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We study a mathematical model based on ordinary differential equations to describe the dynamic interaction in the market of two
types of energy called standard and innovative. The model consists of an adaptation of the generalized Lotka-Volterra system in
which the parameters are assumed to depend on a quantitative and continuous attribute characteristic of energy generation. Using
the analysis of the model the fitness function for the innovative energy is determined, from which conditions of invasion can be
established in a market dominated by the conventional power. The canonical equation of the adaptive dynamics is studied to know
the long-term behavior of the characteristic attribute and its impact on the market. Then we establish conditions under which
evolutionary ramifications occur, that is to say, the requirements of coexistence and divergence of the characteristic attributes,
whose occurrence leads to the origin of diversity in the energy market.

1. Introduction

The energy market is a complex system in a rapidly varying
context in which decision-making is difficult. Its complexity
is due to a large number of physical and economic factors
involved. In particular, physical factors may be related to
climatic conditions and have an unpredictable medium- and
long-term behavior, as well as an unknown effect on aspects
of the market such as supply, demand, and price. Market
regulation and public policies generate causal relationships
between all these elements producing highly complex inter-
actions. Other factors associated with technological and
social changes, such as innovations in energy generation or
changes in consumption patterns, which are not predictable
in the medium or long term, are also determinants [1].

Technological innovation is one of the most important
components to drive development. Technological change and
technological diversity are two intimately linked concepts
that represent both the means and the results of economic
development [2–5].The processes of technological change are

dynamic and three important stages can be characterized:
the emergence, the substitution, and the possible coexis-
tence of technologies, constituting what has been called the
technological cycle, which finally aims to understand the
emergence of technological innovations and its subsequent
evolution. When a technological innovation is successful, the
new technology can invade the market, and it remains in it
for some time until a new competitive technology emerges
and challenges its domain [3, 6]. Different phenomena can
originate in this point, on the one hand, when the adoption
of the new technology implies that the previous technologies
became obsolete, which configures a substitution scenario
in the market, or that the competing technologies do not
become obsolete but share the market without replacing each
other; this scenario leads to market diversification [3, 7, 8].

In recent years there has been a significant development
of alternative energy generation technologies, as reported in
[9], who find that the EU ETS has increased low-carbon
innovation among regulated firms by as much as 10%, while
not crowding out patenting for other technologies. They also
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find evidence that the EU ETS has not affected licensing
beyond the set of regulated companies. These results imply
that the ETS accounts for nearly a 1% increase in European
low-carbon patenting compared to a counterfactual scenario.
In this context, it is necessary to study the energy market and,
in particular, the dynamics that arise after the introduction of
innovative technologies, using mathematical tools that help
to describe the inherent complexity of the system. In the
study of energy markets, it is necessary to take into account
some intrinsic characteristics or attributes, such as generation
source, emission reduction, final consumer price, generation
technologies, generation capacity, and level of investment.
Also, it is essential to describe how its dynamics in the long-
term influences the conditions of interaction between agents
established in the market and those who consider themselves
innovative. In [10] they define environmental innovations as
a product, process, marketing, and organizational changes
leading to a noticeable reduction of environmental burdens.
Positive ecological effects can be explicit goals or side-effects
of innovations.

The adaptive dynamics (AD) constitute a theoretical
background originating in evolutionary biology that link
demographic dynamics to evolutionary changes and allow
describing evolutionary dynamics in the long-term when
considering mutations as small and rare events in the demo-
graphic time scale [11–15]. AD describes evolution through
an ordinary differential equation known as the canonical
equation of the adaptive dynamics. This approach focuses on
the long-term evolutionary dynamics of continuous (quan-
titative) adaptive traits and overlooks genetic detail through
the use of asexual demographic models, which is justified
under different demographic and evolutionary timescales.
This approach considers interactions to be the evolutionary
driving force and takes into account the feedback between
evolutionary change and the selection forces that agents
undergo [11, 16, 17].

Analogies between the ecological processes of competi-
tion and collaboration with the dynamics ofmarkets are pow-
erful conceptual tools when used in the appropriate contexts.
Nair et al. [18], based on real cases in the industry, argue that
the complexity of technological change and the ecological
and institutional dynamics can allow regimes of coexistence
of competing technologies [3]. Cooperative interactions are
studied in [19] through adaptive dynamics framework, where
the authors show that asymmetrical competition within
species for the commodities offered by mutualistic partners
provides a simple and testable ecological mechanism that
can account for the long-term persistence of mutualism. In
the competition context, in [20] a model devoted to the
study of an evolutionary systemwhere similar individuals are
competing for the same resources is presented. Examples can
be found in predator-prey dynamics, evolution of dispersal,
dynamics in allele space, and cannibalistic interactions. In
addition, detailed mathematical developments of the theory
can be found; particularly in [11] a thorough review of the
theoretical aspects and applications is made.

Using the theoretical framework of adaptive dynamics,
the canonical equation, corresponding to an ordinary differ-
ential equation, is presented to describe the behavior over

time of the characteristic attribute as a result of innovation
processes. Besides biology, the theoretical framework of
adaptive dynamics has been recently used to model a varied
spectrum of nongenetic innovations, in particular social [21]
or technological innovations [7, 8]. In the technological
context, the authors explore the emergence of technological
diversity arising from market interaction and technological
innovation. Particularly, existing products compete with the
innovative ones resulting in a slow and continuous evolution
of the underlying technological characteristics of successful
products.

In the present work a mathematical model based on
ordinary differential equations is studied, to describe the
dynamics of a market dominated by a standard energy
(SE) generation technology in interaction with an innovative
energy IE generation technology. Initially, the model consists
of an adaptation of the Lotka-Volterra equations under the
consideration that interaction between both types of energy
can occur in a market based on competition or cooperation
as interaction strategies, as described in [22] in a cross-
country study on the relationship between diffusion of wind
and photovoltaic solar technology. In both cases, SE and
IE are measured with the cumulative generation capacity
(CGC) as a nonnegative real number defining its level of
penetration into the market. Under those scenarios, we
determine conditions for IE to invade and establish the
market, giving rise to diversification. The model parameters
are defined as functional coefficients depending on the
values of a characteristic quantitative and continuous trait
to determine some relevant aspects of energy generation. In
general, adaptive dynamics theory allows us to study the long-
term evolutionary dynamics of the quantitative attributes that
characterize both energy CGSs and to describe how they
affect the interaction dynamics in the short-term market
timescale. On the other hand, it also allows us to establish
how the conditions of interaction in the market influence
the evolutionary dynamics of the attributes and, ultimately,
to determine which innovative characteristics can invade or
which attributes disappear definitively.

In the second section of this paper, the reader will find
a description of the adaptation made to the Lotka-Volterra
model to describe the interaction between two similar types
of energy. Local stability is described and invasion conditions
are determined. In the third section, an explicit definition of
the coefficients of the model according to the standard and
innovative attributes is stated, to consider some particular
aspects of the market and later to determine how they
influence the conditions of invasion of the innovative energy.
The canonical equation is described and, from it, the long-
term evolutionary dynamics of the characteristic attributes
follows. In particular, there are conditions under which there
is evolutionary branching that allow market diversification.
We illustrate the situationwith numerical simulations. Finally
the conclusions and the references are shown.

2. Model Description

2.1. Innovative-StandardModel. Some technical assumptions
on the model are the following: (a) we consider two types of
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energy generation, which are differentiated by the technology
used (we refer to them in this paper as energy generation
technology). (b) Each energy generation technology is char-
acterized by the value of a given characteristic attribute
quantifiable by means of a real number, i.e., a measure of the
technology. It can be assumed that a higher attribute value is
related tomore advanced technologies, although innovations
are not necessarily preferred by consumers. (c) In the absence
of innovations, the generation of established energy reaches
a specific equilibrium value on a time scale that we call the
“market time scale”. (d) Innovations are rare events on the
market time scale; i.e., they occur on amuch longer time scale
that we call “evolutionary time scale.” This separation of the
scales allows us to assume that the market is in equilibrium
when an innovation occurs and that the market is affected
by a single innovation at the same time [11]. (e) Finally, it is
assumed that the innovations are small; that is, the innovative
attribute only differs somewhat from the established quality;
this corresponds to considering marginal innovations that
give origin to energies similar to those established.

Consider an energy market dominated by a standard
energy generation technology (SE), with cumulative genera-
tion capacity (CGC) 𝑛1 = 𝑛1(𝑡) at any time 𝑡, and assume there
is some standard characteristic trait𝑥1 to determine a suitable
feature of SE generation. It can be, for example, the final price
of energy to the consumer or other characteristics such as
energy saving, emission reduction, or generation capacity or
level of investment. Suppose a marginal innovation occurs
in this characteristic trait, slightly changing the value 𝑥1 to𝑥2 and leading to the appearance of an Innovative Energy
generation technology (IE), with CGC 𝑛2 = 𝑛2(𝑡), different
from 𝑛1, and characterized by the trait 𝑥2, called innovative
characteristic trait from now on.

Generation Growth Rate. Consider the CGC 𝑛 of a given
generation technology to grow at rate 𝑟(𝑥), as a function of
the characteristic trait 𝑥. This function describes how fast 𝑛
increases depending on the value of 𝑥. Growing rate 𝑟 should
be considered as a positive function 𝑟(𝑥) > 0 for all 𝑥 ∈ R.

Maximum Capacity. Let the function 𝐾(𝑥) describe the
maximum cumulative generation capacity that some gen-
eration technology can reach and allocate into the market,
as a function of its characteristic trait 𝑥. As generation and
demand grow, it is realistic to consider 𝐾 as a nonnegative
increasing function of 𝑥, bounded above by some maximum
value corresponding to technical limitations or imposed
normative obeying public police.

Interaction Coefficient. Define the function 𝑐(𝑥𝑖, 𝑥𝑗) to deter-
mine the interaction into the energy market between the 𝑖
generation technology with CGC 𝑛𝑖 and the 𝑗 generation
technology with CGC 𝑛𝑗. It corresponds to the rate of
increase/decrease of CGC suffered by 𝑛𝑖 by the presence of 𝑛𝑗;
we assume 𝑐(𝑥𝑖, 𝑥𝑖) = 1 to indicate internal competition; i.e.,𝑐(𝑥1, 𝑥1) = 1 corresponds to internal competition between
SE generation technologies, and, similarly, 𝑐(𝑥2, 𝑥2) = 1
corresponds to internal competition between IE generation
technologies.

Additional general situations can occur depending on
the region of the (𝑥1, 𝑥2)−plane where the point (𝑥1, 𝑥2) is
located:

(i) If 𝑐(𝑥𝑖, 𝑥𝑗) > 1, for 𝑥𝑖 ̸= 𝑥𝑗, external competition
predominates internal competition; that is, 𝑐(𝑥𝑖, 𝑥𝑗) >1 implies that the competition between generation
technology 𝑖 and generation technology 𝑗 is stronger
than competition between systems generating the
same type of energy.

(ii) If 0 ≤ 𝑐(𝑥𝑖, 𝑥𝑗) ≤ 1, for 𝑥𝑖 ̸= 𝑥𝑗, then internal
competition predominates external competition. It
has to be stronger competition between different
SE generation technologies among each other than
the competition between SE and IE generation tech-
nologies. In particular, if 𝑐(𝑥𝑖, 𝑥𝑗) = 0, there is
no interaction at all and if 𝑐(𝑥𝑖, 𝑥𝑗) = 1, both
competitions are equally strong.

(iii) If 𝑐(𝑥𝑖, 𝑥𝑗) < 0, for 𝑥𝑖 ̸= 𝑥𝑗, the interaction between
generation technologies 𝑖 and 𝑗 does not correspond
to competition but to cooperation, a situation that can
describe the integration of systems. In this case, each
one is rewarded by the presence of the other.

In general, it is assumed that 𝑥2 is close to 𝑥1; i.e., the
innovation is small and it has a small effect. So doing, such
an innovation always compete with the established one and,
only after diversification, the market could turn cooperative.
Additionally, there might be mixed cases. For instance, when𝑐(𝑥1, 𝑥2) > 1 and 𝑐(𝑥2, 𝑥1) < 1 for 𝑥2 > 𝑥1, the low-tech
energy generation suffers the high-tech more than itself, and,
conversely, when 𝑐(𝑥1, 𝑥2) < 1 and 𝑐(𝑥2, 𝑥1) > 1 for 𝑥2 > 𝑥1
the high-tech energy generation suffers the low-tech more
than itself.

Under the assumptions described, we propose an interac-
tion Lotka-Volterra model:

̇𝑛1 = 𝑛1𝑟 (𝑥1) (1 − 𝑛1 + 𝑐 (𝑥1, 𝑥2) 𝑛2𝐾 (𝑥1) )
= 𝑛1𝑔 (𝑛1, 𝑛2, 𝑥1, 𝑥2, 𝑥1)

̇𝑛2 = 𝑛2𝑟 (𝑥2) (1 − 𝑛2 + 𝑐 (𝑥2, 𝑥1) 𝑛1𝐾 (𝑥2) )
= 𝑛2𝑔 (𝑛1, 𝑛2, 𝑥1, 𝑥2, 𝑥2)

(1)

defined on the set Ω = {(𝑛1, 𝑛2) : 𝑛1 ≥ 0, 𝑛2 ≥ 0}. Note that
both relative growth rates ̇𝑛1/𝑛1 and ̇𝑛2/𝑛2 can be expressed
by means of a single function 𝑔 that in the AD framework is
called fitness generating function

𝑔 (𝑛1, 𝑛2, 𝑥1, 𝑥2, 𝑧)
= 𝑟 (𝑧)(1 − 𝑐 (𝑥1, 𝑧) 𝑛1 + 𝑐 (𝑧, 𝑥2) 𝑛2𝐾 (𝑧) ) (2)

Taking into account the fact that we have assumed the
condition 𝑐(𝑧, 𝑧) = 1, for all 𝑧 ∈ X, in system (1),

𝑔 (𝑛1, 𝑛2, 𝑥1, 𝑥2, 𝑥1) = 𝑟 (𝑥1) (1 − 𝑛1 + 𝑐 (𝑥1, 𝑥2) 𝑛2𝐾 (𝑥1) ) (3)
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Table 1: Description of state variables and coefficients with their corresponding ranges.

State variables description Units𝑛1(𝑡) CGC∗ for Standard Energy, characterized by 𝑥1 MW𝑛2(𝑡) CGC for Innovative Energy, characterized by 𝑥2 MW
Parameter description Ranges𝑥1 Quantitative continuous characteristic trait defining SE 𝑥1 ∈ R𝑥2 Quantitative continuous characteristic trait defining IE 𝑥2 ∈ R𝑟(𝑥𝑖) CGC growing rate as a function of 𝑥𝑖, for 𝑖 = 1, 2 𝑟 > 0𝐾(𝑥𝑖) Maximum CGC as function of 𝑥𝑖, for 𝑖 = 1, 2 𝐾 > 0 MW𝑐(𝑥1, 𝑥2) Interaction coefficient between both CGC as a function of 𝑥1 and 𝑥2 𝑐 ∈ R

∗CGC: cumulative generation capacity. ∗∗GTs: generation technologies.

represents the relative growth rate ̇𝑛1/𝑛1 of SE generation
technology. Along the same lines, the relative growth rate
of IE, ̇𝑛2/𝑛2, is given by 𝑔(𝑛1, 𝑛2, 𝑥1, 𝑥2, 𝑥2). A more general
description of state variables, functional coefficients, and
parameter description can be found in Table 1.

2.2. Innovative-Standard Model Local Stability. The impor-
tance of the local stability analysis of the model is that it will
provide us with relevant information regarding the dynamics
of the market of the types of energy that interact and will
allow establishing conditions, under which the coexistence is
possible, or the definitive disappearance of any of them. In
particular, it is essential to know what circumstances EI can
invade and remain in the market.

By solving the system ̇𝑛1 = 0, ̇𝑛2 = 0 is possible to find
four steady states of system (1) given by

(i) 𝑃0(𝑛01, 𝑛02) = (0, 0), corresponding to the absence of SE
and IE in the market

(ii) 𝑃1(0, 𝑛12(𝑥2)) = (0,𝐾(𝑥2)), corresponding to the
exclusion of SE from the market and the IE is
dominant

(iii) 𝑃2(𝑛21(𝑥1), 0) = (𝐾(𝑥1), 0), corresponding to the ex-
clusion of IE from the market and the SE is dominant

(iv) 𝑃3(𝑛31(𝑥1, 𝑥2), 𝑛32(𝑥1, 𝑥2)) = ((𝑐(𝑥1, 𝑥2)𝐾(𝑥2)−𝐾(𝑥1))/(𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) − 1), (𝑐(𝑥2, 𝑥1)𝐾(𝑥1) − 𝐾(𝑥2))/(𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) − 1)), corresponding to the case
when SE and IE are both present and share themarket

Notice 𝑃3 can be written as

𝑃3 (𝑛31, 𝑛32) = (𝐾 (𝑥1) (𝐻 (𝑥1, 𝑥2) − 1)
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 ,

𝐾 (𝑥2) (𝐻 (𝑥2, 𝑥1) − 1)
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 )

(4)

where

𝐻(𝑥1, 𝑥2) = 𝑐 (𝑥1, 𝑥2)𝐾 (𝑥2)𝐾 (𝑥1) ,
and 𝐻(𝑥2, 𝑥1) = 𝑐 (𝑥2, 𝑥1)𝐾 (𝑥1)𝐾 (𝑥2)

(5)

Therefore, 𝑃3 ∈ Ω if and only if both of its coordinates are
nonnegative; this implies two different situations.

Case I. 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1; then 𝑃3 ∈ Ω if and only if

𝐻(𝑥1, 𝑥2) < 1
and 𝐻(𝑥2, 𝑥1) < 1 (6)

In particular, when 𝐻(𝑥1, 𝑥2) = 1 and 𝐻(𝑥2, 𝑥1) < 1, 𝑃3
coalesce with 𝑃1, and when 𝐻(𝑥1, 𝑥2) < 1 and 𝐻(𝑥2, 𝑥1) = 1,𝑃3 coalesce with 𝑃2.
Case II. 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1; then 𝑃3 ∈ Ω if and only if

𝐻(𝑥1, 𝑥2) > 1
and 𝐻(𝑥2, 𝑥1) > 1 (7)

Analogously to the previous case, when 𝐻(𝑥1, 𝑥2) = 1 and𝐻(𝑥2, 𝑥1) > 1, 𝑃3 coalesce with 𝑃1, and when 𝐻(𝑥1, 𝑥2) > 1
and 𝐻(𝑥2, 𝑥1) = 1, 𝑃3 coalesce with 𝑃2.

At this point, local stability analysis will bring some
insights into the market dynamics and will help to answer
a further question of under what conditions can IE spread
into the market and interact or even substitute SE. Indeed,
If we consider a market dominated exclusively by SE, the
instability of 𝑃2 is related to the possibility for an IE to invade
the market, while the existence and stability of 𝑃3 are related
to the coexistence of both kinds of energy sharing the market,
leading to diversification.

Proposition 1. The steady state 𝑃0 of system (1) is always
unstable.

Proof. The Jacobian matrix of system (1) at 𝑃0 is given by

𝐴 (𝑃0) = [𝑟 (𝑥1) 0
0 𝑟 (𝑥2)] (8)

Then, the corresponding eigenvalues are 𝑟(𝑥1) and 𝑟(x2), both
positive by definition; therefore, steady state 𝑃0 is unstable.
Proposition 2. The steady states 𝑃1 and 𝑃2 of system (1) are
locally asymptotically stable if and only if 𝐻(𝑥1, 𝑥2) > 1 and𝐻(𝑥2, 𝑥1) > 1, respectively.
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Proof. The Jacobian matrix of system (1) at 𝑃1 can be written
as

𝐴 (𝑃1) = [𝑟 (𝑥1) (1 − 𝐻 (𝑥1, 𝑥2)) 0
−𝑟 (𝑥2) 𝑐 (𝑥2, 𝑥1) −𝑟 (𝑥2)] (9)

Then, the corresponding eigenvalues are 𝑟(𝑥1)(1 − 𝐻(𝑥1,𝑥2)) < 0 if and only if 𝐻(𝑥1, 𝑥2) > 1, as stated in the pro-
position, and −𝑟(𝑥2) < 0 by definition. On the other hand,
the Jacobian matrix of system (1) at 𝑃2 is given by

𝐴 (𝑃2) = [−𝑟 (𝑥1) −𝑟 (𝑥1) 𝑐 (𝑥1, 𝑥2)0 𝑟 (𝑥2) (1 − 𝐻 (𝑥2, 𝑥1))] (10)

Then, the corresponding eigenvalues are −𝑟(𝑥1) < 0 and𝑟(𝑥2)(1 − 𝐻(𝑥2, 𝑥1)) < 0 if and only if 𝐻(𝑥2, 𝑥1) > 1. This
proves the proposition.

Proposition 3. Given the steady state 𝑃3, when existing in Ω,
its local stability is described in the following way:

(I) If 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1, 𝐻(𝑥1, 𝑥2) < 1 and 𝐻(𝑥2,𝑥1) < 1, then 𝑃3 is locally asymptotically stable
(II) If 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1, 𝐻(𝑥1, 𝑥2) > 1 and 𝐻(𝑥2,𝑥1) > 1, then 𝑃3 is unstable

Proof. The Jacobian matrix of system (1) at 𝑃3 can be written
as

𝐴 (𝑃3) = [[[[
[

− 𝑟 (𝑥1) [𝐻 (𝑥1, 𝑥2) − 1]
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 −[𝐻 (𝑥1, 𝑥2) − 1] 𝑟 (𝑥1) 𝑐 (𝑥1, 𝑥2)𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1

−[𝐻 (𝑥2, 𝑥1) − 1] 𝑟 (𝑥2) 𝑐 (𝑥2, 𝑥1)𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 − 𝑟 (𝑥2) [𝐻 (𝑥2, 𝑥1) − 1]
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1

]]]]
]

(11)

Let Δ denote the determinant of 𝐴(𝑃3); then, it can be
written as

Δ = −𝑟 (𝑥1) 𝑟 (𝑥2) [𝐻 (𝑥1, 𝑥2) − 1] [𝐻 (𝑥2, 𝑥1) − 1]
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 (12)

Similarly, let 𝑇 be the trace of 𝐴(𝑃3); then
𝑇

= −𝑟 (𝑥1) [𝐻 (𝑥1, 𝑥2) − 1] + 𝑟 (𝑥2) [𝐻 (𝑥2, 𝑥1) − 1]
𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1

(13)

To be consistent, consider the cases when 𝑃3 ∈ Ω. This
implies two different situations.

Case I. 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1; then 𝑃3 ∈ Ω if and only if

𝐻(𝑥1, 𝑥2) < 1
and 𝐻(𝑥2, 𝑥1) < 1 (14)

In this scenario, Δ > 0 and 𝑇 < 0. Then 𝑃3 is locally asymp-
totically stable [23]. As stated above, when 𝐻(𝑥1, 𝑥2) = 1
and 𝐻(𝑥2, 𝑥1) < 1, 𝑃3 coalesce with 𝑃1 and transfers its
stability to 𝑃1 when 𝐻(𝑥1, 𝑥2) > 1, case when 𝑃3 ∉ Ω
although it exists and it is unstable (indeed,𝐻(𝑥1 , 𝑥2) > 1 and𝐻(𝑥2, 𝑥1) < 1 implies Δ < 0). Similarly, if 𝐻(𝑥1, 𝑥2) < 1 and𝐻(𝑥2, 𝑥1) = 1,𝑃3 coalesce with𝑃2 and transfers its stability. In
fact,𝐻(𝑥1, 𝑥2) < 1 and𝐻(𝑥2, 𝑥1) > 1 implyΔ < 0 and𝑃3 ∉ Ω
and it is unstable. Both situations correspond to transcritical
bifurcations [23, 24]. In Table 2 these results are summarized.

Case II. 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1; then 𝑃3 ∈ Ω if and only if

𝐻(𝑥1, 𝑥2) > 1
and 𝐻(𝑥2, 𝑥1) > 1 (15)

Notice that, in this case, Δ < 0; then 𝑃3 ∈ Ω but it is unstable
(a saddle) and this rules out the possibility of cycles. Analo-
gously to the previous case, when 𝐻(𝑥1, 𝑥2) = 1 and 𝐻(𝑥2,𝑥1) > 1, 𝑃3 collides with 𝑃1, and when 𝐻(𝑥1, 𝑥2) > 1 and𝐻(𝑥2, 𝑥1) = 1, 𝑃3 meets with 𝑃2. Both situations correspond
to transcritical bifurcations also (see Table 2).

It is important to clarify that the last scenario in Table 2
is not possible. If 𝐻(𝑥1, 𝑥2) < 1 and 𝐻(𝑥2, 𝑥1) < 1, then𝐻(𝑥1, 𝑥2)𝐻(𝑥2, 𝑥1) < 1 implies 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1, con-
tradicting the case hypothesis of being 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1.
A similar situation occurs in the third scenario in Table 2; if𝐻(𝑥1, 𝑥2) > 1 and 𝐻(𝑥2, 𝑥1) > 1, then 𝐻(𝑥1, 𝑥2)𝐻(𝑥2, 𝑥1) >1 which implies 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1, contradicting the case
of being 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1.

Another interesting situation that may be considered is
to have pure imaginary values for 𝑃3. In this case we should
require that 𝑇 = 0 and −4Δ < 0. From the second condition
you get

− 4Δ
= 4𝑟 (𝑥1) 𝑟 (𝑥2) [𝐻 (𝑥1, 𝑥2) − 1] [𝐻 (𝑥2, 𝑥1) − 1]

𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1
< 0

(16)

which is only possible, as stated in Table 2, when 𝑐(𝑥2,𝑥1)𝑐(𝑥1, 𝑥2) < 1, 𝐻(𝑥1, 𝑥2) < 1, and 𝐻(𝑥2, 𝑥1) < 1. Special
cases in which 𝐻(𝑥1, 𝑥2) = 1 or 𝐻(𝑥2, 𝑥1) = 1 are not con-
sidered, since, in those cases, 𝑃3 collides with some of the
equilibria in the axes of the phase plane and transcritical
bifurcations occur. Additionally, to have a zero trace it is
required that

𝑟 (𝑥1) [𝐻 (𝑥1, 𝑥2) − 1] = −𝑟 (𝑥2) [𝐻 (𝑥2, 𝑥1) − 1] (17)
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Table 2: Classification of local stability. Scenarios marked with an ∗ correspond to impossible scenarios (see the text for further details). LAS:
locally asymptotically stable. U: unstable.

Case Condition 𝑃0 𝑃1 𝑃2 𝑃3𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) < 1 𝐻(𝑥1, 𝑥2) > 1;𝐻(𝑥2, 𝑥1) < 1 U LAS U ∉ Ω𝐻(𝑥1, 𝑥2) < 1;𝐻(𝑥2, 𝑥1) > 1 U U LAS ∉ Ω𝐻(𝑥1, 𝑥2) > 1;𝐻(𝑥2, 𝑥1) > 1∗ U LAS LAS ∉ Ω𝐻(𝑥1, 𝑥2) < 1;𝐻(𝑥2, 𝑥1) < 1 U U U LAS𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1 𝐻(𝑥1, 𝑥2) > 1;𝐻(𝑥2, 𝑥1) < 1 U LAS U ∉ Ω𝐻(𝑥1, 𝑥2) < 1;𝐻(𝑥2, 𝑥1) > 1 U U LAS ∉ Ω𝐻(𝑥1, 𝑥2) > 1;𝐻(𝑥2, 𝑥1) > 1 U LAS LAS U𝐻(𝑥1, 𝑥2) < 1;𝐻(𝑥2, 𝑥1) < 1∗ U U U ∉ Ω
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Figure 1: Phase portrait corresponding to the 7𝑡ℎ scenario in Table 2,
where 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1, 𝐻(𝑥1, 𝑥2) > 1, and 𝐻(𝑥2, 𝑥1) > 1. As
it can be deduced from the stability propositions and, as it is shown
in the table, 𝑃0 and 𝑃3 are unstable and 𝑃1 and 𝑃2 are both locally
asymptotically stable. In this case, initial conditions determine
which equilibria is going to attract a particular trajectory. For the
simulations, we consider 𝑥1 and 𝑥2 in order to have 𝑐(𝑥1, 𝑥2) = 1.1,𝑐(𝑥2, 𝑥1) = 1.15, 𝐾(𝑥1) = 𝐾(𝑥2) = 70, and 𝑟(𝑥1) = 𝑟(𝑥2) = 0.3.
This is a scenario corresponding to competition favoring the SE; i.e.,𝑐(𝑥1, 𝑥2) > 𝑐(𝑥2, 𝑥1), which could mean, for instance, a bigger taxes
imposition on IE.

Let us assume 𝐻(𝑥1, 𝑥2) < 1 and 𝐻(𝑥2, 𝑥1) < 1. Then
a trivial case for the occurrence of the previous situation is
that 𝑥1 = 𝑥2 ̸= 0, and then 𝐻(𝑥1, 𝑥2) = 𝐻(𝑥2, 𝑥1). Therefore,𝑇 = 0 if and only if, 𝑟(𝑥1) = −𝑟(𝑥2), which is not possible
since we defined 𝑟(𝑥) > 0 for all 𝑥. On the other hand, the
previous equality is also admissible when 𝑟(𝑥1) = 𝑟(𝑥2) =0, a scenario that lacks practical interest for this model.
Taking into account this analysis we can conclude that, under
the assumptions considered here, it is not possible for the
Jacobian matrix to have pure imaginary eigenvalues in 𝑃3 ∈Ω, which rules out the occurrence of a Hopf bifurcation in𝑃3.

In Figure 1, the phase portrait of system (1) is shown,
which corresponds to the case 𝑐(𝑥2, 𝑥1)𝑐(𝑥1, 𝑥2) > 1,𝐻(𝑥1, 𝑥2) > 1, and𝐻(𝑥2, 𝑥1) > 1. As stated in Table 2, 𝑃0 and𝑃3 are unstable and 𝑃1 and 𝑃2 are both locally asymptotically
stable. In this case, initial conditions determine which equi-
libria are going to attract a particular trajectory. Note that this
is the unique scenario guaranteeing two simultaneous locally

asymptotically stable equilibria. Thus the market final state
will depend only on the initial conditions.

Note that condition 𝐻(𝑥1, 𝑥2) > 1 implies 𝑐(𝑥1,𝑥2)𝐾(𝑥2)/𝐾(𝑥1) > 1 and then 𝑐(𝑥1, 𝑥2) > 0. Similarly, con-
dition 𝐻(𝑥2, 𝑥1) > 1 implies 𝑐(𝑥2, 𝑥1)𝐾(𝑥1)/𝐾(𝑥2) > 1 and
thus 𝑐(𝑥2, 𝑥1) > 0. Such situations can only occur in the case
when we have competitive interactions (see the 𝑐 function
description in Section 2.1). On the other hand, 𝐻(𝑥1, 𝑥2) < 1
and 𝐻(𝑥2, 𝑥1) < 1 imply 𝑐(𝑥1, 𝑥2)𝐾(𝑥2)/𝐾(𝑥1) < 1 and 𝑐(𝑥2,𝑥1)𝐾(𝑥1)/𝐾(𝑥2) < 1, respectively. These conditions can be
satisfied when 𝑐 is positive or negative. Therefore, the corre-
sponding interaction scenario can be competition or cooper-
ation.

The local stability analysis implies that the energy market
will not crash under any circumstances, guaranteeing a
permanent energy supply from any (or both) generation
technologies; i.e., there is at least one stable equilibria corre-
sponding to dominance of SE or IE or their coexistence to
supply energy demand.

2.3. Standard Energy Model and Invasion Conditions. From
the AD theory, invasion is ruled by the sign of the fitness
function of the IE, as given by ̇𝑛2/𝑛2, from the 𝑔 function
at 𝑃2(𝑛21(𝑥1), 0) = (𝐾(𝑥1), 0). To describe this situation with
more detail, we take into account the fact that, just before an
innovation occurs, it is assumed that only SE is available to
supply energy demand; that is, 𝑛2 = 0. For simplicity, we
denote 𝑥1 = 𝑥, 𝑛1 = 𝑛. Therefore, the energy market is
modeled by only one differential equation

̇𝑛 = 𝑛𝑟 (𝑥) (1 − 𝑛𝐾 (𝑥)) (18)

corresponding to the classical logistic equation. It is known
that (18) has two equilibria given by 𝑛0 = 0 which are always
unstable, and 𝑛1 = 𝐾(𝑥) is always asymptotically stable
under the definitions given to 𝑟 and 𝐾. SE being the only
generation technology available in the market, it is assumed
that 𝑛 reaches its maximum capacity 𝐾(𝑥) to satisfy the
market demand.

Once an innovation occurs, it is interesting to determine
whether or not the IE can invade and share the market
(coexist) with the SE. Just after the innovation, it is assumed
that system (1) is at equilibrium 𝑃2(𝑛21(𝑥1), 0) = (𝐾(𝑥1), 0). As
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discussed in the proof of Proposition 2, the Jacobian matrix
at 𝑃2 is given by

𝐴 (𝑃2) = [−𝑟 (𝑥1) −𝑟 (𝑥1) 𝑐 (𝑥1, 𝑥2)0 𝑟 (𝑥2) (1 − 𝐻 (𝑥2, 𝑥1))] (19)

Define the fitness function of the IE as the innovative
eigenvalue, also known as the invasion eigenvalue in the
adaptive dynamics language.

𝜆 (𝑥1, 𝑥2) = 𝑟 (𝑥2) (1 − 𝐻 (𝑥2, 𝑥1)) (20)

Clearly 𝑃2 stability is determined by the sign of 𝜆(𝑥1, 𝑥2);
i.e., if 𝜆(𝑥1, 𝑥2) > 0, then 𝑃2 is unstable and therefore IE can
invade the market. On the other hand, if 𝜆(𝑥1, 𝑥2) < 0, then𝑃2 is locally asymptotically stable and the IE is going to be
excluded indefinitely from themarket (see Proposition 2). For
a further study of this situation, assume the nondegenerate
situation (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥2) ̸= 0. Then the first-order Taylor
expansion of 𝜆(𝑥1, 𝑥2) around 𝑥2 = 𝑥1 is

𝜆 (𝑥1, 𝑥2) = 𝜆 (𝑥1, 𝑥1) + (𝑥2 − 𝑥1) 𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1)
+ 𝑂 (󵄨󵄨󵄨󵄨𝑥2 − 𝑥1󵄨󵄨󵄨󵄨2)

(21)

Note that the term 𝜆(𝑥1, 𝑥1) in the previous expansion,

𝜆 (𝑥1, 𝑥1) = 𝑟 (𝑥1) (1 − 𝑐 (𝑥1, 𝑥1)) = 0 (22)

Therefore, 𝜆(𝑥1, 𝑥2), described as in (21), has opposite
sign for 𝑥2 > 𝑥1 or 𝑥2 < 𝑥1, with 𝑥2 close to 𝑥1. Thus if(𝑥2 − 𝑥1)(𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) is positive, i.e., if𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1) > 0, 𝑥2 > 𝑥1, or,

𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1) < 0, 𝑥2 < 𝑥1,
(23)

the invasion eigenvalue 𝜆(𝑥1, 𝑥2) is positive and equilibria 𝑃2
are unstable. In such case, IE invades the market, and vice
versa; if (𝑥2 − 𝑥1)(𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) is negative, 𝑃2 is locally
asymptotically stable and IE goes extinct. From now on the
quantity

𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1) (24)

is going to be called selection gradient for the innovative
energy. In the next section, specific coefficients are estab-
lished according to the characteristic traits and the meaning
and scope of the described invasion condition will be ana-
lyzed in more depth.

The question of whether invasion implies substitution of
the standard energy requires the study of the global behavior
of the standard-innovative model. In Appendix B of [11], the
following theorem is proved.

Theorem 4 (invasion implies substitution). Given 𝑥1 in the
evolution set X, if (𝑥2 − 𝑥1)(𝜕/𝜕𝑥󸀠)𝜆(𝑥1, 𝑥2) > 0 and |𝑥2 −𝑥1| and |(𝑛1(0) + 𝑛2(0) − 𝑛(𝑥1))| are sufficiently small, then
the trajectory (𝑛1(𝑡), 𝑛2(𝑡)) of the standard-innovative model
(1) tends toward equilibrium 𝑃1 for 𝑡 󳨀→ ∞.

3. Evolutionary Dynamics under
Cooperation and Competition

3.1. Functional Coefficients. Consider a market where the
CGC growing rate 𝑟 does not depend on the characteristic
traits and therefore it is constant.

To define the maximum capacity function𝐾, we consider
it as an increasing function of 𝑥, for 𝑥 ≥ 0, decreasing to zero
if 𝑥 < 0, and bounded above by some maximum value 𝑘1
corresponding to technical limitations, imposed normative
obeying public policies, or technical or financial restric-
tions. As an example, if we consider the amount of money
invested in new technology as a measure of the techno-
logy of energy generation then, very large positive values
of 𝑥 (own resources) or negative values (resources coming
from the indebtedness) would allow increasing themaximum
generation capacity 𝐾. We consider the expression

𝐾 (𝑥) = 𝑘1𝑥2𝑘22 + 𝑥2 (25)

such that 𝐾(𝑥) 󳨀→ 𝑘1 as 𝑥 󳨀→ ±∞ as in Figure 2 (left).
Note that 𝐾(𝑥) increases [decreases] rapidly when 𝑥 is small
and positive [negative], but at large positive [negative] values
of 𝑥 (larger inversion from own resources [indebtedness], for
instance), the maximum capacity grows up [decreases down]
slowly to [from] its maximum 𝑘1.

A large value of 𝑘2 implies that it is necessary to invest
more resources (large 𝑥) to reach the maximum value 𝑘1,
while a small value of 𝑘2 implies that the maximum level 𝑘1 is
reached with smaller investments (smaller 𝑥). Geometrically,𝐾(𝑥) increases rapidly for all 0 < 𝑥 < √3𝑘2/3, (rapidly
decreases if −√3𝑘2/3 < 𝑥 < 0) and increases slowly to 𝑘1, for
all 𝑥 > √3𝑘2/3 (decreases slowly from 𝑘1 if 𝑥 < −√3𝑘2/3).
This corresponds to the fact that the graph of𝐾 has two inflec-
tion points at 𝑥 = ±√3𝑘2/3. Figure 2 (left), shows the plot of𝐾 with the parameter values described in the caption.

On the other hand, 𝑘2 is related to the inflection point in
the graph of 𝐾, changing its increasing speed. Indeed, 𝐾(𝑥)
increases rapidly for all 0 < 𝑥 < √3𝑘2/3, (rapidly decreases
if −√3𝑘2/3 < 𝑥 < 0) and increases slowly to 𝑘1, for all 𝑥 >√3𝑘2/3 (decreases slowly from 𝑘1 if 𝑥 < −√3𝑘2/3). Then a
large 𝑘2 implies a less sensitive 𝐾 to large values of 𝑥. For
instance, if 𝑥 > 0 denotes monetary investment, then a
large 𝑘2 implies the necessity of larger investments to reach
the maximum 𝑘1. In Figure 2 (Left), the plot of 𝐾 with the
parameter values described in Table 3 and its caption can be
observed.

In the formulation of the interaction function 𝑐, we want
to consider the symmetry regarding line 𝑥2 = 𝑥1 as an
important issue. In fact, by definition, 𝑐(𝑥1, 𝑥2) corresponds
to the increasing/decreasing rate of CGC suffered by 𝑛1 by
the presence of 𝑛2 and, conversely, 𝑐(𝑥2, 𝑥1) corresponds
to the increasing/decreasing rate of CGC suffered by 𝑛2 by
the presence of 𝑛1 (see Section 2.1). If 𝑐(𝑥𝑖, 𝑥𝑗) < 0, for𝑖, 𝑗 = 1 or 2, the interaction described by 𝑐 corresponds to
cooperation, and it corresponds to competition if 𝑐(𝑥𝑖, 𝑥𝑗) >0. If 𝑐(𝑥1, 𝑥2) = 𝑐(𝑥2, 𝑥1) the interaction is called fair, and
it is called unfair in any of the cases 𝑐(𝑥1, 𝑥2) > 𝑐(𝑥2, 𝑥1)
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Table 3: Parameter description and the corresponding baseline values used at simulations.

Parameter description Value𝑘1 Upper bound for the maximum capacity 𝐾, due to technical limitations or imposed public policies 100 MW𝑘2 Measure of the speed at which maximum capacity can grow 10𝑐1 Subsidies if positive/Taxes if negative or any other similar policy on SE Varies𝑐2 Subsidies if positive/Taxes if negative or any other similar policy on IE Varies

or 𝑐(𝑥1, 𝑥2) < 𝑐(𝑥2, 𝑥1). Consider the interaction function
between both kinds of energies is given by the function

𝑐 (𝑥1, 𝑥2) = (𝑐21 + 𝑐22 ) 𝑥1𝑥2𝑐21𝑥21 + 𝑐22𝑥22 (26)

depicted in Figure 2 (right). Note that 𝑐 ∈ R, for all 𝑥1 and𝑥2. Function 𝑐 corresponds to competition if 𝑥1 and 𝑥2 have
the same sign (first and third quadrants of the (𝑥1, 𝑥2)-plane)
and to cooperation if 𝑥1 and 𝑥2 have opposite signs (second
and fourth quadrants of the (𝑥1, 𝑥2)-plane). The coefficient𝑐 has a set of maximums on the line 𝑥2 = (𝑐1/𝑐2)𝑥1, where
the maximum competition takes place and its value is (𝑐21 +𝑐22 )/2𝑐1𝑐2. It has a set of minimums at the line 𝑥2 = −(𝑐1/𝑐2)𝑥1,
where the cooperation is maxima and its value is −(𝑐21 +𝑐22 )/2𝑐1𝑐2. Symmetric competition occurs when 𝑐1 = 𝑐2. In this
case the lines of maxima and minima coincide with 𝑥2 = 𝑥1
and 𝑥2 = −𝑥1, respectively. On the other hand, 𝑐2 > 𝑐1
[conversely 𝑐2 < 𝑐1] implies asymmetric interaction in favor
of 𝑛2 [conversely 𝑛1].

Symmetric interaction is not likely to occur in almost any
market. Therefore, we will consider the asymmetric case by
stating 𝑐1 ̸= 𝑐2. Both parameters can be considered as the
effect of market policies in the competition, such as subsidies
awarded or any other similar policy when 𝑐1, 𝑐2 > 0 or
some privative policy as taxes imposition when 𝑐1, 𝑐2 < 0. In
general, whether an innovation is stimulated or unstimulated
depends on if 𝑥1 > 𝑥2 or 𝑥2 > 𝑥1 and also onwhether they are
positive or negative. If 𝑐2 > 𝑐1 and 𝑥1 > 0, a small innovation𝑥2 is stimulated by interaction if 𝑥2 < 𝑥1. Geometrically,
the point (𝑥1, 𝑥2) is below the diagonal (closer to the line of
maxima) and 𝑐(𝑥1, 𝑥2) > 1, while the point (𝑥2, 𝑥1) is above
the diagonal and 𝑐(𝑥2, 𝑥1) < 1. It is unstimulated if 𝑥2 > 𝑥1.
3.2. Selection Gradient and Invasion Conditions. A more
detailed study of the invasion conditions will be discussed in
this subsection. Under the definitions of 𝑟,𝐾, and 𝑐 described
above, the IE growing rate, also known as fitness function
(20), takes the form

𝜆 (𝑥1, 𝑥2) = 𝑟(1 − (𝑐21 + 𝑐22) (𝑘22 + 𝑥22) 𝑥31(𝑘22 + 𝑥21) (𝑐21𝑥22 + 𝑐22𝑥21) 𝑥2) (27)

and the selection gradient is explicitly given by

𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1) = [𝑘22 (3𝑐21 + 𝑐22) − (𝑐22 − 𝑐21) 𝑥21] 𝑟
𝑥1 (𝑘22 + 𝑥21) (𝑐21 + 𝑐22 ) (28)

The invasion conditions were discussed in the previous
section and established in (23). Now, with the explicit expres-
sions for 𝑟, 𝐾, and 𝑐, we will study invasion in the energy
market in a more detailed way.

Since 𝑟 > 0 and (𝑘22 + 𝑥21)(𝑐21 + 𝑐22 ) > 0 in every case, then
sign of (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) is given by

𝑘22 (3𝑐21 + 𝑐22) − (𝑐22 − 𝑐21) 𝑥21𝑥1 (29)

(i) If 𝑐22 − 𝑐21 > 0, then (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) < 0 implies two
cases:

𝑥1 > 0 ⇐⇒
𝑘22 (3𝑐21 + 𝑐22) − (𝑐22 − 𝑐21) 𝑥21 < 0 ⇐⇒

𝑘22 (3𝑐21 + 𝑐22)𝑐22 − 𝑐21 − 𝑥21 < 0 ⇐⇒
𝑥1 ∈ (𝑥𝐼,∞)

(30)

Similarly,

𝑥1 < 0 ⇐⇒
𝑘22 (3𝑐21 + 𝑐22) − (𝑐22 − 𝑐21) 𝑥21 > 0 ⇐⇒

𝑥1 ∈ (−𝑥𝐼, 0)
(31)

where 𝑥𝐼 = 𝑘2√(3𝑐21 + 𝑐22 )/(𝑐22 − 𝑐21 ). In any of these
cases, innovations with 𝑥2 > 𝑥1 invade.
On the other hand, (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) > 0 for 𝑥1 > 0
implies 𝑥1 ∈ (0, 𝑥𝐼)and for 𝑥1 < 0 implies 𝑥1 ∈(−∞,−𝑥𝐼); in both cases, innovations with 𝑥1 > 𝑥2
invade.
In Figure 3 (left), the schematic structure of the
invasion region in the (𝑥1, 𝑥2)−plane when 𝑐22 − 𝑐21 =0.1025 > 0 (𝑐1 = 1 and 𝑐2 = 1.05 were used) is shown;
blue regions above the line 𝑥2 = 𝑥1 correspond to
negative selection gradients, and gray regions below
that line correspond to positive selection gradients.

(ii) If 𝑐22 −𝑐21 < 0 (equivalently 𝑐21 −𝑐22 > 0), we can rewrite
(29) as

𝑘22 (3𝑐21 + 𝑐22) + (𝑐21 − 𝑐22) 𝑥21𝑥1 (32)
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Figure 3: Different regions in the (𝑥1, 𝑥2)−plane where invasion conditions given in (23) are satisfied. Blue regions above the line 𝑥2 = 𝑥1
correspond to negative selection gradients, and gray regions below that line correspond to positive selection gradients. Left: 𝑐22 −𝑐21 = 0.1025 >0 (𝑐1 = 1 and 𝑐2 = 1.05 were used). Right: 𝑐22 − 𝑐21 = −0.1025 < 0 (with 𝑐1 = 1.05 and 𝑐2 = 1). Note that a big innovation is required to have a
cooperative market just after an innovation in a market dominated by SE generation technology.

Therefore, 𝑥1 > 0 implies (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) > 0 and
the innovations with 𝑥1 > 𝑥2 invade; similarly, 𝑥1 < 0
implies (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) < 0 and the innovationswith𝑥2 > 𝑥1 invade.

In Figure 3 (right), the schematic structure of the
invasion region in the (𝑥1, 𝑥2)−plane when 𝑐22 − 𝑐21 =−0.1025 < 0 (𝑐1 = 1.05 and 𝑐2 = 1 were used) is
shown; as in the previous case, blue regions above the
line 𝑥2 = 𝑥1 correspond to negative selection gradi-
ents, and gray regions below that line correspond to
positive selection gradients.

Note that although functional parameters 𝑟, 𝐾, and 𝑐 are
defined for all 𝑥1 and 𝑥2 inR, and also the interaction dynam-
ics from system (1) are well defined for both strategies (coop-
eration and competition), the invasion conditions determine
configurations (specific regions of the (𝑥1, 𝑥2)−plane) under
which the invasion of the innovative attribute is possible and
configurations that lead to its disappearance. Additionally,
note that a big innovation is required to have a cooperative
market just after an innovation in a market dominated by SE
generation technology.

3.3. Adaptive Dynamics Canonical Equation. The behavior
and long-term evolution of the attribute 𝑥1 that characterizes
energy market is now described as a result of advantageous



10 Mathematical Problems in Engineering

innovations on this attribute that allow the survival of the
respective CGC in the market. The goal in this section is to
describe theCanonical Equation ofAdaptiveDynamics briefly.
The reader is invited to review [11, 15, 25, 26], to expand the
information shown, in particular, regarding the deduction of
the equations.

The dynamics of 𝑥1 are given by the ordinary differential
equation:

𝑥̇1 = 12𝜇 (𝑥1) 𝜎2 (𝑥1) 𝑛 (𝑥1) 𝜕𝜆𝜕𝑥2 (𝑥1, 𝑥1) (33)

In [11], there is a full deduction of this equation. A parameter𝜖 󳨀→ 0 is considered as a scaling factor separating the
market timescale (the time considered above in all the
derivatives of 𝑛1 and 𝑛2), from the evolutionary timescale for𝑥1. In fact, a small amount 𝑑𝑡 of time on the evolutionary
timescale corresponds to a large amount of time 𝑑𝑡/𝜖 on the
market timescale. This fact allows affirming that, between
one innovation and the next, the market has time enough
to find an equilibrium configuration. It is worth clarifying
that while 𝑛1 and 𝑛2 are on the market timescale, 𝑥 is on
the evolutionary timescale. All the derivatives concerning the
time are represented with dot notation.

Equation (33) is known as the Canonical Equation of
Adaptive Dynamics. In the context of this work, 𝜇(𝑥1) is
proportional to the probability that an IE entering the market
corresponds to an innovation. 𝜎(𝑥1) is proportional to the
standard deviation of the measure of the change in the
attribute in which innovation occurs. 𝑛(𝑥1) represents the
market equilibrium before innovation (i.e., 𝑛(𝑥1) = 𝐾(𝑥1)),
and (𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) is the selection gradient of the 𝑥1
attribute on which the innovation is performed.

Denoting 𝑥 = 𝑥1 for simplicity and considering 𝜇(𝑥) = 𝜇
and 𝜎2(𝑥) = 𝜎2 (i.e., they do not depend upon the charac-
teristic trait), the Adaptive Dynamics Canonical Equation is
given by

𝑥̇ = 𝜇𝜎2𝑘1𝑟2 (𝑐21 + 𝑐22 )
⋅ [(𝑐1 − 𝑐2) (𝑐1 + 𝑐2) 𝑥2 + 𝑘22 (3𝑐21 + 𝑐22)] 𝑥

(𝑘22 + 𝑥2)2
(34)

To study this nonlinear differential equation, it is neces-
sary to find the equilibrium points (evolutionary equilibria
from now on) by solving ̇𝑥 = 0, to find

𝑥0 = 0,
𝑥1 = 𝑘2√3𝑐21 + 𝑐22𝑐22 − 𝑐21 = 𝑥𝐼

and 𝑥2 = −𝑘2√3𝑐21 + 𝑐22𝑐22 − 𝑐21 = −𝑥𝐼
(35)

which are real values when 𝑐22 − 𝑐21 > 0. We obtain the region𝑅
𝑅 = {(𝑐1, 𝑐2) ∈ R

2 : 𝑐22 − 𝑐21 > 0} (36)

Now, to study the stability of equilibria 𝑥𝑖, for 𝑖 = 0, 1, 2,
define

𝑓 (𝑥) = 𝜇𝜎2𝑘1𝑟2 (𝑐21 + 𝑐22 )
⋅ [(𝑐1 − 𝑐2) (𝑐1 + 𝑐2) 𝑥2 + 𝑘22 (3𝑐21 + 𝑐22)] 𝑥

(𝑘22 + 𝑥2)2
(37)

as the right hand of (34); then, linearizing,

𝑑𝑓𝑑𝑥 (𝑥) = − 𝜇𝜎2𝑘1𝑟2 (𝑐21 + 𝑐22 )
⋅ 𝑥4 (𝑐21 − 𝑐22) + 6𝑥2 (𝑐21 + 𝑐22 ) 𝑘22 − (3𝑐21 + 𝑐22) 𝑘42

(𝑘22 + 𝑥2)3
(38)

and we get

𝑑𝑓𝑑𝑥 (𝑥0) = 𝜎2𝜇𝑘1𝑟 (3𝑐21 + 𝑐22)2𝑘22 (𝑐21 + 𝑐22 ) > 0 for all 𝑐1, 𝑐2 (39)

and

𝑑𝑓𝑑𝑥 (𝑥1) = 𝑑𝑓𝑑𝑥 (𝑥2) = −𝜇𝜎2𝑘1𝑟 (𝑐21 − 𝑐22)2 (3𝑐21 + 𝑐22)4𝑘22 (𝑐21 + 𝑐22 )
< 0 for all 𝑐1, 𝑐2

(40)

Note that 𝑥0 is always unstable and 𝑥𝑖, for 𝑖 = 1, 2,
is always locally asymptotically stable. Thus, in the market,
repeated innovations and replacements of generation tech-
nologies with new ones drive the attribute 𝑥 toward any of
the equilibrium values 𝑥1 or 𝑥2. In Figure 4 some numeric
solutions of the canonical equation (34) are shown, with the
parameters described in the corresponding caption.

Note that condition 𝑐22 − 𝑐21 > 0 determines scenarios for
evolutionary equilibria not only to exist but also to be locally
asymptotically stable.

At this point, it is necessary to study evolutionary
dynamics in a neighborhood of the evolutive equilibria 𝑥𝑖,
for 𝑖 = 1, 2. Since, in the vicinity of the singular strategy,(𝜕𝜆/𝜕𝑥2)(𝑥1, 𝑥1) = 0, then the market and evolutionary
dynamics are dominated by the second derivatives of the
fitness function.

3.4. Coexistence and Divergence. Geritz et al. [14, 15] showed
that if the coexistence condition holds, innovative and stan-
dard energies mutually invade each other. This situation
implies the instability of both “single trait” equilibria 𝑃1 and𝑃2 (i.e., coexistence describes the situation when the values
of the characteristic traits of the IE and the SE are in the
vicinity of the equilibrium𝑥, defining energies that are similar
to each other, and sharing the market, that is, “coexist”). On
the other hand, if the coexistence condition does not hold,
both energies are mutually excluded and any of the “single
trait” equilibria gains stability. In particular ([11], pages 99-
104), it is proved that IE-SE coexistence is possible if

𝜕2𝜆𝜕𝑥1𝜕𝑥2 (𝑥𝑖, 𝑥𝑖) < 0, 𝑖 = 1, 2 (41)



Mathematical Problems in Engineering 11

−40

−30

−20

x
(t
)

−10

0

10

20

30

40

20 40 60 80 100 120 140 160 180 2000
t

Figure 4: Numeric simulation of evolutionary dynamics of the
characteristic trait 𝑥 described by the ADCE (34), considering 𝑟 =0.3, 𝑐1 = 1, 𝑐2 = 2, 𝑘1 = 100, 𝑘2 = 10, 𝜇 = 1, and 𝜎 = 1.
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Figure 5: Region 𝐷 of attribute divergence.

Explicitly we have

𝜕2𝜆𝜕𝑥1𝜕𝑥2 (𝑥𝑖, 𝑥𝑖) = − 4𝑟 (𝑐22 − 𝑐21) 𝑐22 𝑐21
𝑘22 (𝑐21 + 𝑐22 )2 (3𝑐21 + 𝑐22 ) < 0,

𝑖 = 1, 2
(42)

Note that coexistence condition holds when 𝑐22 − 𝑐21 > 0.
This situation corresponds to (𝑐1, 𝑐2) ∈ 𝑅, which was defined
above for the existence of 𝑥𝑖, for 𝑖 = 1, 2 in R. This result can
be stated as follows: evolutionary stability implies coexistence
of IE and SE characteristic traits.

An equally important question as coexistence is whether
it can be guaranteed that the two attributes that coexist after
the invasion of IE are indeed similar and not identical. That
is, if it is not possible to differentiate 𝑥1 from 𝑥2, then the
condition of coexistence would only mean that in practice
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Figure 6: Classification of stable evolutionary equilibria as BP, TP,
or BBP.

there is only one type of energy that has been “virtually”
separated into two classes. In this way, the divergence is
understood as the dissimilarity between the values of the
characteristic attribute of SE and IE. This situation allows
differentiating one from the other, implying the “origin of
diversity” in the market. It is shown in [11] that 𝑥1 and 𝑥2
attributes diverge from each other, when

𝜕2𝜆𝜕𝑥22 (𝑥𝑖, 𝑥𝑖) > 0, 𝑖 = 1, 2 (43)

Explicitly,

𝜕2𝜆𝜕𝑥22 (𝑥𝑖, 𝑥𝑖) = (𝑐22 − 𝑐21) (3𝑐21 − 𝑐22 ) 𝑟
𝑘22 (3𝑐21 + c22) (𝑐21 + 𝑐22 ) > 0, 𝑖 = 1, 2 (44)

A detailed analysis of the inequality proposed by the
previous condition leads to confirming that divergence is
possible when (𝑐1, 𝑐2) ∈ 𝐷, where 𝐷 is the portion of the(𝑐1, 𝑐2)−plane, described by

𝐷 = {(𝑐1, 𝑐2) ∈ R
2 : (𝑐22 − 𝑐21 ) (3𝑐21 − 𝑐22) > 0} (45)

as illustrated in Figure 5. Then we can classify evolution-
ary equilibria in three categories:

(i) Branching points (BP): they are locally asymptot-
ically stable evolutionary equilibria in which the
attribute can branch, which occurs when both con-
ditions (41) and (43) are satisfied. This implies that
the BP occur when (𝑐1, 𝑐2) ∈ 𝐷, as illustrated in
Figure 5 and in the gray area in Figure 6 (labelled BP),
where 𝑥𝑖 ∈ R is locally asymptotically stable and, in
addition, conditions (41) and (43) are satisfied

(ii) Terminal points (TP): they are locally asymptoti-
cally stable evolutionary equilibria, but they are not
branching points. At these points the evolution and
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Figure 7: Numeric simulation of market dynamics under the influence of trait dependent maximum capacity 𝐾 and interaction function𝑐. Left: shows the market dynamics considering 𝑟 = 0.3, 𝑘1 = 100, 𝑘2 = 10, 𝑐1 = 1, 𝑐2 = 1.2, 𝑥 = 𝑥1 = 𝑥1 = 31.7662, and 𝑥2 = 1.1 ∗ 𝑥1.
Since 𝑥1 > 0 and 𝑥2 > 0, it corresponds to competition in the market. Before the innovation occurs (solid line), the simulation corresponds
to the resident model (18) with the initial condition 𝑛(0) = 50. Under the absence of competition, the equilibrium 𝑛 = 𝐾(𝑥) = 90.9836 is
reached. After the innovation, the simulation corresponds to system (1) with initial conditions 𝑛1(0) = 𝐾(𝑥1) = 90.9836 (dashed line) and𝑛2(0) = 10 (dash-dot line). Note that (𝑐1, 𝑐2) ∈ 𝑅. Thus the evolutionary equilibrium is a branching point (BP) and market diversification
arises. These market dynamics describe a case when IE invades the market but do not substitute SE. Then they share the market. Right:
corresponds to the same parameter configuration, but with 𝑐2 = 2. In this case 𝑥1 = 𝑥1 = 15.2753 and 𝑥2 = 1.1𝑥1. Then the initial conditions
are 𝑛1(0) = 𝐾(𝑥1) = 70 and 𝑛2(0) = 10. Note that (𝑐1, 𝑐2) ∈ 𝑇. Thus the evolutionary equilibrium is a terminal point (TP), and therefore
diversification is not possible.

diversification are not possible. We have this situation
when any of the conditions (41) or (43) fails. In this
case it corresponds to (𝑐1, 𝑐2) ∈ 𝑇, where

𝑇 = {(𝑐1, 𝑐2) ∈ R
2 : 𝑐22 − 𝑐21 > 0, 3𝑐21 − 𝑐22 < 0} (46)

This region is shown in Figure 6 (blue color and
labelled with TP)

(iii) Bifurcation branching points (BBP): this situation
corresponds to the border points between branch and
end points. In this case we obtain the set of straight
lines:

𝐵𝐵𝑃 = {(𝑐1, 𝑐2) ∈ R
2 : 𝑐22 − 𝑐21 = 0, ∨, 3𝑐21 − 𝑐22 = 0} (47)

This bifurcation is unfolded in detail in [27, 28]

An example of competitive market dynamics under
asymmetric interaction 𝑐2 > 𝑐1 is shown in Figure 7(left). It
illustrates the market dynamics under the influence of trait
dependent maximum capacity 𝐾 and interaction function 𝑐.
The left panel shows the market dynamics considering 𝑟 =0.3, 𝑘1 = 100, 𝑘2 = 10, 𝑐1 = 1, 𝑐2 = 1.2, 𝑥1 = 𝑥1 =31.7662, and 𝑥2 = 1.1𝑥1. Since 𝑥1 > 0 and 𝑥2 > 0, then
the interaction corresponds to competition in the market,
according to model (1). The initial conditions 𝑛1(0) = 𝐾(𝑥1)= 90.9836 and 𝑛2(0) = 10 were used. This scenario con-
siders 𝑥2 > 𝑥1 and gives a coexistence condition (𝜕2𝜆/𝜕𝑥1𝜕𝑥2)(𝑥1, 𝑥1) = −2.8763×10−4 < 0 and a divergence condi-
tion (𝜕2𝜆/𝜕𝑥22)(𝑥2, 𝑥2) = 1.9008 × 10−4 > 0. Hence, it
corresponds to the case when both conditions (41) and (43)

hold and then 𝑥1 is a branching point (BP). This market
dynamics describe a case when IE invades the market but
does not substitute SE. Thus they share the market.

By the other hand, Figure 7 (right) illustrates a scenario
when the evolutionary equilibrium 𝑥1 is a terminal point.
The same parameters are considered but 𝑐2 = 2. Therefore,𝑥1 = 𝑥1 = 15.2753 and 𝑥2 = 1.1𝑥1 and the initial conditions𝑛1(0) = 𝐾(𝑥1) = 70 (recall 𝑥1 depends on 𝑐2) and 𝑛2(0) = 10
were used. Since 𝑥1 > 0 and 𝑥2 > 0, then the interaction
corresponds also to competition. The coexistence condition
is (𝜕2𝜆/𝜕𝑥1𝜕𝑥2)(𝑥2, 𝑥2) = −8.2286 × 10−4 < 0 and the
divergence condition (𝜕2𝜆/𝜕𝑥22)(𝑥2, 𝑥2) = −2.5714 × 10−4 <0. The last one does not hold as stated by (43). In fact, as(𝑐1, 𝑐2) ∈ 𝑇, the evolutionary equilibrium 𝑥1 corresponds to a
terminal point (TP) and evolution has a halt. Thus no market
diversification is possible.

After the branching has occurred (i.e., both, coexistence
and divergence conditions hold), the IE and SE share themar-
ket at the strictly positive equilibrium on the market space𝑃3 = (𝑛1(𝑥1, 𝑥2), 𝑛2(𝑥1, 𝑥2)). Thus the IE becomes standard
(i.e., there are two similar SE generation technologies with
CGC 𝑛1 and 𝑛2 and characterized by the trait values 𝑥1 and 𝑥2
respectively). Now, it is possible to consider a new innovation
to occur in any of the traits 𝑥1 or 𝑥2 leading to the appearance
of a new (similar but slightly different) trait 𝑥󸀠1 or 𝑥󸀠2. This
situation will be shown in the next two 3 × 3 systems:

̇𝑛1
= 𝑛1𝑟 (𝑥1) (1 − 𝑛1 + 𝑐 (𝑥1, 𝑥2) 𝑛2 + 𝑐 (𝑥1, 𝑥󸀠1) 𝑛󸀠1𝐾 (𝑥1) )
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= 𝑛1𝑔 (𝑛1, 𝑛2, 𝑛󸀠1, 𝑥1, 𝑥2, 𝑥1)
̇𝑛2
= 𝑛2𝑟 (𝑥2) (1 − 𝑐 (𝑥2, 𝑥1) 𝑛1 + 𝑛2 + 𝑐 (𝑥2, 𝑥󸀠1) 𝑛󸀠1𝐾(𝑥2) )
= 𝑛2𝑔 (𝑛1, 𝑛2, 𝑛󸀠1, 𝑥1, 𝑥2, 𝑥2)
̇𝑛󸀠1
= 𝑛󸀠1𝑟 (𝑥󸀠1)(1 − 𝑐 (𝑥󸀠1, 𝑥1) 𝑛1 + 𝑐 (𝑥󸀠1, 𝑥2) 𝑛2 + 𝑛󸀠1𝐾 (𝑥󸀠1) )
= 𝑛󸀠1𝑔 (𝑛1, 𝑛2, 𝑛󸀠1, 𝑥1, 𝑥2, 𝑥󸀠1)

(48)

and

̇𝑛1
= 𝑛1𝑟 (𝑥1) (1 − 𝑛1 + 𝑐 (𝑥1, 𝑥2) 𝑛2 + 𝑐 (𝑥1, 𝑥󸀠2) 𝑛󸀠2𝐾(𝑥1) )
= 𝑛1𝑔 (𝑛1, 𝑛2, 𝑛󸀠2, 𝑥1, 𝑥2, 𝑥1)
̇𝑛2
= 𝑛2𝑟 (𝑥2) (1 − 𝑐 (𝑥2, 𝑥1) 𝑛1 + 𝑛2 + 𝑐 (𝑥2, 𝑥󸀠2) 𝑛󸀠2𝐾(𝑥2) )
= 𝑛2𝑔 (𝑛1, 𝑛2, 𝑛󸀠2, 𝑥1, 𝑥2, 𝑥2)
̇𝑛󸀠2
= 𝑛󸀠2𝑟 (𝑥󸀠2)(1 − 𝑐 (𝑥󸀠2, 𝑥1) 𝑛1 + 𝑐 (𝑥󸀠2, 𝑥2) 𝑛2 + 𝑛󸀠2𝐾 (𝑥󸀠2) )
= 𝑛󸀠2𝑔 (𝑛1, 𝑛2, 𝑛󸀠2, 𝑥1, 𝑥2, 𝑥󸀠2)

(49)

After branching, it is irrelevant which one of the SE is
called 𝑥1 or 𝑥2, and systems above are equivalent. The AD
canonical equation governing the interaction of both SE’s
characteristic traits can be derived by repeating the analysis
shown above. The invasion fitness of the IE’s 𝑛󸀠1 and 𝑛󸀠2 are
given by

𝜆 (𝑥1, 𝑥2, 𝑥󸀠1)
= 𝑔 (0, 𝑛1 (𝑥1, 𝑥2) , 𝑛2 (𝑥1, 𝑥2) , 𝑥󸀠1, 𝑥1, 𝑥2) (50)

and

𝜆 (𝑥1, 𝑥2, 𝑥󸀠2)
= 𝑔 (0, 𝑛1 (𝑥1, 𝑥2) , 𝑛2 (𝑥1, 𝑥2) , 𝑥󸀠2, 𝑥1, 𝑥2) (51)
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Figure 8: Characteristic traits considering 𝑥2 < 𝑥1. It shows the
trait dynamics with 𝑟 = 0.3, 𝑘1 = 100, 𝑘2 = 10, 𝑐1 = 1, and𝑐2 = 1.2, corresponding to the branching point 𝑥1 = 31.7662 shown
in Figure 7(Left). The first part of the curve (before the innovation
occurs) corresponds to the simulation of (34) with initial condition𝑥(0) = 15.8831. After the innovation, the curves correspond to the
simulation of (52) and (53) with initial conditions 𝑥1(0) = 𝑥1 and𝑥2(0) = 0.9𝑥1.

The canonical equation reads, respectively,

𝑥̇1 = 12𝜇1𝜎21𝑛1 (𝑥1, 𝑥2) 𝜕𝜆1𝜕𝑥󸀠1 (𝑥1, 𝑥2, 𝑥
󸀠
1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠
1
=𝑥1

(52)

and

𝑥̇2 = 12𝜇2𝜎22𝑛2 (𝑥1, 𝑥2) 𝜕𝜆2𝜕𝑥󸀠2 (𝑥1, 𝑥2, 𝑥
󸀠
2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠
2
=𝑥2

(53)

where 𝑛1(𝑥1, 𝑥2) and 𝑛2(𝑥1, 𝑥2) are the coordinates corre-
sponding to the coexistence equilibria 𝑃3; i.e.,

𝑛1 (𝑥1, 𝑥2) = 𝑐 (𝑥1, 𝑥2)𝐾 (𝑥2) − 𝐾 (𝑥1)𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1 , and,
𝑛2 (𝑥1, 𝑥2) = 𝑐 (𝑥2, 𝑥1)𝐾 (𝑥1) − 𝐾 (𝑥2)𝑐 (𝑥2, 𝑥1) 𝑐 (𝑥1, 𝑥2) − 1

(54)

The explicit expressions of (52) and (53) are omitted since
they are very long. Nevertheless, they can be generated and
handled by means of symbolic computation as in Figure 8.

Figure 8 shows the evolutionary dynamics of the char-
acteristic traits under asymmetric interaction (𝑐2 > 𝑐1) and
considering 𝑥2 < 𝑥1. The first part of the curve (before
the innovation occurs) corresponds to the simulation of (34)
with initial condition 𝑥(0) = 15.8831. After the innovation,
the curves correspond to the simulation of (52) and (53)
considering the parameter configuration described in the
corresponding caption. Initially, 𝑥 grows toward 𝑥1 until the
branching occurs. Then, the dynamics are the result of the
interaction between the innovative energy IE and the stan-
dard energy SE. The attribute 𝑥1 permanently grows, while
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𝑥2 initially decreases. This makes perfect sense since each of
them is being governed by a different canonical equation and
therefore coexist under different selection pressures.

Finally, the same scenario is shown in Figure 7, (right),
but considering the casewhen𝑥2 > 𝑥1. It can be observed that
now, it is the attribute 𝑥2 of the IE which always grows while
the attribute of the SE initially decreases and then stabilizes
in values significantly below those of the other attributes.

4. Results and Conclusions

Local stability analysis of model (1) brings information on
the market dynamics and helps to answer a further question
of under what conditions can IE spread into the market and
interact or even substitute SE. Indeed, in amarket dominated
exclusively by SE, the instability of 𝑃2 is related to the
possibility for an IE to invade the market, while the existence
and stability of 𝑃3 are related to the coexistence of both
kinds of energy sharing the market, leading to diversification.
Additionally, stability analysis implies that energymarket will
not crash under any circumstances, guaranteeing a perma-
nent energy supply from any (or both) of the generation
technologies. This situation means that there is at least one
stable equilibrium corresponding to the dominance of SE or
IE or their coexistence, to supply energy demand. Even more,
it shows that both cooperative and competitive strategies are
adequate to guarantee market stability.

The interaction function 𝑐 describes both, competition
and cooperation, depending on the values of the charac-
teristic traits: competition on the first and third quadrants
of the (𝑥1, 𝑥2)-plane and cooperation at the second and
fourth quadrants of the (𝑥1, 𝑥2)-plane. However, although
functional parameters 𝑟, 𝐾, and 𝑐 are defined for all 𝑥1 and𝑥2 in R and also the interaction dynamics defined by (1)
are well defined for both market configurations, the invasion
conditions determine specific regions of the (𝑥1, 𝑥2)−plane
under which the invasion of the innovative attribute is
possible and configurations that lead to its disappearance.
Furthermore, it was proven that, under convenient configura-
tions of subsidies awarded (or taxes imposed) to both energy
generation technologies, it is possible to determine scenarios
for evolutionary equilibria to exist, to be locally asymptoti-
cally stable, and, also, it was shown that evolutionary stability
implies coexistence.

Under the assumptions of our analysis, evolutionary equi-
libria can be terminal points, where no marginal innovation
can invade the market. However, evolutionary equilibria
can also be branching points, where innovative energy can
penetrate, coexist, and diversify the market, concerning
the previously established. In this context, although both
parameters 𝑐1 and 𝑐2 describe the dynamics in themarket time
scale, they finally make a difference in the evolutionary time
scale. In fact, the expressions 𝑐22 −𝑐21 and 3𝑐21 −𝑐22 are a measure
of the strength of diversification through innovation. Taking
into account the geometric characteristics of the interaction
function 𝑐, we can say that diversification occurs in markets
that are at least slightly asymmetric and in which IE is
stimulated over SE, either by the allocation of subsidies or by
the imposition of lower taxes.

In order to understand the evolution of the system after
the second branch, it is necessary to repeat the analysis
obtaining a three-dimensional canonical equation and then
try to verify if the attributes converge to evolutionary solu-
tions where the conditions of coexistence and divergence
are satisfied. Due to the complexity of the expressions, it
is necessary to perform the verification by computational
methods. Finally note that repeated process of innovation can
give origin to a rich variety of different and complex kinds
of technological evolution [29]. However, it is important to
note that these processes of emergence and disappearance of
energy generation technologies is influenced by a wide range
of external and internal factors, which may exert additional
selection processes on innovations. Specific situations should
be studied in greater depth and detail in order to achieve an
informed decision-making.
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