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Abstract: The qualitative resonance of feedback-controlled chaotic oscillators is the ability of
the control system to qualitatively synchronize with a reference signal similar to one of the
unstable periodic orbits embedded in the open-loop attractor. This property, discovered by
O. De Feo (2004a; 2004b) while studying Shilnikov-type attractors, was explained in terms of
the random-like rephasing mechanism characterizing the oscillator’s dynamics, so to guarantee
the eventual in-phase looking with the reference forcing. We experimentally show that the
phenomenon works more in general, even in the absence of a rephasing mechanism. Intuitively,
the forcing by the target cycle, or by a qualitative approximation of it, is sufficient to bring in the
in-phase condition. Our results can make chaos control more practicable than so far imagined,
as a qualitative control can be achieved with no a-priori knowledge about the target solution.
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1. INTRODUCTION

The phenomenon of qualitative resonance of feedback-
controlled chaotic oscillators is a property introduced by
O. De Feo (2004a; 2004b) for nonlinear oscillators char-
acterized by an open-loop Shilnikov-type attractor—the
chaotic attractor organized around a homoclinic bifurca-
tion to a saddle-focus equilibrium (Shil’nikov et al., 1998,
Sect. 13.5). When forced by the discrepancy between a
signal similar to an observable of the open-loop attractor
and the same observable of the system’s state, the oscilla-
tor reduces its complexity by qualitatively synchronizing
with the reference forcing. In contrast, when the forcing
is uncorrelated with the endogenous open-loop dynam-
ics, the system’s complexity is amplified—anti-resonance.
Note that this phenomenon is conceptually different from
the open-loop entrainment of the oscillator by an external
forcing (Pikovsky et al., 2001).

When targeting one of the unstable periodic orbits—the
target cycle—embedded in the open-loop attractor, the
resonance becomes “perfect” and can be locally explained
by classical linear-periodic control theory (Callier and Des-
oer, 1991; Brogan, 1991). The control scheme is reported
in Fig. 1. An observable of the target cycle is injected
as reference (w) for the control and the error (e) w.r.t.
the same observable (y) of the system’s state is fed back
into the system through a constant gain (α). If the state
observable and the gain are suitably chosen—under some
controllability assumption—the target cycle in phase with
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Fig. 1. The continuous output-feedback control scheme.

the control reference is a stable orbit of the closed-loop
system.

The global convergence to the synchronous solution was
explained by De Feo (2004a,b) exploiting a rephasing
mechanism typical of Shilnikov attractors. These type of
chaotic attractors are indeed characterized by a sensitive
phase-in-phase-out mapping close to the saddle equilib-
rium organizing the homoclinic chaos. By means of this
random-like rephasing, the system’s state eventually gets
in close phase with the reference forcing, so to converge to
the locally stabilized target cycle. De Feo (2004a,b) further
noted—and explained in terms of the dynamical features
of Shilnikov-type attractors—the qualitative nature of the
imperfect resonance when a noisy or approximated observ-
able of the target cycle is used as control reference. The
control system thus behaves as a resonator, qualitatively
synchronizing with signals similar to those endogenously
generated by the open-loop oscillator, whereas amplifying
the complexity when different signals are used.

We experimentally show that the random-like rephasing
mechanism of Shilnikov attractors is not necessary for
the resonant behavior of the control system of Fig. 1.
That is, the oscillator qualitatively synchronizes with the
control reference whenever the latter resembles a typical
pattern of the open-loop attractor. We test this claim
on several well-known non-Shilnikov chaotic oscillators
and even on a coherent oscillator built by periodically
forcing a Rossler oscillator. Coherent chaotic attractors—
attractors producing oscillations with chaotic amplitude
and very regular frequency (Pikovsky et al., 2001)—lack
any significant rephasing mechanism and are therefore
benchmark tests for our claim. Intuitively, in the case of
perfect resonance, the unstable modes of the open-loop
attractor are sufficient to eventually bring in the in-phase
condition and trigger the convergence to the stabilized
target solution.
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Our results broaden the range of applications in which
the phenomenon of qualitative resonance can be usefully
exploited. The feedback-controlled oscillator could be used
as a test for the recognition of the temporal patterns
represented by the open-loop attractor, with particular
interest in neuroscience (Hopfield et al., 1995; Fang et al.,
2010). More in general, synchronization phenomena are
responsible of information processing and propagation
in biological networks (Getting, 1989; Boccaletti et al.,
2010), and phenomena of network qualitative resonance
might emerge because of the interconnections acting as
feedback. E.g., the complexity reduction and qualitative
synchronization in excited networks has been used to
model epileptic seizures (Barbieri et al., 2012b,a).

With respect to control problems, our results make the
applicability of chaos control (Fradkov and Pogromsky,
1998; Boccaletti et al., 2000; González-Miranda, 2004;
Schöll and Schuster, 2008) wider than so far imagined.
When the aim of control is the complexity reduction of
an otherwise chaotic motion, rather than the targeting
of a specific solution, a qualitative approximation of the
typical orbit—sometimes even a simple harmonic forcing
at the average frequency of the open-loop attractor—can
be used as reference. No a-priori knowledge of the target
solution—the major limit of the two most common control
methods (Ott et al., 1990; Pyragas, 1992)—is required.

2. METHODS

2.1 The control scheme

The continuous-time scheme for feedback chaos control
is reported in Fig. 1, with reference to the stabilization
of a specific target cycle γ = {x = xT (t) ∈ Rn, t ∈
[0, T ], xT (0) = xT (T )} of period T embedded in the open-
loop attractor. The open-loop system is described by a set
of n autonomous nonlinear ODEs

ẋ(t) = f(x(t)), x(t) ∈ Rn (1)

and is assumed to be chaotic, i.e., a chaotic attractor
exists for system (1) and the initial state x(0) is always
assumed within its basin of attraction. When the control
u is applied, the system is described by a non-autonomous
set of ODEs

ẋ(t) = F(x(t), u(t)), u(t) ∈ R, F(x, 0) = f(x), (2)

e.g., the affine system F(x, u) = f(x) + bu where b ∈ Rn

is a constant input vector. The control is proportional to
the mismatch between the system’s output

y(t) = g(x(t)), y(t) ∈ R, (3)

and the same observable

w(t) = g(xT (t)) (4)

of the target cycle, i.e.,

u(t) = α(w(t)− y(t)), (5)

where α is the control gain. The choice of xT (0) on γ sets
the initial phase of the target cycle.

The control system (2–5) is non-autonomous, due to
the reference forcing. To discuss orbital stability, it is
convenient to imagine the reference w as generated by a
set of ODEs, with state z, for which the cycle γ is a stable
orbit. We therefore add the virtual equations

ż(t) = h(z(t)), z(t) ∈ Rn, z(0) = xT (0), (6)

w(t) = g(z(t)), (7)

where h(x) = f(x) for any x on γ. The aim of control is
then to make the cycle Γ = {(x, z) : x = z ∈ γ} a stable
orbit of the extended autonomous system (2–7) (where
Eq. (7) equivalently overwrites Eq. (4)).

2.2 Local stability

Linearization of the control system (2–7) around the cycle
Γ gives the periodic linear system

δẋ(t) =A(t)δx(t)− αb(t)δy(t), (8)

δy(t) = c(t)�δx(t), (9)

with δx(t) = x(t)− z(t), δy(t) = y(t)− w(t), and

A(t) = ∂
∂x f(x)|x=xT (t) , (10a)

b(t) = ∂
∂uF(xT (t), u)|u=0 , (10b)

c(t)�= ∂
∂xg(x)|x=xT (t) . (10c)

Classical results of periodic control theory (Callier and
Desoer, 1991; Brogan, 1991) ensure that if the pair
(A(t), b(t)) is controllable and the pair (A(t), c(t)�) ob-
servable, the Floquet multipliers of system (8–10) can be
arbitrarily assigned by means of suitable T -periodic input
vector b(t) and observation vector c(t)�, with α �= 0
closing the loop. Moreover, if b(t) = b and c(t) = c
are constant vectors, as in all examples that we consider,
there exists at least one stabilizing choice, i.e., (b, c, α)
such that the solution δx(t) of system (8–10) goes to zero
from any initial condition (Brunovskỳ, 1970; Aeyels and
Willems, 1995; Colaneri et al., 1998).

In all our examples, the state observable is, for simplicity,

one of the state variables (i.e., c = e(i) with e
(i)
j = 1 if

i = j, 0 otherwise). In all cases, a stabilizing control has
been found by directly acting on the same variable’s rate
of change (i.e., b = c). Fig. 2 shows two examples on the
Colpitts oscillator (see Tab. 1 for the model’s equations
and parameters). The Floquet multipliers of the linearized
system (8–10) are plotted versus the control gain α (the
target cycle is unstable for α = 0). Note that these are
only n = 3 of the 2n − 1 = 5 multipliers of the extended
cycle Γ, the other two (stable by assumption, though
irrelevant for the purpose of the analysis) are virtually
obtained by linearizing Eq. (6) around the target cycle γ
(and discarding the trivial unit-multiplier).

2.3 Perfect resonance

We first consider the case of perfect resonance, in which
the reference w is exactly observed along a target cycle γ.
As noted in Sects. 2.1 and 2.2, the stabilizing control law
ensures the convergence to γ only if control is switched
on when the oscillator’s state x is close to γ and in close
phase with the reference w (i.e., if the state (x, z) of the
extended system (2–7) is close to the cycle Γ).

The need to start from (or eventually reach) an in-phase
condition between the reference w and the oscillator’s state
x led De Feo (2004a,b) to consider chaotic oscillators
with Shilnikov-type open-loop attractors, i.e., attractors
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Fig. 2. Closed-loop stability of two cycles embedded in the
Colpitts attractor. The cycle (blue) and the open-loop
attractor (α=0, gray) are shown in the top panel. The
Floquet multipliers µ1,2,3 of system (8–10) are shown
in the bottom panel (µ3 ≈ 10−6 is not visible in the
right panel). The corresponding reference signals w
are shown in Fig. 3 (bottom panels, left and right). In
both cases the cycle turns stable for sufficiently large
control gain α.

obtained with the system’s parameters in the vicinity of
a saddle-focus homoclinic bifurcation (Shil’nikov et al.,
1998; Kuznetsov, 2004). These attractors are characterized
by a “random-like” rephasing of the oscillations that
works as follows. The ergodicity of the attractor ensures
repeated passing close to the saddle-focus equilibrium,
close to which the time spent by the orbit in-between
two local, inward and outward, Poincaré sections—the first
intersected by the flow when approaching the equilibrium,
the second when leaving—is large and highly sensitive to
the first intersection point. As a result, the phase of the
oscillator at the outward section is weakly dependent from
the phase at the inward section, as if a random re-phasing
acts when passing close to the saddle-focus.

Then, the convergence of the oscillator’s state x to the
target cycle γ is granted by the following arguments.
First, the rephasing mechanism is assumed to work also
in the closed-loop attractor. This should be guaranteed,
by continuity, for sufficiently small α (a small norm of the
matrix αbc� is actually required, see Sect. 2.2). Second,
continuity also guarantees that the state x repeatedly
passes close to γ, being however most of the time out-of-
phase w.r.t. the reference w (i.e., x close to γ at some time
t but at the same time far from the state z of the virtual
oscillator (6)). Third, by the rephasing mechanism, the
state x will eventually get close to γ in close phase with
w (i.e., x(t) close to the point z(t) of γ). The closed-loop
local stability will then ensure convergence.

Thus, independently of the initial phase set for the refer-
ence w (i.e., independently of the initial condition z(0) of
the virtual oscillator (6)), the state x of the control system
in Fig. 1 should synchronize with the reference forcing.
This has been numerically confirmed by De Feo (2004a)
for several chaotic oscillators of Shilnikov-type and the
experiment is repeated in Fig. 3 for the Colpitts oscillator
(targeting the two cycles of Fig. 2).

Fig. 3. Perfect resonance in the Colpitts oscillator. The
target cycles (green, left and right; corresponding
reference signals w in the bottom panels) are the same
of Fig. 2, stabilized for α = 0.5. The initial condition
of the closed-loop dynamics is taken at random in the
shown box of the state space.

Phenomenologically, the synchronization with the refer-
ence forcing can be seen as a resonant behavior of the
control system. When the observable w of the target cycle
is injected as reference, the power spectrum of the system’s
output peaks at the frequency of the target cycle, whereas
it is distributed over a full range of frequencies in the open-
loop chaotic behavior.

2.4 Qualitative resonance

To test the qualitative resonance, De Feo (2004a) con-
sidered approximated observables w of the target cycle
γ. Piecewise-linear and noisy approximations have been
tested, and even a simple sinusoidal forcing at the average
frequency of the open-loop attractor. Sufficiently good
piecewise-linear approximations are able to synchronize
the control system to a periodic behavior. Otherwise,
piecewise-linear and noisy approximations give a qualita-
tive resonance in the form of a thin, coherent, and weakly-
chaotic closed-loop attractor, an “almost-periodic” motion
on a sort of “thick” limit cycle (not to be confused with
a quasi-periodic attractor). In some cases, the sinusoidal
forcing is able to synchronize the control system to a
periodic behavior. Otherwise, a quasi-periodic behavior or
a wide chaotic attractor (anti-resonance) is observed. Some
tests on the Colpitts oscillator are reported in Fig. 4. The
theoretical foundations of the phenomenon for Shilnikov-
type attractors are detailed in De Feo (2004b).

3. RESULTS

We claim that the phenomenon of qualitative resonance
is a generic property of the feedback-controlled chaotic
oscillator of Fig. 1. In particular, it does not require
the dynamical features of Shilnikov-type attractors to
which the phenomenon was originally attributed (De Feo,
2004a,b).

We provide in this paper the numerical support of the
above claim. We do this by analyzing four well-known
examples of non-Shilnikov chaotic attractors, see Tab. 1 for
the oscillators’ equations, parameter settings, and control.
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for several chaotic oscillators of Shilnikov-type and the
experiment is repeated in Fig. 3 for the Colpitts oscillator
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of the closed-loop dynamics is taken at random in the
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Phenomenologically, the synchronization with the refer-
ence forcing can be seen as a resonant behavior of the
control system. When the observable w of the target cycle
is injected as reference, the power spectrum of the system’s
output peaks at the frequency of the target cycle, whereas
it is distributed over a full range of frequencies in the open-
loop chaotic behavior.

2.4 Qualitative resonance

To test the qualitative resonance, De Feo (2004a) con-
sidered approximated observables w of the target cycle
γ. Piecewise-linear and noisy approximations have been
tested, and even a simple sinusoidal forcing at the average
frequency of the open-loop attractor. Sufficiently good
piecewise-linear approximations are able to synchronize
the control system to a periodic behavior. Otherwise,
piecewise-linear and noisy approximations give a qualita-
tive resonance in the form of a thin, coherent, and weakly-
chaotic closed-loop attractor, an “almost-periodic” motion
on a sort of “thick” limit cycle (not to be confused with
a quasi-periodic attractor). In some cases, the sinusoidal
forcing is able to synchronize the control system to a
periodic behavior. Otherwise, a quasi-periodic behavior or
a wide chaotic attractor (anti-resonance) is observed. Some
tests on the Colpitts oscillator are reported in Fig. 4. The
theoretical foundations of the phenomenon for Shilnikov-
type attractors are detailed in De Feo (2004b).

3. RESULTS

We claim that the phenomenon of qualitative resonance
is a generic property of the feedback-controlled chaotic
oscillator of Fig. 1. In particular, it does not require
the dynamical features of Shilnikov-type attractors to
which the phenomenon was originally attributed (De Feo,
2004a,b).

We provide in this paper the numerical support of the
above claim. We do this by analyzing four well-known
examples of non-Shilnikov chaotic attractors, see Tab. 1 for
the oscillators’ equations, parameter settings, and control.
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Oscillator Equations Parameters Control

Colpitts
ẋ1 = g(−e−x2 + 1 + x3)/(Q(1− k))
ẋ2 = gx3/(Qk)
ẋ3 = −Qk(1− k)(x1 + x2)/g − x3/Q

g =3
Q =1.4
k =0.5

b = c = e(2)

α =0.5

Lorenz
ẋ1 = σ(x2 − x1)
ẋ2 = x1(ρ− x3)− x2

ẋ3 = x1x2 − βx3

σ =28
ρ =10
β =8/3

b = c = e(2)

α =4

Rossler
ẋ1 = −(x2 + x3)
ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)

a =0.1
b =0.1
c =18

b = c = e(1)

α =0.3

Jansen & Rit
Neural Mass

ẍ1 = O(x2 + x3 + 3.36)− 2ẋ1 − x1 O(x) = (1 + γe−x)−1

ẍ2 = 4
5
aO(ax1)− 2ẋ2 − x2

ẍ3 = − 11
13

aO( 1
4
ax1+ ζe−2δ cos2 ωt)− 2β ẋ3 − β2x3

a =12.285 δ =110
β =0.5 ζ =1.5
γ =28.7892 ω =π/25

b = c = e(1)

α =2

Coherent Rossler
ẋ1 = −(x2 + x3 + ε cosωt)
ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c)

a =0.1 ε =0.5
b =0.1 ω =1.0345
c =18

b = c = e(1)

α =0.3

Table 1. Oscillators’ equations, parameters, and control.

The results are graphically summarized in Fig. 5. Panel a
shows a target cycle embedded in the open-loop attractor,
panel b the perfect resonance, obtained using the exact
observable of the target cycle as control reference, panels
c–f four examples of qualitative resonance.

Specifically, the first is the Lorenz system, with the
paradigmatic butterfly-shaped chaotic attractor, that is

Fig. 4. Qualitative resonance in the Colpitts oscillator
when targeting the two cycles (left and right) of Fig. 2.
PWL: 10 intervals; noisy: 10% random amplitude
modulation w(1+WGN(0,0.01)); sinusoidal: average am-
plitude and frequency of w = x2 in the open-loop
attractor. The closed-loop attractor is shown black,
together with the transient (gray) from a random
initial condition.

generated through a cascade of symmetric homoclinic bi-
furcations to a real saddle (hence, of non-Shilnikov type
(Shil’nikov et al., 1998, Chap. 13)). The second is the
Rossler oscillator. While the Rossler attractor can be of
Shilnikov-type (Shil’nikov et al., 1998, Appx. C.7), we
analyze it for a parameter setting for which the chaotic
behavior is organized by a Feigenbaum cascade of period
doubling bifurcations (Rössler, 1976). The third system is
a neural-mass model describing the mean electrical activ-
ity of a macro-area of the brain cortex (Jansen and Rit,
1995; Spiegler et al., 2010). It is known to have a chaotic
attractor organized by a homoclinic bifurcation to a saddle
node, that shows a weak rephasing mechanism because of
the “gost” of the disappeared saddle-node equilibrium. Fi-
nally, the last system is an artificially designed example of
coherent chaotic oscillator—a periodically forced Rossler
system.

Note that in all cases, the sinusoidal forcing is able to
synchronize the control system to a periodic behavior,
even though the obtained closed-loop cycle looks rather
different from those embedded in the open-loop attractor.
This is especially true in the Lorentz and Jansen & Rit
systems, since they produce open-loop oscillations that
are far from harmonic. Remarkably, qualitative resonance
works fine even in the periodically forced Rossler system.

In all cases, we have tested a new form of qualitative
resonance. We identify the most typical reference signal
produced by the open-loop oscillator with the following
heuristic. Among many finite signals yk(t), t ∈ [0, Tk],
obtained with respect to a Poincaré section at constant
y = xi, we select the one y∗(t), t ∈ [0, T ∗], that includes
the largest number of the others within a prescribed
neighborhood (a ±ε-band in the phase domain, where
ε = 0.3‖y∗‖∞= 0.3max t∈[0,T∗]|y∗(t)| and the phase ϕ in
[0, 1] is defined by normalizing the time-domain of the
signals, yk(t) = yk(Tkϕ)). We then use as reference w
the periodic signal obtained by repeating the period y∗(t).
Panels f in Fig. 5 show the qualitative resonance obtained
with this heuristic.
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Fig. 5. Perfect and qualitative resonance in four non-Shilnikov chaotic attractors. a, the target cycle (blue) embedded
in the open-loop attractor (gray); b, perfect resonance from a random initial condition; c–e, qualitative resonance
as in Fig. 4; f, qualitative resonance to the typical open-loop signal (heuristic parameter ε = XXX). b–f, the
closed-loop attractor is shown black, together with the transient (gray) from a random initial condition.
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4. DISCUSSION AND CONCLUSIONS

We have numerically shown that the qualitative resonance
of feedback-controlled chaotic oscillators—the ability of
the control system of Fig. 1 to qualitatively synchronize
with a reference similar to the signals endogenously gen-
erated by the open-loop oscillator—is a general property
of chaotic oscillators, not limited to those of Shilnikov
type (Shil’nikov et al., 1998, Sect. 13.5) for which it was
originally introduced and justified (De Feo, 2004a,b).

We have tested our claim on four well-known non-Shilnikov
chaotic oscillators (see Tab. 1): the classical Lorenz and
Rossler systems (the latter for a parameter setting showing
a non-Shilnikov attractor), the Jansen & Rit neural-mass
model used to study brain function and pathology, and a
coherent chaotic oscillator obtained by periodically forcing
the Rossler system. The last example particularly supports
our claim, because free of the random-like rephasing mech-
anism of Shilnikov attractors, to which the property of
qualitative resonance was originally attributed.

Besides the general value of our results for the under-
standing of resonance and synchronization phenomena,
here we focus on their implications to the control of chaos
(Fradkov and Pogromsky, 1998; Boccaletti et al., 2000;
González-Miranda, 2004; Schöll and Schuster, 2008)—the
set of control techniques aimed at rendering an otherwise
chaotic motion more stable and predictable. Feedback
controllers (Ott et al., 1990; Pyragas, 1992) are typically
designed to stabilize one of the saddle periodic orbits—
the target cycle—embedded in the open-loop attractor, as
too strong control actions would be required to stabilize
an equilibrium. The determination of the saddle solution
to be stabilized—a difficult step, both numerically and
experimentally—is therefore required and this has limited
the applicability of chaos control. We have essentially
shown that this undesirable step can be avoided. When
the stabilization of a particular orbit is not the aim of
control, the complexity reduction can be achieved with
the control scheme of Fig. 1, using as reference a typical
signal recorded during the free motion of the oscillator and
tuning the control gain.
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