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Editor-in-Chief
Food Microbiology

23rd October 2018

Dear Editor,

We hereby submit a revised form of the manuscript entitled “Metagenomic profiles of different types of Italian 

high-moisture Mozzarella cheese” by Marino et al. to be considered for publication as an original research 

paper in Food Microbiology.

The paper has been corrected according the referees’ suggestions. We highlighted by colour each change made 

in the text as raised in the reviewer comments, and provided a separate suitable rebuttal to each reviewer 

comment.

We hope you find our manuscript suitable for publication and look forward to hearing from you.

Sincerely,

Marilena Marino

Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Italy



Manuscript FM_2018_722 by Marino et al. – Replies to the referees’ comments

Reviewer 1

The paper FM_2018_772 “Metagenomic profiles of different types of Italian high-moisture Mozzarella 
cheese“ – evaluated the microbiota, by Illumina MiSeq approach, of different types of Italian high-moisture 
Mozzarella cheese produced using cow or buffalo milk, acidified with natural or selected cultures, and 
sampled at the dairy or at the mass market. 

The study is interesting and showed in one investigation the microbiota of several types of mozzarella cheese 
produced with different procedures. 

I have some advices in order to improve the manuscript: 

So, I think that a very important aspect that the authors should avoid is to say that by such analysis is 
possible to differentiate the PDO mozzarella cheeses by other kind of mozzarellas. In order to validate such 
affirmation a largest panel of samples is necessary, which includes mozzarellas of other regions and 
produced also in different seasons and so and so…. 

The important aspect evidenced by this investigation is the possibility to detect some irregularity during the 
production of mozzarella di bufala. I think that this message should be stressed. So, not the origin, but the 
safety and quality of the product are the main aim of the study. I think that the safety of the consumers is 
more important than such a marketing issue referred to the labels of PDO and brothers…. 

Thank you for evidencing this important point. We now shifted the emphasis towards safety and quality by 
changing the last paragraph of the abstract and part of the introduction. 

As a result of our changes, in the text we do not mention anymore our intention to discriminate PDO from 
non-PDO (a task for which as the reviewer correctly pointed out a more detailed study would be needed), 
and we only focus on the importance of characterizing the microbiota of mozzarella cheese, especially in 
virtue of safeguarding consumer’s health. The discrimination PDO/non-PDO is still present in the paper just 
as one of the many variables between mozzarella cheese samples.

Minor issues: 

- Please I think that it is necessary just one sentence, perhaps in the Materials and Methods section, to 
explain clearly the various acronyms (BNCG, BDN, CC etc) of the mozzarellas used in this study. Yes, they 
are explained, but around the text. 

We added a numbered list in paragraph 2.1, explaining the acronyms. 

- Caption of the Figure 3, please write down “natural whey culture“ instead of NWC. 

Done.

- Please put the legend in the Figures 1, 2 3 and Table 2 where you explain the meaning of the acronyms 
(BNCG, BDN, CC etc). In this way the reader do not need to go back to manuscript text to find the meaning 
of these codes.

Done.
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Reviewer 2

Manuscript FM_2018_722 Metagenomic profiles of different types of Italian high-moisture 
Mozzarella cheese.

Marilena Marino et colleagues analyzed the composition of the microbiota of different types of high-
moisture Mozzarella cheese by using an NGS approach.

The study's objective is well justified and presents significant interest not just for microbiologists but 
for the entire community of investigators interested in food sciences.

They used, in order to identify possible drivers of the bacterial diversity, samples with different 
characteristics in term of type of milk (water-buffalo and cow), acidification (by natural whey culture 
or selected starter), certification status (PDO or non-PDO), and sampling point (local or mass retailer).

Just a few minor points that need to be addressed by the authors.

L87. Please, used biota instead of flora.

Done

L101. Were the samples collected from the same day/period of cheesemaking? 

If so it might have been statistically more valid to sample over 3 different days and not in the same 
day to see if contamination from the environment play an important role.

Sampling was performed at the point of sale, with no strict control on the time passed from the 
beginning of cheesemaking; this has the disadvantage that cheese sampled at local stores might tend 
to have shorter times than cheese samples at mass retailers, but it has the advantage to produce a 
realistic picture of what the consumers have the opportunity to buy. 

To clarify, we specify at the beginning of paragraph 2.1 that we sampled the cheese at local shops or 
in supermarkets, i.e. when the cheese is on sale.

Were the samples collected and analyzed in triplicate?

While we understand that having triplicates would be desirable, we conducted this pilot study on 
individual samples. For this reason, differences were only tested between groups and never between 
individual samples (for which no valid analysis can be conducted, due to the lack of replicates). 

Staphylococci and micrococci were different between the cheeses. Were the data analyzed?

We think that the reviewer refers to what was shown in Figure 1. Actually, both Staphylococcaceae 
and Micrococcaceae are present at very low prevalence in all samples, but the colors were similar to 
those of Streptococcaceae and Moraxellaceae, respectively, which are present (although with 
different abundances) in all samples. We modified the graph so that we hope the reader can better 
understand differences between samples. 

L233. It’s statistically significant those difference in the microbial diversity?

Thank you for the point. We didn’t test the difference. We now performed a very naïve t-test 
comparing the Chao1 diversity in Cow and in Buffalo samples and we found that the difference is 
statistically significant. We added the results of the test to the discussion and to the newly added 
Table S2 (see below). 
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L326. It is not clear “Metagenomics approach can confidently discriminate cow Mozzarella from 
buffalo Mozzarella”. Please, add more details.

We meant that the use of metagenomics can leverage differential abundance of bacterial species in 
mozzarella cheese to discriminate cow and buffalo mozzarella. We changed the sentence to 
“Metagenomics approach can leverage differential abundance of bacterial species to confidently 
discriminate cow Mozzarella from buffalo Mozzarella”.

Can you add more details about statistical analysis and related results to measure the sequencing 
diversity, included Choa1 richness, Shannon diversity, and Good's coverage results, as well as 
monitoring results for sequencing abundance (rarefaction)?

We added Table S2 reporting Chao1 richness (again), Shannon’s diversity, Good’s coverage, and 
Chao1 on data rarefied at 20000 reads, together with the results of the t-test to assess the 
significance of the diversity between Cow and Buffalo mozzarella cheese. Results of the test are 
discussed in the main Manuscript in the 2nd paragraph of the discussion. 
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Reviewer 3

The manuscript entitled “Metagenomic profiles of different types of Italian high-moisture 
Mozzarella cheese” provides very interesting findings related to the microbiota found in types of 
Mozzarella cheese differently manufactured. It includes a comprehensible discussion about the 
undesirable effects that could be produced in cow Mozzarella with longer refrigeration times, and 
longer production-to-consumption times caused to the presence of psychrotrophic bacteria. 
Moreover, results show the importance of keeping the traditional procedures used by the PDO 
cheesemakers. I recommend strongly the publication of this manuscript. However, I have the 
following comments to improve it.

 

1. Abstract, page 2, line 25, Corynebacterium belongs to the psychrotrophic genera. Results 
show that buffalo Mozzarella was enriched with Lactococcus, Streptococcus, and Weissella, 
instead. Thank you, we corrected the abstract accordingly. We did not mention Weissella in 
the abstract because it is a rare genus and we decided not to report extensive results for rare 
genera.

2. The second highlight exceeds the maximum number of characters. Try dividing it into two 
sentences. Thank you, we followed your suggestion.

3. Page 4, line 87, page 9, line 232 and page 11, lines 280 and 287, use microbiota instead of 
microflora or flora. Thank you, we followed your suggestion. 

4. Page 4, lines 90-93, a reference is missing for that paragraph. We added the missing 
reference.

5. Page 5, line 122, please give a more explicit description of the second amplification step. 
Which flow-cell binding domains and unique indices? We added the missing information.

6. Page 5, line 124, what does SRA stands for? SRA stands for Sequence Reads Archive 
(https://www.ncbi.nlm.nih.gov/sra). We added the full name in the methods section.

7. Table 1, consider changing the following column descriptions: Reads/sample, Identified 
OTUs/sample and Estimated OTUs/sample§   Then in the table notes § (Chao, 1984). We 
followed reviewer’s suggestion.

8. I suggest that Figure S1 should not be supplementary, but part of the main manuscript. We 
followed reviewer’s suggestion. Figure S1 is now Figure 1. Numbers of all other figures 
have been shifted accordingly.

9. Page 7, line 156, use approximation instead of proxy. We followed reviewer’s suggestion.

10. Page 7, line 171, in table S1 there are 74 OTUs, instead of 75. We incorrectly counted the 
header as an OTU. We now report the correct number of OTUs (74).

11. In the caption of Figure 3, for intelligibility, use natural whey culture instead of NWC. 
Done.

12. Table 2, please state that BM is buffalo Mozzarella and CM is cow Mozzarella. In the table 
notes, explain what FDR means. We followed reviewer’s suggestion.

13. Page 10, line 265, the paper by Martino et al. (2013) refers to a bacteriocin produced 
by Pediococcus pentosaceus. In the analyzed Mozzarella cheeses, Pediococcus was not 
identified. Instead, there are plenty of references related to bacteriocins produced by the 
NSLAB found in this study. Done

14. The paper from Delorme et al. 2015 is not mentioned in the text. The reference was deleted 
from the references’ list
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Highlights

 Metagenomics clearly allows to distinguish cow Mozzarella from buffalo Mozzarella

 Cow Mozzarella show a higher bacterial diversity

 Cow mozzarella show a large presence of psychrophilic species

 Sampling point (local or mass retail) is a possible driver of bacteria diversity
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14 Abstract

15 The microbiota of different types of Italian high-moisture Mozzarella cheese produced using cow 

16 or buffalo milk, acidified with natural or selected cultures, and sampled at the dairy or at the 

17 mass market, was evaluated using a Next Generation Sequencing approach, in order to identify 

18 possible drivers of the bacterial diversity. Cow Mozzarella and buffalo Mozzarella acidified with 

19 commercial cultures were dominated by Streptococcus thermophilus, while buffalo samples 

20 acidified with natural whey cultures showed similar prevalence of L. delbrueckii subsp. 

21 bulgaricus, L. helveticus and S. thermophilus. Moreover, several species of non-starter lactic acid 

22 bacteria were frequently detected. The diversity in cow Mozzarella microbiota was much higher 

23 than that of water buffalo samples. Cluster analysis clearly separated cow’s cheeses from 

24 buffalo’s ones, the former having a higher prevalence of psychrophilic taxa, and the latter of 

25 Lactobacillus and Streptococcus. A higher prevalence of psychrophilic species and potential 

26 spoilers was observed in samples collected at the mass retail, suggesting that longer exposures to 

27 cooling temperatures and longer production-to-consumption times could significantly affect 

28 microbiota diversity. Our results could help in detecting some kind of thermal abuse during the 

29 production or storage of mozzarella cheese.

30

31 Keywords

32 High-moisture Mozzarella cheese

33 Microbiota

34 Next Generation Sequencing

35 Psychrotrophs

36 Metagenomics
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3

37 1 Introduction

38 High-moisture Mozzarella is one of the most popular unripened cheeses on the market. It 

39 belongs to the cheese category “Pasta Filata”, which refers to a unique processing step of curd 

40 plasticization and stretching, during which the acidified curd is soaked in hot water or salt brine 

41 until a plastic consistency is achieved. The hot plastic curd is then kneaded and stretched to 

42 produce a homogeneous cheese with a fiber-like structure. Right after production Mozzarella 

43 cheese is packaged in liquid and stored under refrigerated conditions for up to 5 days (Gorrasi et 

44 al., 2016). Many varieties of high-moisture Mozzarella cheese exist on the market, usually 

45 produced using cow’s or buffalo’s milk. Regarding buffalo Mozzarella cheese, the Protected 

46 Designation of Origin (PDO) has been assigned to Mozzarella di Bufala Campana by the 

47 European Commission in 1996. The PDO territory, in which raw buffalo milk has to be produced 

48 and processed, currently includes some areas in the Italian regions of Campania and Lazio. The 

49 highly valued PDO Mozzarella di Bufala Campana cheese is traditionally made from Italian 

50 Mediterranean buffalo (Bubalus bubalis, river type) milk acidified by adding a natural whey 

51 culture (NWC) starter obtained from the batch of the previous day with the technique called 

52 backslopping. The specific and highly appreciated features of the final product originate mainly 

53 from the quality of raw materials used during processing, the agri-ecosystem of the production 

54 area, and the traditional processing technology (Ercolini et al., 2012). Non-PDO buffalo 

55 Mozzarella cheeses can also be produced, e.g. using or transforming milk coming from regions 

56 outside of the borders of the PDO geographical area, or acidifying curd with selected commercial 

57 starter cultures (CS). The cheaper and more widespread cow’s milk Mozzarella cheese is instead 

58 produced using raw or pasteurized cow’s milk that is acidified using a variety of methods, 

59 including citric acid addiction and/or biological acidification carried out mainly by selected 

60 commercial starters. Both NWC and CS have the main function to ensure a rapid acidification of 

61 the curd, by synthesizing enough lactic acid to demineralize and transform the curd into the state 

62 that undergoes stretching in hot water at the target pH (de Candia et al., 2007). 

63 During the last decades, several methodologies have been applied to characterize Mozzarella 

64 cheese with the aim to ensure high quality and safety standards. Polymerase chain reaction 

65 (PCR) has been employed to detect species-specific DNA sequences in milk and cheese 

66 (Lopparelli et al., 2007), and isoelectric focusing, reversed-phase liquid chromatography, mass 

67 spectrometry and enzymatic assays to check the presence of specific buffalo and cow proteins in 

68 milk and cheese (Addeo et al., 2009; Hurley et al., 2006). Recently, a metabolomic approach 
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69 based on gas-chromatography mass-spectrometry coupled with the analysis of the composition 

70 of predominant cultivable microbiota has been used to discriminate different types of Mozzarella 

71 cheese and to protect the authenticity of PDO Mozzarella di Bufala Campana cheese (Pisano et 

72 al., 2016). Due to the high water content and relatively high pH, microbial spoilage of 

73 Mozzarella cheese might occur, caused by proteolytic and/or lipolytic microorganisms that can 

74 cause unwanted modifications of the texture, off-odors or discolorations (Andreani et al., 2014; 

75 Segat et al., 2014). In the last decade, the food microbiology has been deeply revolutionized by 

76 the use of Next Generation Sequencing (NGS) technologies, which can provide a thorough 

77 analysis of microbial diversity present in a food sample, producing much deeper output than 

78 more commonly used culture-independent approaches (Chen et al., 2017; Marino et al., 2017). 

79 Currently, only two studies have been carried out to study the microbial diversity of Mozzarella 

80 cheese using an NGS approach (Ercolini et al., 2012; Guidone et al., 2016). However, the 

81 microbiota of the buffalo and the cow Mozzarella cheese has been studied in separate papers, 

82 which makes it difficult to understand the potential of NGS-based metagenomics in 

83 distinguishing products obtained with milk of different animal origins and different technologies. 

84 Moreover, the only study carried out on cow Mozzarella cheese analyzed the cheese microbiota 

85 after a 5-d refrigerated storage, which could have favored the growth of psychrotrophic 

86 microorganisms and hence modified to some extent the composition of the native microbiota of 

87 Mozzarella cheese (Guidone et al., 2016).

88 The objective of this study was to analyze the composition of the microbiota of different types of 

89 high-moisture Mozzarella cheese by using an NGS approach. In order to identify possible drivers 

90 of the bacterial diversity, samples with different characteristics in term of type of milk (water-

91 buffalo and cow), acidification (by natural whey culture or selected starter), certification status 

92 (PDO or non-PDO), and sampling point (local or mass retailer) were included in the study.

93

94 2 Materials and Methods

95 2.1 Samples collection

96 Thirty-nine samples of high-moisture Mozzarella cheese were collected in local or mass retailers 

97 to maximize the variability of factors potentially affecting the cheese microbiota composition, 

98 namely type of milk, acidification system, certification status, and sampling point (Table 1). 

99 Three main groups of buffalo Mozzarella and cow Mozzarella samples were collected as 

100 follows: (i) 15 PDO Mozzarella cheese produced with buffalo milk and acidified with NWC, and 
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101 purchased at local diaries in the main districts of the production area, (ii) 11 PDO Mozzarella 

102 cheese produced in the PDO area with buffalo milk and acidified with NWC, but collected in 

103 supermarkets, and (iii) 13 non-PDO Mozzarella cheese collected in supermarkets, including 

104 buffalo Mozzarella acidified with CS, buffalo Mozzarella acidified with NWC, and cow’s milk 

105 Mozzarella acidified with CS.

106 For the aim of the present work, samples were classified as follows: 

107 1) BDN: Buffalo mozzarella with PDO certification and acidified with Natural Whey 

108 Culture (15 samples)

109 2) BDNG: Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture 

110 and collected at mass retailers (11 samples)

111 3) BNNG: Buffalo mozzarella without certification, acidified with Natural Whey Culture 

112 and collected at mass retailers (3 samples)

113 4) BNCG: Buffalo mozzarella without certification, acidified with commercial starters and 

114 collected at mass retailers (2 samples)

115 5)  CC: Cow mozzarella acidified with commercial starters and collected at mass retailers (8 

116 samples)

117

118 2.2 DNA extraction and sequencing

119 Immediately after collection, all samples were frozen (- 20 °C). First, 50 mg were split off to be 

120 incubated for 90 min at 65 °C with 600 μL of CTAB Buffer, 30 μL of Proteinase K and 2 μL of 

121 RNase Solution (Promega, WI) and then were centrifuged to collect 300 μL of the lysate to be 

122 used as input for the total DNA extraction. The Maxwell® 16 Instrument (Promega, WI) with 

123 Maxwell® 16 FFS Kit (Promega, WI) were used for all samples.

124 The bacterial diversity was obtained by the library preparation and sequencing of the 16S rRNA 

125 gene. The following two amplification steps were performed: an initial PCR amplification using 

126 16S locus specific PCR primers (16S-341F 5’-CCTACGGGNGGCWGCAG-3’ and 16S-805R 

127 5’-GACTACHVGGGTATCTAATCC-3’) and a subsequent amplification integrating relevant 

128 flow-cell binding domains (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ for 

129 the For primer and 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG‐3’ for the 

130 reverse overhang) and unique indices selected among those available Nextera XT Index Kits 

131 combined according to manufacturer’s instructions (Illumina, CA). Libraries were sequenced in 
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132 a MiSeq (Illumina, CA) in paired end with 300-bp read length. Raw reads are available on 

133 Sequence Reads Archive under the accession SRP156292.

134

135 2.3 Data analysis

136 Reads were de-multiplexed based on Illumina indexing system. Sequences were analyzed using 

137 QIIME 1.5.0 (Caporaso et al., 2010). After filtering based on read quality and length (minimum 

138 quality = 25 and minimum length = 200), Operational Taxonomic Units (OTUs) defined by a 

139 97% of similarity were picked using the Uclust v1.2.22q method (Edgar, 2013) and the 

140 representative sequences were submitted to the RDP classifier (Wang et al., 2007) to obtain the 

141 taxonomy assignment and the relative abundance of each OTU using the Greengenes 16S rRNA 

142 gene database (McDonald et al., 2012). Alpha-diversity analysis was performed using QIIME 

143 1.5.0 (Caporaso et al., 2010) and R (R Core Team, 2018); the following alpha-diversity indexes 

144 were computed: Chao1 (Chao, 1984), Good’s coverage (Good, 1953), and Shannon’s diversity 

145 index (Shannon, 1948). Selection of the OTUs for downstream analysis was performed by 

146 requiring that the OTUs represented at least 0.1% of at least one study sample. Clustering was 

147 performed using the R function heatmap.2 on the read counts normalized using DESeq on the 50 

148 most represented OTUs (Anders and Huber, 2010). Differential abundance of OTUs across 

149 categories of samples was tested using the differential_abundance.py routine implemented in 

150 QIIME (Caporaso et al., 2010). The routine returns results of Fisher’s exact test and the fit of a 

151 zero inflated Gaussian model (fitZIG) (Paulson et al., 2013). An OTU was considered to be 

152 differentially present in two samples if the adjusted p-value (FDR) was lower than 0.05. 

153 Partial Least Squares – Discriminant Analysis (PLS-DA) was applied by Unscramble X 10.4 

154 (CAMO software AS, Oslo, Norway) to check the efficacy of the relative abundance of the most 

155 represented OTUs in discriminating the Mozzarella samples according to the method of 

156 acidification and the market target (Chevallier et al., 2006). With this aim, the PLS-DA model 

157 was built between the OTUs matrix and the cheese matrix, which was created by defining three 

158 dummy variables, one for each Mozzarella type considered: acidified by commercial starters 

159 (BNCG and CC groups) and acidified by natural whey culture, locally (BDN group) or large 

160 scale distributed (BDNG and BNNG groups).

161
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162 3 Results

163 Summary statistics of the sequencing results for all samples are reported in Table 1. Briefly, a 

164 total of 4,511,861 paired end reads were sequenced, with an average of 115,689 reads per sample 

165 (range 45,170-216,852). The number of identified OTUs per sample ranged 463 to 1,569 with an 

166 estimated number of OTUs (Chao, 1984) ranging 795 to 2,623. The estimated number of OTUs 

167 is an approximation of within sample diversity (Chao, 1984) and was significantly higher in 

168 Mozzarella samples produced with cow’s milk than in all other samples (p<0.05, pairwise 

169 Wilcoxon-Mann-Whitney test, Figure 1).

170 Identification at the species or genus level was obtained for 47% and 48% of OTUs, respectively, 

171 and only 4% of OTUs were identified only at the family level. Twenty-six families were present 

172 at abundance > 0.1% in at least one sample, with Lactobacillaceae and Streptococcaceae being 

173 the most prevalent in all samples. Figure 2 shows the distribution of the most abundant (>0.1%) 

174 families in all the samples. Cow Mozzarella samples (CC samples) and buffalo Mozzarella 

175 acidified with CS (BNCG samples) were dominated by Streptococcaceae, which ranged 47-85% 

176 and 86-90% in CC and BNCG samples, respectively. Lactobacillaceae were instead detected at 

177 lower prevalence, ranging 0-11%. Conversely, samples acidified with NWC (i.e. BDN, BDNG 

178 and BNNG) showed usually a higher prevalence of Lactobacillaceae (18-80% of identified 

179 OTUs), and Streptococcaceae were also abundant (13-71%). Some non-lactic families, namely 

180 Enterobacteriaceae, Flavobacteriaceae, Moraxellaceae, and Pseudomonadaceae, were present 

181 in all samples. 

182 74 OTUs were present with an abundance of at least 0.1% in at least one sample (Table S1). The 

183 most represented OTUs belonged to the species of Streptococcus thermophilus, Lactobacillus 

184 delbrueckii subsp. bulgaricus and Lactobacillus helveticus. CC and BNCG samples were 

185 dominated by Streptococcus thermophilus, and the two thermophilic lactobacilli were relatively 

186 rare. The second most abundant OTUs in CC samples belonged to the genus Acinetobacter, 

187 followed by Pseudomonas. In BDN, BNNG and BNCG samples, i.e. water buffalo Mozzarella 

188 acidified with NWC, the prevalence of S. thermophilus, L. delbrueckii subsp. bulgaricus and L. 

189 helveticus was quite similar and taken together these three species represented the vast majority 

190 of identified OTUs (65.90-98.49%). Many other lactic acid bacteria (LAB) belonging to the 

191 genera Lactococcus, Lactobacillus, Leuconostoc, Streptococcus and Weissella were generally 

192 detected at high frequencies (0.78-14.40%). Also, in these groups of samples, the presence of 

193 Acinetobacter was detected at relatively high levels (about 2.40% of identified OTUs). In 
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194 addition to Acinetobacter, a variety of other psychrotrophic genera (including Corynebacterium, 

195 Flavobacterium, Chryseobacterium, Pseudomonas, Shewanella, Escherichia, and Enterobacter) 

196 were found in all samples, although with different abundances within the groups.

197 Figure 3 shows the heatmap of the Mozzarella samples clustered by Euclidean distance 

198 computed based on the 50 more abundant OTUs. The cluster clearly separated cow Mozzarella 

199 from buffalo Mozzarella. In addition, the samples of buffalo Mozzarella obtained using 

200 commercial starters (BNCG samples) were in an intermediate position between cow and buffalo 

201 milk Mozzarella samples. 

202 Considering the strong separation between cow Mozzarella and buffalo Mozzarella observed in 

203 the cluster, an enrichment test contrasting the samples belonging to the two categories was 

204 carried out to identify the species responsible for the differentiation. Table 2 shows the list of 

205 differentially abundant species between buffalo and cow Mozzarella samples. Buffalo 

206 Mozzarella samples showed a higher prevalence of Lactobacillus species, in addition to the 

207 species Streptococcus equinus, while no significant difference in abundance of Streptococcus 

208 thermophilus was observed. Conversely, in cow Mozzarella samples a higher prevalence of 

209 several psychrophilic taxa, including Brochothrix, Erwinia, Flavobacterium, Pseudomonas, and 

210 Shewanella, as well as thermoduric and spore-forming genera, as Anoxybacillus flavithermus and 

211 Thermus thermophilus, was observed.

212 To further characterize differences in the microbiota of Mozzarella acidified with NWC (BDN, 

213 BDNG and BNNG samples), a cluster analysis was carried out after removing samples obtained 

214 with CS. The analysis produced two main clusters (Figure 4). Cluster 1 included most samples 

215 purchased from local market (12 out of 15 samples), and Cluster 2 comprises most samples (10 

216 out of 14 samples) collected in supermarkets. A similar conclusion can be drawn from the score 

217 plot of PLS-DA (Figure S1), where along Factor 1, CC and BNCG are clearly discriminated 

218 from buffalo Mozzarella obtained by acidification with NWC. Moreover, along Factor 2, NWC 

219 samples show the tendency to split into two populations according to the market target.

220 To further investigate the differences between samples belonging to Cluster 1 and Cluster 2, we 

221 performed a test for differential enrichment in OTUs between the clusters. Results are listed in 

222 Table 3. Several psychrotrophic genera were overrepresented in Cluster 2, including 

223 Acinetobacter, Chryseobacterium, Citrobacter, Corynebacterium, and Pseudomonas. 

224 Conversely, in Cluster 1 Lactococcus spp., Streptococcus vestibularis and Weissella viridescens 

225 were present with significantly higher prevalence than in Cluster2.
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226 4 Discussion

227 We collected thirty-nine samples of cow and buffalo Mozzarella cheese from local and mass 

228 market and submitted to culture-independent NGS, in order to get an in-depth quantitative 

229 picture of the structure of the bacterial populations and to identify possible drivers of the 

230 bacterial diversity. We identified a much higher number of OTUs compared to previous studies 

231 on buffalo or cow Mozzarella cheese, probably because of the higher number of reads obtained. 

232 The estimated number of OTUs in buffalo Mozzarella was similar to previous estimates (Ercolini 

233 et al., 2012), whereas for cow Mozzarella was higher than previously reported (Guidone et al., 

234 2016).

235 The Chao1 diversity index in cow Mozzarella microbiota was higher than that of buffalo 

236 Mozzarella (Table S2) (two tailed t-test, p<10-4), the same was true for the Good’s coverage 

237 (p=0.0255) and for the Shannon index, although the latter difference was not statistically 

238 significant. These observations are in contrast with the data presented in the only recent report on 

239 the microbiological profile of Mozzarella cheese produced with buffalo and cow milk, in which 

240 the authors identified a larger number of species in buffalo mozzarella (Pisano et al., 2016). 

241 However, the authors isolated a very small number of strains and explored the Mozzarella 

242 diversity using only culture-based techniques, which are known to have low sensitivity and may 

243 lead to an underestimation of microbial diversity present in food environments. Cow Mozzarella 

244 samples were all acidified with commercial starters, which is known to reduce the diversity of 

245 microbiota in cheese (Coppola et al., 2001). However, in this study, a different observation was 

246 made. In fact, with the exception of the lactic starter microbiota, the samples of cow's milk 

247 Mozzarella were characterized by a higher microbial diversity than buffalo Mozzarella samples. 

248 This might be attributed to a different microbial composition of bovine milk compared to that of 

249 the buffalo. In fact, although at present there are no data comparing the composition of the milk 

250 microbiota of the two species obtained using NGS techniques, an overview derived from a 

251 number of separate studies allowed evidencing a greater number of bacterial genera present in 

252 cow’s milk (Quigley et al., 2013).

253 The starter composition has a major effect on the microbiota of the final Mozzarella. In water 

254 buffalo samples acidified with NWC the species L. delbrueckii subsp. bulgaricus, L. helveticus 

255 and S. thermophilus were present with a similar prevalence. The presence of these species 

256 reflects the microbial composition of NWC used for acidification processes, where these LAB 

257 assure lactose fermentation, curd ripening and formation of a typical aroma profile. Mozzarella 
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258 samples produced with cow milk were instead dominated by S. thermophilus, confirming 

259 previous findings (Guidone et al., 2016; Pisano et al., 2016), whereas the two thermophilic 

260 lactobacilli were less represented within the microbiota. This could be related to the use of 

261 commercial starters, which is quite common in cow Mozzarella, and usually consist of S. 

262 thermophilus alone or associated with L. delbrueckii in smaller concentrations, in order to avoid 

263 the risk of excessive secondary proteolysis that might take place in a high moisture environment 

264 (Pisano et al., 2016). Anyway, L. helveticus and L. delbrueckii subsp. bulgaricus were present as 

265 sub-dominant LAB. Galactose-fermenting L. helveticus could help to reduce the accumulation of 

266 galactose, which is not fermented by S. thermophilus and L. delbrueckii subsp. bulgaricus, thus 

267 reducing the risk of non-enzymatic browning on cooking (Ma et al., 2013). Similar 

268 considerations can be made for the BNCG samples (buffalo Mozzarella acidified with 

269 commercial starters). These samples, however, clustered in an intermediate position between 

270 buffalo and cow samples when the 50 more abundant OTUs are considered, suggesting that both 

271 the type of starter (natural or selected) and the type of milk are possible drivers of bacterial 

272 diversity in Mozzarella cheese.

273 Several species of non-starter lactic acid bacteria (NSLAB) belonging to the genera 

274 Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, and Weissella were frequently detected 

275 in all groups of Mozzarella samples. NSLAB do not contribute to acidification during 

276 cheesemaking, but they can play a significant role during ripening by using residual lactose and 

277 other carbohydrates, citrate, peptide and aminoacids, giving rise to volatile aroma compounds. 

278 Moreover, they can exert protective effects by producing bacteriocins and other antimicrobial 

279 compounds (Ristagno et al., 2012). Recently, different amounts of some metabolites (namely 

280 threonine and lactic acid dimer) were linked to different levels of NSLAB in buffalo and cow 

281 Mozzarella cheese (Pisano et al., 2016). Several lactobacilli were more abundant in buffalo 

282 Mozzarella produced with natural cultures, probably coming from NWC (De Filippis et al., 

283 2014). Another species more frequent in buffalo Mozzarella compared to cow mozzarella is 

284 Streptococcus equinus. It is a commensal inhabitant of the gastrointestinal tract of mammals, but 

285 also an opportunistic pathogen of humans and animals (Jans et al., 2014). Except for what is 

286 reported in this study, not much is known about the presence of S. equinus in dairy processing 

287 environments.

288 A large variety of psychrotrophic species belonging to different bacterial families were detected 

289 in all samples. However, most of the psychrotrophic genera (e.g. Anoxybacillus, Brochothrix, 
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290 Flavobacterium, Pseudomonas, Shewanella and Thermus) were more abundant in cow 

291 Mozzarella than in buffalo Mozzarella samples. These genera have been evidenced in NGS 

292 separate studies in buffalo Mozzarella (Ercolini et al., 2012) and cow Mozzarella (Guidone et al., 

293 2016), nevertheless this is the first report in which the prevalence of some microbial taxa has 

294 been differently associated to one type of cheese. Psychrotrophic populations are commonly 

295 present as minor components in raw milk from several species, including cows, sheep, and goats, 

296 but can become the most abundant genera in refrigerated milk. The higher prevalence of 

297 psychrotrophic bacteria in cow Mozzarella suggests a stronger application of refrigeration during 

298 the processing and/or storage of cow Mozzarella compared to buffalo’s.

299 Usually, raw milk is not directly processed after milking and is stored under refrigerated 

300 conditions until it is delivered to the dairy plant, where an additional storage at low temperature 

301 for up to 48 h is possible. The excessive proliferation of psychrotolerant microorganisms during 

302 cold storage increases the risk of milk and cheese spoilage. Indeed, such species produce 

303 thermostable extracellular enzymes, with proteases and lipases being the most important. 

304 Proteases can degrade milk proteins (mainly casein) producing a grey discoloration, bittering, 

305 off-flavours, increase in viscosity and gelation, while lipases cause rancidity (Chen et al., 2003). 

306 Moreover, some psychrotrophic taxa, such as Pseudomonas spp. and Thermus spp., have been 

307 associated with cheese discoloration (Andreani et al., 2014; Quigley et al., 2016).

308 Thermoduric taxa, e.g. Anoxybacillus flavithermus and Methylobacterium spp., were detected in 

309 Mozzarella samples. A. flavithermus, frequently associated to cow Mozzarella samples, is a 

310 sporeformer that can attach to stainless steel and develop into biofilms, suggesting that an 

311 environmental contamination could be the source of this taxon in Mozzarella. In fact, spores can 

312 overcome the pasteurization and, being sticky, attach to the pasteurizer inside in the heat 

313 recovery portion, where the temperature is lower (Palmer et al., 2010). Thermoduric species can 

314 moreover easily survive through the high curd cooking and stretching temperatures, which might 

315 be the main reason for their presence in Mozzarella cheese.

316 The cluster analysis carried out on Mozzarella samples produced using NWC showed two 

317 distinct groups of samples, named Cluster 1 and Cluster 2. Cluster 1, which contained most 

318 buffalo Mozzarella purchased from local market, was characterized by an higher prevalence of 

319 lactic species belonging to the taxa Lactococcus spp., Weissella viridescens and Streptococcus 

320 vestibularis. Psychrotrophic taxa were overrepresented in Cluster 2, which comprises most 

321 samples collected in supermarkets. Some of these taxa are possibly involved in food and dairy 
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322 spoilage (Innocente et al., 2009; Stellato et al., 2015). Moreover, several of the species 

323 overrepresented in Cluster 2 are potential pathogens. For example, Plesiomonas genus includes 

324 species that might be associated to foodborne disease (Janda et al., 2016). Enterobacter 

325 hormaechei is a pathogenic Enterobacter that has been previously isolated in cheese (Pangallo et 

326 al., 2014). In general, it has been observed that Cluster 2 is enriched in bacteria usually 

327 associated to lower quality compared to Cluster 1. Incidentally, Cluster 2 is the one containing 

328 the higher proportion of products marketed on mass distribution circuit, while in Cluster 1 the 

329 majority of products are marketed locally. One possible explanation of our findings is that 

330 products marketed in the mass distribution circuit might experience longer exposures to 

331 suboptimal temperatures, as well as longer production-to-consumption times, both potentially 

332 resulting in a relative increase of psychrotolerant, food spoilage-related organisms. It should be 

333 noted that, during processing of PDO buffalo Mozzarella, according to the procedural guidelines 

334 the milk must be delivered to the dairy within the sixteenth hour from the milking, and 

335 transformed into Mozzarella within the sixtieth hour from the first milking (Gobbetti et al., 

336 2018). Thus, it is possible that the PDO Mozzarella cheese, also if locally sold, is produced using 

337 milk that has undergone more or less prolonged refrigeration. This may be the reason why three 

338 BDN samples are included in Cluster 2.

339 In conclusion, this study confirmed the role of acidification method in the determination of the 

340 microbiota, with samples using NWC mostly composed by Lactobacillus and Streptococcus 

341 species and CS dominated by Streptococcus species alone. Metagenomics approach can leverage 

342 differential abundance of bacterial species to confidently discriminate cow Mozzarella from 

343 buffalo Mozzarella. Finally, two clusters of samples were identified composed by a majority of 

344 products sampled at a local retail and in a mass retail, respectively. Differential analysis of the 

345 microbiota of the two groups revealed that samples collected at mass retail usually have higher 

346 prevalence of microorganisms related to food spoilage, thus suggesting that the metagenomics 

347 approach can be a useful method for detecting critical issues in the storage of food products, such 

348 as Mozzarella cheese.
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460 Figure captions

461

462 Figure 1. Alpha diversity measured as estimated number of OTUs in five different types of 

463 mozzarella cheese. Pairwise difference between groups was assessed using Wilcoxon test. Box-

464 plots labeled with different letters are significantly different from each other.

465 BDN: Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture; BDNG: 

466 Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture and collected at 

467 mass retailers; BNNG: Buffalo mozzarella without certification, acidified with Natural Whey 

468 Culture and collected at mass retailers; BNCG: Buffalo mozzarella without certification, 

469 acidified with commercial starters and collected at mass retailers; CC: Cow mozzarella acidified 

470 with commercial starters and collected at mass retailers.

471

472 Figure 2. Abundance of bacterial families represented by at least 0.1% of reads in at least on 

473 sample. 

474 BDN: Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture; BDNG: 

475 Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture and collected at 

476 mass retailers; BNNG: Buffalo mozzarella without certification, acidified with Natural Whey 

477 Culture and collected at mass retailers; BNCG: Buffalo mozzarella without certification, 

478 acidified with commercial starters and collected at mass retailers; CC: Cow mozzarella acidified 

479 with commercial starters and collected at mass retailers.

480  

481 Figure 3. Clustering of samples based on the 50 most represented species.

482 BDN: Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture; BDNG: 

483 Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture and collected at 

484 mass retailers; BNNG: Buffalo mozzarella without certification, acidified with Natural Whey 

485 Culture and collected at mass retailers; BNCG: Buffalo mozzarella without certification, 

486 acidified with commercial starters and collected at mass retailers; CC: Cow mozzarella acidified 

487 with commercial starters and collected at mass retailers.

488

489 Figure 4. Clustering of samples obtained by the use of Natural Whey Culture.

490 BDN: Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture; BDNG: 

491 Buffalo mozzarella with PDO certification, acidified with Natural Whey Culture and collected at 
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492 mass retailers; BNNG: Buffalo mozzarella without certification, acidified with Natural Whey 

493 Culture and collected at mass retailers.
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Figure 1



Figure 2



Figure 3



Figure 4



Figure S1: Score-plot of Mozzarella samples from a PLS-DA model of classification based on their OUTs 
profile. BDNla, BDNfo, BDNsa and BDNce were samples coming respectively from the provinces of Latina, 
Foggia, Salerno, and Caserta.



1 Table 1. Summary statistics of the study samples

Sample§ Type* Certification Sampling 
point¥

Acidification† Reads/
sample

Identified 
OTUs/Sample

Estimated 
OTUs/
sample^

BDN_01 BM PDO L NWC 76,736 570 1,003
BDN_02 BM PDO L NWC 45,170 463 795
BDN_03 BM PDO L NWC 135,946 747 1,183
BDN_04 BM PDO L NWC 108,787 912 1,430
BDN_05 BM PDO L NWC 100,464 737 1,177
BDN_06 BM PDO L NWC 136,682 1,065 1,825
BDN_07 BM PDO L NWC 115,630 934 1,631
BDN_08 BM PDO L NWC 124,178 688 1,103
BDN_09 BM PDO L NWC 131,778 675 1,031
BDN_10 BM PDO L NWC 126,677 788 1,318
BDN_11 BM PDO L NWC 122,042 918 1,801
BDN_12 BM PDO L NWC 159,580 1,044 1,767
BDN_13 BM PDO L NWC 89,681 609 1,060
BDN_14 BM PDO L NWC 55,518 477 860
BDN_15 BM PDO L NWC 121,617 829 1,451
BDNG_16 BM PDO M NWC 97,084 630 1,084
BDNG_17 BM PDO M NWC 115,616 760 1,342
BDNG_18 BM PDO M NWC 111,893 752 1,142
BDNG_24 BM PDO M NWC 99,252 1,039 1,745
BDNG_25 BM PDO M NWC 47,251 510 960
BDNG_26 BM PDO M NWC 88,912 778 1,310
BDNG_27 BM PDO M NWC 132,776 960 1,682
BDNG_28 BM PDO M NWC 75,006 819 1,384
BDNG_29 BM PDO M NWC 176,617 878 1,571
BDNG_30 BM PDO M NWC 189,981 1,193 2,410
BDNG_31 BM PDO M NWC 125,197 873 1,660
BNNG_19 BM None M NWC 108,266 956 1,754
BNNG_20 BM None M NWC 87,127 567 904
BNNG_21 BM None M NWC 110,637 949 1,729
BNCG_22 BM None M CS 57,720 770 1,640
BNCG_23 BM None M CS 108,657 745 1,176
CC_32 CM None M CS 169,503 1,313 2,451
CC_33 CM None M CS 77,159 883 1,757
CC_34 CM None M CS 154,577 1,384 2,309
CC_35 CM None M CS 157,778 1,269 2,085
CC_36 CM None M CS 151,638 1,159 2,009
CC_37 CM None M CS 92,067 958 1,794
CC_38 CM None M CS 216,852 1,569 2,623
CC_39 CM None M CS 109,899 1,102 1,975

2 §Legend of names prefixes: BDN: Buffalo mozzarella with PDO certification, acidified with 

3 Natural Whey Culture; BDNG: Buffalo mozzarella with PDO certification, acidified with 

4 Natural Whey Culture and collected at mass retailers; BNNG: Buffalo mozzarella without 
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5 certification, acidified with Natural Whey Culture and collected at mass retailers; BNCG: 

6 Buffalo mozzarella without certification, acidified with commercial starters and collected at mass 

7 retailers; CC: Cow mozzarella acidified with commercial starters and collected at mass retailers; 

8 *, BM=buffalo Mozzarella, CM=cow Mozzarella; , presence of PDO certification (PDO) or not 

9 (none); ¥, local (L) or mass (M) retailer; †acidification with NWC=natural whey culture, or 

10 CS=commercial starter. ^, According to Chao (1984) 
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1 Table 2. Differentially abundant OTUs between buffalo and cow mozzarella cheese. Only OTUs 

2 with a False Discovery Rate (FDR) <0.05 and present in more than 0.1% of the reads in at least 

3 one sample are shown.

Taxa Reads in BM* Reads in CM§ FDR log2ratio
Anoxybacillus flavithermus 262 29,533 0.0015 -6.81
Brochothrix 31 12,634 0.0002 -8.63
Erwinia 230 467 0.0271 -1.02
Flavobacterium frigidarium 53 11,530 0.0046 -7.74
Gluconacetobacter 22 1,593 0.0107 -6.11
Lactobacillus crispatus 7,895 43 0.0002 7.49
Lactobacillus delbrueckii 622,438 6,973 0.0002 6.48
Lactobacillus fermentum 14,007 30 0.0099 8.82
Lactobacillus helveticus 736,445 4,051 0.0004 7.51
Lactobacillus 1,320 84 0.0007 3.96
Lactobacillus ultunensis 2,235 20 0.0002 6.73
Pseudomonas azotoformans 6,468 28,603 0.0295 -2.14
Pseudomonas fragi 6,507 27,043 0.0098 -2.06
Pseudomonas lundensis 62 539 0.0002 -3.10
Pseudomonas 1,740 5,518 0.0181 -1.66
Pseudomonas umsongensis 428 5,150 0.0007 -3.59
Ruminococcus 63 363 0.0051 -2.51
Shewanella baltica 0 917 0.0107 -9.84
Shewanella putrefaciens 23 6,092 0.0470 -7.99
Streptococcus equinus 16,585 130 0.0237 6.98
Thermus thermophilus 16 557 0.0030 -5.04

4 *, Buffalo Mozzarella samples: BDN, BDNG, BNCG and BNNG; §, Cow Mozzarella samples: 

5 CC
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1 Table 3. Differential abundance of species between Cluster1 and Cluster2. Only OTUs with FDR 

2 < 0.05 and represented by more than 0.1% of the reads in at least one sample are shown are 

3 listed. “Unclassified” collects all OTUs that are not characterized at the genus level.

Taxa Reads in 
Cluster1

Reads in 
Cluster2

FDR log2ratio

Acinetobacter baumannii 10688 21264 0.0056 -0.99
Acinetobacter guillouiae 348 4449 0.0002 -3.67
Acinetobacter ursingii 117 395 0.0129 -1.75
Anoxybacillus flavithermus 0 260 0.0003 -8.03
Chryseobacterium 971 3564 0.0498 -1.87
Chryseobacterium indologenes 9 494 0.0002 -5.63
Chryseobacterium joostei 192 620 0.0179 -1.68
Citrobacter 17 379 0.0002 -4.40
Citrobacter freundii 512 7100 8.83E-06 -3.79
Corynebacterium diphtheriae 54 391 0.0134 -2.83
Enterobacter hormaechei 1195 2559 0.0004 -1.10
Erwinia 10 118 0.0025 -3.43
Klebsiella 91 8637 0.0222 -6.55
Lactococcus 11303 9326 0.0118 0.28
Lactococcus raffinolactis 355 2298 0.0004 -2.69
Methylobacterium mesophilicum 35 365 0.0498 -3.34
Methylobacterium organophilum 18 181 0.0201 -3.26
Plesiomonas 420 25746 2.09E-07 -5.93
Pseudomonas 222 767 0.0214 -1.78
Pseudomonas aeruginosa 142 513 0.0046 -1.84
Pseudomonas azotoformans 1037 3056 0.0039 -1.56
Pseudomonas fragi 931 2237 0.0092 -1.26
Pseudomonas plecoglossicida 151 326 0.0145 -1.10
Pseudomonas rhodesiae 807 1965 0.0160 -1.28
Pseudomonas tolaasii 97 249 0.0400 -1.35
Pseudomonas umsongensis 41 292 0.0193 -2.80
Pseudomonas veronii 65 1245 0.0018 -4.24
Pseudomonas viridiflava 263 724 0.0012 -1.46
Streptococcus equinus 682 15604 0.0005 -4.51
Streptococcus parauberis 161 604 0.0004 -1.90
Streptococcus vestibularis 2979 1593 0.0500 0.90
Wautersiella falsenii 21 187 0.0060 -3.10
Weissella viridescens 330 0 0.0012 8.37
Unclassified 261 31747 1.34E-05 -6.92

4
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