
In this framework, we can apply a generalized version of the Hukuhara-Kneser result, as
presented in [Cop65] or in [DZ07, Section 2]. It is based on the following observation. Let
[τ0, τ1] ⊆ [0, T ]. Given a set E0 ⊆ R2, let us consider the set E1 made by all the points
of R2 of the form (x(τ1), y(τ1)), where (x(t), y(t)) is any solution of the system such that
(x(τ0), y(τ0)) ∈ E0. Then, E1 is a compact/connected (or both) provided that E0 is a
compact/connected (or both), respectively (cf. [Cop65, p. 22]). In this context, for all
j = 1, . . . , k the sets Γ′j and Γ′′j given as in Proposition 7.1.8 are well defined continua
(instead of arcs). Moreover, to prove Proposition 7.1.10, instead of using Bolzano Theorem,
on the function y(t) we just observe that a connected set Γ at the time t = σ is transported
into a connected set at the time t = T , whose projection on the y-axis contains y = 0.

In conclusion, we have found 2k non-negative solutions of (IN λ,µ) which are nonincreasing
on [0, T ] and satisfy 0 ≤ u(t) ≤ r for each t ∈ [σ, T ]. Since ξ 7→ ψ(ξ)/ξ is upper bounded
in a right neighborhood of 0, a maximum principle argument applies and the positivity of
the solutions on [0, T ] is guaranteed.

Without the condition

(Hψ5) lim sup
ξ→0+

ψ(ξ)

ξ
< +∞

we can prove that any solution found satisfies

u(t) ≥ r, ∀ t ∈ [0, σ] and 0 ≤ u(t) ≤ r ∀ t ∈ [σ, T ].

Nevertheless, without assuming (Hψ5), we cannot guarantee, in general, that u(t) does
not vanishes at some point of the interval when the weight is negative. Examples in
this direction are given in [BPT88; But78] and they show that (Hψ1) along with (Hψ5)
represent the minimal equipment needed to get the positivity of the solutions. For this
reason, the main hypothesis of our result is the “oscillatory condition” (Hψ4).

Remark 7.1.11. Let us make some comments on the features assumed for the weight
function w. We have considered a weight term that goes from positive to negative values.
One could also consider a dual condition instead of (Hw4), namely

(Hw4 bis) w(t) ≤ 0, w 6≡ 0 for a.e. t ∈ [0, σ], w(t) ≥ 0, w 6≡ 0 for a.e. t ∈ [σ, T ].

In this case, we derive a different version of the Theorem 7.1.1 in which the hypotheses
have to be modified by assuming w+ ∈ L∞([σ, T ]) and w+(t) ≥ δ for a.e. t in a suitable
subinterval of [σ, T ]. As a conclusion, the existence of 2k positive solutions to problem
(IN λ,µ) is still guaranteed. Such solutions, in this case, are nondecreasing on [0, T ] and
satisfy 0 < u(t) ≤ r for each t ∈ [0, σ]. To prove this assertion, we can either apply
Theorem 7.1.1 with the change of variable t 7→ T − t, or apply the shooting method
backward in time from t = T to t = 0. C

We conclude this section with some comments on the choice of linear second order
differential operators. The technical tools we have developed for proving Lemma 7.1.3 and
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Lemma 7.1.4 rely essentially on time-mapping estimates associated to the autonomous
equation

u′′ + ψ(u) = 0. (7.1.16)

This fact suggests different directions along which we could provide extensions of our
results. For instance, we can replace the condition (Hψ4) with an hypothesis of the form

0 ≤ τ∞ := lim inf
c→+∞

τ(c) < τ∞ := lim sup
c→+∞

τ(c) = +∞, (7.1.17)

where, for c > 0, τ(c) is the time-mapping associated to (7.1.16) defined as

τ(c) := 2

∫ c

0

dξ√
2(P (c)− P (ξ))

.

Within (7.1.17), we can deal with more general linear differential operators such as
u′′ +m(t)u′ (see Chapter 6).

7.2 Multiplicity of positive solutions: radial domains
In this section we extend the preceding results to the case of some Neumann problems in
RN , for N ≥ 2. So, we consider

(IN λ,µ,N )





∆u+ wλ,µ(x)ψ(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω,

where the weight function depends on the real positive parameters λ, µ and is defined as

wλ,µ(x) := λw+(x)− µw−(x),

for w ∈ L1(Ω). We shall focus our study to the case when the domain Ω is an open ball
B(0, R) or an open annulus B(0, Re) \ B[0, Ri], where B[0, r] denotes the closed ball of
center the origin and radius r > 0. As usual, in these situations the problem can be
reduced to a Neumann boundary value problem with an ordinary differential equation if
w(x) has a radial symmetry. Accordingly, from now on we suppose that

w(x) = Q(|x|). (7.2.1)

We look for radially symmetric positive solutions of (IN λ,µ,N ), namely solutions of
the form

u(x) = U(%), with % := |x|, (7.2.2)

and we discuss separately the two cases of our interest.

7.2.1 Neumann problem for an annular domain
Let Re > Ri > 0 be two fixed radii and let us consider the Neumann problem (IN λ,µ,N )
for the domain

Ω := B(0, Re) \B[0, Ri].

We suppose that w is defined as in (7.2.1), with Q ∈ L1([Ri, Re]). By means of (7.2.2) our
problem is reduced to the study of




U ′′(%) +

N − 1

%
U ′(%) +Qλ,µ(%)ψ(U(%)) = 0,

U ′(Ri) = U ′(Re) = 0,
(7.2.3)

with U(x) > 0, for all % ∈ [Ri, Re].
By the classical change of variable t = h(%) :=

∫ %
R1
ξ1−N dξ, % = %(t) := h−1(t), we set

v(t) := U(%(t)), w(t) := %(t)2(N−1)Q(%(t)) and T :=

∫ R2

R1

ξ1−N dξ,
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this way it follows that problem (7.2.3) is equivalent to
{
v′′(t) + wλ,µ(t)ψ(v(t)) = 0,

v′(0) = v′(T ) = 0,
(7.2.4)

with v(t) > 0, for all t ∈ [0, T ], see for instance [Bos11; FZ15b]. Hence, we enter in the
framework of problem (IN ) and we can apply directly Theorem 7.1.1 to the system
(7.2.4). Therefore we can state the following result.

Theorem 7.2.1. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1), (Hψ4) and
(Hψ5). Let Q ∈ L1([Ri, Re]) with Q+ ∈ L∞ and suppose there exists σ ∈ ]Ri, Re[ such that

Q(%) ≥ 0, Q 6≡ 0 for a.e. % ∈ [Ri, σ], Q(%) ≤ 0, Q 6≡ 0 for a.e. % ∈ [σ,Re].

Suppose also that there are an interval [t1, t2] ⊆ [Ri, σ] and a constant δ > 0 such that
Q+(%) ≥ δ for a.e. % ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such that, for each λ > λ∗, r > 0
and for every integer k ≥ 1, there is a constant µ∗ = µ∗(λ, r, k) > 0 such that for each
µ > µ∗ the problem (IN λ,µ,N ) has at least 2k radially symmetric solutions which are
nonincreasing in % on [Ri, Re] and satisfy 0 < u(x) ≤ r for each x with |x| ∈ [σ,Re].

7.2.2 Neumann problem for a ball
Let R > 0 be a fixed radius and let us consider the Neumann problem (IN λ,µ,N ) for the
domain

Ω := B(0, R).

We suppose that w is as in (7.2.1), with Q ∈ L1([0, R]). By means of (7.2.2), our problem
is reduced to




U ′′(%) +

N − 1

%
U ′(%) +Qλ,µ(%)ψ(U(%)) = 0, 0 < % ≤ R,

U ′(0) = U ′(R) = 0,
(7.2.5)

with U(x) > 0, for all % ∈ [0, R], which has a singularity at % = 0. The previous problem
is in its turn equivalent to

{(
%N−1U ′(%)

)′
+ %N−1Qλ,µ(%)ψ(U(%)) = 0, 0 < % ≤ R,

U ′(0) = U ′(R) = 0,

with U(x) > 0, for all % ∈ [0, R]. In this case, the following result holds.

Theorem 7.2.2. Let ψ : R+ → R+ be a continuous function satisfying (Hψ1), (Hψ4) and
(Hψ5). Let Q ∈ L1([0, R]) with Q+ ∈ L∞ and suppose there exists σ ∈ ]0, R[ such that

Q(%) ≥ 0, Q 6≡ 0 for a.e. % ∈ [0, σ], Q(%) ≤ 0, Q 6≡ 0 for a.e. % ∈ [σ,R].

Suppose also that there are an interval [t1, t2] ⊆ [0, σ] and a constant δ > 0 such that
Q+(%) ≥ δ for a.e. % ∈ [t1, t2]. Then, there exists λ∗ ≥ 0 such that, for each λ > λ∗, r > 0
and for every integer k ≥ 1, there is a constant µ∗ = µ∗(λ, r, k) > 0 such that for each
µ > µ∗ the problem (IN λ,µ,N ) has at least 2k radially symmetric solutions which are
nonincreasing in % on [0, R] and satisfy 0 < u(x) ≤ r for each x with |x| ∈ [σ,R].

Proof. Our proof follows verbatim that of Theorem 7.1.1. For this reason, we focus our
attention only to those points which require some technical adjustments due to the presence
of the singularity at ρ = 0. In particular, we will split our proof in two steps.

Under Lipschitz conditions. Let us truncate ψ as in (7.1.1) at the level M > 0, so that the
differential equation in (7.2.5) can be read in the phase-plane equivalently as

{
x′ = y,

y′ = −N−1
t y −Qλ,µ(t)ψM (x),

(7.2.6)
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with t = % > 0. Notice that the associated initial value problem has a local solution
which is unique and it can globally extended to the all interval [0, R], since ψ is a locally
Lipschitz continuous function and ψM is bounded. Therefore, the shooting method can be
applied also in this context (cf. [CK87]).

With the scheme proposed in the previous section in mind, we discuss now the
qualitative behavior of the solutions in both the intervals [0, σ] and [σ,R].

We start with the analysis of the solutions for t ∈ [0, σ] and, without loss of generality,
we suppose that [t1, t2] ⊆]0, σ]. From

x′(t) = y(t) = −λ
∫ t

0
ξN−1w+(ξ)ψM (x(ξ)) dξ

tN−1
,

we obtain y(t) ≤ 0 for all t ∈ [0, σ]. Furthermore, analogously as in Lemma 7.1.2, there
exists t̄ ∈ [0, σ[ such that y(t) = 0 for all 0 ≤ t ≤ t̄ and y(t) < 0 for all t ∈ ]t̄, σ]. We also
find immediately a constant CM > 0 such that any possible solution (x(t), y(t)) of (7.2.6)
with 0 < x(0) ≤M and y(0) = 0, satisfies

−CM ≤ y(t) ≤ 0, ∀ t ∈ [0, σ].

Now we give an analogous result of Lemma 7.1.3. Indeed, within the same framework of
that lemma and, in particular for dj and ρ satisfying (7.1.4), we proceed as follows. Suppose
that (x(t), y(t)) is a solution of (7.2.6) with M ≥ x(0) ≥ dj , y(0) = 0 and x(t1) = dj . As
in Lemma 7.1.3, we denote by [t1, t̃] ⊆ [t1, t2] the maximal closed subinterval of [t1, t2]
where x(·) ≥ 0 (and, necessarily, also y(·) ≤ 0). From the equation

x′′ +
N − 1

t
x′ + λw+(t)ψ(x) = 0, (7.2.7)

with the position z(t) := y(t)tN−1, we have

z′z + λw+(t)t2(N−1)ψ(x)x′ = 0.

Hence, it follows

z′(t)z(t) + λδt1
2(N−1)ψ(x)x′ ≥ 0, for a.e. t ∈ [t1, t2],

which implies that the function ξ 7→ z(ξ)2 + 2λδt1
2(N−1)P (x(ξ)) is nondecreasing in [t1, t̃].

From this, we obtain

−x′(ξ) = |y(ξ)| ≥
(
t1
t2

)N−1√
λδρ
√
d2
j − x(ξ)2, ∀ ξ ∈ [t1, t̃].

Apart from a multiplicative constant, notice that the above inequality is like the one in
(7.1.5), so that the same conclusion is achieved, if λ is taken sufficiently large, namely

λδP∞ >

(
t2
t1

)2(N−1) (
π

2(t2 − t1)

)2

.

Finally, we give an analogous result of Lemma 7.1.4. Indeed, within the same framework
of that lemma and, in particular for a given ϑ ∈ ]0, 1[, and for ε and βεj satisfying (7.1.6), we
proceed as follows. Assume that (x(t), y(t)) is a solution of (7.2.6) with 0 < x(0) = βεj ≤M
and y(0) = 0. As in Lemma 7.1.3 we suppose by contradiction that it is not true that
x(t) ≥ θβεj and then consider a maximal interval [0, t̂] ⊂ [0, σ] such that (7.1.7) holds.

From the equation (7.2.7), we obtain

x′′x′ + λ‖w+‖∞ψ(x)x′ ≤ x′′x′ + λw+(t)ψ(x)x′ = −N − 1

t
(x′)2 ≤ 0

which implies that the function ξ 7→ x′(ξ)2 + 2λ‖w+‖∞P (x(ξ)) is nonincreasing in [0, t̂].
From now on we have only to repeat the same proof of Lemma 7.1.4. With these results
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at hand and since the shooting method is working, we can recover Lemma 7.1.5 and
Proposition 7.1.8.

At this point we consider the analysis of the solutions for t ∈ [σ,R]. In this case, we
are far from the singularity (which is at t = 0) and so we can repeat a similar analysis
previously performed in Lemma 7.1.6 and so we recover Proposition 7.1.10.

At last, by Proposition 7.1.8 and Proposition 7.1.10, we get the same conclusion of
the proof of the Step I in Theorem 7.1.1.

Free from Lipschitz conditions. Assume now that ψ is only continuous. Then, we can
apply the standard techniques recalled in the proof of Theorem 7.1.1.

Finally, if one is interested in differential equations involving nonlinear differential
operators, such as p-Laplacians a condition analogous to (Hψ4) is considered in [BD09]
for Neumann problems in the p-Laplacian setting. In this respect, we remark that our
technique can be also adapted to study the problem

{
(φ(u′))′ + w(t)ψ(u) = 0,

u′(0) = u′(T ) = 0,

with u(t) > 0 for all t ∈ [0, T ], using information about the time-mapping associated with

(φ(u′))′ + ψ(u) = 0.

In this case, estimates for the time-mappings are already done in [GHMZ11; MZ93; NOZ00;
OZ96] and could be fruitfully exploited to extend Theorem 7.1.1 as well as Theorem 7.2.1
and Theorem 7.2.2 to the case of more general differential operators, such as p-Laplacians
or φ-Laplacians.





8. Nonlinearities arising
in population genetics

In this chapter, based on [Sov17; FS18], we present some results of multiplicity of positive
solutions for indefinite Neumann problems of the form

(IN )

{
u′′ + w(t)ψ(u) = 0,

u′(ω1) = u′(ω2) = 0,

where ω1, ω2 ∈ R with ω1 < ω2, the weight w : [ω1, ω2] → R is a sign-changing function
and ψ : [0, 1]→ R+ is a continuous function satisfying

(Hψ1 bis) ψ(0) = ψ(1) = 0, ψ(ξ) > 0 for every ξ ∈ ]0, 1[.

This way, we enter in the frame of the study case given by nonlinearities of Type 2
introduced in Chapter 5.

Indefinite Neumann problems with nonlinearities ψ satisfying (Hψ1 bis) are a very
important issue in the field of population genetics, starting from the pioneering works
[BH90; Fle75; Hen81; Sen83]. Still in this topic, in Section 8.1, we solve a conjecture from
[LN02] which, adapted to the one-dimensional case, states what follows.

Conjecture. Given Ω =]ω1, ω2[, suppose that w changes sign in Ω and satisfies

(Hw5) w̄ =

∫

Ω

w(t) dt < 0.

If the nonlinearity ψ satisfies (Hψ1 bis) and, moreover,

(Hψconj) ψ is not concave and ξ 7→ ψ(ξ)/ξ is monotone decreasing ]0, 1[,

then problem (IN ) has at most one non-trivial positive solution u with 0 < u(t) < 1 for
every t ∈ Ω, which, if it exists, is globally asymptotically stable (cf. [LNN13, p. 4364]).

In more detail, for problem (IN ), we build up two examples with weights verifying
(Hw5) and nonlinearities ψ satisfying (Hψ1 bis) and (Hψconj), giving this way a negative
answer to this conjecture. Indeed, we give evidence of the existence of at least three
positive solutions to that problems. Accordingly, also the other question marks in Table 5.1
are solved. This return would not have been possible without previous investigations
on Dirichlet problems associated with sublinear elliptic equations (cf. Chapter 6). In
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0 1

1

ξ

ψ(ξ)

(a) Graph of the nonlinear term ψ(ξ) defined
as in Section 8.1.1.

0 1

0.1

ξ

ψ(ξ)

(b) Graph of the nonlinear term ψ(ξ) defined
as in Section 8.1.2.

Figure 8.1: Examples of nonlinearities satisfying (Hψ1 bis) and (Hψconj) considered in
Section 8.1.

Figure 8.1 we report the graphs of the functions ψ involved, that clearly show the non
concave feature of the nonlinearities.

As far as we know, in order to achieve both results of uniqueness and multiplicity,
lot of attention has been given to the proprieties of the nonlinearity ψ (see for instance
[LN02; LNN13; LNS10]). For example, dealing with a nonlinearity ψ satisfying (Hψ1 bis)
and assuming the further condition

(Hψ6) lim
ξ→0+

ψ(ξ)

ξ
= 0,

in [LNS10] a multiplicity result of positive solutions for (IN ) is proved. Actually, the
result is more general since it involves the case of Neumann BVPs associated with PDEs.
Nevertheless, in our simplified case, it states that: if w verifies condition (Hw5) and ψ
satisfies (Hψ1 bis) and (Hψ6) along with limξ→0+ ψ(ξ)/ξk > 0 for some k > 1, then the
Neumann problem associated with du′′ + w(t)ψ(u) = 0 has at least two positive solutions
for d > 0 sufficiently small.

On the other hand, beside ψ, also the shape of the graph of the weight w can give
surprises. Indeed, in Section 8.2, we perform our analysis of (IN ) paying attention on
the weight term. By considering a different dispersal parameter d with respect to that
assumed in [LNS10], we study the effects that an indefinite weight has on the dynamics of
problem (IN ) when the nonlinearity ψ satisfies (Hψ1 bis) and (Hψ6). At last, we prove in
Theorem 8.2.1 that the dynamics could be richer than the ones suggested in [LNS10].

Overview on population genetics
Population genetics is a field of the biology concerning the genetic structure inside the
populations and studies the changes in the genetic sequence. The genome evolution is
influenced by selection, recombination, harmful and beneficial mutations, among others.

Mathematical models of population genetics can be described by relative genotypic
frequencies or relative allelic frequencies, that may depend on both space and time.
A common assumption is that individuals mate at random in a habitat (which can be
bounded or not) with respect to the locus under consideration. Furthermore, the population
is usually considered large enough so that frequencies can be treated as deterministic.
This way, a probability is associated to the relative frequencies of genotypes/alleles.
The dynamics of gene frequencies are the result of some genetic principles along with
several environmental influences, such as selection, segregation, migration, mutation,
recombination and mating, that lead to different evolutionary processes like adaptation
and speciation [Bür14].

Among these influences, by natural selection we mean that some genotypes enjoy a
survival or reproduction advantage over other ones. This way, the genotypic and allelic
frequencies change in accord to the proportion of progeny to the next generation of the
various genotypes which is named fitness. Thinking to model real-life populations, we
have to take into account which is unusual that the selection factor acts alone. Since every
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organism lives in environments that are heterogeneous, another considerable factor is the
natural subdivision of the population that mate at random only locally. Thus, migration
is often considered as a factor that affects the amount of genetic change. If the population
size is sufficiently large and the selection is restricted to a single locus with two alleles,
then deterministic models continuous in time and space lead to mathematical problems
which involve a single nonlinear partial differential equation of reaction-diffusion type, as
introduced in Chapter 5.

In this direction, a seminal paper was given by [Fis37]. In that work, the Author
studied the frequency of an advantageous gene for a uniformly distributed population in
a one-dimensional habitat which spreads through an intensity constant selection term.
Accordingly, a mathematical model of a cline was built up as a non-constant stationary
solution of the nonlinear diffusion equation in question. The term cline was coined by
[Hux38]: “Some special term seems desirable to direct attention to variation within groups,
and I propose the term cline, meaning a gradation in measurable characters.” One of the
major causes of cline’s occurrence is the migration or the selection which favors an allele
in a region of the habitat and a different one in another region. The steepness of a cline is
considered as an indicating character of the level of the geographical variation. Another
contribution comes from [Hal48], who has studied the cline’s stability by considering as a
selection term a stepwise function which depends on the space and changes its sign.

Some meaningful generalizations of these models have been performed, for example,
in [Fis50] by introducing a linear spatial dependence in the selection term; in [Sla73] by
considering a different diffusion term that can model barriers and in [Nag75] by taking
into account population not necessarily uniformly distributed and terms of migration-
selection that depend on both space and time. During the past decade, these mathematical
treatments have opened the door to a great amount of works that investigated the existence,
uniqueness and stability of clines (see [Con75; Fle75; Nag76; FP77; Nag78; Pel78] for the
earliest contributions).

Understanding the processes that act in order to have non-constant genetic polymor-
phisms is an important challenge in population genetics. Among several models proposed
within this field, let us focus on migration-selection models, continuous in space and in
time, so that we recall some basics on population genetics in which the genetic diversity
occurs in one locus with two alleles, A1 and A2, that leads to reaction-diffusion equations
(cf. [Fle75] and [Hen81]).

By considering a population continuously distributed in a bounded habitat, say Ω, we
assume that the genetic diversity is the result only of the joint action of dispersal within
Ω and selective advantage for some genotype. The genetic structure of the population is
measured by the frequencies u(x, t) and (1− u(x, t)) at time t and location x ∈ Ω of A1

and A2, respectively.
Thus the mathematical formulation of this kind of migration-selection model leads to

the following semilinear parabolic PDE:

∂u

∂t
= ∆u+ λw(x)ψ(u) in Ω×]0,∞[, (8.0.1)

where Ω ⊆ RN , N ≥ 1 is a bounded domain with boundary ∂Ω of class C2. The term
λw(x)ψ(u) models the effect of the natural selection. More in detail, the real parameter
λ > 0 plays the role of the ratio of the selection intensity and the function w ∈ L∞(Ω)
represents the local selective advantage (if w(x) > 0), or disadvantage (if w(x) < 0), of
the gene at the position x ∈ Ω. Moreover, following [Fle75] and [Hen81], we consider a
function ψ : [0, 1]→ R of class C2 satisfying

(Hψ7) ψ(0) = ψ(1) = 0, ψ(ξ) > 0 for every ξ ∈ ]0, 1[ and ψ′(0) > 0 > ψ′(1),

which is a particular case of (Hψ1 bis). We also impose that there is no-flux of genes into
or out of the habitat Ω, namely we assume that

∂u

∂n
= 0 on ∂Ω×]0,∞[. (8.0.2)
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Since u(x, t) is a frequency, then we are interested only in positive solutions of (8.0.1)-(8.0.2)
such that 0 ≤ u ≤ 1.

By the analysis developed in [Hen81], we know that if ψ satisfies (Hψ7) and 0 ≤
u(·, 0) ≤ 1 in Ω, then 0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ Ω×]0,∞[ and equation (8.0.1) defines
a dynamical system in

X := {u ∈ H1(Ω) : 0 ≤ u(x) ≤ 1, a.e. in Ω}.

Moreover, the stability of the solutions is determined by the equilibrium solutions in the
space X. Clearly, a stationary solution of the problem (8.0.1)-(8.0.2) is a solution u of

(IN λ,N )





∆u+ λw(x)ψ(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω,

with 0 < u(x) < 1 for all x ∈ Ω. Notice that u ≡ 0 and u ≡ 1 are constant trivial solutions
to problem (IN λ,N ), that correspond to monomorphic equilibria, namely when, in the
population, the allele A2 or A1, respectively, is gone to fixation. So, the maintenance of
genetic diversity is examined by seeking for the existence of polymorphic (i.e. non-constant)
stationary solutions/clines, that are solutions u to system

By Remark 7.1 (Chapter 7), we stress again the fact that assumption ψ(ξ) > 0 for
every ξ ∈ ]0, 1[ lead to a necessary condition for positive solutions of problem (IN λ,N ),
namely the function w attains both positive and negative values. Furthermore, it is a
well-known fact that the existence of positive solutions of (IN λ,N ) depends on the sign of

w̄ :=

∫

Ω

w(x) dx. (8.0.3)

Indeed, for the linear eigenvalue problem −∆u(x) = λw(x)u(x), under Neumann boundary
condition on Ω, the following facts hold: if w̄ < 0, then there exists a unique positive
eigenvalue having an associated eigenfunction which does not change sign; on the contrary,
if w̄ ≥ 0 such an eigenvalue does not exist and 0 is the only non-negative eigenvalue for
which the corresponding eigenfunction does not vanish [BL80, Theorem 3.13].

Furthermore, under the additional assumption of concavity for the nonlinearity:

(Hψ8) ψ′′(ξ) ≤ 0, ∀ξ > 0,

it follows that, if w̄ < 0, then there exists λ0 > 0 such that for each λ > λ0 problem
(8.0.1)-(8.0.2) has a unique positive non-constant stationary solution which is asymptoti-
cally stable [Hen81, Theorem 10.1.6].

After these works a great deal of contributions appeared in order to complement these
results of existence and uniqueness on population genetics, [BPT88; BLT89; BH90]; or
to consider also unbounded habitats [FP81]; or even to treat more general uniformly
elliptic operators [SH82; Sen83]. Taking into account these works, in [LN02] the migration-
selection model with an isotropic dispersion, that is identified with the Laplacian operator,
was generalized to an arbitrary migration, which involves a strongly uniformly elliptic
differential operator of second order (see also [Nag89; Nag96] for the derivation of this
model as a continuous approximation of the discrete one).

By modeling single locus diallelic populations, there is an interesting family of non-
linearities which satisfies (Hψ7) and allows to consider different phenotypes of alleles, A1

and A2. This family can be obtained by considering the map ψk : R+ → R+ such that

ψk(ξ) := ξ(1− ξ)(1 + k − 2kξ), (8.0.4)

where −1 ≤ k ≤ 1 represents the degree of dominance of the alleles independently of the
space variable [Nag75]. In this special case, if k = 0 then the model does not present any
kind of dominance, instead, if k = 1 or k = −1 then the allelic dominance is relative to
A1, in the first case, and to A2 in the second one (the last is also equivalent to said that
A1 is recessive). In view of this, we can make the following two observations.
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Remark 8.1. In the case of no dominance, i.e. k = 0, from (8.0.4) we have ψ0(ξ) = ξ(1− ξ)
which is a concave function. Therefore, we can enter in the settings considered by [Hen81].
So if w(x) > 0 on a set of positive measure in Ω and w̄ < 0, then for λ sufficiently large there
exists a unique positive non-trivial equilibrium of the equation ∂u/∂t = ∆u+λw(x)u(1−u)
for every (x, t) ∈ Ω×]0,∞[ under the boundary condition (8.0.2).

Remark 8.2. In the case of completely dominance of allele A2, i.e. k = −1, from (8.0.4)
we have ψ−1(ξ) = 2ξ2(1 − ξ) which is not a concave function. Thanks to the results
in [LNS10], if w(x) > 0 on a set of positive measure in Ω and w̄ < 0, then for λ
sufficiently large there exist at least two positive non-trivial equilibrium of the equation
∂u/∂t = ∆u+ λw(x)2u2(1− u) for every (x, t) ∈ Ω×]0,∞[ under the boundary condition
(8.0.2).

We observe that the map ξ 7→ ψ0(ξ)/ξ is strictly decreasing with ψ0(ξ) concave. On
the contrary, the map ξ 7→ ψ−1(ξ)/ξ is not strictly decreasing with ψ−1(ξ) not concave.
Thus, from Remark 8.1 and Remark 8.2, it arises a natural question which involves the
possibility to weaken the concavity assumption (Hψ8) further to the monotonicity of the
map ξ 7→ ψ(ξ)/ξ, in order to get uniqueness results of non-trivial equilibria for problem
(8.0.1)-(8.0.2). This dichotomy, already set out in Chapter 6 for Dirichlet BVPs (IDλ,N ),
comes also in this context as an open question, firstly appeared in [LN02, Conjecture 5.1],
known as the “conjecture of Lou and Nagylaki”.

8.1 Answer to a conjecture of Lou and Nagylaki
In this section we focus on a conjecture stated in [LN02; LNN13] and so, from now on we
tacitly consider a function ψ : [0, 1]→ R of class C2 which satisfies (Hψ7) and (Hψconj).
We concentrate into the one-dimensional case N = 1, with the intent to show that there
exist more than one non-trivial stationary solution for equation:

∂u

∂t
= u′′ + λw(x)ψ(u). (8.1.1)

We take as a habitat an open interval Ω :=]ω1, ω2[ with ω1, ω2 ∈ R and such that
ω1 < 0 < ω2. This type of habitats, confined to one-dimensional spaces, have an intrinsic
interest in modeling phenomena which occur, for example, in neighborhoods of rivers,
sea shores or hills [Nag78]. As in [Nag75; Nag78], we assume that the weight term w is
step-wise. At last, as usual, we indicate by x = t the independent variable and we study
the indefinite Neumann problem

(IN λ)

{
u′′ + λw(t)ψ(u) = 0,

u′(ω1) = u′(ω2) = 0,

with 0 < u(t) < 1 for all t ∈ [ω1, ω2], where

w(t) :=

{
−α x ∈ [ω1, 0[,

1 x ∈ [0, ω2].
(8.1.2)

This way, we have
w̄ = −ω1α+ ω2,

with w̄ defined as in (8.0.3) and we assume that w̄ satisfies (Hw5).
We will consider two particular functions ψ in order to provide a negative reply to

the conjecture under examination. This answer follows a similar topological argument
performed in Section 3.1 or in Section 6.1. More precisely, we are going to use the shooting
method and, with the aid of some numerical computations, we give evidence of multiplicity
of positive solutions for the corresponding problems in (IN λ). The shooting method relies
on the study of the deformation of planar continua under the action of the vector field
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associated to the second order scalar differential equation in (IN λ), whose formulation,
in the phase-plane (x, y) = (u, u′), is equivalent to the first order planar system

{
x′ = y,

y′ = −λw(t)ψ(x).
(8.1.3)

Solutions u of problem (IN λ) we are looking for are also solutions (x(·), y(·)) of system
(8.1.3), such that y(ω1) = 0 = y(ω2).

We set the interval [0, 1] contained in the x-axis as follows

X[0,1] := {(x, y) ∈ R2 : 0 ≤ x ≤ 1, y = 0}.
This way, as a real parameter r ranges between 0 and 1, we are interested in the solution,
(x(· ;ω1, r, 0), y(· ;ω1, r, 0)), of the Cauchy problem with initial conditions

x(ω1) = r, y(ω1) = 0, (8.1.4)

such that (x(ω2;ω1, r, 0), y(ω2;ω1, r, 0)) ∈ X[0,1]. Hence, let us consider the planar contin-
uum Γ obtained by shooting X[0,1] forward from ω1 to ω2, namely

Γ := {(x(ω2;ω1, r, 0), y(ω2;ω1, r, 0)) ∈ R2 : r ∈ [0, 1]}.
We define the set of the intersection points between this continuum and the segment [0, 1]
contained in the x-axis, as

S := Γ ∩X[0,1].

Then, there exists an injection from the set of the solutions u of (IN λ) such that
0 < u(t) < 1 for all t ∈ [ω1, ω2] and the set S \ ({(0, 0)} ∪ {(1, 0)}). Recall that, for any
τ1, τ2 ∈ [ω1, ω2], the Poincaré map for system (8.1.3), denoted by Φτ2τ1 , is the planar map
which at any point z0 = (x0, y0) ∈ R2 associates the point (x(τ2), y(τ2)) where (x(·), y(·)) is
the solution of (8.1.3) with (x(τ1), y(τ1)) = z0. Notice that Φτ2τ1 is a global diffeomorphism
of the plane onto itself. This way, the solution u of the Neumann problem with u(ω1) = c
is found looking at the first component of the map t 7→ Φtω1

(c, 0) = (x(t), y(t)), since, by
construction, u′(ω1) = y(ω1) = 0 and u′(ω2) = y(ω2) = 0. This means that the set S is
made by points such that, each of them determines univocally an initial condition, of the
form (8.1.4), for which the solution (x(·), y(·)) of the Cauchy problem associated to (8.1.3)
verifies y(ω1) = 0 = y(ω2).

The study of the uniqueness of the positive solutions is based on the study, in the
phase-plane (x, y), of the qualitative properties of the shape of the continuum Γ which
is the image of X[0,1] under the action of the Poincaré map Φω2

ω1
. More in detail, we are

interested in find real values c ∈]0, 1[ such that

Φω2
ω1

(c, 0) ∈ Φω2
ω1

(
X[0,1]

)
∩X[0,1] = S.

Indeed, if Γ crosses the x-axis more than one time, out of the points (0, 0) and (1, 0), then
#(S \ ({(0, 0)} ∪ {(1, 0)})) > 1 and so, we expect a result of non-uniqueness of positive
solutions for equation (8.1.1).

8.1.1 First example
Taking into account the nonlinearities considered in [Fle75; Nag75] (cf. definition of
functions in (8.0.4)), given a real parameter h > 0, let us consider the family of maps
ψ̂h : [0, 1]→ R of class C2 such that

ψ̂h(ξ) := ξ(1− ξ)(1− hξ + hξ2).

By definition ψ̂(0) = 0 = ψ̂(1). Moreover, to have ξ 7→ ψ̂h(ξ)/ξ monotone decreasing in
]0, 1[ it is sufficient to assume 0 < h ≤ 3. If the parameter h ranges in ]2, 3], then it is
straightforward to check that ψ̂h is not concave and ψ̂h(ξ) > 0 for every ξ ∈]0, 1[.

Let us fix h = 3. Then, in this case, ψ̂3(ξ) = ξ(1− ξ)(1− 3ξ + 3ξ2) satisfies conditions
(Hψ7) and (Hψconj), see Figure 8.1 (a). As a consequence, we point out the following
result of multiplicity.
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Figure 8.2: In the phase-plane (x, y): intersections between X[0,1] and Γ = Φω2
ω1

(X[0,1]);
solutions of the Cauchy problem with initial conditions given by (x(ω1), y(ω1)) = (ri, 0)
and numerical approximation of the values Ri = (x(ω2 ;ω1, (ri, 0)), y(ω2 ;ω1, (ri, 0))) with
i = 1, . . . , 4. The problem’s setting u′′ + λw(t)ψ(u) = 0 is defined as in Proposition 8.1.1.

Proposition 8.1.1. Let ψ : [0, 1]→ R be such that

ψ(ξ) := ξ(1− ξ)(1− 3ξ + 3ξ2). (8.1.5)

Assume w : [ω1, ω2] → R be defined as in (8.1.2) with α = 1, ω1 = −0.21 and ω2 = 0.2.
Then, for λ = 45 the problem (IN λ) has at least 3 solutions such that 0 < u(t) < 1 for
all t ∈ [ω1, ω2].

Notice that w̄ = −0.01 < 0, so we are in the hypotheses of the conjecture since
(Hw5) holds. Now we follow the scheme of the shooting method, in order to detect three
non-trivial stationary solutions for the equation (8.1.1). This approach, with the help of
numerical estimates, will enable us to prove Proposition 8.1.1.

In the phase-plane (x, y), Figure 8.2 shows the existence of at least four points
(ri, 0) ∈ X[0,1] with i = 1, . . . , 4 such that, by defining their images through the Poincaré
map Φω2

ω1
as Ri := (Ri

x, Ri
y) = Φω2

ω1
(ri, 0) ∈ Γ for every i ∈ {1, . . . , 4}, the following

conditions
Ri

x < 0 for i = 1, 3, Ri
y > 0 for i = 2, 4,

are satisfied. This is done, for example, with the choice of the values r1 = 0.1, r2 = 0.4,
r3 = 0.65 and r4 = 0.75. The solutions of the Cauchy problems associated to system (8.1.3),
with initial conditions (ri, 0) for i = 1, . . . , 4, take at t = ω2 the values R1 = (0.230,−0.066),
R2 = (0.922, 0.165), R3 = (0.790,−0.036) and R4 = (0.533, 0.055), truncated at the
third significant digit. Therefore, we have that R1

v < 0 < R2
v, R2

v > 0 > R3
v and

R3
v < 0 < R4

v. Then, by a continuity argument (that means an application of the Mean
Value Theorem), there exist at least three real values c1, c2 and c3 such that

rj < cj < rj+1 and Cj := Φω2
ω1

(cj , 0) ∈ S \ ({(0, 0)} ∪ {(1, 0)}) , (8.1.6)

for every j ∈ {1, . . . , i− 1}. So, let us see how to find such values.
The curve Γ is obtained integrating several systems of differential equations (8.1.3),

with initial conditions z0 taken within a uniform discretization of the interval [0, 1], and
then interpolating the approximated values of each solution (x(t ;ω1, z0), y(t ;ω1, z0)) at
t = ω2. Hence, Γ represents the approximation of the image of X[0,1] under the action of
the Poincaré map Φω2

ω1
.

As Figure 8.2 suggests, the projection of Γ on its first component is not necessarily
contained in the interval [0, 1], which includes the only values of biological pertinence.
Nonetheless, this does not avoid the existence of solutions u of the problem (IN λ) such
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system (8.1.3) with initial conditions given by (x(ω1), y(ω1)) = (cj , 0) with j = 1, 2, 3. The
problem’s setting u′′ + λw(t)ψ(u) = 0 is defined as in Proposition 8.1.1.
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Figure 8.4: Non-constant stationary solutions and trivial stationary solutions (u ≡ 0
and u ≡ 1) for equation (8.1.1), found as positive solutions of the Neumann problem
u′′ + λw(t)ψ(u) = 0 satisfying the framework of Proposition 8.1.1.

that 0 < u(t) < 1 for all t ∈ [ω1, ω2]. This way, by means of a fine discretization of X[0,1],
we have found the approximate values of the intersection points Cj ∈ Γ ∩ X[0,1], with
j = 1, 2, 3. In this case they are: C1 = (0.273, 0), C2 = (0.601, 0) and C3 = (0.833, 0),
truncated at the third significant digit (see Figure 8.2). The intersection points between
X[0,1] and its image Γ through the Poincaré map Φω2

ω1
, namely Cj with j = 1, 2, 3, are in

agreement with the previous predictions.
At last, we computed the values c1 = 0.125, c2 = 0.479 and c3 = 0.683, which verify the

required conditions (8.1.6). For j = 1, 2, 3, in Figure 8.3 are represented the trajectories
of the solutions of the initial value problem





u′′ + λw(t)ψ(u) = 0,

u(ω1) = cj ,

u′(ω1) = 0,

(8.1.7)

that, by construction, satisfy u′(ω2) = 0.
We observe also that the values of each solution u of the three different initial value

problems range in ]0, 1[ as desired. Once found the values cj with j = 1, 2, 3, a numerically
result of multiplicity of positive solutions is achieved. Indeed, in Figure 8.4, we display
the approximation of the three non-trivial stationary solutions u of equation (8.1.1) that
are identified by the points Cj ∈ (S \ ({(0, 0)} ∪ {(1, 0)})), with j = 1, 2, 3.

We conclude with some remarks regarding the dependence of the number of positive
solutions of (IN λ) with respect to the parameter λ. With this aim, we take into account
the bifurcation diagram in Figure 8.5, which plots initial data against selection intensity
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rate. Numerical evidence suggests the existence of a range of λ where one could find
results of multiplicity of positive solutions. Accordingly, one could argue that there exist
at least two real values λ∗, λ∗ > 0 such that for each λ ∈]λ∗, λ∗[ there exist at least three
non-trivial stationary solutions u of equation (8.1.1). It is interesting to notice that such
kinds of bifurcation diagrams, presenting an “isola” coupled with an unbounded branch,
are not new in literature and have been observed by [LGMM05; LGT14; LGTZ14] for
reaction-diffusion equations with different nonlinearities and boundary conditions than
those treated here.
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Figure 8.5: In the framework of Proposition 8.1.1, bifurcation diagram for the Neumann
problem associated with u′′ + λw(t)ψ(u) = 0.

8.1.2 Second example
We refer now to the application given in Proposition 6.1.6 at p. 58 and we adapt it to our
purposes. So we consider, the nonlinear term ψ̃ : R+ → R+ defined by

ψ̃(ξ) :=

(
10ξe−25ξ2 +

ξ

|ξ|+ 1

)

that, as already observed, satisfies (Hψconj). Moreover, ψ̃(0) = 0 and ψ̃(ξ) > 0 for every
ξ > 0, but ψ̃ does not take value zero in ξ = 1, since ψ̃(1) = 10e−25 + 1 6= 0. To satisfy all
the conditions in (Hψ7), it is sufficient to multiply ψ̃ by the term arctan(m(1− x)) with
m > 0, see Figure 8.1 (b). This way, the following result holds.

Proposition 8.1.2. Let ψ : [0, 1]→ R be such that

ψ(ξ) :=

(
10ξe−25ξ2 +

ξ

|ξ|+ 1

)
arctan(10− 10ξ). (8.1.8)

Assume w : [ω1, ω2]→ R be defined as in (8.1.2) with α = 2.4, ω1 = −0.255 and ω2 = 0.6.
Then, for λ = 3 the problem (IN λ) has at least 3 solutions such that 0 < u(t) < 1 for all
t ∈ [ω1, ω2].

Notice that, under the assumptions of Proposition 8.1.2, the hypotheses of the conjec-
ture are now all satisfied since w̄ = −0.012 < 0.

So, our main interest is in finding real values ri ∈]0, 1[ with i ∈ N such that, given
Ri := (Ri

u, Ri
v) = Φω2

ω1
(ri, 0), it follows

Ri
v < 0 for i = 2`+ 1, Ri

v > 0 for i = 2`, with ` ∈ N.
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Figure 8.6: In the phase-plane (x, y): intersections between X[0,1] and Γ = Φω2
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(X[0,1]);
solutions of the Cauchy problem with initial conditions given by (x(ω1), y(ω1)) = (ri, 0)
and numerical approximation of the values Ri = (x(ω2 ;ω1, (ri, 0)), y(ω2 ;ω1, (ri, 0))) with
i = 1, . . . , 4. The problem’s setting u′′ + λw(t)ψ(u) = 0 is defined as in Proposition 8.1.2.
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Figure 8.7: Non-constant stationary solutions and trivial stationary solutions (x ≡ 0
and y ≡ 1) for equation (8.1.1), found as positive solutions of the Neumann problem
u′′ + λw(t)ψ(u) = 0 satisfying the framework of Proposition 8.1.2.

Looking at Figure 8.6, we notice the existence of more than one intersection point
between the continuum Γ and the u-axis such that their abscissa is contained in the open
interval ]0, 1[.

This way, the previous observation suggests us the following analysis. By choosing
the values r1 = 0.01, r2 = 0.1, r3 = 0.45 and r4 = 0.9, we compute the points Ri for
i = 1, . . . , 4. All the results achieved are truncated at the third significant digit and so
we obtain R1

v = −0.639 < 0, R2
v = 2.160 > 0, R3

v < −0.036 and R4
v = 1.392 > 0. The

numerical details are thus represented in Figure 8.6.
At this point, an application of the Intermediate Value Theorem guarantees the

existence of at least three initial conditions (cj , 0) with j = 1, 2, 3, such that each respective
solution of the initial value problem (8.1.7) is also a positive solution of the Neumann
problem (IN λ) we are looking for. Indeed, the values c1 = 0.436, c2 = 0.776 and
c3 = 0.854 satisfy the conditions in (8.1.6). Finally, we display the approximation of the
three non-trivial stationary solutions u of equation (8.1.1) in Figure 8.7.

We now direct our attention to the influence of the selection intensity rate on the
number of positive solutions of the Neumann problem (IN λ). As previously observed, we
could find, at least numerically, a range of multiplicity of positive solutions with respect
to the parameter λ. This is due to the presence of both an isolated bounded component
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(“isola”) and an unbounded branch, as it is shown in Figure 8.8, for the resulting bifurcation
diagram.
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Figure 8.8: In the framework of Proposition 8.1.2, bifurcation diagram for the Neumann
problem associated with u′′ + λw(t)ψ(u) = 0.

Remark 8.1.3. Finally, uniqueness of positive solutions in general is not guaranteed for
indefinite Neumann problems (IN λ) whose indefinite weight w is defined on a bounded
domain Ω such that verifies condition (Hw5) and the nonlinear term ψ is a function
satisfying (Hψ7) and (Hψconj). Moreover, since from the concavity of ψ(ξ) follows also
the concavity of ψ(1− ξ), one could argue whether the uniqueness of a nontrivial positive
solution is guaranteed under the extra condition that the map ξ 7→ ψ(1−ξ)/ξ is decreasing.
Thanks to our first example, which involves (8.1.5), we actually observe that this additional
hyphotesis is not sufficient for achieve a result of uniqueness. The approach suggested
in the present paper allows to consider also different sign-changing weights satisfying
condition (Hw5) or even

∫
Ω
w(t) dt ≥ 0. C

8.2 Three positive solutions for a class of Neumann problems
In this section we study the indefinite Neumann problem (IN ) paying more attention
to the dynamical effects produced by the weight term instead of the ones that are
produced by the nonlinearity. Our investigations are motivated by the results achieved in
[BGH05; Bos11; BFZ18; FZ15a; FZ15b; FZ17; GHZ03; GRLG00; LG00] where the authors
established multiplicity results of positive solutions in relation to the nodal behavior of
the weight w, dealing with different BVPs compared to the one treated here.

Through this section we tacitly assume that ψ : [0, 1] → R+ is a locally Lipschitz
continuous function which satisfies (Hψ1 bis) and (Hψ6). Without loss of generality, in the
sequel we suppose [ω1, ω2] := [0, T ].

In our context, a solution u(t) of problem

(IN )

{
u′′ + w(t)ψ(u) = 0,

u′(0) = u′(T ) = 0,

is meant in the Carathéodory’s sense and is such that 0 ≤ u(t) ≤ 1 for all t ∈ [0, T ].
In analogy with Section 7.1, we assume here that the weight term has a “positive

hump” followed by a “negative hump” and another “positive hump”. Hence, we suppose
that

(Hw6)

∃σ, τ with 0 < σ < τ < T such that

w+(t) � 0, w−(t) ≡ 0, on [0, σ],

w+(t) ≡ 0, w−(t) � 0, on [σ, τ ],

w+(t) � 0, w−(t) ≡ 0, on [τ, T ],
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where, following a standard notation, w(t) � 0 means that w(t) ≥ 0 almost everywhere on
a given interval with w 6≡ 0 on that interval. Moreover, given two real positive parameters
λ and µ, we will consider the function

w(t) = wλ,µ(t) := λw+(t)− µw−(t), (8.2.1)

with w+(t) and w−(t) denoting the positive and the negative part of the function w(t),
respectively. In our framework, the dispersal parameter is thus modulated by the coefficients
λ and µ. A weight term defined as in (8.2.1) is already addressed in different contexts
(cf. [LG97; LG00; BFZ18] and Chapter 7).

With the above notation, problem (IN ) reads as follows

(IN λ,µ)

{
u′′ +

(
λw+(t)− µw−(t)

)
ψ(u) = 0,

u′(0) = u′(T ) = 0.

We are now in position to state our result of multiplicity of positive solutions to
problem (IN λ,µ).

Theorem 8.2.1. Let ψ : [0, 1]→ R+ be a locally Lipschitz continuous function satisfying
(Hψ1 bis) and (Hψ6). Let w : [0, T ]→ R be an L1-function satisfying (Hw6). Then, there
exists λ∗ > 0 such that for each λ > λ∗ there exists µ∗(λ) > 0 such that for every µ > µ∗(λ)
problem (IN λ,µ) has at least three positive solutions.

Let us illustrate the dynamics of the parameter-dependent problem (IN λ,µ) by means
of the following example.

Example 8.2.2. Consider a nonlinearity similar to that of Remark 8.2, defined as

ψ(ξ) := ξ2(1− ξ), ξ ∈ [0, 1], (8.2.2)

and we take a weight term

w(t) := w11[0,σ](t)− w21]σ,τ [(t) + w31[τ,T ](t), t ∈ [0, T ], (8.2.3)

where w1, w2, w3 ∈ ]0,+∞[ are some fixed values (see Figure 8.9 (a)–(b) for a representation
of these functions). The resulting problem (IN λ,µ) is in the setting of Theorem 8.2.1
(see Figure 8.9 (c) for the numerical evidence of the existence of three positive solutions to
problem (IN λ,µ) for λ and µ sufficiently large). C

The strategy we follow to prove Theorem 8.2.1 is based on the shooting method.
With this respect, we will study problem (IN λ,µ) in the phase-plane (x, y) = (u, u′).
Accordingly, the differential equation in (IN λ,µ) can be equivalently written as a planar
system in the following form

(Sλ,µ)

{
x′ = y,

y′ = −
(
λw+(t)− µw−(t)

)
ψ(x).

Thus, we consider the vector field associated with (Sλ,µ) in order to look at the correspond-
ing deformation of the set X[0,1] := [0, 1] × {0}. In particular, we look for intersection
points between two planar continua: the one obtained from shooting the set X[0,1] forward
in time over [0, τ ] with the other one obtained from shooting again the same set X[0,1]

backward in time over [τ, T ].

8.2.1 Technical lemmas
Before passing to the proof of Theorem 8.2.1, we first develop some estimates for the
solutions of the Cauchy problems associated with (Sλ,µ).

First of all, we extend the function ψ continuously to the whole real line, by setting

ψ(ξ) = 0, for ξ ∈ ]−∞, 0[ ∪ ]1,+∞[.
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(c) Three positive solutions of (IN λ,µ) for λ = 25 and µ = 500.

Figure 8.9: Multiplicity of positive solutions for the indefinite Neumann problem (IN λ,µ)
as in the framework of Example 8.2.2.

The extension is still denoted by ψ. In this manner, any solution of a Cauchy problem
associated with (Sλ,µ) is globally defined on [0, T ].

Secondly, it is convenient to introduce the following notation:

W±(t′, t′′) :=

∫ t′′

t′
w±(ξ) dξ, t′, t′′ ∈ [0, T ] with t′ ≤ t′′.

Moreover, we set

ψ∗(κ
′, κ′′) := min

ξ∈[κ′,κ′′]
ψ(ξ), κ′, κ′′ ∈ [0, 1] with κ′ < κ′′.

In the interval [0, σ] system (Sλ,µ) reduces to
{
x′ = y,

y′ = −λw+(t)ψ(x).
(8.2.4)

Since W+(0, 0) = 0, W+(0, σ) > 0 and t 7→W+(0, t) is a continuous non-decreasing map
on [0, σ], without loss of generality, we can suppose that

W+(0, t) > 0, ∀ t ∈ ]0, σ].

Otherwise, there exists a maximal interval [0, t0] where W (0, t) = 0 for all t ∈ [0, t0] and
the study of system (8.2.4) can be performed in the interval [t0, σ].

Through the following lemmas we will show that, for every initial condition (x0, 0)
with x0 ∈ ]0, 1[, the solution (x(t), y(t)) of the Cauchy problem associated with (8.2.4) at
time t = σ belongs to ]−∞, 0]× ]−∞, 0[ for λ sufficiently large.

Lemma 8.2.3. Let λ > 0, κ1 ∈ ]0, 1[ and t1 ∈ ]0, σ[. For every γ1 ≥ κ1/(σ − t1), any
solution (x(t), y(t)) of (8.2.4) with x(t1) ≤ κ1 and y(t1) ≤ −γ1 satisfies x(σ) ≤ 0 and
y(σ) ≤ −γ1.
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Proof. Let λ, κ1, t1 and γ1 be fixed as in the statement. Let (x(t), y(t)) be a solution of
(8.2.4) with x(t1) ≤ κ1 and y(t1) ≤ −γ1. Since y′(t) ≤ 0 on [0, σ], we immediately obtain
that

y(t) ≤ y(t1) ≤ −γ1, for all t ∈ [t1, σ],

and, consequently, we have

x(σ) = x(t1) +

∫ σ

t1

y(ξ) dξ ≤ κ1 − γ1(σ − t1) ≤ 0.

From the above inequalities the thesis follows.

Lemma 8.2.4. Let κ0, κ1 be such that 0 < κ1 < κ0 < 1 and t1 ∈ ]0, σ[. Given

λ?(κ0, κ1, t1) :=
κ0 − κ1

g∗(κ1, κ0)
∫ t1

0
W+(0, ξ) dξ

(8.2.5)

and 0 < γ1 ≤ (κ0 − κ1)/t1, then, for every λ > λ?(κ0, κ1, t1), the solution (x(t), y(t)) of
(8.2.4) with initial conditions x(0) = κ0 and y(0) = 0 satisfies x(t1) < κ1 and y(t1) < −γ1.

Proof. Let κ0, κ1, t1, γ1 and λ?(κ0, κ1, t1) be fixed as in the statement. For λ > λ?(κ0, κ1, t1)
consider the solution (x(t), y(t)) of (8.2.4) with x(0) = κ0 and y(0) = 0.

First, we suppose by contradiction that x(t1) ≥ κ1. Consequently, by the monotonicity
of x(t) in [0, σ], we have

0 < κ1 ≤ x(t) ≤ κ0 < 1, for all t ∈ [0, t1].

Since y′(t) ≤ −λw+(t)ψ∗(κ1, κ0) on [0, t1], we obtain

y(t) ≤ −λψ∗(κ1, κ0)W+(0, t), for all t ∈ [0, t1].

Then

x(t) ≤ x(0)− λψ∗(κ1, κ0)

∫ t

0

W+(0, ξ) dξ, for all t ∈ [0, t1],

and, since λ > λ?(κ0, κ1, t1), in particular we have

x(t1) ≤ κ0 − λψ∗(κ1, κ0)

∫ t1

0

W+(0, ξ) dξ < κ1,

a contradiction.
Secondly, we suppose by contradiction that

y(t) ≥ −γ1, for all t ∈ [0, t1].

By integrating, we have

x(t1) = κ0 +

∫ t1

0

y(ξ) dξ ≥ κ0 − γ1t1 ≥ κ1.

A contradiction is achieved as above and the lemma is proved.

Notice that hypothesis (Hψ6) is not required in the previous lemmas. On the contrary,
in the next lemma this condition will be the crucial one. Our goal is now to show that
for any fixed λ > 0, taking an initial condition (x(0), y(0)) ∈ ]0, δ]× {0} with δ > 0 small,
then the solution (x(t), y(t)) of the Cauchy problem associated with system (8.2.4) at time
t = σ belongs to ]0, 1[× ]−∞, 0[. In more detail, we are going to prove that for such initial
condition the corresponding solution does not leave a small angular region contained in
]0, 1[× ]−∞, 0[.
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Lemma 8.2.5. Let λ > 0, ν ∈ ]0, π/2[ and κ1 ∈ ]0, 1[. Then, there exists ε̂ = ε̂(λ, ν) > 0
such that for any ε ∈ ]0, ε̂[ there exists δε ∈ ]0, κ1[ such that the following holds: for any
fixed κ ∈ ]0, δε], the solution (x(t), y(t)) of (8.2.4) with initial conditions x(0) = κ and
y(0) = 0 satisfies

x(t) > 0 and − ν ≤ arctan

(
y(t)

x(t)

)
≤ 0, for all t ∈ [0, σ]. (8.2.6)

Proof. Let λ, ν and κ1 be fixed as in the statement. Let ε̂ = ε̂(λ, ν) > 0 be such that

arctan
(√

λ‖w+‖∞ε tan
(
σ
√
λ‖w+‖∞ε

))
< ν, for all ε ∈ ]0, ε̂[, (8.2.7)

where, as usual, we denote the supremum norm by ‖ · ‖∞. From hypothesis (Hψ6), for all
ε > 0 there exists δε ∈ ]0, κ1[ such that

ψ(ξ) ≤ εξ, for all ξ ∈ [0, δε].

For κ ∈ ]0, δε], we consider the solution (x(t), y(t)) of (8.2.4) with x(0) = κ and y(0) = 0.
First of all, we write the solution in polar coordinates

x(t) = ρ(t) cos(ϑ(t)), y(t) = ρ(t) sin(ϑ(t)).

We claim that x(t) > 0 for all t ∈ [0, σ]. By contradiction, let us suppose that there exists
σ1 ∈ ]0, σ] such that x(t) > 0 for all t ∈ [0, σ1[ and x(σ1) = 0. At this point, we observe
that

ϑ(t) = arctan

(
y(t)

x(t)

)

is well defined for all t ∈ [0, σ1[. Thanks to the positivity of x(t) on [0, σ1[, since ϑ(0) = 0
and

ϑ′(t) =
y′(t)x(t)− x′(t)y(t)

x2(t) + y2(t)
=
−λw+(t)ψ(x(t))x(t)− y2(t)

ρ2(t)
≤ 0,

we have
−π

2
< ϑ(t) ≤ 0, for all t ∈ [0, σ1[.

Let ε ∈ ]0, ε̂[, then

−ϑ′(t) =
λw+(t)ψ(x(t))x(t) + y2(t)

ρ2(t)
≤ λw+(t)εx2(t) + y2(t)

ρ2(t)

≤ λ‖w+‖∞ε cos2(ϑ(t)) + sin2(ϑ(t)), for all t ∈ [0, σ1[.

By integrating on [0, t] ⊆ [0, σ1[, we obtain

−
∫ ϑ(t)

ϑ(0)

dζ

λ‖w+‖∞ε cos2(ζ) + sin2(ζ)
≤
∫ t

0

dξ = t ≤ σ1 ≤ σ, for all t ∈ [0, σ1[.

The first term can be equivalently written as

−
∫ ϑ(t)

ϑ(0)

dζ

λ‖w+‖∞ε cos2(ζ) + sin2(ζ)
=

=

∫ 0

ϑ(t)

dζ

cos2(ζ)
(
λ‖w+‖∞ε+ tan2(ζ)

)

= −
∫ 0

tan(ϑ(t))

dz

λ‖w+‖∞ε+ z2

=
1√

λ‖w+‖∞ε
arctan

(
tan |ϑ(t)|√
λ‖w+‖∞ε

)
, for all t ∈ [0, σ1[.



110 Chapter 8. Nonlinearities arising in population genetics

Consequently

|ϑ(t)| ≤ arctan
(√

λ‖w+‖∞ε tan
(
σ
√
λ‖w+‖∞ε

))
, for all t ∈ [0, σ1[.

By the choice of ε ∈ ]0, ε̂[, it follows that

−ν < ϑ(t) ≤ 0, for all t ∈ [0, σ1[.

Therefore, by the continuity of ϑ(t), we conclude that ϑ(σ1) ≥ −ν > −π/2 and so
x(σ1) > 0, a contradiction. Accordingly, x(t) > 0 for all t ∈ [0, σ]. The thesis follows from
the above computations.

System (Sλ,µ) in the interval [τ, T ] can be equivalently written as (8.2.4). Since
W+(T, T ) = 0, W+(τ, T ) > 0 and t 7→ W+(t, T ) is a continuous non-increasing map on
[τ, T ], without loss of generality, we can suppose that

W+(t, T ) > 0, ∀ t ∈ [τ, T [.

Otherwise, there exists a maximal interval [tT , T ] where W+(t, T ) = 0 for all t ∈ [tT , T ]
and the study of system (8.2.4) can be performed in the interval [τ, tT ].

In this context, the situation is exactly symmetric to the one described in Lemma 8.2.3
and Lemma 8.2.4. We collect here the corresponding results, omitting the proofs since
they are analogous to the previous ones.

Lemma 8.2.6. Let λ > 0, κ3 ∈ ]0, 1[ and t3 ∈ ]τ, T [. For every γ3 ≥ κ3/(t3 − τ), any
solution (x(t), y(t)) of (8.2.4) with x(t3) ≤ κ3 and y(t3) ≥ γ3 satisfies x(τ) ≤ 0 and
y(τ) ≥ γ3.

Lemma 8.2.7. Let κ3, κT be such that 0 < κ3 < κT < 1 and t3 ∈ ]τ, T [. Given

λ??(κ3, κT , t3) :=
κT − κ3

ψ∗(κ3, κT )
∫ T
t3
W+(ξ, T ) dξ

(8.2.8)

and 0 < γ3 ≤ (κT − κ3)/(T − t3), then, for every λ > λ??(κ3, κT , t3), the solution
(x(t), y(t)) of (8.2.4) with initial conditions x(T ) = κT and y(T ) = 0 satisfies x(t3) < κ3

and y(t3) > γ3.

Consider now the interval [σ, τ ], where system (Sλ,µ) reduces to
{
x′ = y,

y′ = µw−(t)ψ(x).
(8.2.9)

Without loss of generality, we can suppose that W−(σ, t) > 0 for all t ∈ ]σ, τ ]. Indeed,
it is always possible to choose a suitable σ as in (Hw6) that satisfies this additional
hypothesis, as pointed out in Chapter 7 at p. 84 (see also [BFZ18; FZ15b; FZ17]).

Our purpose is to determine the initial conditions (x(σ), y(σ)) such that the corre-
sponding solution (x(t), y(t)) of the Cauchy problem associated with system (8.2.9) belongs
to [1,+∞[× ]0,+∞[ at time t = τ , for µ sufficiently large.

Lemma 8.2.8. Let µ > 0, κ2 ∈ ]0, 1[ and t2 ∈ ]σ, τ [. For every ω ≥ (1 − κ2)/(τ − t2),
any solution (x(t), y(t)) of (8.2.9) with x(t2) ≥ κ2 and y(t2) ≥ ω satisfies x(τ) ≥ 1 and
y(τ) ≥ ω.

Proof. Let µ, κ2, t2 and ω be fixed as in the statement. Let (x(t), y(t)) be a solution of
(8.2.9) with x(t2) ≥ κ2 and y(t2) ≥ ω. Since y′(t) ≥ 0 on [σ, τ ], we immediately obtain that
y(t) ≥ y(t2) ≥ ω for every t ∈ [t2, τ ]. In particular, it follows that y(τ) ≥ ω. Moreover, we
have

x(τ) = x(t2) +

∫ τ

t2

y(ξ) dξ ≥ κ2 + ω(τ − t2) ≥ 1.

The thesis follows.
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Lemma 8.2.9. Let κσ, κ2 be such that 0 < κσ < κ2 < 1 and ωσ > 0. Given

σ < t2 ≤ min

{
σ +

κσ
2ωσ

, τ

}
, 0 < ω ≤ κ2 − κσ

t2 − σ
,

and
µ?(κ2, κσ, t2, ωσ) :=

κ2 − κσ + (t2 − σ)ωσ

ψ∗(κσ/2, κ2)
∫ t2
σ
W−(σ, ξ) dξ

, (8.2.10)

then, for every µ > µ?(κ2, κσ, t2, ωσ), any solution (x(t), y(t)) of (8.2.9) with x(σ) = κσ
and y(σ) ≥ −ωσ satisfies x(t2) > κ2 and y(t2) > ω.

Proof. Let κσ, κ2, ωσ, t2, ω and µ?(κ2, κσ, t2, ωσ) be fixed as in the statement. For µ >
µ?(κ2, κσ, t2, ωσ), let (x(t), y(t)) be a solution of (8.2.9) with x(σ) = κσ and y(σ) ≥ −ωσ.

First, we suppose by contradiction that x(t2) ≤ κ2. This way, by the convexity of the
function x(t) in [σ, τ ] and the assumption κ2 > κσ, we easily deduce that

x(t) ≤ κ2, for all t ∈ [σ, t2].

Since y′(t) ≥ 0 on [σ, τ ] and y(σ) ≥ −ωσ, we derive that

x(t) ≥ −ωσt+ κσ + ωσσ, for all t ∈ [σ, τ ],

and, by the condition on the point t2, we obtain that

x(t) ≥ κσ
2
, for all t ∈ [σ, t2].

By an integration of (8.2.9), for every t ∈ [σ, t2], we have

y(t) = y(σ) +

∫ t

σ

y′(ξ) dξ = y(σ) + µ

∫ t

σ

w−(ξ)ψ(x(ξ)) dξ

and

x(t) = x(σ) +

∫ t

σ

y(ξ) dξ = κσ + (t− σ)y(σ) + µ

∫ t

σ

∫ z

σ

w−(ξ)ψ(x(ξ)) dξdz.

Then, by the choice of µ > µ?(κ2, κσ, t2, ωσ), it follows that

κ2 ≥ x(t2) ≥ κσ − (t2 − σ)ωσ + µψ∗(κσ/2, κ2)

∫ t2

σ

W−(σ, ξ) dξ > κ2,

a contradiction.
Secondly, we suppose by contradiction that y(t2) ≤ ω and thus that y(t) ≤ ω for all

t ∈ [σ, t2]. Then
x(t2) ≤ κσ + ω(t2 − σ) ≤ κ2

and a contradiction is achieved as above. This concludes the proof.

8.2.2 Multiplicity of positive solutions
The working hypotheses assumed through this section guarantee the uniqueness and the
global existence of the solution (x(·;α, xα, yα), y(·;α, xα, yα)) to system (Sλ,µ) satisfying
the initial conditions x(α) = xα, y(α) = yα. Consequently, as in Section 8.1, we introduce
(for every fixed couple of parameters λ and µ) the Poincaré map Φβα associated to (Sλ,µ) in
the interval [α, β] ⊆ [0, T ] (which is a global diffeomorphism of the plane onto itself) and
we will describe the deformation in the phase-plane (x, y) of the interval X[0,1] through
the Poincaré map. Since we are interested in positive solutions for problem (IN λ,µ), we
look for a point

C ∈ Φτ0(X[0,1]) ∩ ΦτT (X[0,1])

which in turns determine univocally a solution (x(t; τ, C), y(t; τ, C)) of system (Sλ,µ)
satisfying the Neumann boundary conditions y(0; τ, C) = y(T ; τ, C) = 0. Hence, u(t) :=
x(t; τ, C) is a solution of problem (IN λ,µ).

In Figure 8.10 we illustrate this approach by means of numerical simulations in the
case of Example 8.2.2.
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(a) Shooting of X[0,1] forward over the interval
[0, τ ] (red) and shooting of X[0,1] backward over
the interval [τ, T ] (blue).
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(b) Zooming on three intersection points in
Φτ0(X[0,1]) ∩ ΦτT (X[0,1]) which identify three
solutions of (IN λ,µ).

Figure 8.10: In the phase-plane (x, y): dynamics of the Poincaré maps Φτ
0 and Φτ

T

associated to system (Sλ,µ) as in the framework of Example 8.2.2 with σ = 0.5, τ = 1,
T = 2, w1 = 1.75, w2 = 1, w3 = 1, for λ = 25 and µ = 500.

Proof of Theorem 8.2.1. Now we are ready to pass to the proof of Theorem 8.2.1 which is
divided into four steps. First of all, we will study system (Sλ,µ) separately in the three
intervals: [0, σ], [σ, τ ] and [τ, T ] and then we will combine the dynamics of system (Sλ,µ)
on the whole interval [0, T ].

Step I. Dynamics on [0, σ]. Let us fix 0 < κ1 < κ0 < 1 and 0 < t1 ≤ σ(1− κ1/κ0). In
this manner, we have that κ1/(σ − t1) ≤ (κ0 − κ1)/t1 and so we can apply Lemma 8.2.3
together with Lemma 8.2.4. Then, for λ > λ?(κ0, κ1, t1) (cf. (8.2.5)) and an arbitrary
µ > 0, we obtain that

x(σ; 0, κ0, 0) ≤ 0, y(σ; 0, κ0, 0) < 0.

We stress that this conclusion does not depend on µ. Next, we notice that Φσ0 (1, 0) = (1, 0)
and, by the concavity of x in [0, σ], that Φσ0 ([0, 1]× {0}) ⊆ ]−∞, 1]× ]−∞, 0]. Thus, from
the continuous dependence of the solutions upon the initial data and the Intermediate
Value Theorem, the following fact holds. There exists an interval [l1, 1] ⊆ [κ0, 1] such that
Φσ0 ([l1, 1]×{0}) ⊆ [0, 1]× ]−∞, 0], Φσ0 (l1, 0) ∈ {0}× ]−∞, 0[ and x(t; 0, ξ, 0) ∈ ]0, 1[ for all
t ∈ [0, σ], ξ ∈ ]l1, 1[.

Furthermore, by Lemma 8.2.5 there exits κ4 ∈ ]0, κ1[ such that Φσ
0 (]0, κ4] × {0}) ⊆

]0, 1[× ]−∞, 0]. Then, recalling that Φσ0 (κ0, 0) ∈ ]−∞, 0]× ]−∞, 0[, from the same previous
arguments of continuity, there exists an interval [0, r1] ⊆ [0, κ0] (with r1 > κ4) such that
Φσ

0 ([0, r1]× {0}) ⊆ [0, 1[× ]−∞, 0], Φσ
0 (r1, 0) ∈ {0} × ]−∞, 0[ and x(t; 0, ξ, 0) ∈ ]0, 1[ for

all t ∈ [0, σ], ξ ∈ ]0, r1[.

Step II. Dynamics on [τ, T ]. Analogously to Step I, let us fix 0 < κ3 < κT < 1 and
0 < t3 ≤ τ + (T − τ)κ3/κT . Given λ > λ??(κ3, κT , t3) (cf. (8.2.8)) and an arbitrary µ > 0,
from Lemma 8.2.6 and Lemma 8.2.7 we have that

x(τ ;T, κT , 0) ≤ 0, y(τ ;T, κT , 0) > 0.

Furthermore, we notice that Φτ
T (1, 0) = (1, 0) and Φτ

T ([0, 1]× {0}) ⊆ ]−∞, 1]× [0,+∞[.
Consequently, by the continuous dependence of the solutions upon the initial data and
the Intermediate Value Theorem, there exists an interval [l2, 1] ⊆ [κT , 1] such that
Φτ
T ([l2, 1]× {0}) ⊆ [0, 1]× [0,+∞[, Φτ

T (l2, 0) ∈ {0} × ]0,+∞[ and x(t;T, ξ, 0) ∈ ]0, 1[ for
all t ∈ [τ, T ], ξ ∈ ]l2, 1[.

Step III. Dynamics on [σ, τ ]. Let us define

λ∗ := max
{
λ?(κ0, κ1, t1), λ??(κ3, κT , t3)

}

and fix λ > λ∗.
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First of all, we observe that, for any x0 ∈ R, the solution (x(t), y(t)) to system (Sλ,µ)
with initial values x(0) = x0 and y(0) = 0 satisfies

y(σ) = y(0) + λ

∫ σ

0

w+(ξ)ψ(x(ξ)) dξ ≥ −ωσ,

where ωσ := λ∗W+(0, σ) maxs∈[0,1] g(s).
Let us take p1 ∈ ]0, r1[ and p2 ∈ ]l1, 1[. We define

κσ,i := x(σ; 0, pi, 0), for i = 1, 2.

From the properties of the continua Φσ
0 ([0, r1] × {0}) and Φσ

0 ([l1, 1] × {0}) achieved in
Step I, it follows that κσ,i ∈ ]0, 1[ for i = 1, 2. Next, for i = 1, 2, we fix κ2,i ∈ ]κσ,i, 1[ and
choose t2,i such that

σ < t2,i ≤ min

{
σ +

κσ,i
2ωσ

,
σ(1− κ2,i) + τ(κ2,i − κσ,i)

1− κσ,i

}

and ωi ≥ (1− κ2,i)/(τ − t2,i). In this manner, we enter in the setting of Lemma 8.2.8 and
Lemma 8.2.9. For i = 1, 2, taking µ > µ?(κ2,i, κσ,i, t2,i, ωσ) (cf. (8.2.10)), we obtain that

x(τ ; 0, pi, 0) ≥ 1, y(τ ; 0, pi, 0) > ωi > 0, for i = 1, 2. (8.2.11)

We remark now that, for any choice of t0 ∈ [0, T ] and y0 < 0, if (x(t), y(t)) is
the solution of the Cauchy problem associated with system (Sλ,µ) satisfying the initial
conditions x(t0) = 0 and y(t0) = y0, then

x(t; t0, 0, y0) < 0, y(t; t0, 0, y0) < 0, for all t ∈ ]t0, T ].

Indeed, let ]t0, t
∗[ ⊆ ]t0, T ] be the maximal open interval such that y(t) < 0 for all

t ∈ ]t0, t
∗[. By an integration of x′ = y, we have x(t) < 0 for all t ∈ ]t0, t

∗[. Assume now,
by contradiction, that t∗ < T . Then, 0 = y(t∗) = y0 < 0 and we have a contradiction.
The claim follows.

Consequently, we deduce that

x(τ ; 0, r1, 0) < 0, y(τ ; 0, r1, 0) < 0, (8.2.12)

and
x(τ ; 0, l1, 0) < 0, y(τ ; 0, l1, 0) < 0. (8.2.13)

At this point, taking into account (8.2.11), (8.2.12), (8.2.13) and Φτ
0(0, 0) = (0, 0),

thanks to the continuous dependence of the solutions upon the initial data and the
Intermediate Value Theorem, we deduce what follows. There exist three intervals

[q1,1, q2,1] ⊆ [0, p1], [q1,2, q2,2] ⊆ [p1, r1], [q1,3, q2,3] ⊆ [l1, p2],

such that, for each j ∈ {1, 2, 3}, Φτ0([q1,j , q2,j ]× {0}) ⊆ [0, 1]× R with

Φτ0(q1,j , 0) ∈ {0} × ]−∞, 0], Φτ0(q2,j , 0) ∈ {1} × ]0,+∞[,

and
x(t; 0, ξ, 0) ∈ ]0, 1[, for all t ∈ [0, τ ], ξ ∈ ]q1,j , q2,j [.

We conclude that there exist three sub-continua of Φτ0(X[0,1]) connecting {0}× ]−∞, 0]
with {1}× ]0,+∞[. We stress that the three sub-continua do not intersect each other, due
to the uniqueness of the solutions to the initial value problems associated with (Sλ,µ).

Step IV. Conclusion. Let us take

µ > µ∗(λ) := max
i∈{1,2}

µ?(κ2,i, κσ,i, t2,i, ωσ).
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Then, from Step II, we deduce the existence of a sub-continuum in ΦτT (X[0,1]) connecting
{0} × ]0,+∞[ with (1, 0). On the other hand, from Step I and Step III, we deduce the
existence of three pairwise disjoint sub-continua in Φτ

0(X[0,1]) connecting {0} × ]−∞, 0]
with {1} × ]0,+∞[. This way, from a standard connectivity argument, it follows the
existence of three distinct intersection points:

Cj ∈ Φτ0(]q1,j , q2,j [× {0}) ∩ ΦτT (]l2, 1[× {0}), j = 1, 2, 3.

See Figure 8.10 for a graphical representation. For each j ∈ {1, 2, 3}, given the solution
(x(t), y(t)) of the Cauchy problem associated with system (Sλ,µ) with initial data at time
t = τ the point Cj , then we have a positive solution to problem (IN λ,µ) defined by
u(t) := x(t; τ, Cj). Moreover, from a straightforward argument by contradiction, it follows
that

Φt0(ξ, 0) ∈ ]0, 1[× R, for all t ∈ ]q1,j , q2,j [, ξ ∈ [0, τ ],

ΦtT (ξ, 0) ∈ ]0, 1[× R, for all t ∈ ]l1, 1[, ξ ∈ [τ, T ],

and so we have that 0 < u(t) < 1 for all t ∈ [0, T ]. Then, Theorem 8.2.1 is proved.

From the study of problem (IN λ,µ) it could be interesting consider more general
domains. A classical application in this direction regards a radially symmetric Neumann
BVP defined on an annular domain of RN for N ≥ 2. More precisely, let Re > Ri > 0 be
two fixed radii and consider the open annular domain given by Ω = B(0, Re) \B[0, Ri].
Hence, as in Section 7.2, we deal with

(IN λ,µ,N )





∆u+ wλ,µ(x)ψ(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω,

where the weight function depends on the real positive parameters λ, µ and is defined by

wλ,µ(x) := λw+(x)− µw−(x).

Assuming that the weight term has radial symmetry, namely w(x) = Q(|x|) for all x ∈ Ω
with Q : [Ri, Re] → R, we look for radially symmetric positive solutions to problem
(IN λ,µ,N ), i.e. solutions of the form u(x) = U(|x|) where U : [Ri, Re]→ R.

Accordingly, our study can be reduced to the search of positive solutions of the
Neumann boundary value problem (7.2.3) which, via a standard change of variable, is
equivalent to a Neumann problem of the form

{
v′′(t) + wλ,µ(t)ψ(v(t)) = 0,

v′(0) = v′(T ) = 0,

and so, a direct consequence of Theorem 8.2.1 is the following.

Corollary 8.2.10. Let ψ : [0, 1]→ R+ be a locally Lipschitz continuous function satisfying
(Hψ1 bis) and (Hψ6). Let Q ∈ L1([Ri, Re]) such that there exist σ, τ with 0 < σ < τ < T
for which the following holds

Q+(t) � 0, Q−(t) ≡ 0, on [Ri, σ],

Q+(t) ≡ 0, Q−(t) � 0, on [σ, τ ],

Q+(t) � 0, Q−(t) ≡ 0, on [τ,Re],

and let w(x) := Q(|x|), for x ∈ Ω. Then, there exists λ∗ > 0 such that for each λ > λ∗

there exists µ∗(λ) > 0 such that for every µ > µ∗(λ) problem (IN λ,µ,N ) has at least three
radially symmetric positive solutions.



9. Further developments from Part II

In Chapter 6 and in Chapter 8, we have considered both indefinite nonlinear Dirichlet and
Neumann BVPs {

u′′ + λw(t)ψ(u) = 0,

u(0) = u(T ) = 0,

{
u′′ + λw(t)ψ(u) = 0,

u′(0) = u′(T ) = 0,

where λ > 0, the weight w : [0, T ]→ R is a sign-changing function and the nonlinearity
satisfies either

ψ : R+ → R+ such that ψ(0) = 0, ψ(ξ) > 0 for all ξ > 0 and sublinear at ∞ (Type 1),
or

ψ : [0, 1]→ R+ such that ψ(0) = ψ(1) = 0, ψ(ξ) > 0 for all ξ ∈ ]0, 1[ (Type 2).

Among other results presented, we have discussed the number of positive solutions in rela-
tion with the comparison between the concavity of ψ versus a condition about monotonicity
of ξ 7→ ψ(ξ)/ξ. We have found suitable nonlinearities/weights and we gave examples of the
multiplicity of positive solution for both problems. As far as we know, the mathematical
literature lacks of rigorous multiplicity results involving a minimal equipment of hypotheses
to guarantee either the multiplicity or the uniqueness of a non-trivial positive solution for
nonlinearities ψ both of Type 1 and Type 2.

Focusing on nonlinearities of Type 2, the main assumption considered in our examples
to solve a conjecture of Lou and Nagylaki [LN02] is that ψ has a strict local minimum in
]0, 1[. On the other hand, the presence of a nonlinearity ψ with a unique critical point in
]0, 1[ could produce, for such kinds of indefinite Neumann problems, different behaviors in
the number of positive solutions. Indeed, a still open problem is stated in [LNN13] and
it asks, considering the case

∫
Ω
w(x) dx = 0, whether in this case the resulting Neumann

problem has a unique non-trivial stationary solution for every λ > 0.
Still in this framework, another natural question that arises is whether, in analogy

with the result in [BFZ18] obtained for indefinite Neumann problems with “super-sublinear
nonlinearities”, there exist more than three non-trivial positive solutions for a Neumann
problem with a nonlinearity ψ of Type 2 superlinear at zero (as suggested by numerical
simulations and in accord with stability arguments). Actually, one could guess for certain
weight terms, that there exist at least eight positive solutions.

In conclusion, looking back on our results in the one-dimensional case and in the radial
cases, we hopefully were been the first steps towards the understanding of the structure of
the solutions set of challenging problems, even in a higher dimension.





Appendices





A. Mawhin’s coincidence degree

In this appendix we recall the basics on coincidence degree theory needed to treat some
issues in the present thesis. This theory is a powerful tool introduced by J. Mawhin in
[Maw79] that it turns out be a very useful technique in the study of nonlinear BVPs. We
refer also to [GM77; Maw93] for the proofs of the results collected below as well as a
complete discussion of this topic.

Let X and Z be real normed spaces with Ω an open bounded set in X. We consider
now the coincidence equation of the form

Lu = Nu, u ∈ domL ∩ Ω, (A.0.1)

where we assume that
L : X ⊇ domL→ Z

is a linear Fredholm mapping of index zero, namely ImL is a closed subspace of Z with
finite dim(kerL) = codim(ImL), and

N : X → Z

is a nonlinear operator. In this setting, there exist two linear and continuous projections

P : X → kerL, Q : Z → ImL,

as well as the continuous right inverse of L, denoted by

KP : ImL→ domL ∩X0 ,

where X0 := kerP ≡ X/kerL is a complementary subspace of kerL in X. Notice that
equation (A.0.1) is equivalent to the fixed point problem

u = Φ(u) := Pu+ JQNu+KP (Id−Q)Nu, u ∈ Ω, (A.0.2)

where J : cokerL = ImQ ≡ Z/ImL→ kerL is a linear isomorphism.
We further suppose that N is a continuous operator which maps bounded sets to

bounded sets and such that, for any bounded set B in X, the set KP (Id − Q)N(B) is
relatively compact, namely N is L-completely continuous [Maw93]. These assumptions
imply that the operator Φ, defined in (A.0.2), is completely continuous.
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If we suppose that
Lu 6= Nu, ∀u ∈ domL ∩ ∂Ω,

then also Id−Φ never vanishes on ∂Ω and, therefore, we can define the coincidence degree

DL(L−N,Ω) := degLS(Id− Φ,Ω, 0),

where “degLS” denotes the Leray-Schauder degree. To avoid ambiguity of sign, sometimes
the convention is to consider only |DL(L−N,Ω)|. Otherwise, we can fix an orientation on
kerL and cokerL. So that, we choose J in the class of orientation preserving isomorphisms
(see [Maw93]). In any case, for our application, the choice of P, Q and J is obvious and
no ambiguity will arise.

We also point out that the classical properties of the Leray-Schauder degree (such as
additivity/excision, homotopic invariance) hold also in this framework. For completeness,
we list these basic properties as follows (see [GM77]).

1. Existence theorem: if DL(L−N,Ω) 6= 0, then 0 ∈ (L−N)(domL ∩ Ω).

2. Excision property: if Ω0 ⊆ Ω is an open set such that (L − N)−1(0) ∈ Ω0, then
DL(L−N,Ω) = DL(L−N,Ω0).

3. Additivity property: if Ω1 ∪ Ω2 = Ω with Ω1, Ω2 open and such that Ω1 ∩ Ω2 = ∅,
then DL(L−N,Ω) = DL(L−N,Ω1) +DL(L−N,Ω2).

4. Homotopic invariance: if the operatorH : Ω×[0, 1]→ Z is L-compact in Ω×[0, 1] and
such that for every λ ∈ [0, 1], 0 6∈

(
L−H(·, λ)

)
(domL∩∂Ω), then DL(L−H(·, λ),Ω)

is independent of λ in [0, 1]. In particular, DL(L−H(·, 0),Ω) = DL(L−H(·, 1),Ω).

We now conclude with a key result for the computation of the coincidence degree
on an open bounded set in X. Indeed, by denoting with “degB” the finite dimensional
Brouwer degree, the following result holds in accord to the Mawhin’s continuation theorem
(see [Maw69; Maw72b]).

Theorem A.1. Let L and N be as above and let Ω ⊆ X be an open and bounded set.
Suppose that

Lx 6= λNx, ∀x ∈ domL ∩ ∂Ω, ∀λ ∈ ]0, 1],

and
QN(x) 6= 0, ∀x ∈ ∂Ω ∩ kerL.

Then,
DL(L−N,Ω) = degB(−JQN |kerL,Ω ∩ kerL, 0).

As a consequence, if degB(−JQN |kerL,Ω ∩ kerL, 0) 6= 0, then (A.0.1) has at leat one
solution.



B. Basics on chaotic dynamics

Proving that a dynamical system is “chaotic” is very far from suggesting that it could be
so. Indeed, a unique working method to all nonlinear problems does not exist, since there
exist in mathematical literature many and different definitions of chaos (see for instance
[AK01; KS89]). This appendix is devoted to introduce the reader through the topic of
chaotic dynamics with special emphasis of the notions considered in the present thesis.

In order to detect complex behaviors, several approaches are available in accord
with the definition taken into account. Nevertheless, there is not a general tool which
is applicable without give reference to a particular notion of chaos. Despite this, we
notice that there is a common feature in the definitions considered by several authors,
which is usually associated with the concept of deterministic chaos, namely the possibility
to reproduce all the possible outcomes of a coin-tossing experiment, varying the initial
conditions within the system.

“The laws of chance, with good reason, have traditionally been expressed in
terms of flipping a coin. Guessing whether heads or tails is the outcome of a
coin toss is the paradigm of pure chance.” (Stephen Smale, [Sma98]).

This observation leads to the so called chaos in the sense of the coin-tossing. Mathematically,
one can express this concept by means of the symbolic dynamics of the shift map (also
called Bernoulli shift or shift automorphism) on the sets of two-sided sequences of m
symbols. In more detail, given a collection of m ≥ 2 symbols, namely {0, . . . ,m − 1},
we denote by Σm := {0, . . . ,m− 1}Z the set of all two-sided sequences S = (si)i∈Z with
si ∈ {0, . . . ,m− 1} for each i ∈ Z. The set Σm is endowed with a standard metric that
makes it a compact space with the product topology. Within this setting, the shift map
σ : Σm → Σm is defined by σ(S) = S′ = (s′i)i∈Z with s′i = si+1 for all i ∈ Z. The shift map
on Σm is important in this topic since it can be considered as a model for chaotic dynamics.
In fact, it contains many of the features which usually characterize the concept of “chaos”
as a whole, for example: transitivity, density of periodic points, positive topological entropy
(see [AKM65; Dev89; GH83; Wig03]).

At this point, whenever one is interested in showing the presence of chaotic behaviors
for a map ϕ on a metric space, a possible approach is to prove the existence of a compact
invariant set Λ ⊆ X and a continuous and surjective map Π : Λ → Σm such that
Π ◦ ϕ(w) = σ ◦Π(w), for all w ∈ Λ. If this occurs, we say that ϕ is semiconjugate to the
shift map on m symbols. If, moreover, the map Π is one-to-one we say that ϕ is conjugate
to the shift map on m symbols. In this manner, when the map ϕ is semiconjugate to the
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shift map on m symbols, then ϕ restricted to Λ inherits all the topological properties of
the shift map.

On the other hand, a prototypical example of chaotic dynamics arises by the geometric
structure associated with the Smale horseshoe. Technically, the Smale’s construction deals
with a planar diffeomorphism acting on a square, whose image has the shape of a horseshoe
that crosses the square in a suitable manner (see [Sma65; Sma67]). The main pattern of
the Smale horseshoe is essentially a succession of actions of stretching and folding of the
square. This Smale’s construction became an important technique in the study of chaotic
dynamics since it implies the embedding of the Bernoulli shift map on two symbols into
the dynamics of the diffeomorphism. More in detail, the Smale horseshoe map presents
a hyperbolic compact invariant set on which it is conjugate to the shift map on two
symbols. This is, for instance, the case considered in the frame of Melnikov’s theory where
a Smale horseshoe occurs for some iterates of the Poincaré map as a consequence of the
Smale-Birkhoff theorem. In fact, such theorem considers a diffeomorphism ϕ possessing a
transversal homoclinic point q to a hyperbolic saddle point p. Then, for some N, ϕ has a
hyperbolic invariant set Λ on which the N -th iterate ϕN is conjugate to the shift map on
two symbols (see [Hol90]). Accordingly here a natural definition of chaos.

Definition B.1 (Smale’s horseshoe occurrence). We say that a Smale horseshoe occurs
if there is a hyperbolic compact invariant set on which a given map ϕ is conjugate to
(Σm, σ) for m ≥ 2.

In a wide variety of dynamical systems the Smale horseshoe has been detected, however,
Smale’s conditions are difficult to verify practically and in some cases the location of
a horseshoe is a hard task. Then, some weaker notions were derived by keeping more
features of Smale’s chaotic systems as possible but relaxing some technical conditions (see
[BW95; CKM00; MM95; SW97; Srz00; Szy96; Zgl96; ZG04]). An interesting point of
view that gets the idea of Smale and moves to a more general topological context is the
so-called concept of “topological horseshoe”, introduced by J. Kennedy and J. A. Yorke in
[KY01]. Given this context, we introduce another definition of chaos as follows.

Definition B.2 (Topological’s horseshoe occurrence). We say that a topological horseshoe
occurs if there is a compact invariant set on which a given map ϕ is semiconjugate to
(Σm, σ) for m ≥ 2 and, moreover, for each periodic sequence S ∈ Σm, there is at least one
periodic point w ∈ Λ with the same period and such that Π(w) = S.

Notice that also in this case the topological entropy is positive. This way, the topological
horseshoes with symbolic dynamics provide a powerful tool to describe time evolution
of chaotic dynamics which have inspired some different techniques. One of these is for
instance the Stretching Along the Paths (SAP) method, that owes its name to the fact
that it treats maps which are expansive only along one direction and compressive in the
other ones (we refer to [MPZ09; PZ04] for a presentation of the method and to [Sovbm] for
its review). The SAP method is an easy criterion that judges whether a dynamical system
is chaotic, for example, in the sense of the coin-tossing. Moreover, its application is made
in the practice without involved constructions and it can be straightforwardly sketched
via computer simulations. The ease of treatment is due to the fact that no differentiability
neither one-to-one conditions are required for the map describing the dynamical system
which one would analyze. The requirement that such a map has to satisfy is the continuity
on some subsets belonging in its domain. Furthermore, we observe that close to this
method there are also other approaches based on the topological horseshoe (see e.g. [Zgl96;
Zgl01; ZG04]).

Let us recall the basics on the SAP method, borrowing the notations and definitions
from [MPZ09].

Definition B.3. Let R ⊆ R2 be a set homeomorphic to [0, 1] × [0, 1]. The pair R̃ :=
(R,R−) is called oriented topological rectangle if R− = R−l ∪R−r , where R−l and R−r are
two disjoint compact arcs contained in ∂R.
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Definition B.4 (SAP property). Given two topological oriented rectangles M̃ :=
(M,M−), Ñ := (N ,N−) and a continuous map ϕ : domϕ ⊆ R2 → R2, we say that ϕ
stretches M̃ to Ñ along the paths and we write

(K, ϕ) : M̃ m−→ Ñ

if K is a compact subset of M ∩ domϕ and for each path γ : [0, 1] → M such that
γ(0) ∈M−l and γ(1) ∈M−r (or vice-versa), there exists [t′, t′′] ⊆ [0, 1] such that

• γ(t) ∈ K for all t ∈ [t′, t′′],

• ϕ(γ(t)) ∈ N for all t ∈ [t′, t′′],

• ϕ(γ(t′)) and ϕ(γ(t′′)) belong to different components of N−.
Given a positive integer m, we say that ϕ stretches M̃ to Ñ along the paths with crossing
number m and we write

(K, ϕ) : M̃ m−→m Ñ
if there exist m pairwise disjoint compact sets K0, . . . ,Km−1 ⊆ M ∩ domϕ such that
(Ki, ϕ) : M̃ m−→ Ñ for each i ∈ {0, . . . ,m− 1}.
Definition B.5. Let ϕ : domϕ ⊆ R2 → R2 be a map and let D ⊆ domϕ be a nonempty
set. We say that ϕ induces chaotic dynamics on m ≥ 2 symbols on a set D if there exist m
nonempty pairwise disjoint compact sets K0, . . . ,Km−1 ⊆ D such that for each two-sided
sequence (si)i∈Z ∈ {0, . . . ,m − 1}Z there exists a corresponding sequence (wi)i∈Z ∈ DZ

such that
wi ∈ Ksi and wi+1 = ϕ(wi) for all i ∈ Z, (B.1)

and, whenever (si)i∈Z is a k-periodic sequence for some k ≥ 1 there exists a k-periodic
sequence (wi)i∈Z ∈ DZ satisfying (B.1).

For applications point of view, the case m ≥ 2 is more interesting because, the bigger
m is, the richer symbolic dynamic structure becomes. Moreover, Definition B.5 is inspired
by the definition of chaos in the sense of coin-tossing or in the sense of Block-Coppel
[BC92] and it allows us to assert that a topological horseshoe occurs (see for instance
[MPZ09; MRZ10; PPZ08]). Indeed, for a one-to-one map ϕ, it ensures the existence of
a nonempty compact invariant set Λ ⊆ ∪m−1

i=0 Ki ⊆ D such that ϕ|Λ is semiconjugate to
the Bernoulli shift map on m ≥ 2 symbols by a continuous surjection Π. Moreover, it
guarantees that the set of the periodic points of ϕ is dense in Λ and, for all two-sided
periodic sequence S ∈ Σm, the preimage Π−1(S) contains a periodic point of ϕ with the
same period.

Finally, in order to detect chaos, an useful topological tool in the framework of switched
systems is the following (see [MRZ10, Th. 2.1]).

Theorem B.6 (SAP method). Let ν : dom ν ⊆ R2 → R2 and η : dom η ⊆ R2 → R2 be
continuous maps. Let M̃ = (M,M−) and Ñ = (N ,N−) be oriented rectangles in R2.
Suppose that

• there exist n ≥ 1 pairwise disjoint compact subsets ofM ∩ dom ν, Q0, . . . , Qn−1,
such that (Qi, ν) : M̃ m−→ Ñ for i = 0, . . . , n− 1,

• there exist m ≥ 1 pairwise disjoint compact subsets of N ∩ dom η, K0, . . . , Km−1,
such that (Ki, η) : Ñ m−→ M̃ for i = 0, . . . ,m− 1.

If at least one between n and m is greater or equal than 2, then the map ϕ = η ◦ ν induces
chaotic dynamics on n×m symbols on

Q∗ =
⋃

i=1,...,n
j=1,...,m

Qi ∩ ν−1(Kj).

According to Theorem B.6, the trick to ensure that a topological horseshoe occurs is only
the verification of some stretching properties for the continuous maps ν and η.
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