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Abstract 

In this work a model of the Euler-Bernoulli beam in presence of multiple concentrated open cracks, 

based on the adoption of a localized flexibility model, is adopted. The closed form solution in terms 

of transversal displacements due to static loads and general boundary condition is exploited to 

propose an inverse damage identification procedure. The proposed identification procedure does not 

require any solution algorithm, on the contrary is formulated by means of simple explicit sequential 

expressions for the crack positions and intensities including the identification of the integration 

constants. The number of possible detected cracks depends on the couples of adopted sensors. 

Undamaged beam zones can also be easily detected in relation to the sensor positions. The 

analytical character of the explicit expressions of the identification procedure makes the inverse 

formulation applicable to damaged beams included in more complex frame structures.  

The proposed procedure is applied for the identification of the number, position and intensity of the 

cracks along simple straight beams and also to more complex frame structures with the aim of 

showing its simplicity for engineering applications. In addition, the robustness of the methodology 

here described is shown through an accurate analysis of the basic assumptions on which the theory 

relies, and by means of a study of the effect of noise on the identification results. 

  Keywords: Damage identification, Multiple cracks, Static tests, Inverse problems, Beams, Frames. 
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1. Introduction 

In the literature of the last decades the problem of damage identification, on the basis of non-

destructive testing, has been the object of several studies in view of its applicability to those cases in 

which a simple visual inspection of the damaged structural element is not sufficient. Execution of 

non-destructive tests in dynamic regime provides, in general, a large number of information, 

however, in cases of simple structural systems, such as straight beams subject to damage, static tests 

are easily executable and can provide additional information to dynamic identification. 

The damage identification procedures based on measurements of response parameters by non 

destructive tests do not usually provide explicit solutions of the inverse and they usually rely on 

numerical methods. Only recently, the problem of identification of single and multiple open cracks, 

modeled as linear rotational springs in single span straight beams, has been solved by means of 

explicit solutions, dependent on static measurements, of damage induced variations in the deflection 

of the beam [1,2]. A careful analysis of the explicit solutions provided by the latter studies allowed 

the formulation of sufficient conditions on the position of the displacement measurements, for 

determination of both damage locations and severities. 

A different line of research to deal with cracks can be followed by modeling the equivalent 

rotational springs by making use of distributions (generalised functions) [3,4]. According to the 

latter approach cracks can be modeled as Dirac’s deltas in the flexural stiffness function of the beam 

leading to closed form expressions in stability and dynamics of craked beams [5,6]. The latter 

closed form expressions of the direct problem have been also successfully employed for the analysis 

of multiple-cracked frames [7-9]. The generalized function approach has been employed for the 

damage identification in beam-like structures in a dynamic context [10]. While the use of dynamic 

measurements for damage identification purposes is quite common in the literature [11-17] in view 

of the easy repeatability of the dynamic tests during the operational life, in the literature few studies 

adopt a strategy based on data from static tests. In the pioneering study by Sanayei and Onipede 

[18] an analytical method which makes use of static data test is employed to assess the damage in 
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frames. More recently, regarding the static identification of damage parameters in structures, further 

studies were devoted to propose alternative strategy for frames [19], to assess instrumental errors 

with reference to beam-like structures [20], to the identification of damage in arches [21], and to the 

identification of diffuse damage in beam-like structures [22]. 

In this paper, by utilizing the solution provided by the mentioned distributional approach, a further 

contribution towards the identification of multiple cracks in straight beams by static response 

measurements, leading to explicit expressions for damage positions and severities, is provided. In 

particular, the explicit solution of a multi-cracked beam is first presented as dependent on four 

integration constants, related to the boundary conditions, and on summation terms showing a 

sequential appearance of the intensity and position crack influence on the static deflection of the 

beam. Then, the above character of the solution is exploited for identification purposes by 

identifying the integration constants, first, in the region of the beam not influenced by the cracks; 

successively, by triggering a cascade identification of a single crack at a time in each monitored 

segment of the beam.  

The advantage of the proposed procedure, based on the acquisition of displacement measurements 

by static tests along a grid of points, is that for each couple of measurements the position and 

severity of a single damage, along a specified portion of the beam, can be identified by means of 

explicit expressions.  

The methodology benefits of several properties which prevent the propagation of errors and helps to 

recognize the violation of the basic assumption on which it relies. In addition, the sensitivity of the 

identified parameters is investigated with reference both to proportional and absolute noise. 

Finally, the proposed damage identification procedure can be applied to any boundary conditions, 

henceforth, lends itself to applications for identification of cracks occurring in frame structures as 

also shown in the last part of the paper.     
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2. A localized flexibility model for a multi-cracked Euler-Bernoulli beam  

In this section a model for the evaluation of the influence of cracks on straight beams is briefly 

recalled. In particular, the model makes use of generalised functions and, in the case of uniform 

beams, leads to explicit closed form solutions to be exploited for identification purposes.  

Localized Flexibility Models (LFM) are often used to represent the behavior of damaged beams and 

frames. In the case of beams under plane flexural deformation, a notch or an open crack is modeled 

by inserting a massless rotational elastic spring at the damaged cross section [23-32]. Linear 

fracture mechanics arguments are usually adopted to describe (open) cracks in beams [33]. 

Recently, Caddemi and Morassi proposed a different justification of the rotational elastic spring 

model of an open crack or notch in a beam [34]. In the latter work the authors proved that this LFM 

is the variational limit of a family of one-dimensional beams when the flexural stiffness of these 

beams tends to zero in an interval centered at the cracked cross-section and, simultaneously, the 

length of the interval vanishes in a suitable way. In the same paper, the accuracy of the LFM has 

been evaluated on the basis of a series of vibration tests carried out on steel beams with a single or 

multiple notches. Experimental results show that the accuracy of the LFM is comparable to that of 

the classical Euler-Bernoulli model for a beam without defects. 

Following the approach in [34], the equilibrium problem is here formulated for a beam with n 

cracks.  

A beam of length L and bending stiffness o oE I constant= , subjected to a transversal load ( )q x , x  

being the spatial abscissa running from 0  to L , is considered. The cracks are located at points of 

abscissa , 1, ,ix i n= K , with 1 20 Lnx x x< < < < <K , and are modeled by rotational elastic springs 

of stiffness , 1, ,ik i n= K . The stiffness , 1, ,ik i n= K , depends on the geometry of the defect. 

Values of ik  for simple geometry of the cracked cross-section are available in the literature, see, for 

example [30,33]. 

The transverse deflection of the beam axis is governed by the following differential equation: 
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( )(4) (2)

1

( )( )
( )

n
i

i

io o i

M xq x
u x x x

E I k
δ

−

=

= − −∑  (1) 

under suitable end conditions at 0x =  and x L= . In the above expression, (2)( ) ( )i o o iM x E I u x− = −   

is the (continuous) bending moment acting at ix x= , where the superscript (k) indicates the k-th 

derivative with respect to x , and ( )ix xδ − is the Dirac’s delta with support at ix x= .  

In [34] it was shown the integration procedure of Eq. (1) for the case of clamped-clamped boundary 

conditions. Integration of Eq. (1) for any boundary conditions leads to the following closed-form 

expression of the transversal displacement function ( )u x :  

( ) ( ) ( ) ( )

[ ] [ ]

( ) ( )

2 3

1 2 3 4

1 1

24

1

( ) 2 6

( )( )

n n

i i i i i i i

i i

n
i

i i i

io o o o

u x c c x c x x x U x x c x x x x U x x

q xq x
x x U x x

E I E I

λ λ

λ

= =

=

   
= + + + − − + + − −   

   

+ + − −

∑ ∑

∑
 (2) 

where ( )iU x x−  is the Heavside’s, unit step, distribution with support ( , )ix ∞ . Here, 
[ ]( )kq x  

indicates the k-th primitive function of the external load ( )q x , namely [1]

1 1
0

( ) ( )
x

q x q s ds= ∫ , 

1[2]

2 2 1
0 0

( ) ( )
x s

q x q s ds ds= ∫ ∫ , and so on. The parameters , 1, ,i i nλ = K , appearing in the summation 

terms in Eq. (2), represent the compliance of the rotational springs equivalent to the n  cracks 

related to the stiffness , 1, ,ik i n= K  as follows: o o
i

i

E I

k L
λ = .   

Eq. (2) is the solution of a beam with multiple concentrated open cracks dependent on four 

integration constants 1 2 3 4, , ,c c c c  to be determined by means of the boundary conditions at 0x =  

and x L= , without enforcement of any continuity conditions at the cracked cross-sections.  

Eq. (2) will be exploited in this work to analyse beams with elastic end constraints also able to 

represent the case of damaged beams embedded in frame structures. 
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3. The identification procedure of multiple cracks  

The great advantage of proposing multiple damage identification procedures has been addressed in 

[1,2] where explicit solutions have been also proposed on the basis of measurements by static tests. 

In this work, by following a different strategy, the explicit expression of the static deflection 

function, given by Eq. (2), is adopted to propose a novel procedure for the identification of both 

position and intensity of multiple cracks. 

The damage identification strategy proposed in this work is based on the following statement:  

- The transversal displacement ( )u x  provided by Eq. (2), except for the integration constants 

1 2 3 4, , ,c c c c , depends on the intensity and position of the cracks located at ix x<  as 

evidenced by the terms involving the Heaviside functions, since ( ) 0iU x x− = , for ix x< ; 

( ) 1iU x x− = , for ix x> .  

The property of the solution in Eq. (2) reported in the above statement suggests, starting from the 

first damage, to employ two displacement measurements to recognize whether there is a damage on 

the left of the measurement position and activate a sequential identification procedure. More 

precisely, for each beam interval where a single damage occurs, by making use of the analytical 

expression given by Eq. (2), evaluated at two different cross-sections, it is possible to provide 

closed form expressions of the crack position and intensity as functions of the measured static 

transversal displacements of the beam.  

The above sequential identification procedure requires an a priori identification of the integration 

constants 1 2 3 4, , ,c c c c  necessary to initiate the crack detection of a single crack in turn.   

In the following sub-sections 3.1 and 3.2, devoted to beams with elastic end constraints, the 

procedure to identify the integration constants and the generic crack, starting from the first, 

respectively, are proposed in detail.  
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3.1 Identification of the integration constants 

In direct analysis problems the integration constants 1 2 3 4, , ,c c c c , appearing in Eq. (2) are to be 

evaluated by imposing four boundary conditions (b.c.) at both ends on the beam. The relevant 

expressions are generally explicitly dependent on the cracks occurring along the beam span.  

However, for multiple crack detection purposes since the crack positions and intensities are 

unknown, the adoption the standard b.c. dependent expressions would imply difficulties in the 

formulation of the inverse identification problem. For the latter reason, an analytical procedure for 

the identification of the integration constants derived by four additional transversal displacemement 

values, measured by static tests at cross sections other than 0,x x L= = , is proposed in this sub-

section. The general case of beams with multiple cracks and elastic end constraints will be treated in 

what follows.  

Precisely, for the case of a beam with elastic end constraints and a generic transversal external 

distributed load ( )q x , four experimental static deflection measurements at the abscissae 

, , ,mo mo mo mox x x x′ ′′ ′′′ , under the hypothesis that 
1mo mo mo mox x x x x′ ′′ ′′′< < < <  (as depicted in the sensor 

layout reported Fig. 1), are here employed for the identification of the integration constants 

1 2 3 4, , ,c c c c .  

In view of the closed form solution given by Eq. (2) and on the account of the statement asserted in 

the previous section, the deflection function at , , ,mo mo mo mox x x x′ ′′ ′′′  is dependent on the integration 

constants only. Equating, the theoretical displacements ( ) ( ), ( ), ( ),
mo mo mo mo

th th th thx x x xu u u u′ ′′ ′′′ , given 

by Eq. (2), to the experimental measurements ( ) ( ), ( ), ( ),mo mo mo mo

ex ex ex exx x x xu u u u′ ′′ ′′′ ( )
ex
xu , as 

follows: 
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1 2 3 4
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=
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′′ ′′=
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(3) 

provides a system of equations to be solved with respect to 1 2 3 4, , ,c c c c .  

Eq. (3), in view of Eq. (2), can also be written explicitly as follows: 
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u

= + + + +

′
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′′
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(4) 

The matrix of the linear system in Eq. (4) is of Vandermonde type. Therefore, its solution is unique 

and the integration constants 1 2 3 4, , ,c c c c  have the following explicit expressions: 
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(5) 

where 
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(6) 

Eqs. (5) provide the explicit expressions of the unknown integration constants 1 2 3 4, , ,c c c c  as 

determined by the experimental measurements independently of the knowledge of the cracks. The 

latter being the main object of the inverse identification problem. 

Alternative explicit expressions for the integration constants can also be obtained by starting the 

outlined procedure from the right end of the beam. In that case one would need four transversal 

displacement measurements between the last crack occurrence and the right external constraints as 

also outlined in Fig.1 for the case of four cracks.  

It is worth noting that the expressions in Eq. (5) are able to provide the integration constants of any 

specific b.c. even concerning cases of no constraints or rigid constraints, such simply supported or 

clamped-clamped beams. 

For those static tests in which the relevant b.c. are given with certainty, the explicit expression 

presented in Eq. (5) may assume simpler expressions and the identification of the integration 

constants may require less measurements.  

As an example, for the case of a simply supported beam, the b.c. at 0x =  imply that 

(0) (0) 0u u′′= =  and the integration constants 1 3 0c c= = . The remaining integration constants 

2 4,c c , according to the proposed procedure, can be identified by experimental transversal 

displacements measured along the beam span by a non destructive static test at the abscissae 

,mo mox x′ , such that 
1mo mox x x′< < , according to the measurement position layout depicted in Fig.2. In 

fact, in view of the closed form solution given by Eq. (2), transversal displacements ( ), ( )mo mou x u x′  

measured at ,mo mox x′  are dependent on the integration constants only, which can hence be identified 
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by means of the linear system in Eq. (4) which is reduced for the case at hand 1 3( 0)c c= =  as 

follows: 

[ ] ( ) [ ] ( )4 4

3 3

2 4 2 4( ) , ( )
mo mo

mo mo mo mo mo mo

o o o o

ex exq x q x
x c x c x x c x c x

E I E I
u u

′
′ ′ ′= + + = + +  (7) 

The solution of the linear system in Eq. (7) leads to the following expressions for the identification 

of the integration constants 
2 4,c c : 

[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )

4 4

3 3

2 2 2

4 4

4 2 2

( ) ( )
1

( ) ( )
1

mo mo

mo mo mo mo

o o o o
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E I E I
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u u

u u

   ′
′ ′− − −   

      =
′ ′ −

   ′
′ ′− − −   

      =
′ ′ −

 
(8) 

Eq. (8) provides the explicit expressions of the unknown integration constants 
2 4,c c  as identified by 

the experimental measurements.  

It is worth to notice that, in the latter case, in view of the a priori knowledge of the b.c. two 

displacement measurements have been sufficient for the identification of  the integration constants. 

It is worth noting that the presented procedure may be broadened to include identification of the 

flexural flexibility 1/ o oE I   with regard to those cases where the latter is not known with certainty. 

As a matter of example, if an additional displacement measurement at mox′′  denoted as ( )ex

mou x′′ is 

considered, the linear system in Eq. (7) can be extended as follows: 

[ ] ( )

[ ] ( )

[ ] ( )

4

3

2 4

4

3

2 4

4

3

2 4

( )

( )

( )

mo

mo mo mo

o o

mo

mo mo mo

o o

mo

mo mo mo

o o

ex

ex

ex

q x
x c x c x

E I

q x
x c x c x

E I

q x
x c x c x

E I

u

u

u

= + +

′
′ ′ ′= + +

′′
′ ′′ ′′= + +

 
(9) 

to be solved with respect to the unknowns 2 4, ,1/ o oc c E I  as follows:  
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[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ] ( )

4 4 43 3 3

2 4 4 43 3 3

4 4 4

4

( )- ( )- ( )1
=

+ ( )+ ( ) ( )

( )- ( )- ( )1

mo mo mo mo mo mo mo mo mo

mo mo mo mo mo mo mo mo mo

mo mo mo mo mo mo mo mo mo

ex ex ex

ex ex ex

ex ex ex

x q x x x q x x x q x x
c

S x q x x x q x x x q x x

x q x x x q x x x q x x
c

S

u u u

u u u

u u u

 ′ ′ ′ ′ ′′ ′ +
 
 ′′ ′ ′ ′′ ′′ ′− 

′ ′ ′′ ′ ′ ′
= −

[ ] ( ) [ ] ( ) [ ] ( )4 4 4

3 3 3

3 3 3

+

+ ( )+ ( )- ( )

( )- ( )- ( )+1 1

+ ( )+ ( )- ( )

 

mo mo mo mo mo mo mo mo mo

mo mo mo mo mo mo mo mo mo

o o mo mo mo mo mo mo mo mo mo

ex ex ex

ex ex ex

ex ex ex

x q x x x q x x x q x x

x x x x x x x x x

E I S x x x x x x x x x

u u u

u u u

u u u

 
 
 ′ ′′ ′′ ′ ′′ ′ 

′ ′ ′′ ′ ′ ′ 
=  

′ ′′ ′′ ′ ′′ ′  

 
(10) 

being 

[ ] ( ) [ ] ( ) [ ] ( )
[ ] ( ) [ ] ( ) [ ] ( )

4 4 43 3 3

4 4 43 3 3

- - +

+ + -

mo mo mo mo mo mo mo mo mo

mo mo mo mo mo mo mo mo mo

S x x q x x x q x x x q x

x x q x x x q x x x q x

′ ′′ ′′ ′ ′ ′′=

′ ′′ ′′ ′ ′′ ′
 (11) 

 

3.2 Identification of the crack positions and intensities 

Once the four integration constants have been identified, Eq. (2) can again be exploited to identify 

the first and, sequentially, the successive cracks starting from the left end of the beam.  

In fact, as declared by the statement in the previous section, the theoretical expressions of 

transversal displacements measured at the abscissae 1 1, ,m mx x′  such that 
1 1 1 2m mx x x x′< < < , 

according to the sensor layout in Figs.1 and 2, are dependent on the integration constants (already 

identified by means of Eq. (5)) and on the position and intensity 
1x  and 1λ , respectively, of the first 

crack.  

Equating the theoretical displacements 
1 1

( ), ( )
m m

th th
x xu u ′ , given by Eq. (2), to the experimental 

measurements 
1 1

( ), ( )
m m

ex ex
x xu u ′ , at the same abscissae, as follows: 

1 1 1 1 1 1 1 1( ) ( ; , ) , ( ) ( ; , )m m m m

ex th ex thx x x x x xu u u uλ λ′ ′= =  
   

(12) 

provides a system of equations to be solved with respect to 
1x  and 1λ  for the identification of the 

first crack.  

Eq. (12) can be written explicitly as follows: 
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( ) ( )
[ ] [ ]

( )

( ) ( )
[ ] [ ]

( )

2 3

1 1 2 1 3 1 1 1 1 4 1 1 1 1 1

4 2

1 1
1 1 1

2 3

1 1 2 1 3 1 1 1 1 4 1 1 1 1 1

4 2

1 1
1 1 1

( ) 2 6

( ) ( )

( ) 2 6

( ) ( )

m m m m m m

m
m

o o o o

m m m m m m

m
m

o o o o

ex

ex

x c c x c x x x c x x x x

q x q x
x x

E I E I

x c c x c x x x c x x x x

q x q x
x x

E I E I

u

u

λ λ

λ

λ λ

λ

   = + + + − + + − +   

+ + −

′ ′ ′ ′ ′ ′   = + + + − + + − +   

′
′+ + −

 
(13) 

By eliminating the unknown 1λ  in Eqs. (13), the system can be solved explicitly in terms of the 

crack position 1x  as follows: 

1 1 1 1
1

1 1

( ) ( )

( ) ( )

m m m m

m m

x D x x D x
x

D x D x

′ ′−
=

′ −
 (14) 

where ( )D x  is given as follows: 

[ ]4
2 3

1 2 3 4

( )
( )( )

o o

ex q x
x c c x c x c x

E I
D x u= − − − − −  (15) 

and where it was assumed that the denominator in Eq. (14) does not vanish. 

Once the position 1x  of the first crack is evaluated by means of Eq. (14), the first equation 

appearing in Eq. (15) can be solved with respect to 
1

λ , as follows:  

[ ]

( )
1 2

1

3 4 1 1 1

1

( )
2 6

( )

m

o o

m

q x
c c x x x

E I

D x
λ =

+ + −
 
 
 

 
(16) 

The next step of the crack identification procedure consists in the employment of the experimental 

transversal displacement measured at the abscissae 2 2,m mx x′ , such that 
2 2 2 3m mx x x x′< < <  as in Figs. 

1and 2, to identify the position and intensity 2 2,x λ  of the second crack.  

Precisely, equating the theoretical displacements 
2 2

( ) ( ),
m m

th th
x xu u ′ , given by Eq. (2), to the 

experimental measurements 
2 2

( ) ( ),
m m

ex ex
x xu u ′ , provides a system of equations to be solved with 

respect to 
2x  and 

2λ  for the identification of the second crack as follows:  
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( ) ( )
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2 1 2 2 3 2 1 2 1 2 2 2

4 2

3 2 1
4 2 1 1 2 1 2 2 2 2 1 2 1

2

2
2 2 2

2

2 1 2 2 3 2 1 2 1 2 2 2

3

4 2

( ) 2 2
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6 6
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( ) 2 2

6

m m m m m

m
m m m m

o o o o

m

o o

m m m m m

m

ex

ex

x c c x c x x x x x

q x q x
c x x x x x x x x x

E I E I

q x
x x

E I

x c c x c x x x x x

c x

u

u

λ λ

λ λ λ

λ

λ λ

λ

 = + + + − + − + 

 + + − + − + + − + 

+ −

′ ′ ′ ′ ′ = + + + − + − + 

′+ + ( ) ( )
[ ] [ ]

( )

[ ]

( )

4 2

2 1
1 1 2 1 2 2 2 2 1 2 1

2

2
2 2 2

( ) ( )
6

( )

m
m m m

o o o o

m

o o

q x q x
x x x x x x x x

E I E I

q x
x x

E I

λ λ

λ

′
′ ′ ′ − + − + + − + 

′+ −

 

(17) 

By eliminating the unknown 2λ  in Eqs. (17), the system can be solved explicitly in terms of the 

crack position 2x  as follows: 

( ) ( )
( ) ( )

2 2 2 2 2 2

2

2 2 2 2

( ) ( )

( ) ( )

m m m m m m

m m m m

x D x F x x D x F x
x

D x F x D x F x

′ ′ ′+ − +      =
′ ′+ − −

 (18) 

where ( )D x  is given in Eq. (15), while ( )F x  is given as follows: 

( )
[ ]2

1
1 1 3 4 1

( )
( ) 2 6

o o

q x
F x x x c c x

E I
λ

 
= − − + + 

 
 (19) 

and where it was assumed that the denominator in Eq. (18) does not vanish. 

Once the position 2x  of the second crack is evaluated by means of Eq.(18), the first equation 

appearing in Eq.(17) can be solved with respect to 
2

λ  as follows:  

( )
[ ]

( )
2

2 2

2

2
3 2 4 2 2

( )

( )
2 6

m m

m

o o

D x F x

q x
c x c x x

E I

λ =
+

 
+ + − 

 

 
(20) 

The procedure described so far for the identification of the first two cracks can be easily conducted 

sequentially for the successive cracks, according to the sensor layout depicted in Fig. 1, leading to 

the following closed form expressions for the position and intensity of the i-th crack:  

( ) ( )
( ) ( )

( ) ( )

( ) ( )

mi mi mi mi mi mi

i

mi mi mi mi

x D x F x x D x F x
x

D x F x D x F x

′ ′ ′+ − +      =
′ ′+ − −

 (21) 
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( )
[ ]

( )
2

3 4

( )

( )
2 6

i

mi mi

i

i mi i

o o

D x F x

q x
c x c x x

E I

λ =
+

+ + −
 
 
 

 
(22) 

where ( )D x  is given by Eq. (15), while ( )F x , originally provided by Eq. (19), is now generalised as 

follows: 

( )
[ ]21

3 4

1

( )
( ) 2 6

i
k

k k k

k o o

q x
F x x x c c x

E I
λ

−

=

 
= − − + + 

 
∑  (23) 

and where it was assumed that the denominator in Eq. (21) does not vanish. 

The proposed damage identification procedure led to explicit expressions of the integration 

constants 1 2 3 4, , ,c c c c  (as described in the sub-section 3.1), the damage position ix  and intensity iλ . 

More precisely, Eq. (5) provides 1 2 3 4, , ,c c c c  explicitly as functions of the experimentally measured  

displacements ( ), ( )( ), ( ),
mo momo mo

ex exex ex
x xx xu u u u′′ ′′′′ , while Eqs.(21) and (22) provide ix  and iλ , 

respectively, in terms of the displacements ( ), ( )
mi mi

ex ex
x xu u ′ , detected in the undamaged region 

between the i-th and the (i+1)-th crack to be identified.  

Eqs. (21) and (22), in view of Eq. (23) show the dependence of the position ix  and intensity iλ , of 

the i-th crack, on the positions and intensities of the cracks denoted as 1, , 1i i= −K . The latter 

circumstance implies that Eqs. (21) and (22) apply to a sequential identification of each single crack 

separately and allow to detect and quantify a crack along prescribed segments of the beam as 

indicated by the chosen sensor layout adopted in the execution of the non-destructive test.  

It is worth to notice that the sequential character of the proposed procedure can be considered an 

advantage since it reduces the multiple crack identification problem to a sequence of steps implying 

a single crack identification each. However, at the same time, it may also be considered a drawback 

due to the inevitable measurement/instrumental errors propagation through the successive steps. 

An extensive study on the influence of the errors on the proposed identification procedure is 

however reported in the applications. 
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It should also be remarked that, according to the sufficient conditions involving the measurement 

layout indicated in [1,2], a couple of measurement displacements (one at the left and one at the right 

of each crack) are always adopted in the experimental test as evidenced in Figs.1 and 2. 

 One of the advantages of the proposed procedure is that it can be stopped whenever it is desired 

and the results obtained up to that point are valid. The consequence is that the number of cracks the 

operator intends to identify (and the region where they are sought) will indicate the number (and 

positions) of the sensors to be used and vice versa. The procedure provides the correct crack 

identification even though less cracks than the actual ones are sought. Finally, the actual number of 

cracks is identified when the adopted sensors stop indicating the presence of cracks.  

 

4. Frame structures composed by damaged beams 

 

The case of a beam with deformable end constraints treated in sub-section 3.1 allows to treat the 

problem of identification of multiple cracks along a beam of a complex and extended frame 

structure as in Fig.3. The proposed identification procedure can, in fact, be applied by testing 

uniquely the damaged beam of interest, the frame surrounding the beam being modeled by the 

unknown deformable end constraints. This is possible in view of the introduction of the integration 

constants 1 2 3 4, , ,c c c c  in the identification process.   

An example of damaged frame will be considered in the next section where measurement sensors 

are placed exclusively along the span of a chosen beam where multiple cracks are to be detected 

once the integration constants representing the surrounding frame have been identified. 

It is important to notice that if the beam is constantly monitored, variations of the identified 

integration constants, in absence of crack growth on the monitored beam, provide crucial 

information on damage occurrence in the surrounding frame.  

The latter use of the proposed procedure provides indication on possible damage occurrences on the 

overall frame by testing a restricted undamaged portion of the frame.  
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Since the proposed method applies to single beam elements of more complex frames, it would be 

time consuming if it applies to all the elements, so the method should be intended as a local method. 

However, a preliminar application of suitable global damage detection methods might provide 

indication of the possible damaged elements to which the proposed method can be locally applied. 

Convenient global damage detection methods might rely on dynamic measurements, as proposed in 

[35,36]. 

5. Numerical applications 

In this section two numerical examples to verify the reliability of the proposed procedure are 

presented. Without loss of generality in this paper for the numerical applications the following 

expression of the external load will be employed 

0 ,

1

( ) ( )
Pn

k P k

k

q x q P x xδ
=

= + −∑  (24) 

which embeds a constant distributed load 0q  and Pn  concentrated loads kP  acting at ,P kx . The two 

loads can act on the beam at the same time or alternatively. However, the analytical derivations 

already reported are consistent whichever external load typology is adopted. 

5.1 A simply supported beam 

In this section an application of the proposed identification procedure to a simply supported beam in 

presence of multiple cracks, on the basis of “experimental” displacement measurements simulated  

by a finite element model, is presented.  

The damaged simply supported beam subjected to concentrated static loads is depicted in Fig.4, 

together with the measurement layout. In particular, the beam, with length L =  2000 mm, has 

square steel cross-section (Young modulus oE = 206000 MPa) with height h =50 mm. Furthermore, 

four cracks with depth d  involving 50% of the cross-section height h , at abscissae 

1 2 3 4350mm, 900mm, 1300mm, 1500mmx x x x= = = = , are present. 
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In accordance to the conditions, regarding the measurement positions, presented in the proposed 

identification procedure, measurement displacements are detected at the following cross sections:  

1150mm 25mmmo mox x x′= < = < , 

1 1 1 2550mm 650mmm mx x x x′< = < = < , 

2 2 2 3950mm 1050mmm mx x x x′< = < = < , 

3 3 3 41350mm 1450mmm mx x x x′< = < = < , 

4 4 41750mm 1850mmm mx x x L′< = < = < . 

The displacement measurements have been generated by means of a finite element plane model of 

the beam by making use of a 1mm 2 mm×  rectangular mesh as also shown in Fig.4. 

Finally, the results of the proposed identification procedure are summarised in Tab.1, where the 

identified values of the position and the ratios /id h  are compared to the crack values assumed for 

the finite element model (FEM) and the relative errors are reported. The same results are also 

reported, in terms of graph, in Fig.5. 

5.2 Robustenss of the identification procedure 

The presented multi-crack identification procedure relies on the assumption that each crack is 

located between two pairs of measurements. However, in this section, the performance of the 

proposed procedure will be assessed in case the mentioned basic hypothesis is removed. Precisely 

two cases can be considered: 

a) absence of crack between two consecutive pairs of measurements; 

b) presence of two (or more) cracks between two consecutive pairs of measurements. 

To check the robustness of the procedure under the above mentioned scenarios, the example 

reported in Figure 6 is considered. The beam length is equal to 4000 mm, the Young's modulus of 

the beam and the moment of inertia of the cross section are E=210000 MPa I= 66666666.66 mm
4
 

(b=100 mm and h=200 mm) respectively, and is subjected to a uniform load q=5 N/mm. Three 
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cracks are located along the axis of a simply supported beam, at the abscissae x2=1800 mm, 

x'2=2200 mm and x3=3200 mm. All the cracks have the same severity equal to λ=151.8738 

corresponding to a crack depth d/h=0.2293 [37]. Eight measurement points are located at the 

abscissae xmo=250 mm, x'mo=400 mm, xm1=1150 mm, x'm1=1300 mm, xm2=2550 mm, x'm2=2700 mm, 

xm3=3600 mm, x'm3=3750 mm. Differently from the actual crack locations, the considered 

experimental layout implies the hypothesis of three cracks present along the axis of the beam, each 

of them located along one of the grey areas reported in Figure 6. In particular, the first two 

measurements xmo and x'mo will be employed to identify the integration constants, and the following 

three pairs of measurements xmi and x'mi , 1, ,3i = K , will be employed to locate three cracks. The 

actual damage scenario corresponds to the occurrence of the above mentioned conditions a) and b). 

By running the identification procedure, the obtained results are reported in Table 2. Some 

interesting comments can be made on the obtained results: 

i) when no crack is present before a pair of measurements, the proposed procedure recognizes that 

the identified crack has zero flexibility, i.e. no crack is identified; 

ii) when two cracks are located before a pair of measurements, the proposed procedure identifies a 

single crack to be considered “equivalent” to the actual ones; 

iii)  both the previous circumstances imply that the exact identification of the third crack is not 

compromised.  

With regard to comment ii), the single identified crack is considered equivalent to the actual crack 

layout in view of comment iii) that guarantees the correctness of the subsequent crack 

identification. In order to reconstruct the actual crack layout the identification procedure can be 

applied for a couple of measurement points roving from the left end to the right end of the beam, as 

shown in Figure 7. Discontinuities in the identified crack position are expected as a measurement 

point crosses a crack. 

In Figure 8 the results for the considered test scheme as in Figure 7 are reported. The application 

was obtained considering a mutual distance between the two roving stations equal to 150 mm. It can 
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be noticed that, as the pair of measurements moves, the identified crack location is first equal to 

zero (no crack is present) and then, when the first measurement crosses the first crack, the identified 

crack position xid exhibits a jump. As both measurements pass over the first crack, xid reaches a 

constant value providing the location of the first crack (lowest dashed line). Generally speaking , 

Figure 8 shows that every time a measurement point crosses a crack a jump in the crack location 

identification is encountered. According to the graph reported in Figure 8 the actual crack 

distribution can be correctly reconstructed. 

It is important to note that the latter property enhanced by analysis of Figure 8 is encountered even 

for a couple of roving measurement over a restricted portion of the beam in view of comments ii) 

and iii).  

The achieved results can be easily extended to a crack located in proximity of the left end of the 

beam. In fact, the first set of measurements is employed to identify the integration constants under 

the hypothesis that no crack is located on their left. However, “equivalent” integration constants can 

be identified even in presence of a crack located before the first measurement; again, the term 

equivalent is adopted in the sense that the identified integration constants embed the effect of the 

cracks located before the first measurements and guarantee the correctness of the subsequent crack 

identification. Finally, if a crack is located among the measurements, this circumstance can be 

recognized by moving the measurements; in fact, in this case, the identified integration constants 

will change as the measurements move. 

In case the latter procedure indicates the presence of a crack in the vicinity of the left of the beam, 

simultaneous identification of both the integration constants and the first crack might be pursued by 

modifying the algebraic system in Eqs. (4) or (7) by adding two equations to include the influence 

of crack intensity and position. Although the latter modification allows to deal with a different basic 

hypothesis it implies analytical difficulties due to the nonlinearity of the resulting system. 
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5.3 A damaged frame 

The proposed damage identification procedure, presented in the previous section, differently from 

the procedures provided in the literature, includes the identification of the integration constants, and 

for this reason it applies to any boundary conditions. The latter circumstance includes the case of a 

damaged beam embedded in a frame structure subjected to static loads.  

In this section an application of crack identification to the damaged steel frame depicted in Fig.9 

(width L =2000 mm, height H = 2000 mm), to show the potentiality of the proposed procedure, is 

considered. 

The frame has constant square cross section with height h =  5 cm. In particular, the beam element 

supported by the two columns is subjected to two cracks at abscissa 1x =  80cm and 2x =  120cm 

with depth d  involving 50% of the cross-section height h, and is loaded with two concentrated 

forces 1 2,P P  with 1000 N intensity each. 

According to the identification procedure presented in section 3, the damaged element beam 

supported at the ends by two columns can be considered as a beam with unknown end constraints. 

Since in this case the boundary conditions require four integration constants to be identified, 

according to the proposed identification procedure, four displacement measurements are needed at 

the left of the first damage. Hence, measurement displacements are detected along the beam span at: 

0 0 0 0150mm 250mm 550mm 650mmm m m mx x x x′ ′′ ′′′= < = < = < = , for the identification of 1 2 3 4, , ,c c c c ; 

at 1 1 1 2950mm 1050mmm mx x x x′< = < = <  between the first and the second crack for the 

identification of the first crack; and finally at 2 2 21350mm 1450mmm mx x x L′< = < = <  for the 

identification of the second crack. Further displacement measurements detected at 

2 2 21750mm 1850mmm m mx x x L′ ′′ ′′′< = < = <  are redundant. However the latter can be useful in case 

the sequential identification procedure is initiated from the right end x L= . 

The displacement values of the measurement cross sections of the deformed structure, reported in 

Fig.10, have been generated by means of a finite element model (FEM).  

Page 20 of 45

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The damage identification procedure proposed in the previous section led to the results summarized 

in Tab.3 and shown in the graph reported in Fig.11. 

The error levels of the results obtained by means of the proposed identification procedure are also 

reported in Tab.3 showing the validity of the procedure in presence of uncertainties due to the 

adopted model. 

5.4 Crack identification in presence of noisy measurements 

The following results refer to two simply supported beams with a length L=3500 mm and subjected 

to a uniform transversal load q=5 N/mm, Figure 12. The Young's modulus of the beams and the 

moment of inertia of the cross section are E=210000 MPa I=66666666.66 mm
4
 (b=100 mm and 

h=200mm) respectively. Two damage scenarios are considered, namely a single (Figure 12a) and a 

double cracked (Figure 12b) beam. Both beams have an along axis crack located at the abscissa x1 

=1600 mm with a depth η=d/h=0.2293, whose corresponding compliance λi =151.8738 can be 

computed according to [37]. In addition, the double cracked beam has a second crack, characterized 

by the same severity, located at the abscissa x2 =2500 mm. 

Since the beam is simply supported two measurements are needed to assess the two unknown 

integration constants C2 and C4 (equal to 0.0071 and -1.0417*10
-9
 respectively), and two are needed 

to identify each crack position and intensity. 

To assess the influence of noise on the measurements both a proportional and an absolute error are 

considered. The measurements adopted in the identification procedure can be computed as follows 

( ) ( ) ( )
( ) ( )

1ex c

m m p

ex c

m m a

u x u x R

u x u x R

ε

ε

= +

= +
 (25) 

where pε  and aε  are the considered proportional and absolute errors respectively and R represent a 

random variable with uniform distribution in the interval [ ]1,1− . 
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To test the robustness of the procedure, the identification algorithm is repeated with increasing 

values of the error. Two strategies are here adopted to improve the robustness of the procedure, 

namely one which employs additional measurements, and one which employs additional load 

scenarios. The two procedures are better described and verified in the following. 

5.4.1 Crack identification employing additional measurements 

This identification strategy is based on the adoption of a number of measurements higher than those 

strictly needed. In particular, with reference to the single cracked beam shown in Figure 12a, 

besides the case where the measurements strictly needed are employed (located at the abscissae 350 

mm, 700 mm, 1700 mm, 1900 mm), the procedure is repeated considering an increasing number of 

additional measurements and employing the Moore-Penrose inversion algorithm. To this purpose, 

two other cases are considered: in the first case two measurements are added (located at 1150 mm 

and 2100 mm), in the second two more measurements are considered (located at 1400 mm and 2300 

mm). 

The sensitivity to the noise was assessed by means of Monte Carlo simulations, as reported in 

Figure 13 over 5000 samples for the cases of proportional error. The average value of the crack 

locations and intensity over the performed runs is reported as function of the performed samples. 

For the case of proportional error, Figure 13, the error has been ranged in the interval εp=0.1-1%. 

The results reported in the following show how 5000 samples are enough to converge to a stable 

value of the average of the identified values. It is clear how, as the error in the measurements 

increases, the identified values tend to distance the actual values. However, the additional 

measurements have a beneficial effect to limit the errors in the identification procedure. 

The results previously reported, together with those relative to the absolute errors (ranged in the 

interval εa=10-3-10-2 mm, which corresponds to a relative error with respect to the maximum 

deflection equal to 0.13-1.3%.), are summarized in Figure 14 where the error in the identified 

values is reported as a function of the error in the measurements for the three considered cases (2, 3 
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and 4 measurements for each segment). In terms of relative values, the range studied for the 

absolute error is comparable with that adopted for the applications with proportional error. The 

error range adopted in the present applications appears to be comparable with respect to that 

encountered in the execution of real static tests [2]. 

The errors for the crack position and depth are computed as follows 

( )

( )

r id

i i

r id

i i

x x
x

L
ε

ε η η η

−
=

= −

 (26) 

where ,r id

i ix x  represent the real and identified locations of the i-th crack respectively and ,r id

i iη η  

represent the real and identified depths of the i-th crack, respectively.  

In the following, in order to assess the propagation of the errors along the beam, the double cracked 

beam is considered, Figure 12b. Four measurements for each segment are considered, at the 

abscissae 350, 700, 1150, 1400, 1700, 1900, 2100, 2300, 2700, 2900, 3100, 3300 mm.  

Again, the two unknown integration constants C2 and C4 are equal to 0.007021 and -1.0417*10
-10
. 

The results relative to the proportional and absolute errors are summarized, considering the mean 

values after 5000 samples, in Figures 15. It can be noticed that, for the considered case, higher 

errors are got for the second crack in terms of crack location but not for the crack depth. 

5.4.2 Crack identification employing additional load scenarios 

Alternatively, to increase the number of available data, a possibility is to repeat the experimental 

test under different loads scenarios. In particular, the measurement points are kept at the same 

locations, and the test can be repeated considering a roving concentrated load. 

In the following the same application reported in Figure 12 is repeated considering the beam 

subjected to three different load scenarios, namely a concentrated load of intensity P=10000 N 
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located at the abscissae xP=875, 1750, 2625 mm. Again, the additional data are treated according to 

the Moore-Penrose inversion algorithm. 

For the single cracked beam the measurement points are located at 350, 1150, 1900, 2300 mm, 

while for the double cracked beam two additional stations at 2900 and 3300 mm are added. The 

results are summarized in Figure 16 for the cases of proportional and absolute errors. 

For the double cracked beam reported Figure 12b, the results are summarized in Figure 17 for the 

cases of proportional and absolute errors. 

It is worth to note that the two methods can be combined aiming at increase the robustness of the 

procedure, that is additional measurements can be considered and the test can be repeated for 

different load scenarios. 

6. Conclusions 

Very rarely in the literature closed form expressions for the identification of damage along beam 

like structures have been presented. Only recently, explicit solutions have been provided for the 

case of cracks occurring in beams with specific boundary conditions in the context of quasi-

statically applied loads.  

In this work, a different identification procedure leading to alternative explicit expressions for the 

position and intensity of cracks has been proposed regardless of the number of the cracks and the 

specific boundary conditions. This has been possible by exploiting the properties of the closed-form 

solution of a beam with multiple cracks and including the integration constants in the parameters to 

be identified by the inverse procedure. 

The presented procedure seems to be promising in view of its applicability to the case of multiple 

cracks occurring along frame structures. The procedure is also appealing in view of the possibility 

to deduce information concerning the occurrence of damage in the portion of the frame that has not 

been instrumented by monitoring a restricted undamaged portion of the frame.  
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Several numerical applications and incisive discussions demonstrated the effectiveness of the 

identification procedure also in presence of noise, and provided new findings towards a better 

understanding of the damage detection problem properties. 
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Fig.1 Measurement layout along a beam with multiple cracks and deformable end constraints. 
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Fig.2 Measurement layout along a simply supported beam with multiple cracks 
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Fig.3 A frame structure with a damaged beam    
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Fig.4 Scheme of the simply supported beam with the FE model 
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Fig.5 Identified values of the crack positions and intensities 
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Fig. 6 Layout of the considered cracked beam 
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Fig. 7 Layout of the procedure with roving measurements 
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Fig. 8 Location of the progressively identified crack  
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Fig. 9 A frame with two concentrated cracks 
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Fig. 10 Deformed shape of the frame in Fig.9 evaluated by means of FEM 
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Fig. 11 Identified values of the crack positions and intensities in the frame of Fig.9 
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Fig. 12 Influence of noise, layout of the test: (a) single and (b) double cracked beams. 
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Fig. 13 Influence of noise: influence of proportional errors on a single cracked beam 
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Fig. 14 Influence of noise, error in the identified values vs error in the measurements: (a) crack location and (b) depth 

considering noise proportional to the measurements, (c) crack location and (d) depth considering noise with absolute 

errors. 
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Fig. 15 Influence of noise, error in the identified values vs error in the measurements: (a) crack location and (b) depth 

considering noise proportional to the measurements, (c) crack location and (d) depth considering noise with absolute 

errors. 
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Fig. 16 Influence of noise, error in the identified values vs error in the measurements: (a) crack location and (b) depth 

considering noise proportional to the measurements, (c) crack location and (d) depth considering noise with absolute 

errors. 
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Fig. 17 Influence of noise, error in the identified values vs error in the measurements: (a) crack location and (b) depth 

considering noise proportional to the measurements, (c) crack location and (d) depth considering noise with absolute 

errors. 
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