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We present an analytical procedure for the exact, explicit construction of Euler-Bernoulli
beams with given values of the first N buckling loads. The result is valid for pinned-
pinned end conditions and for beams with regular bending stiffness. The analysis is
based on a reduction of the buckling problem to an eigenvalue problem for a vibrating
string, and uses recent results on the exact construction of Sturm-Liouville operators
with prescribed natural frequencies.
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1. Introduction

The problem of determining the buckling load of a compressed beam is of impor-

tance in several fields of Structural Mechanics. When formulated within the lin-

earized equilibrium theory for Euler-Bernoulli-Kirchhoff bending beams, the buck-

ling problem is equivalent to determining the eigenvalues Pm, m ≥ 1, and, in

particular, the smallest eigenvalue P1, and the buckling modes vm = vm(x) of the
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fourth order differential operator

d2

dx2

(
EI(x)

d2vm(x)

dx2

)
+ Pm

d2vm(x)

dx2
= 0, x ∈ (0, L), (1.1)

where EI(x) is the bending stiffness of beam’s cross-section. Within the forward

approach to the buckling problem, the coefficient EI(x) is given and standard

analytical/numerical methods can be used to find the eigenpairs of (1.1), under a

specified set of end conditions.

In addition to the direct approach, there are situations important in real-world

applications in which an inverse approach to the buckling problem is adopted. One

class of problems is concerned with optimal buckling design, namely the determina-

tion of the maximum values of the smallest buckling load P1 for a given structural

weight, or alternatively, the minimization of the structural weight that satisfies a

prescribed smallest buckling load. The problem was originally posed by Lagrange

and a large number of publications have appeared on this topic, see, among others,

the classical Refs. 1, 2, 3, 4, 5, 6.

A second class of inverse-like applications is concerned with the construction of

beams having specified buckling properties. This paper belongs to this second class

of applications. Specifically, here we show how to explicitly construct families of

bending coefficients EI(x) such that the eigenvalue problem (1.1) has exactly given

values of the first N buckling loads {Pm}Nm=1, 1 ≤ N < ∞, under pinned-pinned

end conditions, e.g., vm = d2vm

dx2 = 0 at x = 0 and x = L.

From the point of view of Structural Mechanics, the construction of beams with

given first smallest buckling load (e.g.,N = 1) is obviously the case of main practical

interest. However, some authors have demonstrated that optimal buckling design

could be multi-modal, namely, the optimal solutions can have a double eigenvalue,

corresponding to two distinct buckling modes 4. Therefore, the multiplicity of the

eigenvalue may result in a complicated buckling mode shape. This undesirable be-

havior can be avoided by imposing sufficiently separated buckling loads and, with

this aim, the specification of higher buckling loads (such as the second buckling

load, for example) can be of interest in practical applications.

It should be also noticed the analytical approach we adopted provides exact

closed form solution to the inverse problem, that is, the bending stiffness coefficient

of the beams having given values of the first N buckling loads is reconstructed by

means of closed form expressions. As by-product of the analysis, we have obtained

exact closed form expressions of the buckling modes for pinned-pinned beams having

variable bending stiffness. The determination of closed-form buckling eigensolutions

is an important topic in Structural Mechanics; see, for example, the research devel-

oped in Refs. 7, 8 (columns and beams on elastic foundation with trigonometric

variability both of axial loads and bending stiffness) and Ref. 9 (buckling analy-

sis of columns with variable cross-section via the Effective Stiffness Method). The

new exact buckling solutions found in this paper can be useful both for testing the

accuracy of numerical discrete models and for the formulation of structural opti-
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mization problems (particularly, for N = 1), such as the determination of beams

having maximum global stiffness or satisfying certain strength/strain requirements.

From the analytical point of view, our method is based on a reduction of the

buckling problem to an equivalent eigenvalue problem for a class of taut strings

with fixed ends, and adapts recent results on the exact construction of second-

order Sturm-Liouville operators in canonical form with prescribed natural frequen-

cies (see Ref. 10). In particular, the key mathematical tool of our analysis relies on

a classical lemma by Darboux 11. This lemma allows to explicitly construct families

of Sturm-Liouville operators that share all the eigenvalues of a given operator, with

the exception of a single eigenvalue which is free to move in a prescribed inter-

val. These operators are called quasi-isospectral operators. Moreover, the Darboux

lemma is applied once again in iterated form to determine strings corresponding

to the quasi-isospectral Sturm-Liouville operators and, ultimately, to find beams

quasi-isobuckling to a given beam, under pinned-pinned end conditions.

Finally, it is appropriate to compare the results of this paper and those obtained

in Ref. 12. In Ref. 12, the authors showed how to construct families of Euler-

Bernoulli beams which have exactly the same infinite sequence of buckling loads

of a given beam under a specified set of end conditions. These beams were called

isobuckling beams. Here, instead, we show how to construct a beam with given

values of (a finite number of) buckling loads, and the crucial point is the ability to

construct quasi-isobuckling beams, that is beams having all the buckling loads in

common, with the exception of a single one. Although the spectral equivalence with

a class of strings and the Darboux lemma are important points of both the present

analysis and of that developed in Ref. 12, the results found here are clearly different

and, in some respects, are more general than those obtained in the mentioned paper.

In fact, the procedure for the construction of isobuckling beams proposed in Ref. 12

cannot be used to construct beams having prescribed values of the first N buckling

loads.

The plan of the paper is as follows. In Section 2 we recall the equivalence between

the buckling problem and the eigenvalue problem for a vibrating string. The main

steps of the construction procedure are presented in Section 3. Examples of quasi-

isobuckling beams are illustrated in Section 4. The Darboux Lemma is recalled in

the Appendix.

2. Elastic buckling of a beam and an equivalent string problem

Consider a thin straight elastic beam under constant compressive axial load P ,

P > 0. The buckling problem is governed by the Euler-Bernoulli-Kirchhoff equation

(see Ref. 13)

d2

dx2

(
EI(x)

d2v(x)

dx2

)
+ P

d2v(x)

dx2
= 0, x ∈ (0, L), (2.1)
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where v = v(x) is the transverse displacement of the beam axis at the cross-section

of abscissa x evaluated with the principal plane of bending. In equation (2.1), E is

the Young’s modulus of the material, E = const. > 0, and I = I(x) is the second

moment of the cross-sectional area about a principal axis through the centroid of

the cross-section. We shall be concerned with beams for which I(x) is a strictly

positive, twice continuously differentiable function of x in [0, L], e.g.

I(x) ≥ I0 > 0, x ∈ [0, L], I ∈ C2([0, L]). (2.2)

Let us assume that the beam has Pinned-Pinned (P-P) ends. The buckling problem

consists in solving the eigenvalue problem
d2

dx2

(
I(x)d

2v(x)
dx2

)
+ λ2 d2v(x)

dx2 = 0, x ∈ (0, L),

v(0) = d2v(0)
dx2 = 0,

v(L) = d2v(L)
dx2 = 0,

(2.3)

(2.4)

(2.5)

where

λ2 =
P

E
. (2.6)

Under the above assumptions, there exists an infinite sequence of buckling loads

{Pm = λ2
mE}∞m=1, with

0 < P1 < P2 < ..., lim
m→∞

Pm = ∞, (2.7)

such that (2.3)–(2.5) have a non-trivial solution vm = vm(x), m ≥ 1. This sequence

is the buckling spectrum of the Pinned-Pinned beam and we write

{λ2
m}∞m=1 = BSp(I(x);P − P ). (2.8)

The following proposition states the equivalence between the eigenvalue problem

(2.3)–(2.5) and the free vibration problem for a family of taut strings.

Proposition 2.1 If {λ2, v(x)} is an eigenpair of (2.3)–(2.5) with I = I(x) sat-

isfying (2.2), then {λ2, v(x)} is an eigenpair of{
d2v(x)
dx2 + λ2ρ(x)v(x) = 0, x ∈ (0, L),

v(0) = 0 = v(L),

(2.9)

(2.10)

with

ρ(x) =
1

I(x)
, x ∈ [0, L]. (2.11)

Viceversa, if {λ2, v(x)} is an eigenpair of (2.9)–(2.10), then {λ2, v(x)} is an eigen-

pair of (2.3)–(2.5).

The eigenvalue problem (2.9)–(2.10) describes the free, infinitesimal, transverse

vibration of amplitude v = v(x) of a string with frequency λ and mass density

ρ = ρ(x), ρ ∈ C2([0, L]) and ρ(x) ≥ ρ0 > 0 in [0, L]. The string is pulled with

unit tension, has length L and is fixed at both ends. A proof of Proposition 2.1 is

presented in Ref. 12 (Proposition 1).
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3. Construction of beams with given buckling loads

Let n, n ≥ 1, be given. The key step of our method is based on the explicit con-

struction of a new P-P beam quasi-isobuckling to the given beam, that is a beam

I = I(x) having the same buckling loads as the given beam Î = Î(x), with the

exception of the nth buckling load. In fact, by keeping fixed all the eigenvalues λ2
m

with m ̸= n and moving the nth eigenvalue λ2
n to the desired value, say λ̃2

n, and

using repeatedly the procedure, after N steps we will construct a beam with the

first N given eigenvalues {λ̃2
m}Nm=1, and the construction is completed.

The main steps of the construction of P-P beams I = I(x) quasi-isobuckling to

a given P-P beam Î = Î(x) are the following.

Step 1. The string eigenvalue problem (2.9)–(2.10) is reduced to Sturm-

Liouville canonical form with Schrödinger potential q̂.

Step 2. The Darboux Lemma (see Appendix) is used to construct explicit

families of Schrödinger potentials q quasi-isospectral to the initial potential q̂.

Step 3. The Darboux Lemma is applied once more in iterate form to determine

string mass densities corresponding to the quasi-isospectral potentials q.

Step 4. Finally, the equivalence stated in Proposition 2.1 is used to find P-P

beams I = I(x) quasi-isobuckling to the initial P-P beam Î = Î(x).

We shall analyze Steps 1-4 in the following subsections.

3.1. Reduction to canonical form.

Suppose that a P-P beam Î = Î(x), satisfying conditions (2.2), is given. The buck-

ling spectrum of this beam is {λ̂2
m}∞m=1 = BSp(Î(x);P − P ). Denote by {ρ̂(x)} the

corresponding Fixed-Fixed (F-F) string as defined in Proposition 2.1, with spectrum

{λ̂2
m}∞m=1 = Sp(ρ̂(x);F − F ). The Liouville transformation

ξ(x) =
1

p̂

∫ x

0

(ρ̂(s))1/2ds, p̂ =

∫ L

0

(ρ̂(s))1/2ds, (3.1)

y(ξ) = â(ξ)v(x), â4(ξ) =
L2

p̂2
ρ̂(x), (3.2)

reduces the eigenvalue problem (2.9)–(2.10) (with ρ replaced by ρ̂) for {λ̂2, v(x)}
to the Sturm-Liouville canonical form

d2y(ξ)
dξ2 + µ̂y(ξ) = q̂(ξ)y(ξ), ξ ∈ (0, 1),

y(0) = 0 = y(1),

(3.3)

(3.4)

where the eigenvalue µ̂ and the potential q̂(ξ), q̂ ∈ C0([0, 1]), are defined as

µ̂ = p̂2λ̂2, q̂(ξ) =
1

â(ξ)

d2â(ξ)

dξ2
, ξ ∈ (0, 1). (3.5)



June 3, 2016 16:56 WSPC/INSTRUCTION FILE IJSSD˙150902˙R1

6 Morassi, Pressacco and Vrech

3.2. Quasi-isospectral potentials.

Following the analysis developed in Ref. 14, it is possible to explicitly construct

families of Sturm-Liouville operators L = − d2

dξ2 + q(ξ), with potential q(ξ) quasi-

isospectral to the potential q̂(ξ) under Dirichlet end conditions. The analysis is

based on the Darboux Lemma described in the Appendix. Here, we simply recall

the main result. Let us introduce some notation. Let n, n ≥ 1, be a given number

and let t ∈ R be such that

µn−1(q̂) < µn(q̂) + t < µn+1(q̂), (3.6)

with µ0(q̂) = 0. Denote by δij the Kronecker symbol. For µ ∈ C, let yi = yi(ξ, q̂, µ),

i = 1, 2, be the solution to the initial value problem
y′′i + µyi = q̂yi, ξ ∈ (0, 1),

yi(0) = δi1,

y′i(0) = δi2,

(3.7)

(3.8)

(3.9)

and denote by wn = wn(ξ, q̂, µ) the solution to
w′′

n + µwn = q̂wn, ξ ∈ (0, 1),

wn(0) = 1,

wn(1) = y1(1, µn, q̂),

(3.10)

(3.11)

(3.12)

for µ ̸= µn (note that the function wn has a removable singularity at µ = µn). Let

ωn(ξ, q̂, µ) = wn(ξ, q̂, µ)
dzn(ξ, q̂)

dξ
− dwn(ξ, q̂, µ)

dξ
zn(ξ, q̂) ≡ [wn, zn](ξ), (3.13)

where zn is the nth eigenfunction of (3.3)–(3.4). For every q̂ ∈ C0([0, 1]), the func-

tion ωn = ωn(ξ, q̂, µ), n ≥ 1, is a continuous and strictly positive function on

[0, 1]× (µn−1(q̂), µn+1(q̂)). Moreover, ωn is a C2-function of the variable ξ in [0, 1]

(see Ref. 14). We define wn,t = w(ξ, q̂, µn + t) and ωn,t = ω(ξ, q̂, µn + t).

Under the above notation, for every given n, n ≥ 1, and t satisfying (3.6), it is

possible to prove that the potential

q(ξ) = q̂(ξ)− 2
d2

dξ2
(lnωn,t(ξ)) (3.14)

has all the same eigenvalues of the potential q̂(ξ), with the exception of the nth

eigenvalue, which takes the value µn(q) = µn(q̂) + t. Moreover, the eigenfunctions

{km,t}∞m=1 associated to q(ξ) have the following explicit expressions

km,t = zm − t
wn,t

ωn,t

∫ ξ

0

zm(s)zn(s)ds, for m ≥ 1, m ̸= n, (3.15)

kn,t =
zn
ωn,t

. (3.16)
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3.3. Quasi-isospectral strings.

The eigenvalues {µ̂m} of (3.3)–(3.4) have the asymptotic form

µ̂m = (mπ)2 + Ô(1), as m → ∞, (3.17)

with Ô(1) bounded quantity as m → ∞. Therefore, if the two strings {ρ̂(x)} and

{ρ(x)} are quasi-isospectral, i.e. λ̂2
m = λ2

m for every m ̸= n, where n ≥ 1 is a given

number, then, for m large,

p̂2λ̂2
m = (mπ)2 + Ô(1), p2λ2

m = (mπ)2 +O(1), (3.18)

so that

p̂2 = p2. (3.19)

Now, to find a supported string {ρ(x)} quasi-isospectral to a given supported string

{ρ̂(x)}, we must preliminarily find a function a = a(ξ) corresponding to the new

quasi-isospectral potential q = q(ξ) given by (3.14), that is

d2a(ξ)

dξ2
= q(ξ)a(ξ), (3.20)

with a = a(ξ) of one-sign in [0, 1]. A double application of the Darboux Lemma

yields the following explicit expression for a:

a(ξ) = â(ξ)− t
wn,t(ξ)

µnωn,t(ξ)
[zn, â](ξ), n ≥ 1, (3.21)

see Ref. 10 for details. In particular, it is possible to prove that a = a(ξ) given by

(3.21) is a C2-function of one sign in [0, 1] for every t satisfying (3.6).

To complete the construction of quasi-isospectral strings, we reverse the Liou-

ville transformation (3.1)–(3.2), namely

x(ξ) =
L

K

∫ ξ

0

ds

a2(s)
, K =

∫ 1

0

ds

a2(s)
, (3.22)

v(x) =
y(ξ)

a(ξ)
, ρ(x) =

p̂2K2

L2
a4(ξ), (3.23)

and the Sturm-Liouville eigenvalue problem (3.3)–(3.4) (with q̂(ξ) replaced by q(ξ))

is transformed back into the string eigenvalue problem{
d2v(x)
dx2 + λ2ρ(x)v(x) = 0, x ∈ (0, L),

v(0) = 0 = v(L).

(3.24)

(3.25)

Therefore, the two strings {ρ̂(x)}, {ρ(x)} of equal length L, having fixed-fixed end

conditions and pulled by unit tension, are quasi-isospectral. More precisely, given a

number n, n ≥ 1, we have λ2
m(ρ̂(x)) = λ2

m(ρ(x)) for every m ≥ 1, m ̸= n, and the

nth eigenvalue λ2
n(ρ(x)) is connected with λ2

n(ρ̂(x)) via (3.6).
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3.4. Constructing beams with a given finite set of buckling loads.

In this section we shall complete the proof of the main result of the paper.

Let us consider a P-P beam with I0 = I0(x) and buckling loads {λ2
m(I0)}∞m=1

(e.g., eigenvalues of (2.3)–(2.5) with I(x) replaced by I0(x)). Starting from this P-P

beam, we wish to construct a new P-P beam having prescribed values of the first

N , N ≥ 1, buckling loads {λ̃2
m}Nm=1, with

0 < λ̃2
1 < λ̃2

2 < ... < λ̃2
N . (3.26)

Following the analysis of the previous sections, starting from the beam I0(x) we

can construct a new beam I1(x) so that λ2
m(I1) = λ2

m(I0) for m ≥ 2, and λ2
1(I1)

coincides with the desired value λ̃2
1. More precisely, denoting by a0(ξ) the function

â(ξ) appearing in (3.2) (and corresponding to the initial beam I0(x)), the function

a1 = a1(ξ) associated to the new beam I1(x) is given by (3.21):

a1(ξ) = a0(ξ)− t
w1,t(ξ)

µ1(I0)ω1,t(ξ)
[z1(I0), a0](ξ) (3.27)

where the functions w1,t(ξ), ω1,t(ξ) are defined in (3.10)–(3.12), (3.13), respectively,

with q̂(ξ) replaced by q̂0(ξ) =
1

a0(ξ)
d2a0(ξ)

dξ2 . Moreover, µm and λm are linked as in

(3.5), and t satisfies (3.6). If µ̃1 < µ2(I0), then we can determine t, say t = t1,

such that µ1(I1) = µ̃1. The new beam I1(x) has buckling loads (or eigenvalues)

{λ̃2
1, λ

2
2(I0), λ

2
3(I0), ...}, with 0 < λ̃2

1 < λ2
2(I0) < λ2

3(I0) < ..., and can be used as

starting point for the next step of the construction.

By repeating the above arguments, and provided that µ̃2 < µ3(I0), we can

modify I1 so as to keep λ2
m(I1) fixed for m ̸= 2 and move λ2

2(I1) to the desired

value λ̃2
2, by taking

a2(ξ) = a1(ξ)− t2
w2,t2(ξ)

µ2(I1)ω2,t2(ξ)
[z2(I1), a1](ξ), (3.28)

where

t2 = µ̃2 − µ2(I0). (3.29)

The buckling loads of the P-P beam I2(x) (associated to a2(ξ)) are

{λ̃2
1, λ̃

2
2, λ

2
3(I0), λ

2
4(I0), ...}. By using repeatedly this procedure, after N steps we

construct a beam with coefficient IN (x) such that

λ2
m(IN ) = λ̃2

m, for 1 ≤ m ≤ N, (3.30)

and the construction is completed. Clearly, the choice of the initial beam I0(x) is

restricted by the conditions

λ̃2
1 < λ2

2(I0), λ̃2
2 < λ2

3(I0), ..., λ̃2
N−1 < λ2

N (I0), λ̃2
N < λ2

N+1(I0), (3.31)

which allow to determine uniquely the numbers t1, t2, ..., tN by expressions analo-

gous to equation (3.29).

We notice that the above construction is not unique, since the flow from the

initial beam I0 to a beam with prescribed values of the first N buckling loads



June 3, 2016 16:56 WSPC/INSTRUCTION FILE IJSSD˙150902˙R1

Explicit determination of pinned-pinned beams with a finite number of given buckling loads 9

depends on the particular order chosen to move every individual eigenvalue to the

target value. As a consequence, the conditions (3.31) on the initial beam I0 may

change depending on the sequence of eigenvalue shifts.

Finally, we remark that previous arguments can be adapted to cover other sets

of end conditions. In fact, by Proposition 2 of Ref. 12, the equivalence between

the buckling problem for beams and the eigenvalue problem for strings stated in

Proposition 2.1 can be extended to situations in which the beam, for example,

has left end pinned and right end with a sliding constraint, e.g., dv
dx (L) = 0 and

d
dx

(
I d2v
dx2

)
(L) = 0. The correspondence will link pinned and sliding end of the

beam to fixed and free end of the string, respectively.

4. Applications

In this section we construct explicit examples of pinned-pinned beams which are

quasi-isobuckling to the uniform beam, under the same end conditions, with Î(x) =

1, E = 1 and L = 1. For a given number n, n ≥ 1, the explicit expression (3.21) of

a(ξ) in [0, 1] takes the form

a(ξ) = β
β + (−1)n tan(nπξ)[tan(βnπ(ξ − 1

2 ))]
(−1)n

1 + β(−1)n tan(nπξ)[tan(βnπ(ξ − 1
2 ))]

(−1)n
, (4.1)

with β =
√

t+(nπ)2

(nπ)2 and t satisfying (3.6). Note that the function a(ξ) is an even

function with respect to the mid-point of the beam interval, and a(0) = β2 = a(1).

The quasi-isobuckling beams shown in Figures 1–4 have been obtained for n = 1

(Figures 1 and 2), n = 2 (Figure 3) and n = 5 (Figure 4), and for α = 0.3, 0.6, 0.9,

where the shift parameter α ∈ [0, 1) has been defined as t = α(λ̂2
n+1 − λ̂2

n), t =

α(λ̂2
n−1 − λ̂2

n) (λ̂
2
n = (nπ)2, n ≥ 0), for t positive and t negative, respectively.

It can be seen that when α approaches the limit value 1 (from the left), the

coefficient I(x) departs significantly from that of the uniform beam. In particular,

in the case n = 1 and for t = α(λ̂2
2 − λ̂2

1), the bending stiffness is close to zero

near the two ends of the beam and takes large values in the central part of the

beam axis as α → 1− (Figure 1b). Conversely, when α → 1− and t = −αλ̂2
1, the

coefficient I(x) diverges as x → 0 or x → 1, whereas it vanishes as x → 1
2 (Figure 1a

and Figure 2). Figures 5 and 6 compare the first two buckling modes v1(x) (even)

and v2(x) (odd) of the previous quasi-isobuckling beams with n = 1. Each mode is

normalized so that
∫ 1

0
ρ(x)v2m(x)dx = 1, m = 1, 2, and has been evaluated by means

of the explicit expression (3.15). Mode shapes deviate significantly from those of

the uniform beam when α is close to the limit value 1.

The stiffness coefficient I(x) shows a wavy behavior around the initial value

Î = 1, with increasing oscillation as n increases. For these situations, and for t close

to the limit values, the classical Euler-Bernoulli beam model is clearly not accurate

and more sophisticate beam models would have to be considered.
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Figure 7 shows the plot of the global stiffness F1(t) =
∫ 1

0
I(x, t)dx of our class of

beams quasi-isobuckling to the uniform P − P beam with Î = 1, E = 1, L = 1, for

n = 1. It turns out that F1(t) has a minimum exactly at t = 0, which corresponds

to the initial uniform beam.

Finally, the theoretical construction of quasi-isobuckling beams has been verified

by finite element (FE) analysis. The discrete model herein adopted is based on a

standard approximation of the transversal deflection v = v(x) of the beam by

means of third-order polynomial shape functions φk = φk(x), k = 1 − 4, on a

uniform mesh of Ne equally spaced FEs. The stiffness coefficient is approximated

by linear functions, that is Ĩ(x) = I(xe) +
I(xe+1)−I(xe)

xe+1−xe
· x within the eth finite

element, x ∈ [xe, xe+1]. Therefore, the local ’inertia’, mij
e , and stiffness, kije , matrix

entries are given by

mij
e =

∫ xe+1

xe

φ′
i(x)φ

′
j(x)dx, kije =

∫ xe+1

xe

Ĩ(x)φ′′
i (x)φ

′′
j (x)dx, (4.2)

i, j = 1 − 4, and are evaluated in exact form. The value of the coefficient I at a

given node xe of the FE mesh is I(xe) = ρ−1(xe), for ρ(xe) = K2a4(ξe), where ξe is

the unique solution of the equation xe =
1
K

∫ ξe
0

ds
a2(s) , e = 1, ..., Ne+1 (with x1 = 0,

xNe+1 = 1). The discrete approximation of the continuous eigenvalue problem was

solved by the Stodola-Vianello method.

Tables 1 and 2 compare the first 20 theoretical (exact) and numerical buckling

loads for n = 1 and a FE mesh with Ne = 100. It can be seen that for α small

enough the constructed beams are quasi-isospectral to the initial uniform beam

within the accuracy of the FE approximation. Discrepancy increases as the shift

parameter is close to the limit value (e.g., when α → 1−) and as well as the mode

order m increases. As an example, Table 3 shows that a FE mesh with Ne = 200 is

enough to obtain a good approximation of the exact buckling loads for both Case

(a) and Case (b). Finally, Table 4 suggests how to select the FE mesh dimension Ne

in order to maintain the average error on eigenvalues around 0.10 per cent. It can

be seen that a value of Ne equal to 10 or 50 times the corresponding value chosen

to describe the uniform beam (100) is request to ensure errors of the same order

for α ∈ (0.2, 0.9).

5. Conclusions

In this paper we have considered the problem of constructing Euler-Bernoulli beams

with prescribed values of the first N buckling loads, under a specified set of bound-

ary conditions. The key point of the procedure is the determination of quasi-

isobuckling beams, that is beams with different profile which have exactly the same

buckling loads of an initial beam, with the exception of a given buckling load which

is free to move in a prescribed interval. Quasi-isobuckling beams follow from the

reduction of the buckling problem to an eigenvalue problem for the free vibration
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of a taut string, and on suitable application of a Darboux Lemma. The reconstruc-

tion procedure needs the specification of an initial beam whose buckling loads must

satisfy certain interlacing conditions with the target buckling loads. Numerical sim-

ulations and comparison with finite element analysis support the theory.
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Appendix A.

In this appendix we recall the Darboux Lemma 11.

Let µ be a real number, and suppose g ≡ g(ξ) is a non-trivial solution of the

Sturm-Liouville equation

−g′′ + q̂g = µg, (A.1)

with continuous potential q̂ ≡ q̂(ξ). If f is a non-trivial solution of

−f ′′ + q̂f = λf (A.2)

and λ ̸= µ, then

y =
1

g
[g, f ] ≡ 1

g
(gf ′ − g′f) (A.3)

is a non-trivial solution of the Sturm-Liouville equation

−y′′ + q̌y = λy, (A.4)

where

q̌ = q̂ − 2(ln(g(ξ))′′. (A.5)

Moreover, the general solution of the equation

−y′′ + q̌y = µy (A.6)

is

y =
1

g

(
b1 + b2

∫ ξ

0

g2(s)ds

)
, (A.7)

where b1 and b2 are arbitrary constants. In particular, y = 1
g is a solution of (A.6).

It should be noted that if g vanishes in [0, 1], then equation (A.4) is understood

to hold between the roots of g. These singular situations disappear by applying the

Darboux Lemma twice.
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14. J. Pöschel, E. Trubowitz, Inverse Spectral Theory. (Academic Press, London, 1987).



June 3, 2016 16:56 WSPC/INSTRUCTION FILE IJSSD˙150902˙R1

Explicit determination of pinned-pinned beams with a finite number of given buckling loads 13

Table 1. Percentage differ-
ence ∆ between the first twenty exact (λ2

m(exact)
) and

estimated (λ2
m(FE)

) buckling loads of the quasi-isobuck-

ling pinned-pinned beam, for n = 1 and FE mesh with
Ne = 100. ∆ = 100× (λ2

m(FE)
− λ2

m(exact)
)/λ2

m(exact)
.

λ2
1 = (1− α)λ̂2

1.

m α = 0.9 α = 0.8 α = 0.6 α = 0.4 α = 0.2

1 4.345 0.960 0.177 0.050 0.013
2 2.398 0.545 0.102 0.027 0.005
3 2.294 0.525 0.100 0.027 0.005
4 2.515 0.559 0.104 0.027 0.005
5 2.539 0.566 0.105 0.028 0.005
6 2.888 0.583 0.106 0.028 0.005
7 2.682 0.604 0.108 0.029 0.006
8 3.945 0.635 0.111 0.029 0.006
9 2.586 0.678 0.114 0.030 0.006
10 6.123 0.736 0.119 0.031 0.007
11 2.733 0.809 0.125 0.033 0.007
12 8.898 0.907 0.133 0.035 0.009
13 5.084 1.008 0.144 0.038 0.010
14 9.701 1.185 0.157 0.041 0.012
15 10.087 1.257 0.173 0.045 0.014
16 8.873 1.639 0.192 0.051 0.016
17 14.846 1.443 0.215 0.057 0.019
18 12.592 2.424 0.242 0.064 0.023
19 15.266 1.378 0.273 0.072 0.027
20 17.815 3.719 0.310 0.083 0.032
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Table 2. Percentage differ-
ence ∆ between the first twenty exact (λ2

m(exact)
) and

estimated (λ2
m(FE)

) buckling loads of the quasi-isobuck-

ling pinned-pinned beam, for n = 1 and FE mesh with
Ne = 100. ∆ = 100× (λ2

m(FE)
− λ2

m(exact)
)/λm(exact).

λ2
1 = λ̂2

1 + α(λ̂2
2 − λ̂2

1).

m α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 0.9

1 0.013 0.142 1.091 15.377 70.101
2 0.041 0.279 1.773 21.851 123.736
3 0.042 0.258 1.362 11.620 66.431
4 0.042 0.260 1.416 12.118 60.434
5 0.042 0.265 1.474 12.781 62.150
6 0.043 0.269 1.527 13.153 65.099
7 0.043 0.274 1.572 13.334 68.096
8 0.044 0.278 1.610 13.624 70.907
9 0.045 0.284 1.648 14.395 73.468
10 0.046 0.291 1.696 15.893 75.684
11 0.048 0.300 1.766 18.108 77.346
12 0.050 0.311 1.871 20.808 78.146
13 0.053 0.327 2.024 23.620 77.844
14 0.057 0.345 2.226 26.022 76.696
15 0.061 0.367 2.448 27.228 75.682
16 0.067 0.394 2.618 26.404 75.899
17 0.073 0.426 2.632 24.089 77.744
18 0.081 0.463 2.415 22.571 80.934
19 0.090 0.506 2.041 23.174 85.004
20 0.101 0.556 1.796 25.231 89.578
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Table 3. Percentage difference ∆ between the first twenty ex-
act (λ2

m(exact)
) and estimated (λ2

m(FE)
) buckling loads of the

quasi-isobuckling pinned-pinned beam, for n = 1, 2, 5 and FE mesh
with Ne = 200. ∆ = 100 × (λ2

m(FE)
− λ2

m(exact)
)/λ2

m(exact)
.

Case (a): λ2
n = λ̂2

n − 0.2(λ̂2
n − λ̂2

n−1) (λ̂2
0 = 0). Case (b):

λ2
n = λ̂2

n + 0.2(λ̂2
n+1 − λ̂2

n).

Case (a) Case (b)

m n = 1 n = 2 n = 5 n = 1 n = 2 n = 5

1 0.003 0.004 0.005 0.003 0.008 0.006
2 0.001 0.008 0.005 0.010 -0.002 0.007
3 0.001 0.003 0.005 0.010 0.006 0.007
4 0.001 0.003 0.006 0.010 0.007 0.008
5 0.001 0.003 0.019 0.010 0.007 -0.012
6 0.001 0.003 0.003 0.010 0.007 0.004
7 0.001 0.003 0.003 0.011 0.007 0.005
8 0.001 0.003 0.004 0.011 0.007 0.005
9 0.001 0.003 0.004 0.011 0.007 0.005
10 0.001 0.003 0.004 0.011 0.007 0.005
11 0.001 0.003 0.004 0.011 0.007 0.006
12 0.001 0.003 0.004 0.011 0.008 0.005
13 0.002 0.003 0.004 0.011 0.008 0.006
14 0.002 0.003 0.004 0.011 0.008 0.006
15 0.002 0.004 0.004 0.012 0.008 0.006
16 0.002 0.004 0.004 0.012 0.008 0.006
17 0.002 0.004 0.005 0.012 0.008 0.006
18 0.002 0.004 0.005 0.013 0.008 0.007
19 0.003 0.004 0.005 0.014 0.008 0.007
20 0.003 0.005 0.005 0.014 0.009 0.007
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Table 4. Percentage difference ∆ between the first twenty exact
(λ2

m(exact)
) and estimated (λ2

m(FE)
) buckling loads of the quasi-isobuck-

ling pinned-pinned beam, for n = 1, varying the FE mesh size Ne.
∆ = 100 × (λ2

m(FE)
− λ2

m(exact)
)/λ2

m(exact)
. Case (a): λ2

1 = λ̂2
1 − αλ̂2

1. Case

(b): λ2
1 = λ̂2

1 + α(λ̂2
2 − λ̂2

1).

Case (a) Case (b)

α 0.9 0.8 0.6 0.4 0.4 0.6 0.8 0.9
Ne 1000 500 200 100 200 500 2000 5000

1 0.045 0.038 0.044 0.050 0.036 0.045 0.049 0.102
2 0.024 0.022 0.025 0.027 0.070 0.072 0.064 0.118
3 0.023 0.021 0.025 0.027 0.065 0.055 0.031 0.036
4 0.024 0.022 0.026 0.027 0.065 0.057 0.034 0.038
5 0.024 0.022 0.026 0.028 0.066 0.059 0.038 0.047
6 0.025 0.022 0.026 0.028 0.067 0.061 0.040 0.050
7 0.025 0.022 0.027 0.029 0.068 0.062 0.042 0.055
8 0.025 0.023 0.027 0.029 0.068 0.063 0.043 0.058
9 0.025 0.023 0.027 0.030 0.069 0.063 0.044 0.060
10 0.025 0.023 0.027 0.031 0.069 0.063 0.044 0.061
11 0.025 0.023 0.027 0.033 0.070 0.063 0.044 0.062
12 0.025 0.023 0.028 0.035 0.071 0.064 0.044 0.062
13 0.056 0.023 0.029 0.038 0.072 0.064 0.044 0.062
14 0.026 0.024 0.030 0.041 0.073 0.064 0.044 0.061
15 0.027 0.024 0.031 0.045 0.075 0.065 0.044 0.061
16 0.027 0.025 0.032 0.051 0.076 0.065 0.044 0.061
17 0.027 0.025 0.034 0.057 0.079 0.066 0.044 0.061
18 0.028 0.026 0.036 0.064 0.081 0.066 0.044 0.061
19 0.029 0.026 0.038 0.072 0.084 0.067 0.045 0.061
20 0.030 0.027 0.040 0.083 0.088 0.068 0.045 0.061



June 3, 2016 16:56 WSPC/INSTRUCTION FILE IJSSD˙150902˙R1

Explicit determination of pinned-pinned beams with a finite number of given buckling loads 17

Fig. 1. Examples of quasi-isobuckling pinned-pinned beams with Î(x) = 1, E = 1 and L = 1, for
n = 1 and α = 0.3, 0.6, 0.8.
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Fig. 2. Examples of quasi-isobuckling pinned-pinned beams with Î(x) = 1, E = 1 and L = 1, for
n = 1 and α = 0.80, 0.85, 0.90.
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Fig. 3. Examples of quasi-isobuckling pinned-pinned beams with Î(x) = 1, E = 1 and L = 1, for
n = 2 and α = 0.3, 0.6, 0.9.
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Fig. 4. Examples of quasi-isobuckling pinned-pinned beams with Î(x) = 1, E = 1 and L = 1, for
n = 5 and α = 0.3, 0.6, 0.9.
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Fig. 5. Comparison of the first normalized buckling mode of the quasi-isobuckling P-P beam
with negative (left column) and positive (right column) values of t, and n = 1. t = 0 corresponds
to the uniform beam (thin line).
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Fig. 6. Comparison of the second normalized buckling mode of the quasi-isobuckling P-P beam
with negative (left column) and positive (right column) values of t, and n = 1. t = 0 corresponds
to the uniform beam (thin line).
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Fig. 7. Global stiffness F1(t) =
∫ 1
0 I(x, t)dx for the quasi-isobuckling P-P beam, with n = 1.


