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Abstract

The original Finite Difference Time Domain (FDTD) method, devised by Yee in 1966,
inspired a conspicuous amount of research in the field of numerical schemes for solving
Maxwell’s equations in the time domain, thanks to its simplicity and computational
efficiency. The original algorithm, which computes the values of electric and magnetic
fields on the points of two interlocked Cartesian orthogonal grids, has also been rewritten
as a Finite Integration Technique (FIT) algorithm, where the computed quantities are
the integrals of the field over geometric elements of the grids. Both formulations suffer
from the so-called staircase approximation problem: when an interface between regions
with discontinuous material properties is not flat,the expected convergence properties of
the numerical solution are not guaranteed if an exaggeratedly fine grid is not used. In this
regard, even recent improved techniques based on combined arithmetic and harmonic
averaging techniques cannot achieve second order accuracy in time in the neighborhood
of the interface. This problem is inherent to the Cartesian orthogonal discretization of
the domain, as unstructured grids (tetrahedral or polyhedral) mesh generators avoid it
with grids conformal to the discontinuities in material properties.

Approaches that have had some degree of success in adapting the FDTD algorithm to
unstructured grids include schemes based on the Finite Element method (FEM), on the
Cell Method and, more recently, formulations based on the Discontinuous Galerkin (DG)
approach. Yet, consistency issues of discontinuous methods question their accuracy,
since these methods do not explictly force tangential continuity of the fields across mesh
element interfaces, weakening the local fulfillment of physical conservation laws (charge
conservation in particular). On the other hand, classical FEM formulations, which do
not share this drawback, trade their geometric flexibility with an implicit time-stepping
scheme, i.e. the computation includes solving a linear system of algebraic equations at
each time-step. This severely limits the scalability of the algorithm.

Recently, a technique has been introduced by Codecasa et al., based on a Discrete Ge-
ometric Approach (DGA) which instead yields an explicit, consistent and conditionally
stable algorithm on tetrahedral grids. Due to the promising features of this approach,
a thorough analysis of its performance and accuracy is in order, since neither have been
widely tested yet. This work addresses the issue and shows that the latter approach
compares favorably with equal order FEM approaches on unstructured grids. An im-
portant drawback of the DGA approach is that it was originally formulated for strictly
dielectric materials. The way to overcome this limitation is unfortunately not obvious.
The present work addresses this issue and solves it without sacrificing any property of
the original algorithm. Furthermore, although the properties of the material operators
in the original formulation show that the resulting scheme is conditionally stable, a
Courant–Friedrich–Lewy (CFL) condition equivalent to the one of the original FDTD
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algorithm is not given. This is also dealt with in the bulk of this thesis and a sufficient
condition for the stability of this algorithm is given with proof.

Finally a practical toolbox for time domain electromagnetic simulations, tentatively
named TetFIT and resulting from the coding efforts of the author is presented, with
preliminary results on its performance when running on Graphical Processing Units
(GPUs).
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correctly on ∂Ω, also for the piece-wise affine basis functions defined in
Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Logarithmic plot of the maximum allowed ∆t versus the maximum edge
length in the grid for all three methods. . . . . . . . . . . . . . . . . . . 49

4.5 A simulation of 4µs of electromagnetic propagation, used to test the emer-
gence of late time instabilities. The fields versus time obtained on a much
smaller time span of 40 ns are shown in the magnified box. . . . . . . . 50

4.6 All the methods converge as O(h) in L2 norm error, with h being the
maximum edge length in the grid. . . . . . . . . . . . . . . . . . . . . . 52

4.7 Number of iterations needed by the PCG solver to converge under the
prescribed relative residual R versus the number of elements in the mesh,
for different values of R. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Time-step limit value versus accuracy of the method, again in logarithmic
scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Computational complexity versus accuracy: the continuous lines show
the computational time for a single time-step, the dashed ones for 10 ns
of simulated time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 The DGA discrete scheme complies with Poynting’s Theorem. In each of
the second two plots the time-step is halved. . . . . . . . . . . . . . . . 56

4.11 Cylindrical cavity: height h = 0.5 m and radius r = 1 m. . . . . . . . . . 57

4.12 Result of FFT analysis the computed electric field in the cylindrical res-
onator: a field probe was put at the center of the resonator. The res-
onances match the theoretically predicted frequency values (the black
vertical lines) within the accuracy permitted by the FFT. Incidentally,
the well known vestigial side-bands due to Hamming windowing are dis-
cernible on both peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Local quantities defined on the single dual volume. For the sake of clarity
we show a 2D section in which the section of the dual volume is the
coloured area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Local quantities defined on the single tetrahedron . . . . . . . . . . . . . 65

5.3 2D section of an example in which the computational domain is split in
three regions where the three sub-cases of the time marching algorithm
apply: the domain Ω is the union of an arbitrarily shaped object ΩC (the
red area in the online version) with σ 6= 0 in ΩC and a perfectly dielectric
(possibly inhomogenous) region ΩD given by its complement with respect
to a larger box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Comparison of various approaches for the case of purely dielectric material
(air) inside the waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Relative error in L2 norm: σ = 0 everywhere inside the waveguide (h is
the maximum edge length of the mesh element in the grid). . . . . . . . 70

5.6 Comparison of various approaches (with different mesh sizes) for the case
of uniform σ = 50 mS/m everywhere inside the waveguide. . . . . . . . . 70



List of Figures xv

5.7 Relative error in L2 norm: σ = 50 mS/m everywhere inside the waveguide
(h is the maximum edge length of the mesh element in the grid). . . . . 71

5.8 Two projections of the simulation setup for the numerical example of
subsection 5.3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.9 Comparison of various approaches for the setup of Fig. 5.8. The tetra-
hedral grid used comprises 5 402 984 tetrahedra, while the Cartesian or-
thogonal grid comprises 8 000 000 cubes. . . . . . . . . . . . . . . . . . . 73

5.10 Comparison of various approaches for the setup of Fig. 5.8: different time
instant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.11 Comparison of various approaches for the setup of Fig. 5.8: yet another
different time instant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.12 The DGA discrete scheme complies with Poynting’s Theorem again if we
introduce the lossy L2 norms. In this figure, we set ∆t = 141 ps. . . . . 75

6.1 Example of limit time-step estimation based on spectral methods, versus
the theoretical CFL condition, for the case of a standard FDTD example.
The test case is cube with side 1 m, discretised with uniform step ∆x =
∆y = ∆z = 10 cm, resulting in a mesh of 1000 cubes. . . . . . . . . . . 77

6.2 A grid containing nearly degenerate tetrahedra as the one on the right
will require a smaller time-step to yield a stable scheme, even if all three
shown elements have roughly the same diameter. . . . . . . . . . . . . . 82

6.3 Comparison between the derived CFL condition and the estimated time-
step limit values estimated with spectral methods for the DGA and FEM
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1 Graphical representation of the block-diagonal matrix-vector multiplica-
tion on GPU. Each thread computes a dot product in a matrix block,
producing a single scalar value in the result of the operation. . . . . . . 92

7.2 Average computational cost of a single time-step vs. number of DoFs of
the problem. x axis in linear scale, y axis in logarithmic scale. . . . . . . 93

7.3 Average computational cost of a single execution of the kernel for Fara-
day’s law vs. number of DoFs of the problem. Both axes in linear scale. 94

A.1 DGA lossless snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2 DGA lossless snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3 DGA lossless snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4 DGA lossless snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.5 DGA lossless snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.6 DGA lossless snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.7 DGA lossless snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.8 DGA lossless snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.9 DGA lossless snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.10 DGA lossless snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . . 103
A.11 DGA lossless snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . . 103
A.12 DGA lossless snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . . 103
A.13 FEM lossless snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.14 FEM lossless snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . 104



xvi List of Figures

A.15 FEM lossless snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.16 FEM lossless snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.17 FEM lossless snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.18 FEM lossless snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . 105
A.19 FEM lossless snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.20 FEM lossless snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.21 FEM lossless snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.22 FEM lossless snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . . 107
A.23 FEM lossless snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . . 107
A.24 FEM lossless snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . . 107
A.25 FDTD lossless snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . 108
A.26 FDTD lossless snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . 108
A.27 FDTD lossless snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . 108
A.28 FDTD lossless snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . 109
A.29 FDTD lossless snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . 109
A.30 FDTD lossless snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . 109
A.31 FDTD lossless snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . 110
A.32 FDTD lossless snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . 110
A.33 FDTD lossless snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . 110
A.34 FDTD lossless snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . 111
A.35 FDTD lossless snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . 111
A.36 FDTD lossless snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . 111
A.37 DGA lossy snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.38 DGA lossy snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.39 DGA lossy snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.40 DGA lossy snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.41 DGA lossy snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.42 DGA lossy snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.43 DGA lossy snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.44 DGA lossy snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.45 DGA lossy snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.46 DGA lossy snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.47 DGA lossy snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.48 DGA lossy snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.49 FEM lossy snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.50 FEM lossy snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.51 FEM lossy snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.52 FEM lossy snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.53 FEM lossy snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.54 FEM lossy snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.55 FEM lossy snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.56 FEM lossy snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.57 FEM lossy snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.58 FEM lossy snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.59 FEM lossy snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.60 FEM lossy snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Figures xvii

A.61 FDTD lossy snapshot no. 1 . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.62 FDTD lossy snapshot no. 2 . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.63 FDTD lossy snapshot no. 3 . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.64 FDTD lossy snapshot no. 4 . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.65 FDTD lossy snapshot no. 5 . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.66 FDTD lossy snapshot no. 6 . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.67 FDTD lossy snapshot no. 7 . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.68 FDTD lossy snapshot no. 8 . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.69 FDTD lossy snapshot no. 9 . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.70 FDTD lossy snapshot no. 10 . . . . . . . . . . . . . . . . . . . . . . . . 123
A.71 FDTD lossy snapshot no. 11 . . . . . . . . . . . . . . . . . . . . . . . . 123
A.72 FDTD lossy snapshot no. 12 . . . . . . . . . . . . . . . . . . . . . . . . 123





1
Introduction

Computational electromagnetics (CE) is a multi-disciplinary branch of engineering,
mathematics and computer science which seeks discritized models and solutions for
any problem governed by Maxwell’s equations, which read:

∂td pr, tq + jc pr, tq = ∇× h pr, tq , (1.1a)

∇ · d pr, tq = ρc prq , (1.1b)

∂tb pr, tq = −∇× e pr, tq , (1.1c)

∇ · b pr, tq = 0, (1.1d)

where e pr, tq (electric field), d pr, tq (electric displacement), h pr, tq (magnetic field),
b pr, tq (magnetic induction), jc pr, tq (conduction current) are vector fields and ρc prq
(free charge density) is a scalar field. Equation (3.42) is called Ampére–Maxwell law,
equation (1.1b) is called Gauss’ electric law, equation (3.41) is called Faraday’s law
and equation (1.1d) is called Gauss’ magnetic law. To be useful for practical purposes,
the equations in (1.1) must be supplemented with so-called constitutive relations, which
describe the macroscopic behaviour of the medium in which electromagnetic phenomena
are to be studied:

d pr, tq = ε prq e pr, tq , (1.2a)

b pr, tq = µ prqh pr, tq , (1.2b)

jc pr, tq = σ prq e pr, tq (1.2c)

e pr, tq = η prqd pr, tq , (1.2d)

h pr, tq = ν prq b pr, tq , (1.2e)

e pr, tq = ρ prq jc pr, tq , (1.2f)

where ε (dielectric permittivity), µ (magnetic permeability), σ (electric conductivity),
ν = µ−1, and ρ = σ−1 are tensors, which in the following will be assumed to be
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symmetric positive-definite. If all material in Ω are linear and non-dispersive1, from
(1.1) and (1.2), the inhomogenous vector wave equations for the electric and magnetic
fields readily follow:

ε prq ∂2t e pr, tq + ∇× pν∇× e pr, tqq = −∂tjc, (1.3a)

µ prq ∂2t h pr, tq + ∇× pη∇× h pr, tqq = ∇× η∂tjc, (1.3b)

which become the better known homogenous wave equations when no conductive mate-
rial is present. It is essential to note that the vector wave equations arise from Maxwell’s
equations when neither the electric or magnetic field’s time variation can be neglected.
To solve electromagnetic problems on a computer with finite memory, two kind of ap-
proximations must be always taken into account: first, some criteria must be adopted
to discretize both space and time derivatives in a system of partial differential equations
(PDEs) (such as (1.3a) and (1.3b)). Second, the domain of study must always be a
bounded subset2 Ω of R3, therefore some prescription on the value of the fields on the
boundary of Ω (which will be labeled ∂Ω) at all times is also needed.

Starting from equations (1.3a) and (1.3b) a classification (among many) of compu-
tational methods is possible with respect to how the time variable t is treated: a first
class of methods eliminates it by assuming time-harmonic behaviour for the fields. This
procedure (which leads to Helmholtz’s equation in the continuous setting) is probably
the most widely adopted in the CE community, but is not in the scope of this work and
will never be referred to in the following. There is instead a broad class of physical prob-
lems (scattering from large objects, fast transient phenomena, radiation from wideband
antennas, resonant cavities, et cetera) in which it is not possible (or very inconvenient)
to make any assumption regarding the harmonic behaviour of the solution. In such cases
we must solve initial value problems (IVP), in which the solution is uniquely determined
in terms of e pr, tq and h pr, tq by the value of the fields at time t = 0. The main focus of
this thesis is devoted to the developement, validation, implementation and comparative
study of numerical methods for solving IVPs on Maxwell’s equations.

The thesis is structured as follows: in Chapter 2 a review of some standard ap-
proaches to the IVP problem for Maxwell’s equations is given for the sake of com-
pleteness and to motivate the study performed in this thesis. In Chapter 3 a recently
developed approach, based on the Discrete Geometric Approach (DGA) on tetrahedral
grids, is re-introduced for the solution of IVPs on Maxwell’s equations. The motivation
for its study is given, also by outlining the connections with alternative approaches.
In Chapter 4 the methods are compared in terms of performance and accuracy on a
testbench for which the analytical solution is computed. In Chapter 5 a pivotal en-
hancement is introduced for the DGA time domain method, making it able to handle
materials with finite resistivity. In Chapter 6 considerations on numerical stability of
the presented schemes are given and a sufficient condition for the stability of the DGA
scheme is analytically derived for the first time. In Chapter 7, the main functionalities
of a software simulation tool implemented during the thesis are described, with some
detail also being on the parallel implementation of the DGA scheme on Graphical Pro-
cessing Units (GPUs). In Chapter 8 the main results of the thesis are summarized and

1They behave uniformly in the full spectrum. This is always an approximation
2unfortunately sometimes the actual physical setting is not
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directions for future work on the topic are discussed.
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2
Computational Electromagnetics

in the time domain: an

introduction

2.1 The finite difference time domain method

Historically, it was Oliver Heaviside’s independent work on vector calculus that gave
scientists the chance to work with such an elegant and succint mathematical form as
the one of (1.1). Long before that, James Clerk Maxwell originally formulated his
eponymous set of equations in scalar fashion: e.g. vector identities (3.42) and (3.41) can
be expanded (in a cartesian coordinate system {x, y, z}) to a set of six scalar equations
by computing the curls on the right hand-sides:

∂tdx px, y, z, tq = ∂yhz px, y, z, tq − ∂zhy px, y, z, tq − jcx px, y, z, tq , (2.1a)

∂tdy px, y, z, tq = ∂zhx px, y, z, tq − ∂xhz px, y, z, tq − jcy px, y, z, tq , (2.1b)

∂tdz px, y, z, tq = ∂xhy px, y, z, tq − ∂yhx px, y, z, tq − jcz px, y, z, tq , (2.1c)

∂tbx px, y, z, tq = ∂zey px, y, z, tq − ∂yez px, y, z, tq , (2.1d)

∂tby px, y, z, tq = ∂xez px, y, z, tq − ∂zex px, y, z, tq , (2.1e)

∂tbz px, y, z, tq = ∂yex px, y, z, tq − ∂xey px, y, z, tq , (2.1f)

where ∂x denotes partial derivation with respect to k ∈ {x, y, z, t} and we decompose all
vector fields into cartesian components as a = {ax, ay, az}. While the system in (2.1)
is no doubt cumbersome to treat with pen and paper it has provided, as recently as
of 1966 [1], invaluable insight in the approach to the solution initial value problems for
Maxwell’s equations on a computer.

We can always assume that all components of a point {x, y, z, t} in space-time can
be written as: x = i∆x, y = j∆y, z = k∆z, t = n∆t. Take any component of a vector
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field (e.g. the x-component). We will write, for brevity:

ax
n(i, j, k) = ax pi∆x, j∆y, k∆z, n∆tq . (2.2)

We remark that (2.2) does not (yet) assume any particular discretization of space and
time if one lets i, j, k, n ∈ R. We also recall that, if ax(x, t) is a scalar valued function
depending solely on x and t its partial derivative with respect to x is

ax
n

ˆ

i+
1

2

˙

= ax
n piq +

∂xax
n piq

`

∆x
2

˘

1!
+
∂2xax

n piq
`

∆x
2

˘2

2!
+
∂3xax

n piq
`

∆x
2

˘3

3!
+ . . . ,

(2.3)

ax
n

ˆ

i−
1

2

˙

= ax
n piq − ∂xax

n piq
`

∆x
2

˘

1!
+
∂2xax

n piq
`

∆x
2

˘2

2!
−
∂3xax

n piq
`

∆x
2

˘3

3!
+ . . . ,

(2.4)

where unvaried parameters have been omitted for the sake of brevity. By subtracting
the second Taylor series expansion to the first one, dividing both sides by ∆k, and
rearranging we get

∂xax
n piq =

ax
n

`

i+ 1
2

˘

− ax
n

`

i− 1
2

˘

∆x
+ O

`

∆x2
˘

, (2.5)

where the same conclusions are valid for derivatives with respect to y and z. This is
called the centered (or central) difference approximation. Take now for example equation
(2.1d), we can write

∂tbx
n

ˆ

i, j +
1

2
, k +

1

2

˙

=
ey

n
`

i, j + 1
2 , k + 1

˘

− ey
n

`

i, j + 1
2 , k

˘

∆z

−
ez

n
`

i, j + 1, k + 1
2

˘

− ez
n

`

i, j, k + 1
2

˘

∆y

+ O
`

∆z2
˘

+ O
`

∆y2
˘

.

(2.6)

Furthermore, by the same approach for the left hand-side of (2.6), it is

∂tbx
n

ˆ

i, j +
1

2
, k +

1

2

˙

=
bx

n+ 1
2

`

i, j + 1
2 , k + 1

2

˘

− bx
n− 1

2

`

i, j + 1
2 , k + 1

2

˘

∆t

+ O
`

∆t2
˘

.

(2.7)

If we neglect all second order small quantities (in the limit where all deltas tend to zero)
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field

hx
n+ 1

2

ˆ

i, j +
1

2
, k +

1

2

˙

= hx
n− 1

2

ˆ

i, j +
1

2
, k +

1

2

˙

+
∆t

µ
`

i, j + 1
2 , k + 1

2

˘

˜

ey
n

`

i, j + 1
2 , k + 1

˘

− ey
n

`

i, j + 1
2 , k

˘

∆z

¸

−
∆t

µ
`

i, j + 1
2 , k + 1

2

˘

˜

ez
n

`

i, j + 1, k + 1
2

˘

− ez
n

`

i, j, k + 1
2

˘

∆y

¸

,

(2.9)

hy
n+ 1

2

ˆ

i+
1

2
, j, k +

1

2

˙

= hy
n− 1

2

ˆ

i+
1

2
, j, k +

1

2

˙

+
∆t

µ
`

i+ 1
2 , j, k + 1

2

˘

˜

ex
n

`

i+ 1
2 , j, k + 1

˘

− ex
n

`

i+ 1
2 , j, k

˘

∆z

¸

−
∆t

µ
`

i+ 1
2 , j, k + 1

2

˘

˜

ez
n

`

i+ 1, j, k + 1
2

˘

− ez
n

`

i, j, k + 1
2

˘

∆x

¸

,

(2.10)

hz
n+ 1

2

ˆ

i+
1

2
, j +

1

2
, k

˙

= hz
n− 1

2

ˆ

i+
1

2
, j +

1

2
, k

˙

+
∆t

µ
`

i+ 1
2 , j + 1

2 , k
˘

˜

ey
n

`

i+ 1, j + 1
2 , k

˘

− ey
n

`

i, j + 1
2 , k

˘

∆x

¸

−
∆t

µ
`

i+ 1
2 , j + 1

2 , k
˘

˜

ex
n

`

i+ 1
2 , j + 1, k

˘

− ex
n

`

i+ 1
2 , j, k

˘

∆y

¸

,

(2.11)

followed by three discrete update equations for the electric field components

ex
n+1

ˆ

i+
1

2
, j, k

˙

= ex
n

ˆ

i+
1

2
, j, k

˙

+
∆t

ε
`

i+ 1
2 , j, k

˘

˜

hz
n+ 1

2

`

i+ 1
2 , j + 1

2 , k
˘

− hz
n+ 1

2

`

i+ 1
2 , j −

1
2 , k

˘

∆y

¸

−
∆t

ε
`

i+ 1
2 , j, k

˘

˜

hy
n+ 1

2

`

i+ 1
2 , j, k + 1

2

˘

− hy
n+ 1

2

`

i+ 1
2 , j, k −

1
2

˘

∆z

¸

− jcx
n+ 1

2

ˆ

i+
1

2
, j, k

˙

,

(2.12)
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Figure 2.2: Elemetary 3D cell.
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2
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ˆ
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2
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˙

+
∆t

ε
`

i, j + 1
2 , k

˘

˜

hx
n+ 1

2

`

i, j + 1
2 , k + 1

2

˘

− hx
n+ 1

2

`

i, j + 1
2 , k −

1
2

˘

∆z

¸

−
∆t

ε
`

i, j + 1
2 , k

˘

˜

hz
n+ 1

2

`

i+ 1
2 , j + 1

2 , k
˘

− hz
n+ 1

2

`

i− 1
2 , j + 1

2 , k
˘

∆x

¸

− jcy
n+ 1

2

ˆ

i, j +
1

2
, k

˙

,

(2.13)

ez
n+1

ˆ

i, j, k +
1

2

˙

= ez
n

ˆ

i, j, k +
1

2

˙

+
∆t

ε
`

i, j, k + 1
2

˘

˜

hy
n+ 1

2

`

i+ 1
2 , j, k + 1

2

˘

− hy
n+ 1

2

`

i− 1
2 , j, k + 1

2

˘

∆x

¸

−
∆t

ε
`

i, j, k + 1
2

˘

˜

hz
n+ 1

2

`

i, j + 1
2 , k + 1

2

˘

− hz
n+ 1

2

`

i, j − 1
2 , k + 1

2

˘

∆y

¸

− jcz
n+ 1

2

ˆ

i, j, k +
1

2

˙

,

(2.14)

where we have used the fact that, at any point in the grid b pr, tq = µ prqh pr, tq and
d pr, tq = ε prq e pr, tq.

The leapfrog scheme in equations (2.11–2.14) is called Yee’s algorithm, and has
become celebrated in the literature as the Finite Differences Time Domain (FDTD
henceforth) algorithm thanks to influential work by Taflove et al. [2]. If at time t = 0 all
fields are known, the scheme in (2.11–2.14) can be used repeatedly by setting n = n+ 1
after equation (2.14). In three dimensions the two interlocked Cartesian orthogonal
grids are shown in Fig 2.2, where we have set1 ∆x = ∆y = ∆z = ∆`.

1Using uniform grid spacing in all spatial dimensions is the standard practice in FDTD codes and
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Unfortunately, the FDTD solution of Maxwell’s equations is still not discrete enough
for a computer: we still have to truncate the computational domain in all directions to
get a finite one. In other words, we have to devise some criterion by which we evolve
the time-stepping algorithm on the limits of the grid. The scheme of (2.11–2.14) cannot
be used on boundary grid points, since at least one of the two interlocked grids has
to be trucated incoherently there. In fact, one of the insights which led Yee to the
developement of the algorithm was indeed related to a possible truncation procedure.
Assume the computational domain to be a cuboid with size multiple of ∆x, ∆y, ∆z
in the correspondent direction. If the grid is constructed coherently, it is easy to force
the value of the electric field components on the boundary of the grid to vanish. This
amounts to the requirement of vanishing tangential electric field on the surface of Perfect
Electric Conductor (PEC)

e(r, t) × n̂ = 0 ∀ r ∈ ∂Ω. (2.15)

It turns out, as the reader can easily visualize from Fig. 2.2, that the way the algo-
rithm works automatically takes care of the associated requirement of vanishing normal
magnetic field component

h(r, t) · n̂ = 0 ∀ r ∈ ∂Ω. (2.16)

We will build from this last insight in the next Chapter and show how the FDTD
algorithm can also be derived as a particular subset of more general methods when
starting from the integral version of Maxwell’s equations. Other, more sofisticated
truncation approaches have been studied to simulate open radiation problems and to
exploit problem dependent symmetries, but we will only marginally delve into these in
the present work.

The FDTD method is, 50 years after its inception, the most used method for the
solution of electromagnetic problems. This is due to a variety of factors, among which
the most important is probably the remarkable fact that it could be introduced and
explained in a few paragraphs. Of course, on the other hand, its simplicity is the root
of its own limitation:

• Engineers interested in approximating solutions of electromagnetic problems with
smoother functions must resort to more complicated methods, as Yee’s algorithm
doesn’t naturally generalize to higher order approximations of derivatives.

• The derived O
`

∆`2
˘

convergence rate is very optimistic in practical problems
and the reason resides in the FDTD tesselation of space: until now we have, for
the sake of simplicity, assumed that the material properties defined in (1.2) are
uniform in the domain under study. When this is not the case, leaving the basic
approach of (2.11–2.14) untweaked implies a stairstepped geometry approximation
(see Fig. 2.3 for a 2D visualization), which can have dramatic consequences, since
it undermines the expected order of accuracy of the FDTD solution.

In fact, the applications for which time domain numerical simulations are most indicated
call for the representation of objects of arbitrarily complicated geometry (e.g. anten-

will be also the adopted everywhere in this thesis, except where noted.
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ε1,μ1

ε2,μ2

Figure 2.3: Stairstepped approximation of a curved material discontinuity.

nas, airplanes, 3D photonic crystals), which made stairstepping a recognizable problem
early in the algorithm history. A large amount of literature is available (see [3] and
references therein) in the CE research field on the subsequent efforts made to generalize
Yee’s original scheme to arbitrary geometries. Unfortunately, there seems yet not to
be any successful way to preserve the simplicity and computational efficiency of the
FDTD method, while achieving the global accuracy of the ideal material case. Even
recent improved techniques based on combined arithmetic and harmonic averaging of
material properties [4,5] cannot achieve acceptable accuracy in the neighborhood of the
interface between different materials, which is a very disappointing drawback for many
applications which would otherwise be taylor–made for FDTD solutions (e.g. nanoplas-
monics). Well established alternative methods for IVPs on Maxwell’s equtions exist (see
next section), but an improved FDTD-like method remains therefore an open field of
research and motivates much of the work done in this thesis.

2.2 The Finite Element Method in the time domain

The Cartesian orthogonal grid used in the FDTD method is an example of a structured
grid. Structured grids are discretizations of space in which the connectivity between
grid points has a uniform pattern, i.e. in three dimensions grid cells and vertices can be
unambiguously defined, and stored on a computer, through a triple list of indexes. This
is not the case in general for any polyhedral tesselation of space (which for the purposes
of this thesis will be restricted to tetrahedral meshes), where adjacencies and connections
between grid points must be encoded explicitly, generally implying an increased memory
consumption.

Nevertheless, the stairstepping approximation problem presented in the previous
section is inherent to the Cartesian orthogonal discretization of the domain, as many
of the available automatic unstructured grid generators [6, 7] avoid it by conformally
meshing the discontinuities in material properties: the underlying meshing algorithms
usually start by triangulating discontinuity surfaces in the problem and then generate a
volume mesh consistent with the triangulation. Unfortunately numerical PDEs solutions
based on finite differences such as the FDTD are not straightforwardly transferable on
unstructured grids and other approaches are used, most notably ones based on the Finite
Element Method (FEM).

The FEM, which in spite of its name is more of a general metodology than a particu-
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lar solution method, has been applied to nearly every equation of interest in mathemat-
ical physics. IVPs for Maxwell’s equations are not the exception. We will give a brief
overview of how the standard FEM approach is adopted for this particular problem,
without any claim of being exhaustive, since it is used as a reference in the bulk of this
work and it offers some insight on the Discrete Geometric Approach we will focus on
later.

We will proceed through a somewhat novel, alternative road for the introduction of
Finite Elements, rooted on fundamental physical laws, rather than on the mathematics.
This will spare us of some rigorous digressions needed when the standard procedure is
introduced, which we will show to yield equivalent discrete equations.

2.2.1 An energetic approach to Finite Elements definition

It is known, or rather inferred from the case of static fields [8], that the energy stored
in the electromagnetic field in Ω is defined as

WΩ = Wε +Wµ =
1

2

∫

Ω

e pr, tq · d pr, tq dr +
1

2

∫

Ω

h pr, tq · b pr, tq dr, (2.17)

where we decompose the energy density in its electric and magnetic parts. We remark
that for physical reasons, quantity WΩ must be finite. Differentiating (2.17) with respect
to time yields

∂tWΩ =
1

2

∫

Ω

∂te pr, tq · d pr, tq dr +
1

2

∫

Ω

e pr, tq · ∂td pr, tq dr

+
1

2

∫

Ω

∂tb pr, tq · h pr, tq dr +
1

2

∫

Ω

b pr, tq · ∂th pr, tq dr,
(2.18)

which, using Maxwell’s equations for ∂td pr, tq and ∂tb pr, tq, becomes

∂tWΩ =
1

2

∫

Ω

∂te pr, tq · d pr, tq dr +
1

2

∫

Ω

∂th pr, tq · b pr, tq dr

+
1

2

∫

Ω

e pr, tq · ∇ × h pr, tq dr− 1

2

∫

Ω

∇× e pr, tq · h pr, tq dr

−
1

2

∫

Ω

e pr, tq · jc pr, tq dr,

(2.19)

which, using the vector identity

∇ · pv1 × v2q = v2 · ∇ × v1 − v1 · ∇ × v2, (2.20)

and the divergence theorem, can be rewritten as

∂tWΩ =
1

2

∫

Ω

∂te pr, tq · d pr, tq dr +
1

2

∫

Ω

∂th pr, tq · b pr, tq dr

−
1

2

∫

Ω

e pr, tq · jc pr, tq dr− 1

2

∮

∂Ω

e pr, tq × h pr, tq · n̂ ds.
(2.21)
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If all materials are linear [8], it holds

∂te pr, tq · d pr, tq =
1

2
∂t

ˆ

e pr, tq · d pr, tq
˙

, (2.22a)

∂th pr, tq · b pr, tq =
1

2
∂t

ˆ

h pr, tq · b pr, tq
˙

, (2.22b)

by virtue of which, with simple algebraic steps (2.21) expresses the well known Poynting
Theorem

− ∂tWΩ =

∮

∂Ω

e pr, tq × h pr, tq · n̂ ds +

∫

Ω

e pr, tq · jc pr, tq dr, (2.23)

which states that all energy that is lost from the electromagnetic field must either be
radiated through the boundary of Ω or transformed into another kind of energy2 through
forces exerted on moving charged particles. If term ∂tWΩ is also brought to the right
hand-side of (2.23), we obtain an equation of the form:

∂tWU = 0, (2.24)

where the U subscript stands for Universe and ∂tWU is defined as

∂tWU = ∂tWΩ +

∫

Ω

e pr, tq · jc pr, tq dr +

∮

∂Ω

e pr, tq × h pr, tq · n̂ ds. (2.25)

Equation (2.24) is somewhat trivial. It signifies that, since the Universe is an isolated
system, its total energy must be conserved over time. This is quite reasonable and has
been true forever (i.e. ∀t), by the very definition of Universe. The useful mathematical
consequence is that we can be sure that ∂tWU vanishes with all its derivatives with
respect to time, starting from ∂t p∂tWU q = 0. By using (2.22), material constitutive
equations, and again plugging in Maxwell’s equations for time derivatives ∂tb and ∂td,
it ensues

∂t p∂tWU q =

∫

Ω

e pr, tq · ε prq ∂2t e pr, tq dr +

∫

Ω

h pr, tq · µ prq ∂2t h pr, tq dr

+

∫

Ω

∇× e pr, tq · ν prq∇× e pr, tq dr +

∫

Ω

∇× h pr, tq · η prq∇× h pr, tq dr

+

∫

Ω

e pr, tq · σ prq ∂te pr, tq dr +

∮

∂Ω

e pr, tq · ∂th pr, tq × n̂ ds

−

∮

∂Ω

h pr, tq · ∂te pr, tq × n̂ ds = 0,

(2.26)

where we have obtained a partial integro-differential equation with seven different terms.
In spite of this, equation (2.26) is very useful for its generality: it contains a volume
integral which depends only on the electric field, a volume integral which depends solely

2Mechanical and thermal energy through the Joule effect, to be precise.
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on the magnetic field, and two mixed terms which are surface integrals on the boundary
of Ω:

Ve(t) =

∫

Ω

ˆ

e · ε∂2t e+ e · σ∂te+ ∇× e · ν∇× e

˙

dr, (2.27a)

Vh(t) =

∫

Ω

ˆ

h · µ∂2t h+ ∇× h · η∇× h

˙

dr, (2.27b)

Se(t) =

∮

∂Ω

e · ∂th× n̂ ds = −

∮

∂Ω

e · ν p∇× eq × n̂ ds, (2.27c)

Sh(t) = −

∮

∂Ω

h · ∂te× n̂ ds = −

∮

∂Ω

h · η p∇× h− jcq × n̂ ds, (2.27d)

where it holds Ve + Vf + Se + Sh = 0, and terms Se(t) and Sh(t) must be known a
priori to avoid dealing with the whole universe. We remark that it suffices to know the
values of the tangent components of both the fields and their derivatives on ∂Ω to be
able to do this, in accordance with Poynting’s theorem.

If one is interested in finding functional forms of fields e, h in Ω, equation (2.26) can
be decoupled into two separate independent equations:

Ve + Se = 0 ∀t, (2.28a)

Vh + Sh = 0 ∀t. (2.28b)

As with PDEs, for the integro-differential equations in (2.28), the general solution can
be found [9] as an infinite series by separation of variables as

e pr, tq =

+∞
∑

i=1

uiei ptqωi prq (2.29)

h pr, tq =

+∞
∑

i=1

fihi ptqωi prq , (2.30)

where ui, fi are scalars, ei ptq and hi ptq must be twice-differentiable scalar valued func-
tions of time and the ωi prq must be square-integrable functions with respect to the
norm induced by inner product

〈ωi,ωj〉γ =

∫

Ω

ωi · γωj dr, (2.31)

where γ is any real, symmetric positive-definite tensor. But this is not enough, we also
want ∇×ωi prq and ∇× vi prq to be square-integrable with respect to the same norm.
This is needed for all the volume integrals defined in this section to make sense, i.e. for
electromagnetic energy to be finite in Ω. The set of square-integrable functions in Ω,
whose curl is also square-integrable in Ω form a Hilbert space, which is usually labeled
H pcurl,Ωq.

We have, at some point, to switch on our computational mindset. It is unfortunately
not obvious that some discrete counterpart of the fundamental energy conservation law
discussed above will also apply. Such a strong result can only be reached in the limit in
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practice, since we must truncate the series solutions for the fields to a finite number of
terms:

e pr, tq =
N
∑

i=1

ui ptqωi prq , (2.32a)

h pr, tq =

M
∑

i=1

fi ptqωi prq , (2.32b)

where we have absorbed the real scalar coefficients in the time-dependent part of the
solution and N,M is the dimension of a subspace WN ⊂ H pcurl,Ωq we content ourselves
with for the electric and magnetic fields. Without loss of generality, we apply the trun-
cation for the electric field to (2.28a), since the outcome is analogous for the magnetic
field in (2.28b). Omitting time and position dependencies for the sake of readability, it
ensues:

N
∑

i=1

ui

∫

Ω

ˆ

ωi · ε

N
∑

j=1

ωj∂
2
t uj + ωi · σ

N
∑

j=1

ωj∂tuj + p∇× ωiq · ν
N
∑

j=1

p∇× ωjquj
˙

dr =

−

N
∑

i=1

ui

∮

∂Ω

ωi · p∂th× n̂q ds,

(2.33)

which can be written in matrix form as:

(ut)T
`

Mε∂2tu
t + Mσ∂tu

t + Sνut + f̄ t
˘

= 0, (2.34)

where we have defined column vectors u and f̄ :

ut = ru1 ptqu2 ptq . . . uN ptqsT , (2.35)

f̄ t =
“

f̄1 ptq f̄2 ptq . . . f̄N ptq
‰T
, (2.36)

with f̄i ptq =
∮

∂Ω
ωi · p∂th× n̂q ds, and we have also defined square symmetric N×N

matrices Mε, Mσ, and Sν , whose generic entry is:

Mε
ji =

∫

Ω

ωj prq · ε prqωi prq dr, (2.37)

Mσ
ji =

∫

Ω

ωj prq · σ prqωi prq dr, (2.38)

Sν
ji =

∫

Ω

∇× ωj prq · ν prq∇× ωi prq dr, (2.39)

As it is straightforward to show, solving (2.34) amounts to solving the linear system of
N ordinary differential equations (ODEs)

Mε∂2tu
t + Mσ∂tu

t + Sνut = −f̄ t. (2.40)
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Matrices Mε and Sν are N×N real symmetric matrices, and Mε is called the mass matrix
in the FEM jargon. The right hand-side f̄ is a row vector containing boundary condi-
tions terms which will be useful in the more practical sections of this work. The energy
approach tells us that an accurate physical description of these terms would be rooted
in recognizing n̂×h pr, tq |∂Ω as a surface current density arising from discontinuities in
the tangential component of h on ∂Ω.

2.2.2 Galerkin’s approach to the definition of Finite Elements

Th standard Galerkin procedure in Finite Elements starts from the the wave equation.
Without loss of generality we take the one for the electric field in (1.3a). The functional
space in which the solution lies is H pcurl,Ωq, which we already defined. One way to find
solutions of equation (1.3a) is to test the equation on all the functions v ∈ H pcurl,Ωq,
i.e. the solution of (1.3a) must satisfy

∫

Ω

p∇× ν prq∇× e pr, tqq · v prq dr+

∫

Ω

`

ε prq ∂2t e pr, tq
˘

· v prq dr+

∫

Ω

pσ prq ∂te pr, tqq · v prq dr = 0 ∀v prq ∈ H pcurl,Ωq .

(2.41)

where we have used jc = σe. Since, by definition, only the null element of H pcurl,Ωq
is orthogonal to all elements in the same functional space, solving (2.41) is equivalent
to solving (1.3a). We can again plug-in vector identity (2.20) and use the divergence
theorem, by virtue of which, it ensues

∫

Ω

`

ε prq ∂2t e pr, tq
˘

· v prq dr +

∫

Ω

pσ prq ∂te pr, tqq · v prq dr+

∫

Ω

pν prq∇× e pr, tqq · p∇× v prqq dr =

−

∮

∂Ω

pν prq∇× e pr, tqq × v prq · n̂ ds ∀v prq ∈ H pcurl,Ωq .

(2.42)

Using equation (3.41) and the circular shift invariance of the triple product, the right
hand-side of (2.42) can be further rearranged:

∫

Ω

`

ε prq ∂2t e pr, tq
˘

· v prq dr +

∫

Ω

pσ prq ∂te pr, tqq · v prq dr+

∫

Ω

pν prq∇× e pr, tqq · p∇× v prqq dr =

= −

∮

∂Ω

n̂× ∂th pr, tq · v prq ds ∀v prq ∈ H pcurl,Ωq .

(2.43)

where the right hand-side is governed by the boundary conditions of the particular
problem under study. equation (2.43) is called the Galerkin or weak form of (1.3a).
There is actually nothing inherently weak in this formulation [10], since any true solution
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of the vector wave equation does also satisfy (2.43). The approximation is invoked, as
usual, when we face the task of adapting the formulation to the computational limits3

of engineering practice. We cannot “test” the solution on a full basis of the infinite
dimensional space H pcurl,Ωq, but must content ourselves with a truncated set of vector
valued functions W ⊂ H pcurl,Ωq and require

∫

Ω

`

ε prq ∂2t e pr, tq
˘

· vi prq dr +

∫

Ω

pσ prq ∂te pr, tqq · vi prq dr+

∫

Ω

pν prq∇× e pr, tqq · p∇× vi prqq dr =

= −

∮

∂Ω

n̂× ∂th pr, tq · vi prq ds ∀vi prq ∈W

(2.44)

to hold, with i = 1, 2, 3, ..,M and M ∈ N is the dimension of the subspace of H pcurl,Ωq
spanned by the vi test functions. Only at this point the truncation inherently implies
an approximation in e pr, tq, the form of which we seek as an interpolation

e pr, tq =
M
∑

i=1

ui ptqθi prq , (2.45)

where the ui ptq are real scalars. The θi span at most the same subset of H pcurl,Ωq as
the vi, but are not necessarily the same basis. If we require it to be θi = vi, a system of
ordinary ODEs analogous to (2.40) can be deduced, which coincides exactly with (2.40)
when M = N and θi = vi = wi. The Galerkin form derivation for magnetic field one is
completely analogous. We remark that the symmetry of the resulting system matrices is
naturally implied by energy conservation considerations, while it is not strictly required
by Galerkin’s procedure.

To summarize, the equivalence of the two approaches boils down to the use of the
same interpolating and test functions. We have been remarkably vague about the nature
of these functions, for which various choices are possible. The most popular one being
Whitney edge elements, which we introduce in the next section.

2.2.3 Edge elements as basis functions

There is a remarkable vagueness in the previous section. This is intended for to provide
the most general approach possible to the problem. All that we know about the test
functions is that they are real vector valued functions. We will now use a bottom up
approach to define a class of function which suits our needs. The simplest domain of
interest is a single tetrahedron T , unambiguously defined by the set of its four nodes
T = {n1,n2,n3,n4}. We define four scalar affine functions for a tetrahedron

λl prq = vl · r + kl, l = {1, 2, 3, 4}, r ∈ T, (2.46)

3Not necessarily talking about computers’ computing capabilities here, since these methods generally
predate the very definition of Turing machines
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T

Figure 2.4: The fundamental finite element: the tetrahedron.

a) b) c)

Figure 2.5: Edge elements as vector fields on a triangle: one can recognize the edge to
which the plotted shape function is associated in each frame, since the resulting vector
fields always crosses the other two edges at a right angle.

where vl is a vector and kl a scalar. The λl are called nodal shape-functions if they have
the property

λl pnmq = δTlm, (2.47)

where δTlm is the Kronecker Delta. Property (2.47) is a basis property in the sense that
it completely defines all four λl at any point in T , since {vlx,v

l
y,v

l
z, kl} solves a linear

system of equations whose solution is unique:



















vl · n1 + kl = δl1,

vl · n2 + kl = δl2,

vl · n3 + kl = δl3,

vl · n4 + kl = δl4.

(2.48)

The rationale behind the nodal shape-functions is very intuitive: they are basically
three-dimensional linear interpolants for scalar fields φ : r ∈ T 7→ R, i.e. we can expand
φ prq ' ∑4

l=1 φ
`

nl
˘

λl prq and equality holds exactly if φ is affine in T .

The set of λl functions is of limited use here without some further enhancement,
since with scalar potentials alone we can treat only static fields in Maxwell’s world. But
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conformally5, we wish the following to hold:

aT prq × n̂Σ

∣

∣

∣

∣

Σ

= aT ′ prq × n̂Σ

∣

∣

∣

∣

Σ

, (2.50)

where n̂Σ is the unit normal to the Σ surface. Condition (2.50) amounts to requiring the
tangential components of the vector field to be continuous across Σ. This is naturally
verified for the piece-wise affine functions defined in (2.49), as can be shown with the
aid of Fig. 2.6, in which:

(1) λ1 prq |Σ= 0, λ5 prq |Σ= 0, by definition.

(2) Due to (1) ∇λ1 and ∇λ5 are normal vectors with respect to Σ, i.e. ωT
1m prq×n̂Σ = 0

and ωT ′
l5 prq × n̂Σ = 0.

(3) The other three edge functions pertaining to common edges will implictly have
continuous tangential components on the common face Σ due to the unisolvence
theorem applied to polynomials of degree 1 λ2, λ3, and λ4 on the plane defined by
n2, n3, n4.

The property in (2.50) is fundamental, since it allows us to match piece-wise valid
definitions of edge shape-functions as we further glue tetrahedra to fill out all of Ω. For
each edge e = {l,m} ∈ Ω, we can define the function we prq:

we prq =

{

ωlm
T prq if r ∈ T and e = {l,m} ∈ ∂T

0 otherwise.
(2.51)

The set of all we is finally the set of test functions we were looking for. We can thus set

Mε
ee′ =

∑

T∈Ω

∫

T

we prq · ε prqwe′ prq dr, (2.52)

Sν
ee′ =

∑

T∈Ω

∫

T

∇×we prq · ν prq∇×we′ prq dr, (2.53)

f̄e ptq =
∑

T∈Ω

∮

∂T

n̂× ∂th pr, tq ·we prq ds =

∮

∂Ω

n̂× ∂th pr, tq ·we prq ds. (2.54)

where the second equality in (2.54) comes from the tangential continuity of the edge
elements and from the tangential continuity of the magnetic field across internal triangles
of the mesh. The matrix and vector entries in (2.52)–(2.54), can be assembled element-
wise by computing the integrals numerically [12] and, when substituted in equation
(2.56), yield a (very sparse) system of |e| linear equations, where |e| is the number of
edges in the whole tetrahedral tesselation of Ω.

2.2.4 Time discretization

Formula (2.40) is called a semidiscrete scheme since the time derivatives have yet to be
substituted by algebraic equations. This can be done in a variety of ways, but central

5T and T
′ must share a triangular face Σ (more on this in the next Chapter).
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differences do the job just as nicely as they did with Yee’s algorithm. Letting again
un = U pn∆tq it holds

∂2tu
n =

un+1 − 2un + un−1

p∆tq2
+ O

`

∆t2
˘

, (2.55)

which, plugged into (2.40) results in

ˆ

Mε +
∆t

2
Mσ

˙

un+1 = 2

˜

Mε −
p∆tq2

2
Sν

¸

un −

ˆ

Mε −
∆t

2
Mσ

˙

un−1. (2.56)

which can be finally seen as the vector wave equation recast as a linear system of
algebraic equations that is also a valid time-stepping scheme, provided that u0 and u1

are known at the start of computation. The FEM machinery introduced is evidently
more complex than the FDTD algorithm introduced in the first section of the Chapter.
Furthermore, by looking at the time-stepping equation involved in the FEM formulation,
we are presented with two choices for its computer implementation:

a) We invert the mass matrix and obtain an explicit6 scheme as the original FDTD,
which is computationally impractical for any problem with more than a few hundred
unknowns and also yields generally a full matrix, increasing dramatically the number
of floating point operations (FLOPS) to be performed in matrix-vector products.
This approach has been used in practice only in approximate form, either by inverting
local element matrices and sacrificing tangential continuity of the test functions in
the so-called Discontinuous Galerkin Method (DGM) [13–15], or by computation of
an approximate global pseudo-inverse [16, 17], which amounts to the same energetic
consequences.

b) We solve the linear system of equations at each time iteration. Even if this seems
at least as tedious as option a), some relief lies in the observation that Mε is a
symmetric positive-definite (SPD) matrix [18], which allows for an efficient solution
using the preconditioned conjugate gradient (PCG) method [19]. Yet, as the mesh
size increases to represent complicated geometrical structures the implicit nature of
the algorithm makes it very computation heavy.

We finally remark that, even if the field interpolated via Whitney forms is piece-wise
affine, the number of functions needed to form a basis for the space of affine polynomials
is actually twelve: four for each of the three spatial dimensions! Since we only have six
edge elements per tetrahedron, the obtained space is said to be incomplete. The practical
consequence of using an incomplete basis is that the interpolation will actually be exact
only for piece-wise uniform fields, which sounds like a disastrous drawback with respect
to the FDTD method.

Fortunately, basis functions can be built from the wj which allow exact interpolation
of higher order fields, although further increasing the computational load of the method.
We will not treat these extensions in this thesis. Furthermore, we will see that, in
practical applications, the conditions for the purported second order accuracy (in space)

6The value of the unknowns at the n-th time-step depends only on the value of the unknowns at
previous time-steps
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of the FDTD method are not easily met (and we have already hinted to the causes at
the end of Section 2.1), making things more even.
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3
The Discrete Geometric

Approach in the time domain

In the previous Chapter we presented two very popular approaches to the numerical
solution of IVP for Maxwell’s equations: the FDTD method and the Finite Element
Method. The main disadvantage of the former is its limitation to Cartesian orthogonal
grids, which is overcome by the second approach. The latter, in turn, has its main
drawback in its implicitness, which makes it very inefficient for large scale problems.

In this Chapter we will instead describe a third method, based on the Discrete
Geometric Approach (DGA), which has the amenable property of saving the best of
both worlds, while being free of both drawbacks. To do so we will need to start from
a completely different approach to the discretization of physical laws rooted in the
properties of cell complexes, which are an alternative way to define the computational
domain that, as we shall find, encompasses both types of grids encountered in the
previous Chapter.

3.1 Cell complexes in duality

The spatial domain of interest of this thesis is a subset Ω of R
3. More precisely its

encoding by means of a discrete mesh. There is a theorem [20] which guarantees that any
Ω admits a representation as some kind of mesh, which turns out to be a particular case of
a more general mathematical object, called a cell complex K. The most straightforward
way to define K is as the union set of sets of simpler objects called n-cells, with n =
0, 1, 2, .., N , where N is the dimension of the ambient space we wish to discretize: in our
case, since Ω ⊂ R3, then N = 3.

K =

3
⋃

n=0

{cn}. (3.1)
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Intuitively, the basis property of sets V, F, E, N allows to represent boundary operators
in matricial form as linear maps, since all groups involved are finite dimensional. It
is also readily shown that the representation of ∂n coincides with the incidence matrix
between (n− 1)-cells and n-cells, for which the generic element is defined as follows:

M∂n
ij =































+1 if the i-th (n-1)-cell is in the boundary of

the j-th n-cell with matching orientation;

−1 if the i-th (n-1)-cell is in the boundary of

the j-th n-cell with opposite orientation;

0 otherwise.

(3.3)

It is commonplace to use the labels
`

M∂3

˘T
= D,

`

M∂2

˘T
= C and

`

M∂1

˘T
= G,

and the reason for this nomenclature will become obvious in brief. A remarkable fact is
that no geometric information has been necessary for the definition of a cell complex,
in fact K is purely a topological object. The geometry enters the field only when the
complex must be actually constructed: popular choices for 3-cells are convex polyhedra
like cubes, tetrahedra, and prisms, which can also be mixed together. When all the 3-
cells are cubes (like the two grids in the FDTD method) the complex is called a cubical
complex. When all 3-cells in the complex are tetrahedra (like in the FEM) the cell
complex is called simplicial complex. The properties of cubical and simplicial complexes
are extensively studied [21] since they are the most frequently used in computational
physics applications and automated generators of simplicial approximations of general
geometries are available off the shelf.

An important feature of a cell complex is that it possesses a dual complex. Starting
from an oriented n-cell in K, we can construct a map D which yields a geometric element
of dimension 3−n in another complex K̃ = {Ṽ, F̃, Ẽ, Ñ}, where the tilde stands for dual.
K̃ is also a purely topological object, but the easiest way to introduce it is by outlining
a possible procedure for its construction, called barycentric subdivision, which instead
involves some geometry:

• Take any 3-cell v in K. From the list of coordinates of its nodes, compute the
coordinates of their barycenter. The dual element ñ = D(v) of v is the node with
said coordinates.

• Take any 2-cell f in K. If it belongs to two adjacent 3-cells v1 and v2, the dual
element e = D(f) of f is the union2 of the segment joining the barycenter of f with
D(v1) and the segment joining the barycenter of f with D(v2). If f is on the border
of K, e = D(f) is just the single segment connecting the barycenter of f with the
barycenter of the 3-cell of which f is a face.

• Take any 1-cell e in K. Given the set of 2-cells in K having e as an edge, the dual
element f̃ = D(e) of e is given by

⋃

i conv(D(fi), B(e)) where conv(·, ·) denotes
the convex hull, B(e) is the barycenter of e, and f1, f2, ..., fne

are the 2-cells whose
boundary contains e.

2In the set theory sense.
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a) b)

Figure 3.2: a) A dual edge and its corresponding primal face in the case of a tetrahedral
3-cell. b) A dual face and its corresponding primal edge in the case in which again all
primal 3-cells are tetrahedra.

• Take any node n in K. Given the set of edges in K having n as an endpoint, the
dual element ṽ of n is given by the volume bounded by

⋃

iD(ei).

It is important to note that, even if the constructing procedure was based on geometric
notions, the topology of the dual cell complex K̃ is rigorously encoded in its incidence
matrices. It is easy to see from the barycentric subdivision procedure that the incidence
matrix between n-cells and (n − 1)-cells in K̃ is the transpose of the incidence matrix
between (3 − (n + 1))-cells and (3 − n)-cells in K: D̃ = −GT 3, C̃ = CT , G̃ = DT .
All these matrices will be used in the next section where we will plug in some physical
insight to make good use of all this machinery.

3.2 Maxwell’s equations in cell complexes

Maxwell’s equations in a bounded region Ω ⊂ R
3 can also be formulated in integral

form, and by using Stokes’ Theorem they can be rearranged as follows

∮

∂Σ

h pr, tq · t̂ d` =

∫

Σ

ˆ

∂

∂t
d pr, tq + jc pr, tq

˙

· n̂ ds, (3.4a)

∮

∂Ω

d pr, tq · n̂ ds =

∫

Ω

ρc prq dr, (3.4b)

∮

∂Σ

e pr, tq · t̂ d` = −

∫

Σ

∂

∂t
b pr, tq · n̂ ds, (3.4c)

∮

∂Ω

b pr, tq · n̂ ds = 0, (3.4d)

where t̂ and n̂ denote the tangent unit vector and the normal unit vector, respectively,
and Σ is any orientable surface with boundary in Ω. If Ω is approximated with a cell
complex K and its dual complex K̃, it is possible to discretize the integral equalities in

3The minus sign is due to nodes being oriented as sinks.



3.2. Maxwell’s equations in cell complexes 29

(3.4) using another related definition: the n-cochain, which is a linear map which sends
an n-chains to R. In the case of a cell complex, n-cochains form a vector space, and
the definition of an n-cochain Cn amounts to the definition of its effect on the n-cells
comprising the complex. Let us define the following quantities:

ut : E 7→ R

e 7→

∫

e

e pr, tq · t̂ d`,
(3.5)

where ut is a 1-cochain in the primal complex, which maps a curve to its electro-motive
force (e.m.f.) at time t.

f̃ t : Ẽ 7→ R

ẽ 7→

∫

ẽ

h pr, tq · t̂ d`,
(3.6)

where f̃ t is a 1-cochain in the dual complex, which maps a curve to its magneto-motive
force (m.m.f.) at time t.

ψ̃t : F̃ 7→ R

f̃ 7→

∫

f̃

d pr, tq · n̂ ds,
(3.7)

where ψ̃t is a 2-cochain in the dual complex, which maps a surface to its total net electric
displacement flux at time t.

ı̃t : F̃ 7→ R

f̃ 7→

∫

f̃

jc pr, tq · n̂ ds,
(3.8)

where ı̃t is a 2-cochain in the dual complex, which maps a surface to its total net electric
current at time t.

φt : F 7→ R

f 7→

∫

f

b pr, tq · n̂ ds,
(3.9)

where φt is a 2-cochain in the primal complex, which maps a surface to its total net
magnetic induction flux at time t.

q̃t : Ṽ 7→ R

ṽ 7→

∫

ṽ

ρc prq pr, tq dr,
(3.10)

where q̃t is a 3-cochain in the dual complex, which maps a volume to its total net electric
charge at time t. All t superscript are there to indicate that the maps are (continuously)
time-dependent. When the number of geometric entities is finite in K, the values of
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the above defined n-cochains on all the associated n-cells can be recast in vector form
(which will be simply denoted in boldface in the following). The resulting vectors are
called global quantities according to Tonti’s classification, Degrees of Freedom (DoFs)
according to numerical analysts.

Working with vectors, the matrix form of boundary operators can be substituted for
the integrals in equations (3.4a)-(3.4d), and by using the definitions in (3.5)-(3.10) we
can deduce the following map identities:

C̃f̃ t = ı̃t + ∂tψ̃
t, (3.11a)

D̃ψ̃t = q̃t, (3.11b)

Cut = −∂tφ
t, (3.11c)

Dφt = 0, (3.11d)

where 0 is the DoFs vector of the null map4. Equations (3.11a–3.11d) are remarkable
since they encode a finite and exact representation of Maxwell’s equations. The choice
of which geometric entities are associated with certain physical quantities descends nat-
urally [22] from the properties of the underlying fields and it also relies on property
(3.2). In fact, using Maxwell’s equations, the vector identity

∂t p∇ · b pr, tqq = −∇ · ∇ × e pr, tq = 0, (3.12)

is encoded as

D∂tφ
t = DCut = 0, (3.13)

while the relation

∂tρc pr, tq = ∂t p∇ · d pr, tqq = ∇ · p∇× h pr, tq − jc pr, tqq = −∇ · jc pr, tq , (3.14)

which expresses the continuity of charge, corresponds to

∂tq̃
t = D̃∂tψ̃

t = D̃
´

C̃f̃ t − ı̃t
¯

= −D̃ı̃t, (3.15)

where we have used the fact that

DC = 0, (3.16)

D̃C̃ = 0, (3.17)

by property (3.2). It becomes thus evident that the choice of labels for incidence matrices
was not random, since D acts as the divergence operator and C is a discrete version of the
curl5, so that (3.16) and (3.17) are discrete versions of the statement that ∇·∇×a = 0
∀ a.

The approach outlined thus far in this section is known indifferently as the Cell
Method (CM) [23], or as the Discrete Geometric Approach (DGA) [24]. Interestingly,

4Which is readily subsituted with the appropriate 3-cochain in the event of physical evidence con-
firming the existence of free magnetic charges.

5Although it is not used in this work, also G turns out to mimic the gradient operator.
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in (3.11), the chosen discretization of the physical laws has yet to yield to any actual
numerical approximation. This is indeed too good to be the whole story, since we still
need to account for (1.2a), (1.2b) and (1.2c). It turns out that the approximation is
intrinsic to the connection between dual entities in the two complexes. In fact, to have
a complete equivalent of the continuous system of integral equations, mappings of the
type

ψ̃t = r?εsut, (3.18a)

φt = r?µs f̃ t, (3.18b)

ı̃t = r?σsut, (3.18c)

must be constructed. The label r?s denotes the matrix representation of a mathematical
operator: the Hodge star operator. Operator r?εs acts as a discrete counterpart of the
material tensor ε and its form depends on the analytic form of the tensor and on the
geometric properties of the cell complex representing the continuous problem. What
is usually achieved, unfortunately, is the construction of a Hodge operator which maps
primal to dual cochains exactly up to some polynomial order l in the functional form of
the underlying vector fields

ψ̃t = r?εl sut + O
`

hl
˘

, (3.19a)

φt = r?µl s f̃ t + O
`

hl
˘

, (3.19b)

ı̃t = r?σl sut + O
`

hl
˘

, (3.19c)

where from now we will denote with h the mesh size6. Formulas (3.19) are so-called
consistency conditions [26] and in plain words read

• r?εl s maps circulations of e along primal edges of K at time instant t to fluxes of
d on dual surfaces, with the mapping being exact up to polynomial order l − 1.

• r?µl s maps circulations of h along dual edges of K at time instant t to fluxes of b
on primal surfaces, with the mapping being exact up to polynomial order l − 1.

• r?σl s maps circulations of e along primal edges of K at time instant t to fluxes of
jc on dual surfaces, with the mapping being exact up to polynomial order l − 1.

For the sake of completeness, we remark that nothing is held against defining “inverse”
Hodge operators for material parameters η = ε−1, ν = µ−1, and ρ = σ−1 as

ut = r?ηl s ψ̃t + O
`

hl
˘

, (3.20a)

f̃ t = r?νl sφt + O
`

hl
˘

, (3.20b)

ut = r?ρl s ı̃t + O
`

hl
˘

, (3.20c)

where it must be noted that the matrices need not in general be exact inverses of the
ones defined in (3.18). There are various approaches in the quest for adequate candidates
for Hodge operators (we have implicitly already used some of them) and we will discuss

6The maximum edge length in the cell complex, also called the grain of the grid.
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some of them in the next sections. Combining (3.11) and (3.18) we get

r?µl s ∂tf̃ t = −Cut + O
`

hl
˘

, (3.21a)

r?εl s ∂tut = C̃f̃ t − ı̃t + O
`

hl
˘

, (3.21b)

which is a semidiscrete scheme. To get a fully discrete one, we once again put t = n∆t
and use the central difference approximation for time derivatives, but we are careful
enough to do it on staggered primal and dual time grids, inspired by the original FDTD
algorithm, and yielding a dual entity also to time intervals, effectively discretizing four
dimensional space-time on a primal and dual complex:

r?µl s f̃
n+ 1

2 − f̃n− 1
2

∆t
= −Cun + O

`

∆t2
˘

+ O
`

hl
˘

, (3.22a)

r?εl s u
n+1 − un

∆t
= C̃f̃n+ 1

2 − ı̃n+
1
2 + O

`

∆t2
˘

+ O
`

hl
˘

, (3.22b)

from which, by neglecting higher order terms in h and ∆t, we get the following leapfrog
time marching scheme

r?µl s f̃
n+ 1

2 − f̃n− 1
2

∆t
= −Cun, (3.23a)

r?εl s u
n+1 − un

∆t
= C̃f̃n+ 1

2 − ı̃n+
1
2 , (3.23b)

generalizing the original FDTD scheme to an arbitrary cell complex representation of
domain Ω.

3.3 The Finite Integration Technique

To gain some further insight on the scheme of (3.23), let us suppose K comprises cuboids
all identical in size in all three dimensions, i.e. V =

⋃

{a,b,c}

Ca,b,c with

Ca,b,c = ra∆x, (a+ 1)∆xs × rb∆y, (b+ 1)∆ys × rc∆z, (c+ 1)∆zs , (3.24)

where a, b, c ∈ Z, and ∆x,∆y,∆z ∈ R
+. The generalized FDTD algorithm written

for such a complex is renown as the Finite Integration Technique (FIT) [25] and is
used in at least one widespread commercial software. Intuitively, there must be some
connection between this algorithm and the one formulated on PDEs by Yee. Without
loss of generality, let us take a 3-cell ci,j,k, such that a rectangular surface f = i∆x ×
rj∆y, (j + 1)∆ys× rk∆z, (k + 1)∆zs is in the boundary of ci,j,k. We will now show that,
if all fields are affine on f, equation (3.21a) is equivalent to (2.6). Using f as vector index
and applying the mean value theorem for affine functions, we can write

∂tφ
t(f) = ∂tb

t

ˆ

i, j +
1

2
, k +

1

2

˙

· p∆y∆zx̂q , (3.25)
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where we have used the previously introduced succint notation for vector fields and the
definition of 2-cochain φt. Similarly, if we also use f as a matrix index, we can write

−
∑

e∈E

Cfeu
t(e) =et

ˆ

i, j +
1

2
, k + 1

˙

· p∆yŷq − et
ˆ

i, j +
1

2
, k

˙

· p∆yŷq +

et
ˆ

i, j, k +
1

2

˙

· p∆zẑq − et
ˆ

i, j + 1, k +
1

2

˙

· p∆zẑq ,
(3.26)

where again we make use of the mean value theorem for affine functions to compute the
four line integrals on the boundary of f. By equating the right hand-sides of (3.25) and
(3.26), computing the dot products and dividing both sides by ∆y∆z, we get

∂tb
t
x

ˆ

i, j +
1

2
, k +

1

2

˙

=
ety

`

i, j + 1
2 , k + 1

˘

− ety
`

i j + 1
2 , k

˘

∆z
−

etz
`

i, j + 1, k + 1
2

˘

− etz
`

i, j, k + 1
2

˘

∆y
,

(3.27)

from which the thesis ensues. There is nothing particular about the choice of the surface
and it can be shown, by using the dual complex, that the same derivation is valid for all
of the six components of the electromagnetic field. If we define the dual edge ẽ = D(f),
it ensues

f̃ t(ẽ) =

∫

ẽ

h pr, tq · t̂ d` =

ˆ

ν

ˆ

i, j +
1

2
, k +

1

2

˙

∆x

∆y∆z

˙

φt(f) + O
`

h2
˘

, (3.28)

where we have once more used the mean value theorem and the definition of 1-cochain
f̃ t. We remark that equation (3.28) holds only if ν prq = µ prq−1

is uniform along ẽ, i.e.
bx is continuous along ẽ. equation (3.28) gives us a first example of a Hodge star operator
since, applying its definition, it turns out we can define a square matrix Mν ≡ r?ν2s,
with f̃ t = Mνφt and generic entry:

Mν
fg =

{

|ẽ|
|f|ν(f̂) if g = f,

0 if g 6= f,
(3.29)

where |ẽ| is the length of ẽ, |f| is the area of f, f̂ denotes the barycenter of f and again
f was also used as a matrix index. The procedure above can obviously be generalized
to all ẽ ∈ Ẽ. We remark that we must resort to the equivalence symbol instead of plain
equality to stress that the choice for the Hodge operator is not unique.

Finally, if the usual grid staggering is used for the time derivatives, the transfor-
mation from FIT to FDTD becomes complete: the FDTD algorithm is a cell complex
discretization of Maxwell’s equations in which all the 3-cells are cuboidal, and the Hodge
operators are diagonal matrices. It can still be argued that the cell complex formulation
does provide some more insight with respect to the differential approach. First of all it
is the most synthetic way of writing the discrete equations achievable. Furthermore, it
allows to discretize all four of Maxwell’s equations and by doing so it allows to visualize
phenomena which were not contemplated in the original formulation. E.g. where would
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a (possibly moving) charged particle sit in the grid if it where to be modeled in an
FDTD simulation? The topologically motivated correct answer is: stored in the dual
volumes of K.

3.4 Connection with Finite Elements

It has been explained how the topological interpretation of Maxwell’s equations can
lead, through a different path, to the FDTD algorithm. What about Finite Elements?
The conformal meshes used in the FEM are also examples of simplicial cell complexes.
Is it then possible to recast the weak formulations outlined in Chapter 2 in some form
akin to the Discrete Geometric Approach? Let us examine again the scheme of (3.23).
Assuming that n > 0, we can take (3.23b) at the previous time-step:

r?εl s u
n − un−1

∆t
= C̃f̃n− 1

2 − ı̃n−
1
2 , (3.30)

which subtracted to (3.23b) and dividing both sides by ∆t, yields

r?εl s u
n+1 − 2un + un−1

∆t2
= C̃

˜

f̃n+ 1
2 − f̃n− 1

2

∆t

¸

−
ı̃n+

1
2 − ı̃n−

1
2

∆t
. (3.31)

Finally using equation (3.23a) and some algebraic manipulations we get

r?εl sun+1 = 2

ˆ

r?εl s − ∆t2

2
C̃ r?µl s−1

C

˙

un − ∆t
´

ı̃n+
1
2 − ı̃n−

1
2

¯

− r?εl sun−1. (3.32)

This is familiar. Since the central difference approximation assumes all quantities piece-
wise affine in time we can set:

ı̃n+
1
2 =

ı̃n+1 + ı̃n

2
= r?σl s u

n+1 + un

2
, (3.33)

which, substituted twice in (3.32) yields

ˆ

r?εl s +
∆t

2
r?σl s

˙

un+1 = 2

ˆ

r?εl s − ∆t2

2
C̃ r?µl s−1

C

˙

un −

ˆ

r?εl s − ∆t

2
r?σl s

˙

un−1.

(3.34)

This is again very familiar. In fact if we substitute r?εl s for Mε, r?σl s for Mσ and

C̃ r?µl s−1
C for Sν in (2.56), the two finite difference equations coincide exactly. To

apprehend the extent of this similarity, we need to make an additional theoretical effort.

Let K be a tetrahedral primal cell complex, approximating continuous domain Ω,
with mesh size h. Let also all material properties be piece-wise uniform in K, i.e. K
can be subdivided in regions (not necessarily tetrahedra) V ∈ K, ε prq = εV . With this
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condition, let then

at
V prq =

N
∑

j=1

atjq
j + O phq ∀ r ∈ V, (3.35)

be a piece-wise uniform field interpolated with vector basis functions qj . Furthermore
let f̃ be a surface contained in V , i.e. f̃ ⊂ V . Finally, let us define an N×N symmetric
square matrix Mε

q as having

Mε
q(i, j) =

∫

V

qi · εV qj dr. (3.36)

as its entry at the i-th row and j-th column. We are now ready to prove the following.

Theorem 1. For any qi, iff it holds

∫

V

qi dr =

∫

f̃

n̂ ds, (3.37)

with n̂ unit vector normal to f̃, then it also holds

N
∑

j=1

Mε
q(i, j)atj = ψ̃t

f̃
+ O

`

h2
˘

. (3.38)

where

ψ̃t

f̃
=

∫

f̃

εV at
V prq · ˜̂nds. (3.39)

Proof. Through definitions (3.35) and (3.36) it ensues

N
∑

j=1

Mε
q(i, j)atj =

N
∑

j=1

atj

∫

V

qi prq · εV qj prq dr

=

∫

V

qi prq · εV
N
∑

j=1

atjq
j prq dr

= dtV ·

∫

V

qi prq dr + O
`

h2
˘

.

(3.40)

From which the thesis easily follows.

We remark that the result of Theorem 1 is very general, in the sense that the aj need not
have any particular geometric meaning. But if, in particular, we let the qi be Whitney
elements and V = T be a tetrahedron, the aj happen to be the circulations of the a
field along edges of T . It can be proved (see [26]) that condition (3.37) is satisfied for
Whitney elements in a tetrahedron if qi = we and f̃ is the portion of dual face contained
in T , dual to edge e. Consequently when the global mass matrix is assembled, thanks to
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Theorem 1, Mε transforms the circulations along primal edges into fluxes across dual
faces, i.e. Mε ≡ r?ε2s.

The mass matrix constructed using Whitney edge elements is indeed a valid choice for
a Hodge operator if the primal cell complex is tetrahedral, although this interpretation
has not been advocated until recently [27], mainly due to the fact that duality is seldom
exploited in the standard FEM framework. Furthermore (3.32) suggests that the Sν

resulting from the weak formulation in Finite Elements can be traced back to another
Hodge operator7 mapping fluxes across faces in the primal complex to circulations along
edges in the dual complex. Indeed analogous versions of Theorem 1 can be stated for
basis functions attached to other goemetric entities of the complex by appropriately
modifying (3.37). This has already been recognized and studied in the modelling of
magneto-static problems [28], and an even stronger result holds, which we state here
without proof (see [29] for the details).

Theorem 2. Suppose we construct mass matrix Mµ in K, using a set of functions
satisfying a basis property on dual edges of K; if Mµ ≡ r?µ2 s, it holds

C̃ pMµq−1
C = Sν ,

regardless of the basis functions used to construct Mµ.
Furthermore, suppose we construct mass matrix Mν in K, using a set of functions

satisfying a basis property on primal faces of K; if Mν ≡ r?ν2s, it holds

C̃MνC = Sν ,

regardless of the basis functions used to construct Mν .

3.5 An explicit FIT on tetrahedra with piece-wise

uniform basis functions

The path is now clear for the introduction of a third approach, which is a kind of
synthesis between the FEM (since it builds up from the definition of basis functions)
and the FDTD (since it is explicit and relies on staggered time grids). This approach
was introduced for the first time in [31] and is rooted in the formalism of the Discrete
Geometric Approach introduced in this Chapter.

For the moment let us assume that there are no conductive losses in a bounded
region Ω ⊂ R

3, and solve the initial value problem for Maxwell’s equations, written in
differential form

µ
∂h

∂t
= −∇× e, (3.41)

ε
∂e

∂t
= ∇× h. (3.42)

Adhering to the framework of the DGA, we proceed to discretise electromagnetic quan-
tities into degrees of freedom (DoFs) by their integrals over geometric elements of two

7Or, equivalently, to another mass matrix using another set of basis functions.
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following properties, which can be straightforwardly proved through manual calculation:

(1)
∫

a
j
r
wi

r · t̂ d` = δij , with i = {1, 2, 3} for any Ωr.

(2)
∫

ã
j
r
w̃i

r · t̂ d` = δij , with i = {1, 2, 3} for any Ωr.

(3) Due to (1) we can exactly represent a uniform field ar(t) =
3
∑

i=1

ai(t)w
i
r in Ωr, and

it holds:
∫

a
j
r

ar(t) · t̂ d` = ai(t),

i.e. the coefficients of the interpolation are the circulations of the vector field along
the the intersections of edges of T with Ωr.

(4) Due to (2) we can exactly represent a uniform field ãr(t) =
3
∑

i=1

ãi(t) w̃
i
r in Ωr, and

it holds:
∫

ã
j
r

ãr(t) · t̂ d` = ãi(t),

i.e. the coefficients of the interpolation are the circulations of the vector field along
the the intersections of edges of T with Ωr.

Let us now define two local 3× 3 mass matrices, whose element at the i-th row and j-th
column is

Mµ
r (i, j) =

∫

Ωr

w̃i
r · µrw̃

j
r(r) dr, (3.46)

Mε
r(i, j) =

∫

Ωr

wi
r · εrw

j
r(r) dr, (3.47)

where we have assumed locally uniform material tensors: ε(r) = εr and µ(r) = µr.
With these definitions, let us now take any dual edge e ∈ K, and take indifferently one
of its two straight segments ẽ oriented from the barycenter of the tetrahedron T to the
barycenter of face f = D(ẽ) = D(ẽ). We define

w̃ẽ(r) =

{

w̃i
r if r ∈ Ωr and ẽ = ãir, with i ∈ {1, 2, 3}

0 otherwise,
(3.48)

Let us take a tetrahedron T , which comprises four Ωr-like volumes. It is straightforward
to see that there are only four of such functions which are not identically zero in T . With
some abuse of notation we give them a superscript going from 1 to 4. We can thus define
a mass matrix M

µ
T , whose generic element is:

M
µ
T (i, j) =

∑

Ωr∈T

∫

Ωr

w̃i
ẽ · µrw̃

j

ẽ dr, (3.49)

which is still symmetric positive-definite but has a further remarkable property with
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Let us take a dual volume T̃ , which comprises a variable number Ne
9 of Ωr-like volumes.

Again, with some abuse of notation we give the we a superscript. We can thus define a
mass matrix Mε

T , whose generic element is:

Mε
T̃

(i, j) =
∑

Ωr∈T̃

∫

Ωr

wi
e · µrw

j
e dr, (3.54)

which is still symmetric positive-definite but again has a further remarkable property
with respect to (3.47). Assume we define a piece-wise uniform electric field

eT̃ pr, tq =
∑

e∈T̃

ûe(t)we(r) (3.55)

in T̃ , from which we can infer a piece-wise uniform electric displacement field dT̃ pr, tq =
ε prq eT̃ pr, tq. If the tangential components of the electric fields and the normal compo-
nents of the electric displacement field are continuous across each ∂Ωr it ensues

ψ̃t(f̃) =

∫

f̃

dT̃ pr, tq · n̂ ds =

Ne
∑

j=1

Mε
T̃

(i, j)ûj(t), (3.56)

with f̃ = D(e). It is in fact

Ne
∑

j=1

Mε
T (i, j)ûj(t) =

∑

Ωr∈T

εrer(t) ·

∫

Ωr

wedr =
∑

Ωr∈T̃

dr(t) ·

∫

f̃r

n̂ ds =

∫

f̃

dT̃ (r, t) · n̂ ds,

(3.57)

where there are three fr surfaces defined as in Fig. 3.4. The second equality is due
to a purely geometric property of the wr (see [31]), the third equality is due to the
assumption of normal continuity of d(r, t). Reasoning in terms of energy, the quantity

WΩ =
1

2

∫

Ω

e pr, tq · d pr, tq dr +
1

2

∫

Ω

h pr, tq · b pr, tq dr

=
1

2

∑

Ωr∈K

pûqT Mε
T̃
û+

1

2

∑

Ωr∈K

(f̂)TMµ
T f̂

(3.58)

is the L2 norm for the basis functions described in this section and the quantity which,
in the limit, yields the value of energy of the continuous problem. The reader should
notice how the two summations are taken on two different union sets.

Care must be taken treating the boundary of Ω, since the primal edges on ∂Ω obey a
slightly modified consistency condition [32]. Suffices to say that, in general, the bound-
ary of the computational domain is set to PEC10 or PMC, and neither of the two requires
any added effort in guaranteeing consistency.

9Not more that 10 to 15 even for very fine meshes, heuristically.
10Even if a Perfectly Matched Layer (PML) [33] absorbing boundary condition is present, the total

augmented domain will be terminated by PEC







4
Comparative analysis of FDTD,

FEM and DGA time domain

methods

Now that some background has been established, this chapter is devoted to assessing
how the FDTD, FEM, and DGA approaches perform on practical problems, since theory
suggests that among many similarities, they should present some differences.

4.1 An analytical solution

To perform a sound comparison we start from the simplest possible domain Ω for all
methods: a cube with size 1×1×1 m, which can be split into an elementary unstructured
grid of six tetrehadra, as we did with the one in Fig. 4.1. If we think of the square sections
with constant z coordinate as the transverse sections of a rectangular waveguide bounded
by PEC walls in all directions, the study of guided propagation of electromagnetic waves
in such a configuration is well established (see [34]) in the frequency domain. Even if we
are interested in time domain simulations, we can build from the standard time-harmonic
solution and obtain a time domain solution for the fundamental mode (the TE10 mode)
impinging at z = 0 and encountering a PEC termination at another section z = ` (the
setup is schematized in Fig. 4.2). We proceed as follows: since a time simulation includes
transients, we extend the known frequency domain solution for the fundamental mode
to the whole complex plane by putting jω = s, with s complex variable. We then try
to derive an analytical form for the non-zero components of the electromagnetic field in
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Figure 4.1: A cube split into six tetrahedra.

Figure 4.2: The simulation setup for the studied test case.

the waveguide.

ex(r, t) = 0 ∀t, (4.1)

ey(r, t) = L−1
{

Ey(r, s)
}

(t), (4.2)

ez(r, t) = 0 ∀t, (4.3)

hx(r, t) = L−1
{

Hx(r, s)
}

(t), (4.4)

hy(r, t) = 0 ∀t, (4.5)

hz(r, t) = L−1
{

Hz(r, s)
}

(t), (4.6)

where L−1 denotes the inverse Laplace transform and boundary conditions in the z
direction are set to

{

Hx(r, s) = sin
`

πx
a

˘

G(s) z = 0,

Ey(r, s) = 0 z = `,
(4.7)
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where a is the size of the waveguide in the x direction, ` is the distance in the longitu-
dinal direction z at which the PEC wall is applied, G(s) is the Laplace transform of a
function g(t) modulating the incident field, and the complex coefficients of the solution
are implicitly set to get a an amplitude of 1 A/m for the hx field at z = 0. By using the
general solutions of (3.211a) and (3.211c) of [34], with the above boundary conditions
it ensues

Hx(r, s) = sin
´πx

a

¯

G(s)

˜

e−Γ(s)p z−`
c q + eΓ(s)p z−`

c q
eΓ(s)

`
c + e−Γ(s) `

c

¸

, (4.8)

where Γ(s) =

b

s2 +
`

cπ
a

˘2
and c = 1/

?
µε is the speed of light. By using some algebraic

manipulations and Maxwell’s equations, the three unknown field components can be
written in the s domain as

Hx(r, s) = sin
´πx

a

¯

G(s)

ˆ +∞
∑

n=0

e−Γ(s)p z+4n`
c q −

+∞
∑

n=0

e−Γ(s)p z+2`+4n`
c q+

+∞
∑

n=0

e−Γ(s)p 2`+4n`−z
c q −

+∞
∑

n=0

e−Γ(s)p 4`+4n`−z
c q

˙

(4.9)

Hz(r, s) =
πc

a
cos

´πx

a

¯

G(s)

ˆ +∞
∑

n=0

e−Γ(s)p z+4n`
c q

Γ(s)
−

+∞
∑

n=0

e−Γ(s)p z+2`+4n`
c q

Γ(s)
−

+∞
∑

n=0

e−Γ(s)p 2`+4n`−z
c q

Γ(s)
+

+∞
∑

n=0

e−Γ(s)p 4`+4n`−z
c q

Γ(s)

˙

(4.10)

Ey(r, s) =

c

µ

ε
sin

´πx

a

¯

sG(s)

ˆ +∞
∑

n=0

e−Γ(s)p z+2`+4n`
c q

Γ(s)
−

+∞
∑

n=0

e−Γ(s)p z+4n`
c q

Γ(s)
+

+∞
∑

n=0

e−Γ(s)p 2`+4n`−z
c q

Γ(s)
−

+∞
∑

n=0

e−Γ(s)p 4`+4n`−z
c q

Γ(s)

˙

(4.11)

where the infinite series appear by exploiting the definition of geometric series with ratio
|e−2Γ(s) `

c | (guaranteed to be < 1 by the fact that Re{Γ(s)} > 0), which arises from (4.8).
The analytical formulas of (4.9), (4.10), and (4.11) are not so tedious to deal with as it
would seem. In fact, from equation (29.3.95) of [12] it straightforwardly follows, for any
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real non-negative number k:

L−1
{

G(s)e−kΓ(s)
}

(t) = g(t) ∗ L−1
{

e−k

b

s2+p cπ
a q2}

(t)

= g(t) ∗

˜

δ pt− kq − cπ

a
k
J1

`

cπ
a

?
t2 − k2

˘

?
t2 − k2

Θ(t− k)

¸

= g(k) − g(t) ∗

˜

cπ

a
k
J1

`

cπ
a

?
t2 − k2

˘

?
t2 − k2

Θ(t− k)

¸

,

(4.12)

where δ(t) is the Dirac Delta distribution, Θ(t) is the unit step function, and J1(α) is
the first cylindrical Bessel function. We remark that k must always be non-negative for
the Laplace transform to be well-defined. This is always the case in all of the series
defined in (4.9), (4.10) and (4.11). It must also be noted that convolution integrals need
to be computed numerically when we are interested in the analytic solution anywhere
in the interior of Ω. Fortunately, the presence of the step function in all terms allows
us to work with a finite number of terms for any time t < +∞. The integrals can
then be computed with aribtrary precision (within the round-off error of the computing
architecture [36]).

4.2 Forcing the source field

The uniqueness of the solution for the chosen test problem is guaranteed. Therefore, to
obtain an accurate numerical simulation representing its time evolution one only needs
to feed the waveguide one of the two components of the tangent electromagnetic field
at z = 0. Our choice is to enforce the following tangential magnetic field:

h× n̂|z=0= hx(x, y, z = 0, t) x̂ = sin
´πx

a

¯

g(t) x̂. (4.13)

Since in the DGA framework (4.13) must be enforced through the associated global
quantity and circulations of the magnetic field are global quantities defined on edges of
the dual complex, the procedure of forcing the tangential magnetic field on a plane in
∂Ω seems, at first glance, to be not so well-defined. Nevertheless, the issue can be dealt
with by using the augmented dual grid defined on the boundary of the primal complex,
as explained in [35]. In the discrete scheme this amounts to an update equation of the
type:

ψ̃n+1 = ψ̃n + ∆tC̃f̃n+ 1
2 + ∆tC̃bf̃

n+ 1
2

b , (4.14)

where C̃b is the incidence matrix between primal edges and dual edges in the 2D cell
complex Kb, constructed by taking the restriction of K to ∂Ω. Consequently f̃b is
the vector of magneto-motive forces1 on dual edges of Kb. The procedure, depicted in
Fig. 4.3 for a single edge on ∂K, is well defined regardless of the mesh being tetrahedral
or Cartesian orthogonal. Furthermore equation (4.14) holds for all time-steps. For

1Circulations of the magnetic field
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Since the sine function is equal to zero at t = 0, it provides a soft start for the source
field. Furthermore, since the cut-off frequency fc f the waveguide fundamental mode is:

fc =
c

2a
= 150 MHz, (4.19)

where c is the speed of light and a = 1 m is the width of the waveguide, we set f = 200
MHz to put the waveguide in a monomodal operating point.

4.3 Numerical stability

The time-stepping structure for the three methods is based on the same kind of approx-
imation of time derivatives, i.e. the central difference approximation. A consequence
of this particular choice is that all three schemes are conditionally stable: it exists a
value for ∆t, above which the values of fields computed by the updating equations grow
indefinitely as n→ ∞ for any nontrivial initial condition. Intuitively the limit value for
the time-step depends both on the grid used to solve the numerical problem and on the
imposed source field. Nevertheless a general rule yielding a safe value to be assigned to
∆t at the start of computation is not trivially available.

When such a condition is indeed available, it can be of two types: sufficient or
necessary. A condition of the first kind is always the most sought-after since it guarantees
that the method is robust. For finite difference based methods this type of conditions are
called Courant–Friedrich–Lewy (CFL) conditions, after the authors of the first paper in
which one such condition was introduced and its value derived [37]. The FDTD method
is robust, since a sufficient condition for its stability, in the form

∆t < min

¨

˝

1

c
b

1
∆x2 + 1

∆y2 + 1
∆z2

˛

‚, (4.20)

has been derived [2], where c is the speed of light and the minimum is taken among all
cells in the spatial grid. Unfortunately, condition (4.20) is once again manifestly tied to
the Cartesian orthogonal discretization of Ω while an equivalent condition for schemes
based on the FEM is unknown to the best of the author’s knowledge.

What is known instead is that, for any scheme which can be written in the form
of (2.56), an approach based on the zeta transform [18] yields the following necessary
condition for stability:

∆t <
2

c

ρ
´

r?ηs C̃ r?νsC
¯

, (4.21)

where ρ p·q denotes the spectral radius of a matrix, i.e. the largest absolute value among
its eigenvalues. The problem is that value of ρ p·q cannot be exactly computed for the
large sparse matrices involved in FEM modelling and must be estimated with numerical
techniques.

For tetrahedral grids, Theorem 2 states that CT r?νsC = Sν regardless of which
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Figure 4.4: Logarithmic plot of the maximum allowed ∆t versus the maximum edge
length in the grid for all three methods.

mass matrix is used, which suggests some degree of equivalence between FEM and
DGA approaches. Yet, for standard FEM matrix r?ηs is not directly available, and

the estimation of ρ
´

r?ηs C̃ r?νsC
¯

must be performed on the generalized eigenvalue

problem

Sνu = λMεu. (4.22)

It turns out, explicit time-stepping schemes are convenient also in this respect, as a quick
raw estimate of their maximum allowed ∆t can be obtained using the simple power
iteration method [19], while for implicit schemes, more sofisticated Krylov subspace
methods (still rooted in the power iteration technique) must be used.

Let us again statt from the elementary mesh of Fig. 4.1 and use (4.21). We nu-
merically compute the limit value for ∆t on successive uniform spatial refinements for
all three methods, assuming the material to be air. The obtained values are shown in
Fig. 4.4 versus the grain of the grid. It can be seen that all methods’ limit values scale
linearly with the grain of the grid and that the FDTD method generally allows coarser
time grids than the methods based on tetrahedral grids, for grid elements of similar
size. This is an expected result and has already been reported [38]. A new result which
instead emerges from the present analysis is that the DGA approach consistently shows
a limit value for ∆t twice as large as the one allowed by the FEM. Since DGA and FEM
time-stepping schemes share the same Sν matrix, the discrepancy must be inherent to
the construction technique for the ε and η (respectively) material tensor mass matrices.
We speculate that the larger stencil of the basis functions involved in the standard FEM
mass matrix construction plays a fundamental role in this result.

As already stated, the values computed through spectral radii estimates are necessary
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where

‖φ‖ν=
1

2

´

(φ)T r?νsφ
¯

1
2

, (4.24)

‖v‖ε=
1

2

´

(u)T r?εsu
¯

1
2

, (4.25)

where column vectors φ and u contain the computed fluxes2 of the magnetic induction
field across faces of the mesh and the computed circulations of the electric field along
edges of mesh, respectively. We compared the accuracies of the various methods by
studying the relative error

‖ε‖=
‖φ− Π(h),u− Π(e)‖ν,ε

‖Π(h),Π(e)‖ν,ε
, (4.26)

where the Π(h), Π(e) are the L2 projections of the analytic fields onto the geometric
elements of the mesh. Formula (4.26) works at any particular time instant t‖ε‖, but a
fair choice for t‖ε‖ depends on the particular problem under test. In this case a sensible
one would be to wait at least for the first full wavelength of the impinging TE10 mode to
be reflected by the short-circuited termination of the waveguide at z = 1 m. Considering
the light time of flight in homogenous air, t‖ε‖ = 5 ns was chosen. Figure 4.6 shows, in
double logarithmic scales, the two tetrahedral grid methods being more accurate than
the FDTD for grids of comparable size, and all three methods converge linearly with
grain of the grid h, i.e. they correctly represent piece-wise uniform fields. This last
detail is theoretically predicted for the FEM and DGA schemes, and justified for the
FDTD3 through a closer look at the functional form provided in (4.12): since the k
parameters arising from complex exponentials depend on z, some partial derivatives in
Maxwell’s equations are well-defined only in the distribution sense4. In other words, the
features of the physical solution for the problem under test do not meet the mathematical
conditions for any super-convergent behaviour [40] of the FDTD scheme to be observed.
The very simple nature of the problem at hand (the material is uniform in the whole
computational domain) suggests that this will be the case in most of the practical cases
in which FDTD simulation is advocated.

4.5 Efficiency

The studies presented in the two previous sections serve as a preparatory step for assess-
ing another important property of the methods under test: computational efficiency.

In general, the computational complexity of the three methods rests within the same
set of factors, the first major of which is the sparsity of hodge operators. In fact all three
algorithms have their bottleneck in sparse matrix-vector multiplications: the FDTD
scheme has the clear advantage here, since all its Hodge operators are diagonal matrices
and complete vectorization of matrix-vector products is possible. The FEM is at clear

2For the FEM formulation these are not directly available but can be computed at every time-step
using Whitney face elements and some additional computational effort.

3Which claims second order accuracy also in h.
4The derivative of the unit step function is the Dirac δ distribution.
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Figure 4.6: All the methods converge as O(h) in L2 norm error, with h being the
maximum edge length in the grid.

disadvantage being an implicit method: at every time-step an iterative method5 must
be used. As already stated in Chapter 2, due to the symmetry of the system matrix,
a Conjugate Gradient (CG) method is usually employed. Digressing on the properties
of the CG goes beyond the scope of this thesis (see [41]), but at least two important
properties must be stated:

1. As any iterative method implemented in finite precision arithmetic, the CG does
not recover the exact solution of the algebraic system and instead yields its (mono-
tonically improving) estimate. The iterative procedure is eventually halted when
its computed relative residual r falls under some user-prescribed R. This intro-
duces another source of error in the numerical solution, which must be kept small,
as it can itself be the source of numerical instability. In the tests ran in this work
we heuristically converged to a limit value r < R = 1 × 10−8 for the relative
residual.

2. If the sistem we want to solve is Ax = b, at every iteration the biggest price
we have to pay in complexity is an Ax matrix-vector product. To improve its
convergence speed the CG is usually preconditioned6: it can be shown that the CG
preconditioned with the Jacobi preconditioner [42] converges in O(h−

1
2 ) iterations.

This can bee seen in Fig. 4.7 for different values of R, versus the number of elements
in the mesh (obtained via the usual uniform refinement procedure).

A second important factor in complexity is the limit time-step value. Obviously a smaller
time-step means a heavier computational burden for equal simulated time.

5The use of a direct solver becomes very prohibitive very early with increasing number of unknowns.
6An equivalent system is solved in which the solution is more immune to numerical fluctuations in

the values of the system matrix.
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Figure 4.7: Number of iterations needed by the PCG solver to converge under the
prescribed relative residual R versus the number of elements in the mesh, for different
values of R.

With this premises, different metrics must be linked to show how the three methods
really compare, e.g. Fig. 4.8, which shows the ∆t limit value versus the accuracy of the
method, is a more meaningful graph than Fig. 4.4, and an even more accurate summary
is given in Fig. 4.9, where the computational complexity of all methods is plotted against
their accuracy in L2 norm ‖ε‖. The slopes show that the FEM approach, which, for
10 nanoseconds of simulated time, yields a factor of 20 in computational burden to
the DGA scheme and nearly two full orders of magnitude to the FDTD method, is
the most computationally intensive scheme of the three as predicted. The FDTD is
predictably the most efficient method, still we must remark that the DGA scheme fares
on the same order of magnitude in complexity, even though the test problem has a cubic
domain, no discontinuities in material properties and the source field is aligned with one
of the Cartesian axes7. All simulation have been run on a single-core Xeon E5-2687Wv4
processor.

Now that some fundamental properties of the three methods have been assessed,
the example under study can also be used to show that the DGA method is indeed
non-dissipative8, as the other two methods (curl-conforming FEM and the FDTD). To
do so, we recall Poynting’s Theorem in the absence of Joule losses:

− ∂tWΩ =

∮

∂Ω

e pr, tq × h pr, tq · n̂ ds =

∮

∂Ω

e pr, tq · ph pr, tq × n̂q ds, (4.27)

7All ideal settings for and FDTD simulation
8Another term for the conservation of tangential components of the fields.



54 4. Comparative analysis of FDTD, FEM and DGA time domain methods

Figure 4.8: Time-step limit value versus accuracy of the method, again in logarithmic
scales.

Figure 4.9: Computational complexity versus accuracy: the continuous lines show the
computational time for a single time-step, the dashed ones for 10 ns of simulated time.
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which in the semi-discrete case becomes:

(φt)T r?νs ∂tφt + (ut)T r?εs ∂tut = (ut)T C̃bf̃
t
b , (4.28)

where column vector f̃ t
b is the one defined in (4.14). Since discrete samples in time of

φt and ut are available ad different time instants in the leapfrog scheme, a piece-wise
linear approximation must be resorted to:

˜

φn+ 1
2 + φn− 1

2

2

¸T

r?νs
˜

φn+ 1
2 − φn− 1

2

∆t

¸

+ (un)T r?εs
ˆ

un+1 − un−1

2∆t

˙

u

u (un)T C̃b

˜

f̃
n+ 1

2

b + f̃
n− 1

2

b

2

¸

,

(4.29)

in which some accuracy is lost due to one central difference interval being twice than
the others. This can be improved by aligning the two time grids, for example by us-
ing the second order scheme (which we have shown to be algorithmically equivalent to
the first order one) independently for both fields9. Nevertheless Fig. 4.10 clearly shows
that Poynting’s Theorem is still retrieved in the discrete scheme. The plots show the
(negated) time derivative of total energy and the (outwards) flux of Poynting’s vector
versus time over 10 nanoseconds of simulation, with a very coarse grid of 3072 tetra-
hedra, 6528 surfaces, 4184 edges, 729 nodes. In 4.10a, time derivatives were computed
with ∆t = 141 ps, which is S = 0.98 times the stability limit computed through the
aforementioned spectral techniques. In 4.10b the time-step was halved (S = 0.49). Fi-
nally, in 4.10c S = 0.245 was used. The sequence clearly shows that in the limit of
∆t→ 0, the match in power balance is perfect.

In other words energy dissipation is present only due to finite precision in the ap-
proximation of time derivatives (even for very coarse meshes), and therefore vanishes as
O

`

∆t2
˘

. The piece-wise uniform basis functions introduced in [31] are in fact well-suited
also for harmonic numerical solutions of Maxwell’s equations [43], where the source of
error due to the time-integration scheme is absent.

4.6 Frequency spectra from time domain analysis

One of the strengths that were quickly recognized in the FDTD method is that each
simulation behaves like a laboratory experiment, in which some physical configuration
under study interacts with electromagnetic radiation. Since we live in a time domain
world, the output of a time domain simulation should potentially show the behaviour of
the configuration under study across the full electromagnetic spectrum. When translated
to digital processing, the two practical limits in this kind of approach is given by the
Nyquist-Shannon sampling theorem [44] which, written in FDTD jargon, states:

∆t <
1

2fMAX

, (4.30)

9With roughly doubled computational complexity.
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(a) ∆t = 141 ps.

(b) ∆t = 70.5 ps.

(c) ∆t = 35.25 ps.

Figure 4.10: The DGA discrete scheme complies with Poynting’s Theorem. In each of
the second two plots the time-step is halved.
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where fMAX is the maximum frequency at which the studied signal has non-zero energy,
and by a related result which states that it must hold:

N∆t >
1

2∆f
, (4.31)

for to correctly resolve two spectral components which are located ∆f apart in the
spectrum. In (4.31) N is the total number of time-steps, i.e. N∆t is the simulated
physical time. To test if the proposed DGA formulation can be used in this framework,

Figure 4.11: Cylindrical cavity: height h = 0.5 m and radius r = 1 m.

we use it on a resonant cavity problem with analytically computable eigen-frequencies:
a cylindrical resonator made of perfectly conducting material and filled with air, with
height h = 0.5 m and radius r = 1 m. One of the test meshes for this problem, generated
with NETGEN [7], is shown in Fig. 4.11. One way to excite all possible eigen-modes
of the resonator is to couple it through some small aperture with an impulsive source
of electromagnetic field. A true impulsive Dirac Delta would in fact be a white signal
in the frequency domain, exciting all the spectrum. Unfortunately, a Dirac delta is also
not a proper function in the mathematical sense, but an admissible signal only in the
distribution sense. Since the accuracy properties of time marching schemes rest heavily
on the differentiability (in time) properties of the fields, a Gaussian pulse10 is used
instead:

g(t) = e−p t−tm
w q2

. (4.32)

By setting the mean value tm of the Gaussian signal, it is then ensured that the source
field starts gently from a value close to zero, while by setting the width w the Gaussian
can be made narrow enough in terms of time-steps so to excite a broad range of eigen-
modes. We wish to solve an eigenvalue problem in the time domain, since we know that
the resonant frequencies of the cylindrical resonator are given [34] by

fmnp =
c

2π

c

´χmn

r

¯2

+
´pπ

h

¯2

, (4.33)

where χmn is the m-th zero of the n-th cylindrical Bessel function, p is a non-negative
integer, and c is the speed of light in the medium which fills the cavity.

10Or a differianted Gaussian pulse (the Gaussian distribution density function is C∞). One advantage
of the differianted Gaussian is that it has lower energy at its DC component.
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Figure 4.12: Result of FFT analysis the computed electric field in the cylindrical res-
onator: a field probe was put at the center of the resonator. The resonances match
the theoretically predicted frequency values (the black vertical lines) within the accu-
racy permitted by the FFT. Incidentally, the well known vestigial side-bands due to
Hamming windowing are discernible on both peaks.

For an arbitrarily large frequency interval, we can retrieve spectral behaviour after
a single time domain simulation by computing the FFT (using for example [46]) on
the interpolated e(r, t) at a random probe inside the cavity. Putting the experiment
analogy forth, this is like having an omnidirectional receiving microwave-antenna placed
somewhere inside the cavity. As we would do with raw field amplitudes measured
through such an antenna, we apply some windowing technique as a post-processing step
to ensure coherent sampling11.

We know from the analysis (see also [45]) that the first two resonant frequencies of
the cylindrical cavity are found at f1 = 114.75 MHz and f2 = 182.84 MHz. To correctly
estimate the error on the measure of resonance peaks induced by the discretization
method we set the simulation time to 2 µs, corresponding to a resoluton in the fre-
quency domain of 1 MHz. The peaks at f1 and f2 are visible in Fig. 4.12, in which the
vertical lines denote the analytically computed frequencies and the error is comparable
with the accuracy limit imposed by the sampling frequency. The mesh used has 82982
tetrahedra, 170144 triangles, 103505 edges and 16344 nodes. This granularity resulted
from requiring all edges in the mesh to be shorter than one tenth of the minimum wave-
length we wished to resolve correctly. The resulting maximum time-step size allowed for
stability was ∆t = 33.97 ps, which causes a rather long simulation of 58 878 time-steps,
while naturally yielding a fine enough sampling to resolve peaks in the GHz range.

Finally, we remark that the whole simulation took approximately 808 seconds (13.7
milliseconds per time-step) running single-core again on our Xeon E5-2687Wv4 archi-
tecture.

11Since the measurement or simulated must be truncated at some point in time.
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4.7 Discussion

The present chapter confirmed that all the properties theoretically attributed to the
DGA scheme are confirmed by numerical tests. Furthermore, for equal level of accuracy,
the computational complexity of simulating the same configuration with standard FEM
formulation based on lowest order edge elements is higher by more than one order of
magnitude, mainly due to two factors:

1. For the same tetrahedral grid, the DGA scheme allows a time-step limit value
twice as large as the one allowed by the FEM scheme (a novel result of the thesis).

2. The FEM scheme requires the iterative solution of an algebraic system at each
time-step.

Furthermore, even if the FDTD scheme remains the most computationally efficient
scheme, the DGA scheme is on the same order of magnitude, and we have shown,
through a very simple, geometry friendly test-case, that the theretical O(h2) accuracy
of the FDTD schemi is hardly ever achieved in practical configurations.





5
The DGA scheme extended to

conductive media

It was already shown in its introduction that the FEM approach correctly accounts
for the presence of lossy materials, whose mass matrix contributions partake in the
definition of the system matrix on which a PCG solver is applied. Furthermore, when
dealing with the FIT version of the original FDTD method, it was implicitly shown that
the original Yee algorithm does not oppose any resistance1 to the introduction of lossy
materials, and it does not give up anything in terms of efficiency of the modified scheme
in the process.

The same does not seem so obvious for the case of the DGA approach here under
study. This is very troubling. Not so much for the modelling of actual conductors, since
at high frequencies conductors are excluded from the mesh and represented as PEC
surfaces due to their thin skin depth, but actually for dielectric materials, which in real
applications at radio frequency usually present non-zero real part in their impedance
spectrum. Conductive losses can happen to even be purposefully engineered into some
microwave devices. It would therefore not be very sensible from a numerical method to
not be able to treat them. The main problem is that we are also greedy: we don’t want
to make any big sacrifice in computational complexity to include this particular feature
in the DGA scheme.

The present Chapter presents entirely novel results and deals with this particular
endeavour. Its main results are the object of a submitted journal paper [47] which was
under review at the time this thesis was originally written. The Chapter is organized
as follows. In Section 5.1 the extension of the scheme to the case of lossy materials
is introduced and details on how to render its implementation efficient are given. In
section 5.3 numerical results, which validate the main result claimed in Section 5.1, are
shown and discussed.

1This pun was intended.
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Figure 5.1: Local quantities defined on the single dual volume. For the sake of clarity
we show a 2D section in which the section of the dual volume is the coloured area.

5.1 Introduction of lossy materials

In the DGA framework the original formulation (by Codecasa et al.) of the time domain
discrete scheme on a simplicial primal complex K and its dual complex K̃, obtained by
barycentric subdivision of K, can be cast as

f̃n+ 1
2 = f̃n− 1

2 − ∆tMµ−1

Cvn, (5.1)

vn+1 = vn + ∆tMε−1

C̃f̃n+ 1
2 . (5.2)

We want to extend (5.1)-(5.2) to the case of lossy materials, without giving up any
crucial property of the original FDTD algorithm.

Let us first recall that, in the presence of materials with finite resistivity, Ampére–
Maxwell’s equation in the continuous domain can be written as

ε
∂e

∂t
+ σe = jt, (5.3)

jt = ∇× h, (5.4)

in which jt is the total electric current density which accounts for both the displacement
current term and the Ohmic conduction current term. Since equation (5.3) contains both
e and its derivative, a central difference approximation of (5.3)–(5.4) inferred from the
lossless case would fail in keeping the algorithm explicit. In the following we show how
this can be achieved with a more subtle approach.
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5.1.1 Discretization of Ampére–Maxwell law

Let us consider a single volume τ̃ṽ ∈ K̃, as in Fig. 5.1. If we label Fτ̃ṽ the set of faces of
K̃ in the boundary of τ̃ṽ, we can discretize equation (5.4) as follows:

ĩ
n+ 1

2

τ̃ṽ
= Sτ̃ṽC̃f̃

n+ 1
2 , (5.5)

where ĩ
n+ 1

2

τ̃ṽ
is a column vector of order |Fτ̃ṽ |, containing the fluxes of jt through the

faces of K̃ in the boundary of τ̃ṽ at time instant (n+ 1
2 )∆t, and Sτ̃ṽ is a transformation

matrix with |Fτ̃ṽ | rows and number of columns equal to the number of faces in K̃. Every
row of Sτ̃ṽ has exactly one entry equal to 1 corresponding to a dual face in the boundary
of τ̃ṽ and zero everywhere else. If we then define vnτ̃ṽ as the vector of dimension |Fτ̃ṽ |
containing the circulations of e along the halves of primal edges of K which intersect τ̃ṽ
at time instant n∆t, equation (5.3) can be discretized as follows

ĩ
n+ 1

2

τ̃ṽ
= Mε

τ̃ṽ

vn+1
τ̃ṽ

− vnτ̃ṽ
∆t

+ Mσ
τ̃ṽ

vn+1
τ̃ṽ

+ vnτ̃ṽ
2

, (5.6)

where Mε
τ̃ṽ

and Mσ
τ̃ṽ

are symmetric, positive-definite matrices of order |Fτ̃ṽ | discretizing
the ε and σ tensors, respectively and the standard semi-implicit approximation was
used for the σ-dependent term on the right hand-side of (5.6). Matrices Mε

τ̃ṽ
and Mσ

τ̃ṽ

are constructed locally on every dual volume, generalizing to σ the procedure already
described for ε in Chapter 3. We remark that equation (5.6) yields a local consistent
discretization of equation (5.3) for any τ̃ṽ ∈ K̃. Let us now define two additional local
matrices

Pτ̃ṽ = Mε
τ̃ṽ

+
∆t

2
Mσ

τ̃ṽ
, (5.7)

Qτ̃ṽ = Mε
τ̃ṽ

−
∆t

2
Mσ

τ̃ṽ
. (5.8)

With these definitions, we can apply a local matrix inversion approach for each τ̃ṽ: by
equating the right hand-sides of equations (5.5) and (5.6) and inverting with respect to
vn+1
τ̃ṽ

, it ensues

vn+1
τ̃ṽ

= pPτ̃ṽ q−1
·
´

Qτ̃ṽv
n
τ̃ṽ

+ ∆tSτ̃ṽC̃f̃
n+ 1

2

¯

∀τ̃ṽ. (5.9)

It is easy to notice that we can append all local vectors vnτ̃ṽ to form a single global
column vector vnτ̃ . It then ensues

vn+1
τ̃ = pPτ̃ q−1

·
´

Qτ̃v
n
τ̃ + ∆tSτ̃ C̃f̃

n+ 1
2

¯

, (5.10)
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where pPτ̃ q−1
and Qτ̃ have block diagonal matrix form

pPτ̃ q−1
=

»

—

—

—

—

–

pPτ̃1q−1
0 · · · 0

0 pPτ̃2q−1
· · · 0

...
...

. . .
...

0 0 · · ·
`

Pτ̃|ṽ|

˘−1

fi

ffi

ffi

ffi

ffi

fl

, (5.11)

pQτ̃ q−1
=

»

—

—

—

—

–

pQτ̃1q−1
0 · · · 0

0 pQτ̃2q−1
· · · 0

...
...

. . .
...

0 0 · · ·
`

Qτ̃|ṽ|

˘−1

fi

ffi

ffi

ffi

ffi

fl

, (5.12)

and Sτ̃ = [ ST
τ̃1

ST
τ̃2

· · · ST
τ̃|ṽ|

]T , where |ṽ| is the total number of volumes in K̃.
Matrix Sτ̃ has exactly two nonzero entries equal to one in each column, since two
halved edges correspond to each edge in the primal mesh K. Discrete equation (5.10)
can be written as

vn+1
τ̃ = Aτ̃v

n
τ̃ + ∆tBτ̃ C̃f̃

n+ 1
2 , (5.13)

where Aτ̃ = pPτ̃ q−1
Qτ̃ and Bτ̃ = pPτ̃ q−1

Sτ̃ . equation (5.13) generalizes the DGA
scheme to the case of lossy media, only it splits electric field DoFs into halved primal
edges, effectively adding one unknown for every primal edge of K.

Finally, to have a fully functioning leapfrog time marching algorithm, one just needs
to add back together the halved edge quantities by left-multiplication with the transpose
of the appropriate transformation matrix

vn+1 = ST
τ̃ v

n+1
τ̃ . (5.14)

The scheme comprising equations (5.1), (5.10), (5.14) inherits all the benefits of the
FDTD algorithm for lossy materials on Cartesian grids. It is explicit, conditionally
stable, and it has second order accuracy in time. At no point in its derivation the
properties of (5.1)–(5.2) are lost. Furthermore, matrices pPτ̃ q−1

and Qτ̃ are both block
diagonal and both their construction and their product with DoFs vectors are performed
with limited computational effort. In particular, the matrices we have to invert are the
Pτ̃ṽ , which are small sparse matrices. Finally we note that the updating equation (5.2)
is retrieved if σ = 0 everywhere in the grid.

5.1.2 Discretization of Faraday’s Law

A similar approach can be applied on the primal mesh. On any single tetrahedron
τv ∈ K, as in Fig. 5.2, we can discretize Faraday’s law locally as follows:

ϕ
n+ 1

2
τv −ϕ

n− 1
2

τv

∆t
= −SτvCv

n, (5.15)
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Figure 5.2: Local quantities defined on the single tetrahedron

where ϕ
n+ 1

2
τv is a vector of dimension 4 containing the fluxes of b through the primal

faces of τv at time instant (n+ 1
2 )∆t. Matrix Sτv is a transformation matrix with four

rows and number of columns equal to the number of faces in K. Every row of Sτv has
exactly one entry equal to 1 corresponding to a primal face in the boundary of τv and
zero everywhere else. We can locally construct a symmetric positive definite 4×4 matrix
`

Mµ
τv

˘−1
that discretizes the µ tensor, with the procedure recalled in Chapter 3, such

that the relation

f̃
n+ 1

2
τv =

`

Mµ
τv

˘−1
ϕ

n+ 1
2

τv (5.16)

holds, where f̃
n+ 1

2
τv is the vector containing the circulations of h along the halves of dual

edges of K contained in τv, and (5.16) is a local consistency condition for any τv ∈ K.

By substituting equation (5.16) in equation (5.15) and inverting with respect to f̃
n+ 1

2
τv ,

we get

f̃
n+ 1

2
τv = f̃

n− 1
2

τv − ∆t
`

Mµ
τv

˘−1
SτvCv

n. ∀τv (5.17)

Let us now define column vector f̃
n+ 1

2
τ , obtained by appending all f̃

n+ 1
2

τv in K at time
instant (n+ 1

2 )∆t. We get

f̃
n+ 1

2
τ = f̃

n− 1
2

τ − ∆t pMµ
τ q−1

SτCv
n, (5.18)
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where pMµ
τ q−1

has the form

pMµ
τ q−1

=

»

—

—

—

—

—

–

`

Mµ
τ1

˘−1
0 · · · 0

0
`

Mµ
τ2

˘−1
· · · 0

...
...

. . .
...

0 0 · · ·
´

Mµ
τ|v|

¯−1

fi

ffi

ffi

ffi

ffi

ffi

fl

, (5.19)

and Sτ = [ ST
τ1

ST
τ2

· · · ST
τ|v|

]T , where |v| is the total number of tetrahedra in K.
Matrix Sτ has exactly two nonzero entries in each column associated to any primal
face which is not in the boundary of K. The columns of Sτ which map to faces in the
boundary of K on the other hand will have just one nonzero entry, equal to 1. It is
evident that equation (5.18) contains the same information of equation (5.1), but splits
the unknown circulations of h into halved dual edges, adding one unknown for every
primal face of K which is not in the boundary of Ω. To retrieve the full dual edge DoFs,
one just needs to add back together the halved quantities by left-multiplication with the
transpose of the appropriate selection matrix

f̃n+ 1
2 = ST

τ f̃
n+ 1

2
τ . (5.20)

We remark that, by left-multiplying equation (5.18) by ST
τ and using equation (5.20)

recursively, one gets

f̃n+ 1
2 = ST

τ f̃
n+ 1

2
τ =

= ST
τ f̃

n− 1
2

τ − ∆tST
τ M

µ−1

τ SτCv
n =

= f̃n− 1
2 − ∆tMµ−1

Cvn,

(5.21)

where we have used the fact that Mµ−1

= ST
τ pMµ

τ q−1
Sτ by construction. The addi-

tional unknowns for the magnetic field circulations are in fact actually never used in the
algorithm, we introduce them for reasons of symmetry which will be useful in the next
chapter for the stability analysis and in Chapter 7 for code parallelization endeavours,
in which we will refer to this form as the fractioned grid formulation. Furthermore, the
splitting of m.m.f. degrees of freedom also suggests that there is no inherent obstacle in
considering magnetic losses, which are instrumental in the definition of several types of
absorbing boundary conditions (e.g. PML).

5.2 Reduction of redundant unknowns

The sole apparent drawback of the scheme of (5.10), (5.14) is that it has twice the
number of edge unknowns with respect to the actual grid size of K. It turns out this
drawback can be strongly mitigated with algebraic manipulations and with certain,
physically relevant, assumptions on the materials’ properties.

Let us now take, without loss of generality, a dual volume τ̃ṽ contained in a spatial
region in which ε and σ are homogenous scalars, it is straightforward to see (from the
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where

Aρ̃ = ST
ρ̃τ̃ pPτ̃ q−1

Qτ̃Sρ̃τ̃

`

ST
ρ̃τ̃Sρ̃τ̃

˘−1
, (5.24)

Bρ̃ = ST
ρ̃τ̃ pPτ̃ q−1

Sτ̃ , (5.25)

and equation (5.14) becomes

vn+1 = ST
τ̃ Sρ̃τ̃

`

ST
ρ̃τ̃Sρ̃τ̃

˘−1
vn+1
ρ̃ , (5.26)

where we do not have to actually compute any actual further matrix inversion, since
ST
ρ̃τ̃Sρ̃τ̃ is a diagonal matrix with all diagonal entries equal to 1 or 2.

Some additional remarks are in order: in the limit in which ε, σ are homogenous
scalars in the whole grid K, the number of unknowns is reduced to the one given by the
original grid. It is also evident from the definitions of P and αε,σ that (5.2) is retrieved
if σ = 0. Finally, it is also relevant to note that the whole procedure of recombination
of halved primal edges can be exploited even if instead of homogenous scalars, ε and σ
are just proportional tensors.

5.3 Numerical Results

5.3.1 Uniform conductive waveguide

Our first example concerns the simulation of a rectangular metallic waveguide of size
5×2.5 cm and length 10 cm in the z direction. At z = 0, the waveguide is excited with the
incident electric field of the TE10 modulated with the function g ptq = sin p2πftq Θ(t),
where f = 5 GHz and Θ(t) is again the unit step function. At the other end (z = 10 cm)
a Perfect Electric Conductor (PEC) termination is applied. We fill the whole waveguide
with a medium with non negligible electric conductivity σ.

A closed form for the solution of this problem, which was not previously published
to the best of the author’s knowledge, is in fact straightforwardly attainable from the
results already derived in Section 4.1 for the case of a non-conductive medium filling the
waveguide. It suffices to notice that in the conductive case an equivalent permittivity
ε′ = ε + σ/s can be defined and substituted in Γ(s) and and in the speed of light
c′ = 1/

?
µε′. It then ensues

L−1
{

e−kΓ(s)
}

(t) =







γ1(t), for σ ≤ 2π
a

b

ε
µ

γ2(t), for σ ≥ 2π
a

b

ε
µ







, (5.27)

where γ1(t) and γ1(t) have the form

γ1(t) = e−ξt

«

δ pt− kq − αk
J1

`

α
?
t2 − k2

˘

?
t2 − k2

Θ(t− k)

ff

, (5.28)

γ2(t) = e−ξt

«

δ pt− kq + αk
I1

`

α
?
t2 − k2

˘

?
t2 − k2

Θ(t− k)

ff

, (5.29)
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Figure 5.4: Comparison of various approaches for the case of purely dielectric material
(air) inside the waveguide.

in which I1(t) denotes the first modified cylindrical Bessel function and

ξ =
σ

2ε
, (5.30)

α =

d

ˇ

ˇ

ˇ

ˇ

´cπ

a

¯2

− ξ 2
ˇ

ˇ

ˇ

ˇ

. (5.31)

It is readily shown by substition that in the case σ = 0 we retrieve (4.12). It ensues that
the closed forms of all nonzero components of the electromagnetic field are all readily
available through the same formulas of the lossless case.

To validate the enhancement of the DGA scheme introduced in the present chapter,
comparison with both the analytic solution and the two other studied approaches is
shown both for the lossless case and for σ = 50 mS/m. In both Fig. 5.4 and 5.6, a single
period (200 ps) is shown for the sake of clarity, but simulations were run with more than
50 000 time-steps and no late time instabilities have been found. Using the following L2

norm

‖f̃τ ,vτ̃‖µ,ε=
´

‖f̃τ‖
2
µ+‖vτ̃‖

2
ε

¯
1
2

, (5.32)
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Figure 5.5: Relative error in L2 norm: σ = 0 everywhere inside the waveguide (h is the
maximum edge length of the mesh element in the grid).

Figure 5.6: Comparison of various approaches (with different mesh sizes) for the case of
uniform σ = 50 mS/m everywhere inside the waveguide.
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Figure 5.7: Relative error in L2 norm: σ = 50 mS/m everywhere inside the waveguide
(h is the maximum edge length of the mesh element in the grid).

where, again:

‖f̃τ‖µ=
1

2

´

(f̃τ )TMµ
τ f̃τ

¯
1
2

, (5.33)

‖vτ̃‖ε=
1

2

´

(vτ̃ )TMε
τ̃vτ̃

¯
1
2

, (5.34)

the accuracies of the various methods were compared by studying the relative error

‖ε̂‖=
‖f̃τ − Π(h),vτ̃ − Π(e)‖µ,ε

‖Π(h),Π(e)‖µ,ε
,

where the Π(h), Π(e) are the L2 projections of the analytic fields onto the geometric
elements of the mesh. Fig. 5.5 and 5.7 show the relative error ‖ε̂‖, with respect to
the maximum edge length h of the mesh element, in a lossless and lossy waveguide,
respectively. All three methods show similar behaviour in numerical solutions. The
grids used for the FEM and DGA approaches have 14 336, 114 688, 917 504 elements
respectively. The grids used for the FDTD approach have 4 096, 32 768, 262 144 cubes,
respectively. Both sequences of grids are successive uniform refinements of a coarse
starting grid.

We remark that, also in lossy waveguide, the FDTD curves do not show any super-
convergent behaviour since the fields in the solution of the problem are only piece-wise
differentiable. The error curves show that the accuracy of the proposed method is in
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Figure 5.9: Comparison of various approaches for the setup of Fig. 5.8. The tetrahedral
grid used comprises 5 402 984 tetrahedra, while the Cartesian orthogonal grid comprises
8 000 000 cubes.

Figure 5.10: Comparison of various approaches for the setup of Fig. 5.8: different time
instant
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Figure 5.11: Comparison of various approaches for the setup of Fig. 5.8: yet another
different time instant.

conductive material at x = 0.02 m and x = 0.03 m.

Finally, we give some further perspective on the performance of explicit versus im-
plicit methods. Simulating 2 ns of propagation with the FEM approach, for which the
usual precoditioned conjugate gradient solver with tolerance on the relative residual set
to 1 × 10−8 was used, took nearly 30 hours. In contrast the simulation performed with
the proposed DGA method and the FDTD one both took approx 2.5 hours, on on a
single-core Xeon E5-2687Wv4 processor, with the same optimization.

5.3.3 Discrete Poynting’s theorem in lossy media

It is readily seen that the mass matrix used to account for lossy materials satistfies the
consistency condition introduced for the σ tensor. To test if energy is conserved in the
discrete lossy scheme we need, with respect to (4.28), to add one term to the discrete
version of Poynting’s Theorem

(φt)T r?ν2s ∂tφt + (ut)T r?ε2s ∂tut = (ut)T C̃bf̃
t
b + (ut)T r?σ2 sut, (5.35)
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Figure 5.12: The DGA discrete scheme complies with Poynting’s Theorem again if we
introduce the lossy L2 norms. In this figure, we set ∆t = 141 ps.

where column vector f̃b is again the one defined in (4.14). By using the piece-wise linear
approximation we get:

˜

φn+ 1
2 + φn− 1

2

2

¸T

r?ν2s
˜

φn+ 1
2 − φn− 1

2

∆t

¸

+ (un)T r?ε2s
ˆ

un+1 − un−1

2∆t

˙

u

=(un)T C̃b

˜

f̃
n+ 1

2

b + f̃
n− 1

2

b

2

¸

+ (uns)T r?σ2 sun,

(5.36)

where all observations made in Chapter 4 on the approximation of time derivatives still
hold. Fig. 5.12 shows that, with the defined L2 norm, Poynting’s Theorem holds also
in the lossy discrete scheme. The same coarse grid of 3072 tetrahedra, 6528 surfaces,
4184 edges, 729 nodes was used as in Chapter 4 on the 1 × 1 × 1 m cubic domain.
Time derivatives were computed with ∆t = 141 ps, again 0.98 times the stability limit
computed through spectral techniques. The plot already shows a nearly perfect match.
In comparison with the lossless case of Fig. 4.10, we can attribute the faster convergence
of the lossy scheme in terms of power balance to the smoothing induced in the waveforms
by the the (physical) dissipative effect of the lossy material in the waveguide (see also
Appendix A for detailed waveforms).

5.4 Conclusion

An explicit numerical method, able to handle lossy materials, for the time domain
solution of Maxwell’s equations on tetrahedral grids has been described. The method’s
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promise for practical applications has been shown with various numerical tests.



6
A CFL condition for the DGA

scheme

As already stated, all methods compared in Chapter 4 are conditionally stable. Nev-
ertheless, there is a nontrivial distinction between a CFL stability condition given as
(4.20) and a spectral stability condition stated as (4.21). Both are necessary, but the
purely arithmetic nature of the first one makes it easily computable and also consider-
ably more valuable in engineering practice, since it would allow to ensure the absence of
late time instabilities in very long simulations and the quick detection of computational
bottlenecks by geometric inspection of the physical configuration under study. On the

Figure 6.1: Example of limit time-step estimation based on spectral methods, versus
the theoretical CFL condition, for the case of a standard FDTD example. The test case
is cube with side 1 m, discretised with uniform step ∆x = ∆y = ∆z = 10 cm, resulting
in a mesh of 1000 cubes.
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other hand, a spectral stability analysis rests necessarily on some estimation technique,
barring the impractical solution of an ill-defined eigenvalue problem [19]. Unfortunately
all estimators for spectral radii are iterative and monotonically converge to the actual
value from below. Conversely, by condition (4.21), the time-step value at which the it-
erative procedure will eventually be halted by the user necessarily lies over the stability
limit, although monotonically getting closer to it (see Fig. 6.1). Some coefficient must
be subsequently heuristically determined to be used in the actual simuation (as the 0.98
factor used in previous chapters).

It is clear from these considerations that any method which, on top of conditional
stability, claims to be robust, must rely on a robust (read truly sufficient) condition
for stability. This Chapter is therefore devoted to the analytic derivation of a sufficient
condition for the stability of the DGA scheme, which is given in the following with proof.

6.1 Analytic derivation of CFL condition

In the framework introduced in Section 5.1, a stability condition for the resulting algo-
rithm can be derived using considerations formally similar to those used for the FDTD
algorithm on Cartesian grids. The algorithm outlined in Section 5.1 can be rewritten in
the following form

Mµ
τ

f̃
n+ 1

2
τ − f̃

n− 1
2

τ

∆t
= −Sτ CST

τ̃ v
n
τ̃ , (6.1)

Mε
τ̃

vn+1
τ̃ − vnτ̃

∆t
+ Mσ

τ̃

vn+1
τ + vnτ̃

2
= Sτ̃ C̃ ST

τ f̃
n+ 1

2
τ , (6.2)

where it is also straightforward to see that, if we define

Cτ = Sτ CST
τ̃ , (6.3)

it ensues

(Cτ )T = C̃τ = Sτ̃ C̃ ST
τ . (6.4)

Then, multiplying on the left equation (6.2) by (vn+1
τ̃ + vnτ̃ )T and equation (6.1) by

(f̃
n+ 1

2
τ +f̃

n− 1
2

τ )T , by summing the two resulting equations and performing a few algebraic
manipulations we obtain

Wn+1 −Wn = −Pn+ 1
2 (6.5)

where we have defined

Wn+1 =
1

2
(vn+1

τ̃ )TMε
τ̃v

n+1
τ̃ +

1

2
(f̃

n+ 1
2

τ )TMµ
τ f̃

n+ 1
2

τ −
1

2
∆t(vn+1

τ̃ )T C̃τ f̃
n+ 1

2
τ , (6.6)

Wn =
1

2
(vnτ̃ )TMε

τ̃v
n +

1

2
(f̃

n− 1
2

τ )TMµ
τ f̃

n− 1
2

τ −
1

2
∆t(vnτ̃ )T C̃τ f̃

n− 1
2

τ , (6.7)
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Pn+ 1
2 = ∆t

ˆ

vn+1
τ̃ + vnτ̃

2

˙T

Mσ
τ̃

ˆ

vn+1
τ̃ + vnτ̃

2

˙

. (6.8)

By hypothesis on the σ tensor (symmetric, positive-definite), Pn+ 1
2 ≥ 0 always holds.

Since equation (6.5) also holds, it ensues that the scalar function Wn (which has physical
units of energy) does not increase over time. Consequently, we can use the energy
method [48] to establish a CFL condition, i.e. we require Wn ≥ 0 for each time-step.
With this approach we obtain the following result:

Theorem 3. A sufficient condition for the stability of the DGA time domain scheme
on tetrahedral grids is

∆t < min
r

hr
2cr

, (6.9)

in which the minimum is over all volumes Ωr (as defined in Chapter 3) in the tetrahe-
dral mesh and hr is the height of the tetrahedron containing Ωr, orthogonal to the face
opposite to Ωr.

Proof. To prove Theorem 3 we need the following preliminary lemma:

Lemma 1. For every intersection Ωr of a dual volume ṽ with a primal volume v the
following identity holds:

ArM
ε
rA

T
r = εr|Ωr|I3, (6.10)

ÃrM
µ
r Ã

T
r = µr|Ωr|I3, (6.11)

where I3 is the 3 × 3 identity matrix, Mµ
r and Mε

r are the 3 × 3 matrix whose entries
are defined in (3.46) and (3.47), εr is the electric permittivity (assumed uniform in the
volume Ωr), |Ωr| indicates the measure of Ωr, Ar =

“

a1r a2r a3r
‰

is a 3 × 3 matrix
whose columns are the edge vectors of the halves of primal edges on the boundary of Ωr,
Ãr =

“

ã1r ã2r ã3r
‰

is a 3×3 matrix whose columns are the edge vectors of the halves
of dual edges on the boundary of Ωr.

Proof. At any time instant tn, take a pair of vectors enr and dnr . We can always define
discrete degrees of freedom as projections of uniform vector fields on primal halved
edges’ in the boundary of Ωr in the following fashion:

un
r = AT

r d
n
r , (6.12)

vnr = AT
r e

n
r . (6.13)
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Then, by using the properties of the basis functions, the following equality holds exactly

(dnr )TArM
ε
rA

T
r e

n
r = (un

r )TMε
rv

n
r =

=

3
∑

i=1

3
∑

j=1

(un
r )i

ˆ
∫

Ωr

wi
r(r) · ε(r)wj

r(r) dr

˙

(vnr )j =

=

∫

Ωr

3
∑

i=1

(un
r )iw

i
r(r) · ε(r)

3
∑

j=1

(vnr )jw
j
r(r) dr =

= dnr ·

ˆ
∫

Ωr

ε(r) dr

˙

enr .

(6.14)

Furthermore, if the electric permittivity is uniform in Ωr we get

(dnr )TArM
ε
rA

T
r e

n
r = dnr ·

ˆ
∫

Ωr

ε(r) dr

˙

enr = dnr · pεr|Ωr|q enr . (6.15)

Since the choice of vectors dnr and enr is general, (6.10) easily follows. The proof of
(6.11) is completely analogous.

We are now ready to prove Theorem 3:

Let Ωr again be a non-empty intersection of a primal volume in K and a dual volume
in K̃. Also let a1r, a2r, a3r be the edge vectors of the halves of primal edges on the boundary
of Ωr, and let ã1r, ã2r, ã3r be the edge vectors of the halves of dual edges on the boundary
of Ωr, oriented as shown in Fig. 3.3. The energy function Wn+1 can be rewritten as a
sum of terms, one for each volume Ωr. In fact

Wn+1 =

4|v|
∑

r=1

Wn+1
r (6.16)

in which

Wn+1
r =

1

2
(vn+1

r )TMε
rv

n+1
r +

1

2
(f̃

n+ 1
2

r )TMµ
r f̃

n+ 1
2

r −
1

2
∆t(vn+1

r )TCT
r f̃

n+ 1
2

r . (6.17)

Quantity Wn+1
r in (6.17) is the electromagnetic energy in Ωr. It is a function of the

3-row vector vn+1
r which contains the line integrals of the electric field along a1r, a2r,

a3r, and of the 3-row vector f̃
n+ 1

2
r which contains the line integrals of the magnetic field

along ã1r, ã2r, ã3r. Matrices Mµ
r and Mε

r are the ones defined in equations (3.46) and
(3.47), while Cr is a 3 × 3 incidence matrix given by

Cr =

»

–

0 −1 1
1 0 −1

−1 1 0

fi

fl . (6.18)
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Now it can be written

vn+1
r = AT

r e
n+1
r , (6.19)

f̃
n+ 1

2
r = ÃT

r h
n+ 1

2
r , (6.20)

in which en+1
r and h

n+ 1
2

r are respectively the uniform electric and magnetic field vectors

in the volume Ωr, uniquely reconstructed from vn+1
r and f̃

n+ 1
2

r , and

Ar =
“

a1r a2r a3r
‰

, (6.21)

Ãr =
“

ã1r ã2r ã3r
‰

, (6.22)

are non-singular 3×3 matrices. By substituting equations (6.19) and (6.20) into equation
(6.17) it ensues

Wn+1
r =

1

2
(en+1

r )TArM
ε
rA

T
r e

n+1
r

+
1

2
(h

n+ 1
2

r )T ÃrM
µ
r Ã

T
r h

n+ 1
2

r

−
1

2
∆t(en+1

r )TArC
T
r Ã

T
r h

n+ 1
2

r .

(6.23)

If the dielectric permittivity and the magnetic permeability are uniform scalars, labeled
εr and µr respectively, in each Ωr and if we indicate with |Ωr| the measure of Ωr, by
Lemma 1, it ensues

2Wn+1
r /|Ωr| = εr(en+1

r )2 + µr(h
n+ 1

2
r )2 − 2∆t en+1

r × h
n+ 1

2
r · ur, (6.24)

being ur = br/(6|Ωr|), in which br is the face vector of the face of K opposite to Ωr,
and where we have also used the fact that

(en+1
r )TArC

T
r Ã

T
r h

n+ 1
2

r =
1

3
en+1
r × h

n+ 1
2

r · br. (6.25)

Equivalently it is

2Wn+1
r /|Ωr| = (x

n+ 1
2

r )2 + (yn+1
r )2 − 2∆t crx

n+ 1
2

r × yn+1
r · ur, (6.26)

in which x
n+ 1

2
r =

?
εre

n+1
r , yn+1

r =
?
µrh

n+ 1
2

r and cr = 1/
?
εrµr is the speed of light in

volume Ωr. Let us now take an arbitrary electromagnetic field
“

xTyT
‰

6= 0 in Ωr. For
Wn+1

r ≥ 0 to hold for every electromagnetic field, we have to require that

0 ≤ (x)2 + (y)2 − 2∆t cr|x| |y| |ur| = (x)2 + (y)2 − 2|x| |y|+2 (1 − ∆t cr |ur|)|x| |y|

= (|x|−|y|)2 + 2 (1 − ∆t cr |ur|)|x| |y|,

(6.27)
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hr

hr↓ =⇒ ∆t↓

Figure 6.2: A grid containing nearly degenerate tetrahedra as the one on the right will
require a smaller time-step to yield a stable scheme, even if all three shown elements
have roughly the same diameter.

from which it ensues that, if we require

∆t <
1

cr|ur|
. (6.28)

it is Wn+1
r ≥ 0 and Wn+1

r = 0 implies
“

xTyT
‰

= 0. Thus, observing that |ur|=
2
hr

, in
which hr is the height of the tetrahedron containing Ωr, normal to the face with face
vector br, the following condition ensues

∆t <
hr
2cr

. (6.29)

Taking the minimum of the right hand-side of (6.29), the thesis ensues.

We remark that the present proof is easily generalizable to the case in which ε and µ
are not uniform scalars in Ωr.

The condition of Theorem 3 is a theoretical condition which, to the best of the
author’s knowledge, is completely novel for FDTD algorithms on tetrahedral grids, in
the sense that it links the time-step with a purely geometric property of the mesh
and gives a rigorous underpinning to the following intuitive remark: the bound on the
stability of a time domain scheme on tetrahedral grids strongly depends on the quality of
the mesh. Tetrahedra which are close to degeneracy (going towards the right in Fig. 6.2)
will be the bottleneck for the conditional stability of the algorithm. The derivation of a
similar condition for the FEM with lowest order edge elements is also yet to be found
in the literature, to the best of the author’s knowledge, but it is interesting to note that
such a condition must necessarily be more restrictive than (6.9), as can be easily inferred
by Fig. 6.3, in which the CFL condition above derived was compared with the numerical
limits estimated via spectral methods for the same sequence of uniformly refined grids,
both for FEM and DGA schemes. The author hopes to investigate the causes behind
this further drawback of the standard FEM in future work.
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Figure 6.3: Comparison between the derived CFL condition and the estimated time-step
limit values estimated with spectral methods for the DGA and FEM approaches.

6.2 Numerical approach

The approach of the previous section yields a sufficient condition for stability, i.e. a
theoretic lower bound on ∆t. Still for performance purposes it is desirable to obtain the
upper bound instead. Using equation (6.1), Wn+1 can be equivalently rewritten as

Wn+1 =
1

2
(f̃

n+ 1
2

τ )TMµ
τ f̃

n+ 1
2

τ +
1

2
(vn+1

τ̃ )TMε
τ̃v

n
τ̃ (6.30)

and since, again from equation (6.1), it is

vn+1
τ̃ =

vn+1
τ̃ + vnτ̃

2
+

∆t

2
(Mε

τ̃ )−1C̃τ f̃
n+ 1

2
τ , (6.31)

vnτ̃ =
vn+1
τ̃ + vnτ̃

2
−

∆t

2
(Mε

τ̃ )−1C̃τ f̃
n+ 1

2
τ , (6.32)

(6.33)
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from equation (6.30) it then ensues
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2
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˜
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ˆ
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¸
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2
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ˆ
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˙T

Mε
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ˆ
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τ̃ + vnτ̃

2

˙

,

(6.34)

from which it results that our numerical scheme is stable if, and only if

Mµ
τ −

ˆ

∆t

2

˙2

Cτ (Mε
τ̃ )−1C̃τ > 0, (6.35)

where by > 0 it is meant that the matrix is positive definite. It is straightforward to
show that we can apply an approach similar to [18] and [49] on equation (6.35), obtaining
the condition

∆t <
2?
λMAX

. (6.36)

where λMAX is the maximum eigenvalue of matrix pMµ
τ q−1

Cτ (Mε
τ̃ )−1C̃τ , as already

stated in Chapter 4



7
The TetFIT toolbox

We introduce in this Chapter a simulation toolbox which was developed during the thesis
work which the author hopes to continue nurturing and improving in the future. The
source-code is written in C++ and works under Unix architectures (tested on Debian
9) and on Windows, compiled in the CygWin Posix compatibility layer.

7.1 The user interface

The executable is called on the terminal with the instruction:

.\tetfit simulation.fdtd

where simulation.fdtd is an input file written in a scripting language developed by
the author. An example of an input file is the following:

########## file simulation.fdtd

########## mesh

DEFINE mesh 1

SET type tetrahedral

#SET xgrid {0,0.01,1}

#SET ygrid {0,0.01,1}

#SET zgrid {0,0.01,1}

SET mesher netgen

SET file box.mesh

SET name waveguide

SET scalefactor 1

END mesh 1

########## Materials definitions

DEFINE material 1

SET epsilon 1
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SET mu 1

SET sigma 0

SET chi 0

END material 1

########## Boundary conditions

DEFINE bc 1

SET surface 2

SET surface 3

SET surface 4

SET surface 5

SET surface 6

SET type pec

END bc 1

########## Sources

DEFINE source 1

SET surface 1

SET type h # magnetic field

SET profile wave

SET mode { sin , cos , cos }

SET center {0, 0, 0} # x-xcenter, y-ycenter, z-zcenter

SET direction x

SET amplitude 1

SET frequency 2e8

SET carrier sin

SET wavevector { 0.5, 0, 0 }

END source 1

########## Output setups

DEFINE output 1

SET name zsections

SET mode probepoint

SET xgrid { 0.1, 0.1,0.6}

SET ygrid { 0.5, 1, 0.5}

SET zgrid { 0, 0.04, 1.05}

SET grid on

SET period 0

END output 1

######## Simulations

DEFINE simulation 1

SET method dga

SET solver cg

SET tolerance 1e-8

SET mesh 1
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SET source 1

SET duration 4e-8

SET output 1

SET courant 0.98

END simulation 1

First of all the # token is reserved to indicate comments, which can start anywhere on a
line (as can be seen in this particular example) but end only with an EOL character. The
scripting language should be very straightforward to understand due to its simplicity.
There are in fact just three types of instructions, terminated by end-of-line (EOL)
characters (or by comments) and with the following syntax:

• DEFINE primitive label : defines an object of type primitive with an integer
label attached to it.

• END primitive label : signals the end of the definition of an object of type
primitive. The integer label must match the one of the associated DEFINE

instruction.

• SET property value : sets a property of an object, all SET instructions must be
in between a DEFINE instruction and the matching END instruction.

There are six (plus one) types of primitives. To illustrate them more clearly e we
reintroduce an annotated declaration example for every single one.

7.1.1 The mesh primitive

DEFINE mesh 1

SET type tetrahedral # alternative: cartesian

SET xgrid {0,0.01,1} # only for cartesian, value={xmin,step,xmax}

SET ygrid {0,0.01,1} # only for cartesian, value={ymin,step,ymax}

SET zgrid {0,0.01,1} # only for cartesian, value={zmin,step,zmax}

SET mesher netgen # alternative: gmsh

SET file box.mesh # input file (relative path)

SET name waveguide # just a name for the mesh

SET scalefactor 1 # scales the mesh, default unit [m]

END mesh 1

The mesher field tells TetFIT which syntax it must expect from the mesh input file,
given by the file field. For string values netgen and gmsh the respective 3D neutral
mesh format provided by the two meshers (see [6] and [7]) is assumed. If the mesh is
cartesian, an in-house developed mesher is used and the value for the mesher property
is ignored. In that case the 3-vectors given as value fields of xgrid, ygrid, zgrid define
the computational background domain (more on this later).

There is a further hidden primitive type linked with the mesh primitive: the solid

primitive, which is used only in the FDTD method. When the user wants to use a
Cartesian orthogonal grid, an in-house mesher is called instead of the one set by the
mesher field. Furthermore, in this case the file field must point to the name of a
further input file, which is written with the same syntax of the input file, but can only
contain object definitions of type solid:
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#### solids file input

DEFINE solid 1

SET material 1 # the material of the solid

SET type box # alternative: sphere, cylinder

SET corner { -10,-10,-10} # coordinates of the lower left corner of the box

SET size { 20, 20, 20} # dimensions

END solid 1

DEFINE solid 2 # overrides solid 1 where they intersect

SET material 2

SET type sphere

SET center { 0.025,0.0125,0.05 } #obvious

SET radius 0.005 #obvious

END solid 2

This example was used in the conductive sphere test-case of Section 5.3.2. Available
types of solid are box, sphere, cylinder. We remark that, for all solid types, the actual
simulated solid is given by its intersection with the computational domain (defined in
the main script by xgrid, ygrid, zgrid). On the other hand if no solid definition fills a
given region of the computational domain, that region is excluded from the simulation
(it is given default material 0).

7.1.2 The material primitive

DEFINE material 1

SET epsilon 1 # relative dielectric permittivity

SET mu 1 # relative magnetic permeability

SET sigma 0 # electric conductivity

SET chi 0 # magnetic conductivity

END material 1

The material label should match a material label present in the mesh input file (both
NETGEN and GMSH allow to define material labels). If this is not the case, the
declaration is ignored. The default values for the four properties are given in the above
example.

7.1.3 The boundary condition primitive

DEFINE bc 1

SET surface 2 # associated surface in mesh file

SET surface 3 # multiple surfaces are possible

SET surface 4

SET surface 5

SET surface 6

#SET materials {1,0} # 0 is default background material

SET type pec # alternative pmc, free (default)

END bc 1
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The value of the surface field can be set many times to different values without over-
writing anything (it is just an std::set insertion, if the reader is familiar with C++
programming). If the value does not match a physical surface label present in the mesh
file, it is simply ignored. When the mesh is Cartesian orthogonal surface labels from 1
to 6 are reserved for the plane limiting faces of the computational domain: surface 1
is the one with constant z=zmin, surface 2 denotes x=xmin, surface 3 denotes y=ymin,
surface 4 denotes x=xmax, surface 5 denotes y=ymax and surface 6 denotes z=zmax.

Another way to set boundary conditions is by setting the materials field to a 2-
vector containing the label of two materials, which applies the boundary condition at
their interface. This is especially useful in FDTD simulations in which the domain
we want to simulate is not a cuboid, or in simulations in which we want to exclude
some conductive volume. Values pec and pmc stand for Perfect Electric Conductor
and Perfect Magnetic Conductor, respectively. PML absorbing boundary condition are
under developement.

7.1.4 The source primitive

DEFINE source 1

SET type h # magnetic field, alternative: e

SET amplitude 1 # V/m if type is e, A/m if type is h

SET mode { sin , cos , cos } # x,y,z basis functions

SET wavevector {0.5, 0, 0} # in 1/meters

SET center {0, 0, 0} # Spatial source origin

SET delay 0 # in seconds, works as a unit step function in time

SET frequency 2e+8 # in Hz

SET carrier sin # alternative gaussian or cos

#SET width 1e-10 # in seconds, only for gaussian carriers

SET direction x # alternative y,z,r,phi

SET surface 1 # label of the mesh surface on which the wave impinges

END source 1

The source primitive is a bit heavier on the eyes. Suffices to say that for this particular
example, the source we set amounts to forcing a tangential magnetic field

h px, y, z = 0, tq × ẑ = p1A/mq×
sin p2π(x− 0) × 1/2q×
cos p2π(y − 0) × 0q ×

cos p2π(z − 0) × 0q ×

sin
`

2πt× 2 × 108
˘

×

Θ(t− 0) × x̂ =

=sin(πx) sin(2πft) x̂.

(7.1)

where f = 200 MHz. An important feature is that the vector direction of each source
field must be aligned with one of the Cartesian axes, but sources can be linearly combined
on the same target surface, to obtain (the tangent field of) an arbitrarily impinging
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waveguide mode. It is also interesting to note that the wavevector field combines with
the trigonometric functions in the mode field.

7.1.5 The output primitive

DEFINE output 1

SET name zsections # becomes the output file name preamble

SET mode probepoint # alternative: silo

SET xgrid { 0.1, 0.1,0.6} # as in the cartesian mesh definition

SET ygrid { 0.5, 1, 0.5} # as in the cartesian mesh definition

SET zgrid { 0, 0.04, 1.05} # as in the cartesian mesh definition

SET grid on # switches on the grid of probes

#SET probe {0.5,0.5,0.5} # alternative, xyz probe coordinates

SET period 0 # in seconds!

SET axes cartesian # alternative: cylindrical, spherical

END output 1

The output primitive defines the type of output we want to obtain. In general probepoint
is the most used and works in two flavours: either it defines a three-dimensional struc-
tured grid of points on which it interpolates and stores the fields at various time-steps
(with a user defined period which is a true time, not a period in number of time-steps),
or, if the grid is not switched on1, multiple SET probe instructions can be used to mea-
sure the fields at arbitrary points. A routine, inspired by [51], to directly compute the
Discrete Fourier Transform of the field at a particular point is also available as SET

fprobe. An alternative output mode is mode silo, which instead yields the fields (and
the mesh) in the widely used open-source Silo format [50], which can be very useful
both for animated field time evolutions, and for debugging. Finally, via SET axes, it
is always possible to obtain field values in polar (spherical or cylindrical) coordinates,
even when it does not make any practical sense.

7.1.6 The simulation primitive

DEFINE simulation 1

SET method dga # alternative: fem, fdtd, default: dga

SET solver cg # only for fem! alternative: agmg

SET tolerance 1e-8 # accepted relative residual

SET mesh 1 # the mesh used by this simulation

SET source 1 # the source used, possibly more

SET duration 4e-8 # the simulated time, in seconds!

SET output 1 # the output setup we want to use

SET courant 0.98 # courant factor

END simulation 1

The simulation primitive is a kind of wrapper for the rest of the script. One script
can have multiple simulation definitions, which will run sequentially2. The solver

1This is the closest thing to a hack I feel I have gotten to in the developement of this tool.
2For now: the object of future work is also obviously parallelization of independent tasks.
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(which can be a conjugate gradient or algebraic multigrid [52]) and tolerance fields are
ignored if the method field is not set to the FEM (the only implicit approach among the
three). The courant property sets a coefficient which multiplies the maximum time-step
computed with spectral methods, therefore it should always be 0 < courant < 1 (0.98
was used in most of the results obtained in this thesis).

Incidentally, the script we just described was the one used to obtain the outputs
shown in Appendix A. Furthermore, for every primitive, the following general property
applies:

Finally, we remark that, for any primitive P any number of objects of type P can be
defined. If a P object instantiated with the same label N as a previously defined one (of
the same type) overwrites the pre-existing definition.

7.2 Parallel implementation on GPUs

A point being stressed throughout this thesis is how any extension of Yee’s original
FDTD algorithm to unstructured grids, to be successful, must retain the properties
that make the original algorithm so ubiquitous. Among other features, its fixed, small
stencil suggests that there is no inherent limitation in the scalability of the underlying
original algorithm. This makes the idea of a numerical time domain solution of huge wave
propagation problems on machines with parallel computing capabilities very appealing.

Parallel implementations for the original method have been studied in the past and,
in practice, the various efforts have seen their performance bottleneck getting more and
more linked to the memory bandwith of the underlying hardware architecture. For
this reason the focus of FDTD code developers has recently shifted from multicore
CPUs to Graphical Processing Units (GPUs) [53, 54], which provide typically an order
of magnitude more bandwidth than high performance CPUs for the price of a medium
budget laptop.

On unstructured grids, a parallel implementation using a cluster of GPUs has been
presented in [55] based on the time domain application of the Discontinuous Galerkin
(DG) Finite Element Method. However, as already stated, DG formulations are still
not completely trusted, since they exhibit spurious mode solutions due to violation of
charge (and possibly energy) conservation [56]. The aim of this section is to investi-
gate if the DGA scheme exhibits similar promise for exploiting hardware parallelization
as the original FDTD method. To do so, two reasonable approaches are possible in
implementing the DGA algorithm on a GPU. A first straightforward approach is to
use the original formulation, which features huge sparse matrix-vector multiplications
as its only conspicuous floating point operation, as it is and adapt it to exploit the
cuSparse library provided by NVIDIA, which provides a sparse matrix-vector multipli-
cation (SpMV) function. However, SpMV produces memory access patterns that are
not optimal on GPUs [57]. This detail was actually a further motivation (apart from
introducing losses) for the reformulation of the DGA scheme on the fractioned grid.

In fact through the fractioned grid a second parallelization approach is possible, in
which we write a dedicated CUDA C++ kernel for each sparse matrix-vector product,
by virtue of which we try to exploit the block-diagonal structure of the fractioned mass
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Figure 7.2: Average computational cost of a single time-step vs. number of DoFs of the
problem. x axis in linear scale, y axis in logarithmic scale.

7.2.1 Results

For the single-core CPU version we used the original DGA scheme of [31], running
on a Xeon E5-2687Wv4 processor with Eigen 3.3.1 for linear algebra operations. The
CUDA C++ code was tested on a TESLA C2075 accelerator, which features the double-
precision Fermi microarchitecture and compute capability 2.0; the underlying processor
supports 448 threads and the available global memory is 6 GB. As a test case we
decided to use the cylindrical cavity of section 4.6, since the need to resolve very close
peaks in the frequency spectrum calls for a rather high sampling frequency, even after
applying Hamming windowing on the input waveform. This constraint translates into
a longer simulation (due to the Shannon condition) which is a further motivation for
exploiting parallelism. On this particular test case, somewhat surprisingly, the first
rather naive GPU implementation (based on exploiting cuSparse) already provides an
order of magnitude of speedup with respect to CPU based one, as shown in the second
column of Table 7.1, even if the memory bandwith usage is suboptimal. Shifting to

Table 7.1: Speedups
DoFs CPU SpMV Cust

854752 1 13.42 16.58
2625360 1 15.84 19.50

the second approach instead, experiments on the C2075 accelerator (which provides
a memory bandwidth of roughly 102 GB/s) show that a matrix multiplication kernel
based on the insight of using the fractioned grid reaches a sustained rate of 98 GB/s.
The global speedup achieved with this implementation is shown again in Table 7.1. In
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Figure 7.3: Average computational cost of a single execution of the kernel for Faraday’s
law vs. number of DoFs of the problem. Both axes in linear scale.

Fig. 7.2 the average single time-step computational time versus the number of unknowns
of the problem for two different meshes is shown. In Fig. 7.3 we instead show the speedup
achieved by using the fractioned grid formulation in equation (7.2a), with respect to the
original formulation in single-core CPU. We remark that the fact that there is a speedup
is non-trivial, since by using the fractioned DGA formulation the number of DoFs in
the problem is considerably increased.

We can conclude that the formulation of the DGA scheme in which all the pri-
mal are treated singularly is amenable to parallelization on a GPU, achieving an order
of magnitude of speedup. Improved data layouts to further increase performance are
currently under investigation and will be the subject of future work. Furthermore,
the possibility of shifting the algorithm’s performance from memory-boundedness to
computation-boundedness by applying the element-by-element approach of [58] is a topic
being currently investigated. Furthermore a stable version of the GPU implementation3

is projected in a future version of the code, where it will work simply as an on/off field
of the simulation primitive.

7.3 Future enhancements

As hinted in the first section, Perfectly Matched Layers (PML) absorbing boundary
conditions are under developement, and there seems to be no critical issue in applying the
technique by Berenger [33]. Next in line, but way trickier, is the inclusion of dispersive
materials. This needs more fundamental rethinking since dispersive media, in the time

3We have yet to make it work together with all the other features of the algorithm, e.g. lossy
materials.



7.3. Future enhancements 95

domain, have time-varying material tensors, and the conditions for the algorithm to be
consisent, explicit and conditionally stable are not straightforwardly generalized.

A more performance related enhancement under study is the use of local time-
stepping, to avoid tiny geometric features (as shown by Theorem 3) in an otherwise
coarse problem to keep the value of the time-step unnecessarily small everywhere.





8
Conclusions

In the present thesis, the current state of the art of low order methods for the time
domain numerical solution of electromagnetic propagation problems has been assessed.
In particular, a DGA based scheme with very promising features has been thoroughly
tested for the first time against other more established methods, such as the standard
edge element FEM and the FDTD (FIT) method. Numerical results with available
analytical solutions were used in chapter 4 to show that the accuracy of the DGA
scheme equivalent to the one of lowest order FEM in the time domain, with the former
exhibiting a full order of magnitude advantage in computational efficiency (making it
competitive with respect to the FDTD scheme). Given the consistency conditions met
by the basis functions involved in the mass matrix definition, and the explicit nature of
the time-stepping algorithm, both results were theoretically expected. These findings
consolidate the status of the DGA as a viable alternative to celebrated methods based
on finite differences when structured grids are insufficient to correctly represent the
geometric features of the problem under study.

Furthermore the DGA method has been further developed in two ways:

• Conductive losses in materials are now accurately accounted for in the original
scheme without introducing any dramatic shortcoming in efficiency. Despite the
extension being nontrivial from a mathematical point of view, it is shown in chap-
ter 5 that it leads to similar update equations with respect to the FDTD scheme.
Furthermore the additional number of degrees of freedom introduced is associ-
ated to discontinuities in the material properties, therefore making its overhead in
computational complexity asymptotically small in 3D simulations.

• The stability properties of the method have been put on a more solid ground in
chapter 6, through the analytical derivation of a Courant–Friedrich–Lewy type
condition on the maximum time-step value allowed for stability. This achieve-
ment is also of more general importance, as it shows that a formal derivation of
such a result is viable for methods formulated on grids which are not Cartesian
orthogonal. This suggests that some research endeavors in future works should be
devoted to applying the energetic approach to derive similar results in the case of
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both standard FEM schemes and Discontinuous Galerkin based ones.

Lastly, all methods studied have been implemented in a C++ toolbox, which is efficient
and easy to use1, with the higher goal being its application to industrial-sized engineering
problems (also through the aid of GPU parallelization).

Open issues are obviously present: most of the practical problems arising in indus-
try exhibit the need for open boundary conditions, therefore Perfectly Matched Layer
absorbing boundary conditions are of paramount importance. They were left untackled
in the present work, but they are currently under development and will be the focus
of subsequent work. Other topics which arise when developing a numerical method for
time domain computational electromagnetics, and yet were not treated in the body of
this work include (but are not limited to) local time stepping, adaptive sub-gridding,
modeling of dispersive materials and the quest for a high order scheme based on the
DGA. These will also be the object of future work.

The body of work of the thesis has led to the submission of journal papers (one
which is already accepted for publication [59], one currently under review [47]), and to
a paper published in conference proceedings [60].

As a final remark, other research endeavours were contributed to by the author in
the three years of post-graduate research [61–65], but are not referred to in the body of
this thesis, since the author felt they were too loosely connected to the main topic under
study and would undermine the clearness and cohesion of the present manuscript.

1This is an admittedly biased opinion of the author.



A
Time evolutions of solutions

For it is impossible to embed cool animations in a thesis printed on paper, we relegate to
this appendix some snapshots that actually show how the electromagnetic field behaves
in the test with the lossless and lossy rectangular waveguide, for which the analytical
solution was derived. There are twelve snapshots per example, per method, for a total
of 72 plots, showing the transverse electric field on a line along the z (propagation)
direction, for various values of x (the field is independent from y). All the results were
obtained by forcing the tangential magnetic field of the fundamental eigenmode at z = 0,
with amplitude 1 A/m and modulated in amplitude with a sine wave at 200 MHz (above
the cut frequency of the fundamental mode, which is actually degenerate). For all three
methods the mesh was selected so as to have the same maximum edge length (2.2 cm).

The snapshots try to capture the effect of the PEC termination on the fields by
showing how the first wave-front impinges on it and gives rise to reflections. In all plots,
dashed lines represent the analytical solution. The case of lossy materials (from A.37
to A.72) shows how the uniform lossy material in the waveguide attenuates the field in
a way consistent with its predicted skin depth of δ u 0.159 m (for σ = 50 mS/m and
frequency of 200 MHz for the source field).
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Figure A.1: DGA lossless snapshot no. 1

Figure A.2: DGA lossless snapshot no. 2

Figure A.3: DGA lossless snapshot no. 3
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Figure A.4: DGA lossless snapshot no. 4

Figure A.5: DGA lossless snapshot no. 5

Figure A.6: DGA lossless snapshot no. 6
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Figure A.7: DGA lossless snapshot no. 7

Figure A.8: DGA lossless snapshot no. 8

Figure A.9: DGA lossless snapshot no. 9
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Figure A.10: DGA lossless snapshot no. 10

Figure A.11: DGA lossless snapshot no. 11

Figure A.12: DGA lossless snapshot no. 12
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Figure A.13: FEM lossless snapshot no. 1

Figure A.14: FEM lossless snapshot no. 2

Figure A.15: FEM lossless snapshot no. 3



A. Time evolutions of solutions 105

Figure A.16: FEM lossless snapshot no. 4

Figure A.17: FEM lossless snapshot no. 5

Figure A.18: FEM lossless snapshot no. 6
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Figure A.19: FEM lossless snapshot no. 7

Figure A.20: FEM lossless snapshot no. 8

Figure A.21: FEM lossless snapshot no. 9
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Figure A.22: FEM lossless snapshot no. 10

Figure A.23: FEM lossless snapshot no. 11

Figure A.24: FEM lossless snapshot no. 12
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Figure A.25: FDTD lossless snapshot no. 1

Figure A.26: FDTD lossless snapshot no. 2

Figure A.27: FDTD lossless snapshot no. 3
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Figure A.28: FDTD lossless snapshot no. 4

Figure A.29: FDTD lossless snapshot no. 5

Figure A.30: FDTD lossless snapshot no. 6
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Figure A.31: FDTD lossless snapshot no. 7

Figure A.32: FDTD lossless snapshot no. 8

Figure A.33: FDTD lossless snapshot no. 9
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Figure A.34: FDTD lossless snapshot no. 10

Figure A.35: FDTD lossless snapshot no. 11

Figure A.36: FDTD lossless snapshot no. 12
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Figure A.37: DGA lossy snapshot no. 1

Figure A.38: DGA lossy snapshot no. 2

Figure A.39: DGA lossy snapshot no. 3
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Figure A.40: DGA lossy snapshot no. 4

Figure A.41: DGA lossy snapshot no. 5

Figure A.42: DGA lossy snapshot no. 6
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Figure A.43: DGA lossy snapshot no. 7

Figure A.44: DGA lossy snapshot no. 8

Figure A.45: DGA lossy snapshot no. 9
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Figure A.46: DGA lossy snapshot no. 10

Figure A.47: DGA lossy snapshot no. 11

Figure A.48: DGA lossy snapshot no. 12
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Figure A.49: FEM lossy snapshot no. 1

Figure A.50: FEM lossy snapshot no. 2

Figure A.51: FEM lossy snapshot no. 3
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Figure A.52: FEM lossy snapshot no. 4

Figure A.53: FEM lossy snapshot no. 5

Figure A.54: FEM lossy snapshot no. 6
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Figure A.55: FEM lossy snapshot no. 7

Figure A.56: FEM lossy snapshot no. 8

Figure A.57: FEM lossy snapshot no. 9
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Figure A.58: FEM lossy snapshot no. 10

Figure A.59: FEM lossy snapshot no. 11

Figure A.60: FEM lossy snapshot no. 12



120 A. Time evolutions of solutions

Figure A.61: FDTD lossy snapshot no. 1

Figure A.62: FDTD lossy snapshot no. 2

Figure A.63: FDTD lossy snapshot no. 3
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Figure A.64: FDTD lossy snapshot no. 4

Figure A.65: FDTD lossy snapshot no. 5

Figure A.66: FDTD lossy snapshot no. 6
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Figure A.67: FDTD lossy snapshot no. 7

Figure A.68: FDTD lossy snapshot no. 8

Figure A.69: FDTD lossy snapshot no. 9
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Figure A.70: FDTD lossy snapshot no. 10

Figure A.71: FDTD lossy snapshot no. 11

Figure A.72: FDTD lossy snapshot no. 12
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