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Abstract—In this paper, we present an innovative instrument
for near-infrared time-resolved spectroscopy. The system is based
on eight custom-designed pulsed diode lasers emitting at different
wavelengths in the near-infrared region (635-1050 nm), all exhibit-
ing an average optical power higher than 1 mW at 40 MHz pulse
repetition rate, two custom-made single-photon detectors based
on wide-area silicon photomultipliers and two time-measurement
units based on a custom time-to-digital converter with 10 ps timing
resolution. The system instrument response function has a width
narrower than 160 ps (fullwidth at half-maximum) and stability
better than 1% for several hours for all the wavelengths. All the
components of the instrument were designed in order to be com-
pact. The entire system will be hosted in a standard 19 inches, 5U
rack case (size 48 x 38 x 20 cm?). The system communicates with
the external computer through a USB 2.0 link and is designed to
be employed in a clinical environment. The proposed instrument,
thanks to the reduction of its cost and dimensions, paves the way to
a wider diffusion of multiwavelengths near-infrared time-resolved
spectroscopy systems.

Index Terms—Diffuse optics, near-infrared spectroscopy, pulsed
laser, single-photon detector, time-resolved, time-correlated
single-photon counting, time-to-digital converter.

I. INTRODUCTION

VER the last few years, the interest towards photonic
O instruments have seen an exponential growth in several
fields, from automotive to industrial automation, chemistry,
biomedicine and many others. Among them, the use of pho-
tonic instrumentation to noninvasively probe human biological
tissues, agricultural or pharmaceutical products through the use
of monochromatic light sources emitting in the near-infrared
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region [1]-[4] is generally called Near-InfraRed Spectroscopy
(NIRS). In detail, the theory of photon migration in diffusive me-
dia, generally known as Diffuse Optics (DO) [5], demonstrated
how it is possible to retrieve information on the sample con-
stituents [6]-[8]. The easiest implementation of DO techniques
is based on a Continuous Wave (CW) light and detection, and the
low system complexity guarantees low cost and small dimen-
sions, leading to a wide diffusion in both the clinical and the
commercial fields, where compact systems are currently under
development to be equipped in wearable devices [9]. Neverthe-
less, this approach has several drawbacks [10], as the impossibil-
ity, using a single source-detector pair, to distinguish between
photon scattering and absorption phenomena within the sam-
ple and a limited depth sensitivity and selectivity [11], [12]. A
time-resolved approach (also referred to as Time-Domain — TD
approach) allows to distinguish between scattering and absorp-
tion effects and breaks the trade-off between penetration depth
and source-detector distance, making them almost independent
[12]-[14]. Indeed, the capability to recover the photon Distribu-
tion of Time-Of-Flight (DTOF) curves adds a further dimension
to the measurement, as contributions coming from shallow and
inner layers of the sample can be correctly distinguished [15].
Additionally, TD approaches allow reducing the source-detector
distance with respect to CW systems, leading to higher SNR and
better lateral resolution [16], which reaches the physical limit
when the injection and collection points coincide [17], [18].

Recent achievements in the development of compact laser
sources, single-photon detectors and time-measurement elec-
tronics [19]-[21], allowed to develop many instrument exploit-
ing DO: from complex and extremely expensive systems with
outstanding performance for laboratory use, down to more com-
pact solutions for clinical environments and even portable de-
vices [19], [22]. The main drawbacks of TD instruments with
respect to CW ones are the higher costs and system complexity
due to the use of high-performance pulsed laser sources, single-
photon detectors and timing electronics with picosecond reso-
lution [9]. In fact, most of the existing portable instruments for
TD-NIRS are custom-made prototypes based on off-the-shelf
photonic components (either general purpose pulsed laser
diodes or white-light fiber lasers, photomultipliers, time-
correlated single-photon counting modules), thus exhibiting
strong limitations in terms of cost, dimensions, robustness and
complexity.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1.  Simplified block diagram of the instrument. The FPGA on the control
board provides the trigger signals for the laser sources starting from a high-
stability reference clock source. The emitted optical pulses are coupled to eight
100 pim-core optical fibers, attenuated and fed to a 9 x 1 optical switch, used
to select the output wavelength. The optical pulses provided at the output of the
switch are injected into the sample through a 100 pm-core fiber. Backscattered
light is collected by two 1 mm-core optical fibers and coupled to the two
SiPM-based detectors. The voltage pulses corresponding to the detection of a
photon (see ‘Photon IN’ signals) are connected to two independent TDCs for
measuring their arrival time. The FPGA acquires the TDC results and builds
up the histograms of the photon arrival times for each detection channel and
transfer the final curves to the external computer through a USB 2.0 link.

This work aims at developing an innovative eight wave-
lengths, two detection channels instrument for TD NIRS suit-
able for a clinical environment, by developing custom-made
state-of-the-art photonic components for guaranteeing optimal
performance at reduced costs, thus fostering the diffusion of
time-resolved spectroscopy instruments in the biomedical field.
The instrument we developed has narrow Instrument Response
Function (IRF) thus allowing to challenge the system even in
critical situations (e.g., high absorbing medium or layered struc-
tures) where the shape of the IRF is a crucial parameter to
obtain robust and accurate measurements. Two detection chan-
nels also allow the implementation of a double-distance mea-
surement scheme (one light injection point and two detection
points placed at two different distances), improving accuracy in
estimating constituents in layered tissues. Furthermore, a wide
range of wavelengths permits better discrimination between var-
ious constituents like lipids, collagen and water, in addition to
oxygenated and de-oxygenated hemoglobin, providing more in-
formation on the sample.

II. SYSTEM DESIGN

In this section we describe in detail the complete instrument.
Fig. 1 shows its simplified block diagram with:

1) Eight custom-made pulsed laser sources based on com-

mercially available edge-emitting laser diodes at eight
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different wavelengths in the near-infrared region, operat-
ing in gain-switching mode.

2) Two custom-made single-photon detectors based on com-
mercially available wide-area Silicon PhotoMultipliers
(SiPMs) operating in photon-counting mode.

3) Two time-measurement units based on custom-made
Time-to-Digital Converter (TDC) integrated circuit fab-
ricated in 0.35 pum HV-CMOS technology [23].

4) A custom FPGA-based control board hosting the time-
measurement units, managing the instrument measure-
ment procedures and providing communication with the
external computer through a USB 2.0 link.

Optical pulses generated by the eight laser sources are cou-
pled into 100 pm-core optical fibers, and each one is fed to
an independent in-fiber, user-adjustable, variable attenuator to
regulate the output optical power of the eight laser sources, al-
lowing to equalize the intensity of optical signals collected from
the sample, still guaranteeing laser safety when performing in-
vivo measurements. Each optical attenuator is specifically tuned
at the respective laser center wavelength, providing up to 40 dB
attenuation, and is controlled by the control board through a
dedicated I>C bus. The optical attenuator outputs are connected
to a9 x 1 optical switch, allowing to select the output wave-
length with only 10 ms dead-time and negligible losses. The
ninth channel input is kept unconnected and it is selected when
no laser signal has to be provided (i.e., no measurement is run-
ning), in compliance with safety regulation.

The output optical pulses are delivered to the sample through
a 100 pum-core optical fiber and photons re-emitted from the
sample are collected by two 1 mm plastic optical fibers, each one
connected to a SiPM-based single-photon detector, and detector
outputs are directly fed (through 50 €2 coaxial cables) to the
inputs of the time-measurement units.

The FPGA has various tasks: i) controls the instrument mea-
surement routine; ii) provides the trigger signals to the laser
pulser module; iii) controls the variable optical attenuators and
the 9 x 1 optical switch; iv) reconstructs the histogram of the
photon arrival times per each detection channel; v) provides the
results to an external PC.

Measurement parameters are set by the user via a graph-
ical user interface and guarantee high system reconfigurabil-
ity, which makes the instrument suitable for a various range
of applications other than time-resolved spectroscopy, such
as time-resolved photoluminescence/fluorescence spectroscopy,
fluorescence correlation spectroscopy and others.

Since the optical switch can output only one wavelength at a
time, going through all the eight wavelength prevents the pos-
sibility to use the instrument to follow dynamic processes with
more than 2 or 3 wavelengths. Indeed, the instrument in its full
eight-wavelengths configuration was designed to perform quasi-
static measurements, which are compatible with a measurement
time of a few tens of seconds.

The instrument will be housed in a standard 19-inches rack
case (dimensions are 48 x 38 x 20cm?®) and communicates
with a PC via a USB 2.0 link. Thanks to eight General Pur-
pose Input/Output (GPIO) lines (directly linked to the con-
trol board for configurable functions) and five wide-bandwidth
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connections, this module can be easily integrated in complex
systems for multi-modal measurements. Power supply is from
either 230 V AC (50 Hz) or 110 V AC (60 Hz) power lines, which
are converted by an internal medical-grade AC/DC power sup-
ply to a 24 V DC and then a dedicated power board distributes
the various power supplies to the sub-components. The overall
power consumption is less than 60 W.

The following sections describe in detail the main instrument
components.

A. Pulsed Laser Module

A pulsed laser source suitable for a near-infrared time-
resolved spectroscopy instrument should provide powerful op-
tical pulses with a temporal width as narrow as possible, gener-
ally lower than 250 ps FullWidth at Half-Maximum (FWHM).
Furthermore, high stability for both power and shape of the
optical pulse over time and temperature are required, thus en-
abling long-time monitoring applications. Light sources based
on supercontinuum laser generation have been widely used in
laboratory setups for NIRS measurements [24], providing nar-
row optical pulses (in the order of a few picoseconds) with high
average power (a few Watts on broadband wavelength range) at
repetition rates of tens of MHz [25]. Despite the outstanding op-
tical performance, supercontinuum laser sources are expensive,
bulky and complex systems.

Pulsed laser sources based on edge-emitting laser diodes are
among the best solutions for TD NIRS instrument as they pro-
vide a good compromise between optical performance, dimen-
sions, robustness, and ease-of-use. Many companies provide
laser systems based on pulsed laser diodes featuring an aver-
age optical power of a few mW at a pulse repetition rate up to
80 MHz and a temporal width of the optical pulses in the order
of 100-150 ps, with a variety of wavelengths (see [26], [27] and
others). However, a complete set of eight different laser heads
would lead to an overall cost of tens of thousands of euros. Fur-
thermore, these laser systems are normally designed as general
purpose pulsed laser and are not customizable in terms of size,
functionalities, etc.

Given the need of a large set of wavelengths in the near-
infrared region with state-of-the-art optical performance and
reduced costs and dimensions, we decided to develop an
eight-wavelength pulsed laser module based on commercially
available edge-emitting laser diodes mounted in standard TO
package and custom driving electronics. We chose TO pack-
age as a reference for our design since it is employed for laser
diodes with a large number of available wavelengths and opti-
cal powers. Additionally, a wide range of optical components
for laser diode housing and fiber coupling are available off-the-
shelf from different vendors, like the collimation optics that we
employed.

The complete pulsed laser sources module is shown in Fig. 2.
Its core is the laser diode pulser board, an upgraded version
of the laser diode driver described in [22]. Each channel has
its own adjustable parameters for a tight regulation of optical
performance of each laser diode. A pulse shaper circuit provides
voltage pulses with a temporal duration adjustable between 0.5
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TABLE I
SUMMARY OF PERFORMANCE FOR THE PULSED LASER SOURCES
W | I vtz | ol

[nm] [mW] power” [mW] width” [ps]
635 4.7 33 105
670 8.7 4.7 135
730 1.45 1.1 75
830 5.2 4.1 110
852 6.25 2.6 115
915 4.9 34 100
980 42 3.1 95
1050 7.2 3.5 115

“Measured at 40 MHz pulse repetition rate.
YTemporal duration of the optical pulse, FullWidth at Half-Maximum.

and 5 ns, which are AC-coupled to the gate of a high-bandwidth
pseudomorphic High Electron Mobility Transistor (pHEMT),
used to deliver fast current pulses (rise/fall times faster than
100 ps and 1 A peak current) to the laser diode for driving it
in gain-switching regime [28]. With respect to the previous de-
sign, we adopted LVDS signaling which allowed us to remove
the front-end comparator, reducing cost and power dissipation
of each pulser. We also revised the current driver circuit loop in
order to reduce stray inductances and capacitances, and the cur-
rent loop area, mitigating ElectroMagnetic Interference (EMI)
effects. The performance obtained with the entire set of selected
laser diodes are listed in Table I, with a pulse-width always
lower than 135 ps FWHM and an average optical power ranging
from 1 to 9 mW at 40 MHz repetition rate, depending on the
wavelength. Optical performance are strictly dependent on the
selected laser diode, in particular when driven in gain-switching
regime. The improvements here introduced compared to the
previous version (see [22]) can be assessed analyzing the laser
sources at 670 and 830 nm (same laser diodes used). We ob-
tained a pulse-width equal to 135 ps (FWHM) and a free-space
average optical power equal to 8.7 mW for the 670 nm laser
diode and 110 ps and 5.2 mW for the 830 nm one, when pulsed
at 40 MHz repetition rate, thus doubling the average output
optical power and halving the temporal duration of the optical
pulse with respect to the previous design. Moreover, with the re-
design the laser diode pulser can reach a higher maximum pulse-
rate, user-adjustable between 100 kHz and 120 MHz at 10 kHz
steps.

In order to guarantee optical stability better than +1% over
time and ambient temperature variations, two thermal systems
are used: 1) a heating circuit sets the working temperature of
the laser diode drivers at 55 °C, preventing thermal drifts which
may lead to a temporal shift of the laser pulse emission (heating
was preferred to cooling in order to reduce power dissipation);
ii) the laser diode is kept below room temperature (16 °C) by
means of a ThermoElectric Cooler (TEC) and a custom me-
chanical assembly, which hosts the TO package mounted inside
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Picture of the developed pulsed laser module. The eight laser heads are connected to a custom PCB (in picture referred as Laser pulser host board),

which features 8 independently-adjustable power supplies, one for each laser source. The power supply circuitries are coupled two-by-two and enclosed in a metal
shield in order to reduce ElectroMagnetic Interference (EMI) effects on sensible nodes, such as laser diode power supplies. A microcontroller in the laser pulsers
host board guarantees correct turn-on/turn-off procedures, besides managing the communication with the control board. The board also features a USB 2.0 link
for debug mode (not used in standard operating conditions). The measurement trigger signal is generated by the control board and fed to the laser diode pulsers
through a 100 2 differential twinaxial cable assembly and matched impedance routes on the laser diode pulsers host board.

standard collimation optics. Laser heads are coupled two-by-two
in the mechanical assembly to reduce dimensions and number
of components, as all the selected laser diodes can be operated at
the same temperature. The output of each laser diode is coupled
into a 100 pm-core optical fiber through a commercial opti-
cal system with five degrees of freedom and rotational adjust-
ment. A coupling efficiency ranging from 40% to 80% (from
laser diode output to the fiber output tip) has been achieved,
with differences depending on the divergence of each laser
diode.

The eight laser diode pulsers are mounted on a single PCB
(in Fig. 2 referred as laser pulsers host board), which provides
independent, user-adjustable power supplies to the laser diodes
and is equipped with a microcontroller in order to guarantee
a correct turn-on/off procedure, avoiding any damage due to
incorrect biasing of the laser diodes. The microcontroller man-
ages the communication with the pulsed laser module via I*C
peripherals (used to monitor the laser diode average current and
temperature of both TEC assembly and laser driver circuitry)
and communicates with the FPGA hosted on the instrument con-
trol board for receiving all the parameters needed to program
the laser diode drivers.

Eight trigger signals are provided by the FPGA to the eight
laser diode pulsers through matched impendence routes. Time-
delay introduced by electrical signal routes is matched for all the
eight laser sources, providing an almost synchronous emission

for all the selected wavelengths (about 3 ns maximum delay
between centroids of DTOF curves obtained at all the eight
different wavelengths), thus simplifying the design of measure-
ment readout electronics.

Finally, below the laser pulsers host board, a second PCB
embeds all the circuitry required to accurately control the four
independent TECs with thermal regulation of the laser diode
temperature with 0.1 °C precision.

The overall pulsed laser module (including both electronic
circuits and fiber-coupling optics) has a 26 x 26 x 8cm® vol-
ume, maximum power consumption lower than 30 W and
requires a single 24 V DC power supply. The compact assembly,
the choice of commercially available laser diodes and compo-
nents and the redesign of the signal chain leaded to a reduction
of the costs for eight laser heads (including the control circuitry)
of about five times with respect to commercially-available so-
Iutions with comparable performance. Finally, the high mod-
ularity of the pulsed laser module allows to tailor the output
wavelengths to the specific application, by just changing the
laser diode.

B. SiPM-Based Single-Photon Detectors

To limit the measurement timing jitter added to the DTOF
curves, the detector Single-Photon Timing Resolution (SPTR)
should be in the order of tens of picoseconds, while the
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Simplified block diagram of the instrument control board. The Artix 7 FPGA (Xilinx Inc.) acquires data from the two time-measurement units,

reconstructing the TCSPC histograms that are provided to the external PC through an USB 2.0 controller. A high stability 100 MHz clock source sets the time-base
of the FPGA, which manages the instrument measurement routine, actively selecting the measurement repetition frequency through a crystal-based programmable
oscillator, providing the trigger signals to the pulsed laser module and communicating with its microcontroller. An isolation buffer is used to provide eight General
Purpose Input/Outputs (GPIOs) for customizable signals, still guaranteeing electrical isolation to the FPGA, whose firmware is stored in a FLASH memory for
a correct turn-on procedure of the instrument. An I>C bus is used to control various peripheral systems throughout the instrument, such as the TEC drivers, the

optical variable attenuators, temperature sensor, etc.

Photon Detection Efficiency (PDE) must be as high as possible
in the near-infrared range in order to improve the signal-to-noise
ratio. Vacuum-tube based photodetectors, such as PhotoMul-
tiplier Tubes (PMT) or MicroChannel Plates (MCP), provide
good PDE (in some cases more than 40% at 700 nm), and a suf-
ficiently narrow SPTR [29]. Despite the good performance and
the wide-active area offered by PMTs and MCPs, they present
some limitations for the use in a clinical environment in terms
of robustness (high level of illumination may damage photo-
cathodes) and costs. Detector modules based on silicon Single-
Photon Avalanche Diode (SPAD) overcome these issues and can
fit the application, as they generally exhibit a SPTR lower than
30 ps (FWHM) and a PDE higher than 60% at 500 nm and still
12% at 800 nm [30], [31]. Unfortunately, wide collection area is
mandatory in order to improve light harvesting [19]. Therefore,
the use of SPADs in this design is demoted due to their small
detection area (tens or hundreds pm diameter). SiPMs recently
have seen a technological boost, demonstrating to be a feasible
solution in single-photon applications where a large active-area
is required, with small compromise on the detector Dark Count
Rate (DCR) and SPTR [32], [33].

In the presented instrument, the two detection modules are
based on an improved version of the custom-made single-photon
detector described in [34] and exploited in [22] where, thanks
to a new 1.3 x 1.3 mm? silicon SiPM detector (commercially
available from Hamamatsu Photonics KK) and a two-stage RF
amplification circuit, state-of-the-art performance are obtained,
with a SPTR equal to 70 ps (FWHM) and a PDE equal to 38%
at 500 nm and 8% at 800 nm. Each SiPM is housed in a standard

TO-8 package and cooled at 10 °C by a two-stage TEC to reduce
the detector DCR to about 10 kcps for SiPM2 and 50 kcps for
SiPM1 (difference due to SiPM fabrication process variability),
while having an afterpulsing probability still lower than 1%.
The two-stage amplifier is based on Monolithic Microwave In-
tegrated Circuits (MMICs) and amplifies the avalanche signal
from the SiPM, providing fast voltage pulses (sub-nanosecond
rise/fall times) with an amplitude of few hundreds of mV, guar-
anteeing low timing jitter and good immunity to EMI effects.
The detector is housed in a compact 50 x 110 x 40 mm? alu-
minum case and requires a single 15 V DC power supply, with
a maximum power consumption of 8 W each (at the maximum
count rate of 150 Mcps).

Photons re-emitted by the sample are collected through two
1 mm-core optic fiber and focused on the detector active area
through a custom optical system.

C. System Control Board and Time-Measurement Electronics

The capability to measure photon arrival times with high ac-
curacy and linearity is of utmost importance in order to correctly
reconstruct the DTOF curves of photons re-emitted by the sam-
ple. Commercially-available TCSPC acquisition systems have
excellent linearity performance (<1% of Least Significant Bit,
LSB) with picosecond timing resolution and a single-shot pre-
cision lower than 10 ps [35], [36]. These systems are too bulky
and expensive for being embedded in a compact instrument for
TD NIRS measurements. In this work we designed a custom-
made time-measurement unit and we integrated two of them on
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Fig.4. Simplified block diagram of the time-measurement unit. The two time-
measurement units are connected to the instrument control board for the readout
of the measured time intervals. The TDC Stop signal arrives from the control
board. The Count IN and Valid IN are provided to the FPGA in order to monitor
the detector count rate and the TDC conversion rate.

the instrument control board (see Fig. 3). The latter is based
on a high-performance FPGA (Xilinx Artix 7), which runs the
measurement routine and builds the TCSPC histograms for the
two detection channels starting from the photon arrival times
provided by the two TDCs.

Starting from a high-quality crystal-based programmable os-
cillator the FPGA provides the eight independent LVDS trigger
signals for the pulsed laser module, with a measurement rep-
etition rate variable between 1 and 100 MHz (typically set to
40 MHz). A delay line made through a coaxial cable is used
to correctly match the delays for the pulsed laser sources and
the time-measurement instruments, avoiding digital delay-lines
within the FPGA. The “External SYNC” input, which is fed
to a wide-bandwidth (8 GHz) comparator (with user-adjustable
threshold variable between —3 V and 3 V), can be used as an ex-
ternal trigger. A conditioning logic circuit selects the reference
source (between the internal and the external one) to be used
for running the TCSPC measurement routine, thus increasing
system flexibility and allowing to integrate this instrument in
various measurement setups.

The time-measurement unit (whose block diagram is shown
in Fig. 4) is based on a custom TDC ASIC [23], with a Full-
Scale Range (FSR) of 160 ns, a timing resolution of 10 ps, a
single-shot precision of 40 ps (FWHM) and a Differential Non-
Linearity (DNL) equal to 0.9% of LSB (RMS). When a pho-
ton is detected, a voltage pulse (whose rising-edge marks its
arrival) is discriminated by a wide-bandwidth comparator with
user-adjustable threshold. The signal is then provided to a pulse-
shaper circuit and a D-Flip Flop is used for signal conditioning,
as described in [37], thus giving the TDC Start signal to the
TDC ASIC only when another start-stop conversion is not al-
ready running. Since this approach improved the overall DNL
and timing jitter of the instrument, as it avoids conditioning
logic circuitry within the FPGA that would lead to stronger
crosstalk, we adopted the same circuital solution (based on dis-
crete components on the control board) to generate also the TDC
Stop signal. This resulted in an improvement of the performance
of the time-measurement units, approaching the intrinsic limit
of the TDC ASIC, with a single-shot precision equal to 40 ps
(FWHM) and an overall DNL equal to 1.2% LSB (RMS). To
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guarantee real-time acquisitions, compatible with in-vivo mea-
surements, we split the FPGA block Random-Access Memory
(RAM) in four sections (two per each time-measurement unit)
implementing a memory-swapping algorithm for downloading
the reconstructed histogram while another measurement is run-
ning, without introducing any dead-time due to data transfer.
With this feature, the minimum measurement integration time
is equal to 300 ms (only limited by data transfer through the
USB), which can be increased up to 16 s per each detection
channel, limited by the FPGA RAM size.

III. EXPERIMENTAL CHARACTERIZATION

To assess the performance of the instrument here presented,
we carried out its detailed experimental characterization. Results
are reported in the following sections.

A. Instrument Response Function

The typical Instrument Response Functions for all the eight
wavelengths are shown in Fig. 5. They were acquired directly
coupling the 100 pzm-core output fiber of the 9 x 1 optical switch
and the 1 mm-core collection fiber, connected to SiPM 2. TDC
Unit 2 was used to reconstruct the TCSPC histograms. Each
curve was obtained as the sum of 1 s consecutive measurements
at 40 MHz repetition rate until the peak count reaches 10°.
The detector count rate was kept always lower than 650 kcps
(i.e., ~1.5% of the laser repetition rate) thus keeping the dis-
tortion due to pile-up effect well below 1%. As can be seen, by
increasing the excitation wavelength (Fig. 5 from panel a to
h), the amplitude of the exponential decay increases, as more
photons are absorbed within neutral region of the silicon pho-
todetector, thus triggering an avalanche after diffusing towards
the depleted region, in agreement with [38].

Measurement results are reported in Table II and IRFs ex-
hibit a temporal duration from 100 to 155 ps (FWHM) de-
pending on the selected wavelength, which, to the best of our
knowledge, represent state-of-the-art performance for a com-
plete near-infrared time-resolved spectroscopy system based on
pulsed diode lasers and wide-area single-photon detectors.

B. Measurement Stability

Measurement stability over time and temperature is of utmost
importance in TD NIRS measurements, as any drift of pulsed
laser sources, single-photon detectors or time-measurement
units may lead to incorrect estimation of scattering and absorp-
tion coefficients, especially when employed outside the con-
trolled environment of the research laboratories. Moreover, a
short turn-on time is desirable. In TD-NIRS, DTOF is analyzed
considering the IRF in order to estimate accurately absorption
and scattering coefficients [7], [8]. As IRF is stable over a long
period, it can be acquired just at the beginning of the measure-
ment session, with no need of successive acquisitions.

We tested the instrument measurement stability by acquiring
the IRFs of the eight laser sources with 2 s integration time per
each wavelength. Within collected data, we identified the first
time-interval after turn-on where measurement stability proved
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Fig. 5.

IRFs of the eight pulsed laser sources. Each IRF curve includes contributions from the laser pulse-width, the SPTR of the single-photon detector (70 ps

FWHM) and the single-shot precision of time-measurement unit (40 ps FWHM). Each IRF is normalized to its main peak. Multiple peaks due to signal reflections
at fiber junctions are not an issue as the Region-Of-Interest (ROI) of the reconstructed optical pulses for spectroscopic measurement extends exclusively few

nanoseconds after the main peak.

TABLE I
OPTICAL PERFORMANCE OF THE DESCRIBED INSTRUMENT
Wavelength [nm] IRF “ [ps] Wam[l,-,,uil:, ]ﬁme b
635 130 25
670 155 35
730 100 50
830 130 50
852 135 15
915 115 25
980 110 30
1050 135 15

*FullWidth at Half-Maximum.
YFor 3 hours 41% measurement stability.

to be better than £1% for 3 hours. Measurement results proved
that optical stability better than £1% is obtained for all the
eight pulsed laser sources and warm-up times are reported in
Table II. However, measurement stability requires, besides con-
stant laser output power and detector PDE, negligible drifts of
the pulse temporal position (with respect to the measurement
synchronization signal) and of the pulse-shape, as any variation
of these two parameters may lead to incorrect measurement re-
sults. The results of stability measurement for the 852 nm light
source are reported in Fig. 6: about 15 minutes after turn-on, the
detector count rate is stable within 1% throughout all the mea-
surement duration (i.e., 6 hours). Moreover, laser pulses exhibit
only a few picoseconds temporal shift and the IRF pulse-width is

852 nm laser source
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Fig. 6. Measurement stability for the 852 nm pulsed laser source. (a) The
counts variation is due to unstable performance of the pulsed laser diode, the
single-photon detector (SiPM 2) and the time-measurement unit (TDC Unit 2).
The red horizontal lines highlight the £1% range. (b) Reports the peak position
(i.e., the centroid) of the DTOF curves. (c) The pulse-width of the IRF for the
selected wavelength.
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almost constant. All the pulsed laser sources exhibit comparable
stability performance.

C. Differential Non-Linearity

The DNL of the time-measurement unit is given by both non-
homogeneity in the temporal bin widths of the TDC ASIC and
disturbances coupled to sensitive electrical signals. The latter
ones can be strongly reduced with proper design of the timing
circuitry, whereas the bin widths cannot be completely corrected
with the time-measurement instrument calibration. This may
lead to distortion of the reconstructed waveforms, thus altering
the results of the spectroscopic measurement.

We tested instrument DNL by acquiring photon counts by
one of the two SiPM-based detectors, illuminated by uniform
background light, in order to reach a count rate of 400 kcps at
40 MHz repetition rate. The detector output is split into two
paths towards both the time-measurement units. In this way,
ideally uniform distributions of counts are expected, apart from
Poisson noise fluctuations. DTOF curves were integrated for
3 hours to reduce the relative contribution of the Poisson noise,
thus improving the definition of the waveform and highlight the
DNL pattern. A second acquisition of 100 seconds (100 mea-
surements with 1 s integration time) was performed after some
time to verify the possibility to correct the DNL pattern, as re-
ported in [22]. Measurement results are reported in Fig. 7, with
both the corrected and uncorrected waveforms for the two de-
tection channels. Summing the TDC histograms of the second
acquisition, we obtained an average histogram level of about
15 kcounts on both TDCs, resulting in an expected standard
deviation due to Poisson noise of about 122 counts, which nor-
malized with the average count rate results in 0.8% LSB RMS.
By computing the standard deviation on the histogram of each
TDC, we obtained a fluctuation of about 2% on TDC 1 and
of 1.2% on TDC 2, thus suggesting the presence of additional
distortion due to the DNL. After correction, both histograms
exhibit a residual DNL of 0.8% LSB (RMS).

D. Validation on Phantoms

Two series of phantoms mimicking optical properties of bio-
logical tissues [39] were measured at all the eight wavelengths.
In the first series the scattering coefficient is constant (around
10 cm ™! at 660 nm) while the absorption coefficient increases
linearly (from 0 to 0.49 cm ™! by steps of 0.07 cm ™! at 660 nm).
Phantoms of this series are labelled from 1 to 8. In the second se-
ries the absorption coefficient is constant (around 0.07 cm™! at
660 nm) while reduced scattering coefficient increases linearly
(from 5 to 20 cm™! by steps of 5 cm ™' at 660 nm). Phantoms
of this series are labelled from A to D. Measurements were
performed at 40 MHz laser pulse repetition rate placing the in-
jection fiber and one of the two detection fibers over the phantom
surface with an inter-fiber distance around 2.4 cm. Attenuation
was adjusted to obtain a count rate equal to 2 Mcps and 20
repetitions were acquired, with 1 s integration time. To perform
the measurement, SiPM 1 and TDC 1 were used.
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Fig. 7. Distributions of photon time-of-flights under uncorrelated uniform
illumination of the SiPM-based detectors, before and after DNL correction for
both TDC 1 (a and b — blue lines) and TDC 2 (c and d — red lines). As can be
seen, the periodic DNL pattern is effectively suppressed by the post-processing
correction algorithm.

All the photon DTOF curves acquired were analyzed: after
background subtraction, values of absorption and reduced scat-
tering coefficients were extracted with a non-linear optimal fit
procedure using an analytical model describing propagation of
photons in a homogeneous semi-infinite turbid medium [40].
We report the results in two figures. Fig. 8 shows the linear-
ity of the instrument in estimating absorption (a and b) and
reduced scattering (c and d) coefficients. The instrument first
four wavelengths are reported in left column (a and c) and the
second four wavelengths in right column (b and d). The sys-
tem shows good linearity in measuring absorption and reduced
scattering coefficients, comparable with state-of-the-art diffuse
optical spectroscopy systems [41].

In Fig. 9 we show the absorption coefficient spectrum (a)
and the reduced scattering coefficient spectrum (b) compared
with measurements on the same phantom performed with an-
other state-of-the-art spectroscopy system, which has a discrete
number of wavelengths in the near-infrared range (further de-
tails about the reference instrument are reported in [42]). The
measured phantom has nominal absorption coefficient around
0.07 cm™! at 660 nm and nominal reduced scattering coefficient
around 10 cm™! at 660 nm.
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Comparison of measured absorption and scattering coefficients spectra of the 2B phantom (nominal absorption coefficient of 0.07 cm™! and nominal
at 660 nm). Figure a) shows the absorption coefficient spectrum while figure b) the reduced scattering coefficient

spectrum, measured with both the presented instrument (squares) and with a state-of-the-art spectroscopy system (dots).

The results presented in Fig. 9 show a good accordance be-
tween the two instruments on both absorption and reduced scat-
tering coefficients estimation.

IV. CONCLUSION

In this paper we presented the design and preliminary charac-
terization of an innovative complete instrument for near-infrared

time-resolved spectroscopy featuring eight pulsed diode laser
sources emitting at different wavelengths in the near-infrared
spectral region, and two detection channels with single-photon
detection capability and TCSPC-based time-measurement units.
The experimental characterization proved, at all the wave-
lengths, an average optical power at fiber output higher than
1 mW (at 40 MHz pulse repetition rate), an IRF narrower than
160 ps (FWHM), a DNL equal to 1.2% LSB RMS with 10 ps
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timing resolution and stability (better than +1%) over time
and ambient temperature for several hours of operation. The
high performance of the instrument and the great system re-
configurability (thanks to the all-digital FPGA-based readout
electronics) allows to tailor the measurement parameters for a
broad range of applications where pulsed laser sources and the
TCSPC technique are needed, still guaranteeing real-time data
acquisition.
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