
Network Traffic Prediction based on Diffusion
Convolutional Recurrent Neural Networks

Davide Andreoletti1, 2, Sebastian Troia2, Francesco Musumeci2, Silvia Giordano1, Guido Maier2, and Massimo Tornatore2

1Networking Laboratory, University of Applied Sciences of Southern Switzerland, Manno, Switzerland, Email: {name.surname}@supsi.ch
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy, Email: {name.surname}@polimi.it

Abstract—By predicting the traffic load on network links, a
network operator can effectively pre-dispose resource-allocation
strategies to early address, e.g., an incoming congestion event.
Traffic loads on different links of a telecom is know to be
subject to strong correlation, and this correlation, if properly
represented, can be exploited to refine the prediction of future
congestion events. Machine Learning (ML) represents nowadays
the state-of-the-art methodology for discovering complex rela-
tions among data. However, ML has been traditionally applied
to data represented in the Euclidean space (e.g., to images)
and it may not be straightforward to effectively employ it to
model graph-stuctured data (e.g., as the events that take place in
telecom networks). Recently, several ML algorithms specifically
designed to learn models of graph-structured data have appeared
in the literature. The main novelty of these techniques relies on
their ability to learn a representation of each node of the graph
considering both its properties (e.g., features) and the structure
of the network (e.g., the topology). In this paper, we employ
a recently-proposed graph-based ML algorithm, the Diffusion
Convolutional Recurrent Neural Network (DCRNN), to forecast
traffic load on the links of a real backbone network. We evaluate
DRCNN’s ability to forecast the volume of expected traffic and
to predict events of congestion, and we compare this approach
to other existing approaches (as LSTM, and Fully-Connected
Neural Networks). Results show that DCRN outperforms the
other methods both in terms of its forecasting ability (e.g., MAPE
is reduced from 210% to 43%) and in terms of the prediction of
congestion events, and represent promising starting point for the
application of DRCNN to other network management problems.

Index Terms—traffic forecasting, graph-based machine learn-
ing, network congestion

I. INTRODUCTION

As telecom networks become more and more complex
(see, e.g., the enormous set of adjustable parameters to be
managed in modern systems), is also becoming increasingly
important to limit human intervention and speed up network
management procedures. Novel software solutions for network
automation allow to automatically configure, provision, man-
age and test network devices and can be used to increase
the infrastructure efficiency and reduce human error and
operational expenditures.

In particular, network traffic prediction plays an important
role in many areas of networking, such as network manage-
ment, network design, short and long-term resource allocation,
traffic (re)-routing and anomaly detection. Two categories of
prediction methods, based on long and short term’s periods,
are typically considered. Long-term traffic prediction is used
to estimate future capacity requirements, and therefore enables

a more effective planning decisions. Short-term traffic predic-
tion (i.e., predictions within minutes, even seconds) is usually
linked to dynamic resource allocation, and can be used to
improve Quality of Service (QoS) mechanisms as well as for
congestion control and optimal resource management. Several
different techniques including time series models, modern data
mining techniques, soft computing approaches, and neural
networks have been used for network traffic analysis and
prediction [1].

Within a telecom network, traffic is exchanged between
nodes and crosses network links. Such links have relations
among each other, i.e., due to their adjacency, their behaviour
is correlated. For example, it is more likely that congestion
occurs in links adjacent to a congested link than elsewhere.
Due to the large amount of data that is available today in
telecom networks, algorithms coming from the area of Ma-
chine Learning (ML) have been investigated to enable network
intelligence [2], thanks to the ability of ML to extract useful
(and sometimes “hidden”) information from data. However,
despite the significant amount of research in this direction, the
topological relation among the links has not been traditionally
leveraged by these machine learning algorithms, and, to the
best of our knowledge, no existing solution is specifically
designed to process graph-structured data.

In this paper we employ a recently-proposed machine
learning algorithm (originally developed to do road traffic
forecasting [3]) to predict the traffic load on the links of a
telecom network. This algorithm is referred to as Diffusion
Convolution Recurrent Neural Network (DCRNN) and, dif-
ferently from traditional machine learning approaches, it can
capture important topological properties of the network, which
are expected to significantly influence the patterns followed by
the traffic when propagating through the network.

Our objective is to predict to next load on a link of a telecom
network, given the sequence of the past observations of link
loads. The problem is modeled as a regression where the
objective is to minimize the error between the predicted and
the actual next load on the links. In the literature, this specific
problem has already been addressed by using ML methods.
However, to the best of our knowledge, this is the first time
that a ML algorithm able to capture the topological relations of
the links of telecom network is employed to perform this task.
Specifically, we train a DCRNN using real data gathered from
a backbone network (i.e., Abilene) and compare this approach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/195747726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with several baselines traffic-prediction algorithms (e.g., the
LSTM network [4]). A comparison of both the effectiveness
of the regression (e.g., measured in terms of mean absolute
error) and the ability to detect congestions events (which are
defined following a threshold-based criterion) is carried out.
Results show a remarkable improvement of the DCRNN with
respect to all the baseline methods on both the aspects, and
encourage its application also for other network management
tasks.

The rest of the paper is structured as follows. In Section II
we review some works related to the use of machine learning
as a tool for network traffic prediction, as well as the several
machine learning algorithms specifically designed to work on
graph-structured data. Section III briefly reviews the concepts
needed to understand the proposed methodology, such as
the recurrent neural networks and the diffusion convolutional
operator. In Section IV, we present the problem statement
and describe the employed methodology. Description of the
simulation settings and presentation of results is given in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

An accurate prediction of network traffic is of utmost
importance for network operators, as it enables an efficient
management of resources and load balancing. Given the
importance of the topic, the related literature is abundant.
We focus here on several related works evaluating ML-based
methods for network traffic prediction.

The authors of [5] propose a framework for network Traffic
Matrix (TM) prediction based on Recurrent Neural Networks
equipped with the Long Short-Term Memory units, i.e., RNN
LSTM. TM prediction is defined as the problem of estimating
future network traffic matrix from the previous ones. Similar
approaches can be found in [6], [7]. [6] proposes an end-to-
end deep learning architecture consisting of a convolutional
and a recurrent module that, combined, can extract both
spatial and temporal information from the traffic flows. [7]
proposes a model of neural network which can be used
to combine LSTM with Deep Neural Networks (DNN). An
autocorrelation coefficient is added to the model to improve
the accuracy of predictions. The main novelty of [7] is to
include autocorrelation of the time series in the input of
the ML algorithm, which leads to superior performance with
respect to existing methods. The combination of a special type
of LSTM unit, i.e., the Gated Recurrent Units (GRU) and
the Convolutional Neural Network (CNN) in the 2D domain
(CNN-2D) has been proposed for the task of network traffic
prediction in datacenters in [8]. The underlying idea of the
work in [8] is to treat network matrices as images and use
the CNN2D to find the correlations among traffic exchanged
between different pairs of nodes. Note that, in literature, the
prediction of traffic exchanged among network nodes is more
common than the prediction of the load on network links.
However, examples of application of ML to this specific task
can be found, e.g., in [9] where Support Vector Machines are
employed to perform the regression.

To our knowledge, none of the existing methods of traffic
prediction explicitely considers the topological information of
the network. Arguably, this is due to the fact that ML solutions
specifically designed to process data that do not belong to the
Euclidean domain [10], and in particular those with a graph-
based structure, have appeared in the literature only recently
[10]. At a high-level, these methods are based on filtering
operations designed to be suitable for graphs. These filters are
used within machine learning algorithms and their parameters
are learned to make them able to capture hidden patterns of
the relations among the nodes of the graph. For example, [11],
[12] propose a generalization of the CNN that is suitable to
process graphs to perform, for example, classification of the
nodes. The authors of [3] propose the diffusion convolution
operator and build a machine learning algorithms based on
this. This algorithm is then used to perform traffic forecasting
on road traffic in [3], [13]. Here, we use the same methodology
to forecast the load on the links of a telecommunication
network.

III. BACKGROUND

In this Section, we briefly review background concepts to
understand the DCRNN, as well as benchmarks algorithms
that we compare with the proposed approach.

A. Convolutional Neural Networks

Convolution is widely employed in signal processing to
perform filtering operations. The convolution between two
signals x and w is defined as:

(x ∗ w)(t) =
T∑
τ=0

x(t) · w(t− τ) (1)

where w is generally referred to as kernel of filter and T is
its support. In general, the kernel w is hand-crafted by expert
designers in such a way that the convolution captures some
desidered properties of the signal. A Convolutional Neural
Network (CNN) is a machine learning module that is trained
to learn the parameters of a number of filters (whose support,
i.e., their length, is fixed).

CNN networks can be formed by stacking together multiple
CNN layers. In general, these architectures are characterized
by a Dropout layer on top of each CNN. Although CNNs
are more commonly used in the 2D domain (e.g., to perform
image recognition), it is not rare to see their employment
also in the 1D domain, e.g., for time-series forecasting. The
support of the kernel tunes the level of temporal dynamic that
the filters can capture. Namely, filters with long support can
extract longer temporal dynamic with respect to shorter ones.

B. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have been designed
with the specific purpose to overcome the limitations of
feedforward neural networks in modeling sequences. RNN
networks are composed of units (i.e., neurons) capable of
keeping track of past observations. This allows RNNs to
model the input data based on both current and previously

seen observations. Among the proposed RNNs architectures,
the Long Short-Term Memory (LSTM) proved particularly
effective in modeling long-range temporal dependendies of
input data.

More formally, given an input vector x(t) and the current
observation (say x(t+1)), the LSTM unit recursively performs
the following operations:

i(t) = σ(Wi[x(t),h(t− 1)] + bi) (2)

c̃(t) = tanh(Wc[x(t),h(t− 1)] + bc) (3)

f(t) = σ(Wf [x(t),h(t− 1)] + bf) (4)

c(t) = f(t)� c(t− 1) + i(t)� c̃(t) (5)

o(t) = σ(Wo[x(t),h(t− 1)] + bo) (6)

h(t) = o(t)� tanh(C(t)) (7)

where � is the element-wise matrix multiplication.
Wi,Wc,Wf ,Wo and bi,bc,bf ,bo are learnable kernels
and biases, respectively, whereas i, c̃, f , c, o are referred to
as input, input modulation, forget, cell and output gates and
jointly perform operations to make the LSTM able select the
information to remember and to forget from the input data.
Finally, the hidden state h encodes what the LSTM unit retains
about past observations and, along with x, is successively used
as input data.

Many variants of LSTM units have been proposed in
the literature, and the above formulation only refers to its
most common implementation. For example, the RNN Gated
Recurrent Units (GRU) is a widely-used and simplified version
of the LSTM, which is used for example in the recently-
proposed Diffusion Convolutional Recurrent Neural Network
(DCRNN).

C. Diffusion Convolutional Recurrent Neural Network

Machine Learning algorithms have been originally thought
to learn models of data defined on Euclidean domains and
their application to other types of data, such as graphs, is
not straightforward [10]. Specifically, a graph is defined as
the pair G = (V, E), where V is the set of nodes and E is
the set of edges. If the graph is characterized by attributes
(e.g., properties of nodes and edges), G can be alternatively
described as (X ∈ RNXP ,W ∈ RNXN), where N is the
number of nodes and P the number of their attributes (i.e.,
features). X is the feature matrix and W is a weighted matrix
that encodes the relations among the nodes, e.g., the adjacency
matrix of the graph.

Traditional ML algorithms (e.g., LSTM or CNN) can easily
process X, but fall short in including the information encoded
in W. Recent approaches proposed in the literature aim to
enrich the feature matrix with this relational information. In

this Section, we briefly review one of the most prominent
solutions of this kind, which is based on the idea that the
relation between two nodes can be represented as a diffusion
process. Specifically, the probability that a random walk of K
steps that starts at the first node and ends at the second can
be computed knowing the state transition matrix D0

−1 ·W
(with D0 being the out-degree diagonal matrix of the graph).

Intuitively, the diffusion process gives important clues on
the influence that each node excercises on all the others.
This contextual knowledge may be used to improve the
representation of the nodes within the feature space (i.e., X)
through the application of filtering performed using appropri-
ate convolutional operations.

The K-steps diffusion convolution between a graph signal
X ∈ RNXP and a filter fθ is referred to as ∗G and defined
as:

X ∗G fθ =

K−1∑
k=0

(
θk,1(D0

−1W)k + θk,2(D0
−1Wᵀ)k

)
·X

(8)
where θ ∈ RKX2 are the parameters of the filter, D0

−1 ·
W is the state transition matrix of the diffusion process and
D0
−1 ·Wᵀ is its transpose.

The diffusion convolutional operator can be used as building
block of a Diffusion Convolutional Layer of Neural Network
and θ learnt using common training approaches (e.g., back-
propagation). Specifically, this layer can be trained to map
the feature matrix X ∈ RNXP to an output H ∈ RNXQ as
follows:

H:,q = σ

(P∑
p=1

X:,p ∗G fΘq,p,:,:

)
,∀q ∈ {1, ..., Q} (9)

where Θ ∈ RQXPXKX2 is the tensor of the trainable
parameters. By replacing the matrix multiplications described
in Section III-B with the diffusion convolutional operation,
the RNN unit becomes the Diffusion Convolutional Gated
Recurrent Unit (DCGRU) [3]. For the sake of precision, the
authors of [3] present a modified version of the RNN GRU
mentioned in Section III-B and formally described by the
following equations:

r(t) = σ(Θr ∗G [X(t),H(t− 1)] + br) (10)

C(t) = tanh(ΘC ∗G [X(t), (r(t)�H(t− 1))] + bc) (11)

u(t) = σ(Θu ∗G [X(t),H(t− 1)] + bu) (12)

H(t) = u(t)�H(t− 1) + (1− u(t))�C(t) (13)

where � is the element-wise tensor multiplication. r, u and
C are referred to as reset, update and cell gates respectively

and perform similar operations of the gates described in
Section III-B. Θr,Θu,ΘC are the parameters of the kernels
learnt during the training (along with their relative biases br,
bu, bC). X(t) (resp., H(t)) is the input (resp., the output) of
the model at time t.

IV. THE PROPOSED FORECASTING APPROACH

In this work, we employ a deep learning approach to
perform the network traffic forecasting task. Specifically,
our objective is to predict the load on network links given
historical records of traffic loads.

A. Problem Statement

We consider a telecom backbone network composed of a
set of nodes and a set of links connecting them. The traffic
exchanged among the nodes is assumed to be routed according
to the shortest path. The resulting traffic load measured on
the network at time t can be represented as a matrix X(t) ∈
RMX1
≥0 , where M is the number of links of the network.
Given the sequence of traffic loads measured during the

previous T time slots, it is possible to forecast the load at
time t + 1, ∀ links l ∈ {1, ...,M}, i.e., X(t+1), using well-
known machine learning techniques (e.g., a LSTM network).
However, whilst the topological properties of the network play
a significant role in the diffusion of the traffic (e.g., because
they constrain the traffic to flow only on existing paths), they
are not easy to consider using the common approaches.

Instead, we employ an existing deep-learning architecture
described in Section IV-B and based on the DCGRU described
in Section III-C that is specifically designed to take advantage
from the topological properties of graphs. To exploit this
additional information, we represent the traffic crossing the
network as a directed graph G that can be described by the
matrix X(t) ∈ RMX1

≥0 (which encodes the attributes of the M
nodes, i.e., the load for each link of the telecommunication
network) and by its adjacency matrix W, where wij = 1
iff li and lj are connected, and 0 otherwise, which encodes
the relation between the nodes. The forecasting problem is
formulated as follows:

X(t+1) = F
(
W,X(t−T), ...,X(t)

)
(14)

where F is the estimator that we learn by employing the
architecture described in the following.

B. DCRNN for Network Traffic Prediction

The deep-learning architecture proposed in [3] belongs to
the family of Sequence-to-Sequence deep-learning architec-
tures [14], which are characterized by an encoder and a de-
coder. The former learns a map between the input (which can
be a sequence of unknown length) and a fixed-sized encoding
vector. The latter learns how to map the encoding vector to the
output sequence. Encoder and decoder perform symmetrical
operations and are composed by the same (arbitrary) number
of layers. In the architecture described in [3] and employed
in our link load forecasting task, each layer is composed of
U DCGRU units described in Section III-C.

V. EXPERIMENTS

A. Experiment Setup

The objective of this work is to evaluate the ability of
different deep learning architectures to forecast the traffic load
on the links of a backbone network. In the following Sections,
we provide details about the considered network and about the
baseline methods that we use for comparison.

1) Dataset Preprocessing: We consider the backbone Abi-
lene network, of which several information are public1. For
example, its topology (characterized by 12 nodes and 30
unidirectional links connecting them) and some statistics of
a trace of real traffic crossing it is available. Specifically, we
know the volume of traffic, aggregated over slots of 5 minutes,
that is exchanged between each pair of nodes starting from
March 1st 2004 to September 10th 2004.

Assuming that traffic is routed considering the shortest
path between two nodes, we can compute the traffic load
on the links at each time slot. From this data, we have
derived another dataset that gives information about the traffic
load on each network link aggregated over slots of 1 hour,
which results in 4000 vectors with 30 components. These data
are arranged in cronological order and grouped together in
sequences of 10 vectors, which are used as input of the ML
algorithm. The output (i.e., the next value of the sequence to
predict) is a single vector obtained by applying a shift to the
corresponding sequence. Then, starting from the topology of
the Abilene network, we have obtained a 30X30 adjacency
matrix representing the graph whose nodes are univocally
associated with the network links and the edges encode the
relation among them (i.e., an edge exists iff the corresponding
links are connected in Abilene).

2) Deep Learning Architectures and Training Methodol-
ogy: We consider a DCRNN architecture composed of two
layers with 4 DCGRU units each. The first layer acts as
encoder and the second as the decoder. We compare the
DCRNN with the following baseline: a LSTM-based network,
a CNN-based network, a CNN-LSTM-based network and a
Fully-Connected Neural Network. The analysis of the hyper-
parameters, which we omit in this paper, led to select archi-
tectures with the following characteristics:
• The LSTM-based network is composed of 5 recurrent

layers with 20 LSTM units each
• The CNN-based network is composed of 1 layer that

implements the convolution using 32 kernels of size 2
• The CNN-LSTM-based network is composed of 1 recur-

rent layer of 20 LSTM units stacked on top of a CNN
layer (with 16 kernels of size 2)

• The Fully-Connected Neural Network is composed of
3 layers of 30, 20 and 10 units that apply a sigmoid
operation to their input

The sequences described in the previous Section are taken
in cronological order and divided such that 70% is used
for training, 20% for validation, and the remaining 10% for

1http://sndlib.zib.de/home.action

TABLE I
COMPARISON OF THE DEEP LEARNING ARCHITECTURES CONSIDERING THEIR ABILITY TO PERFORM THE FORECAST OF THE NEXT TRAFFIC LOAD

MAPE MAE (Mbit/s) RMSE (Mbit/s) Convergence Epoch Convergence Time (sec)
DCRNN 43.2% 92.5 497.1 225 525.1
LSTM 210.34% 142.43 525.21 87 19.83
CNN 234.75% 121.32 506.55 252 9.82
CNN-LSTM 248.16% 127.18 512.91 240 5.76
Fully-Connected 220.75% 138.24 522.65 201 3.14

testing. The training of the ML architectures is performed to
minimize the Mean Absolute Error (MAE) between predic-
tions and ground-truth and stops when no improvement on
the validation set is noticed for at least 50 training epochs.
The traning is performed using the Adam optimizer [15] with
initial learning rate set to 0.01. In the following Section, we
describe the results derived by averaging the results obtained
in 100 simulations.

B. Experiment Results

The first set of experiments evaluates the employed method
considering the Mean Absolute Percentage Error (MAPE), the
Mean Absolute Error (MAE) and the Root Mean Squared
Error (RMSE), as well as metrics related to the speed of
convergence, i.e., number of epochs and time at which training
is interrupted due to an early stopping event.

The results of the evaluation are summarized in Table
I, where it is possible to notice how the DCRNN method
significantly outperforms the baselines in MAPE, MAE and
RMSE. In particular, the MAPE drops from ∼ 210% obtained
with the LSTM-based architecture to ∼ 43% by using the
DCRNN. We notice also an improvement with respect to the
best MAE and RMSE (both obtained with the CNN-based
architecture) which decrease from ∼ 121 to ∼ 92 Mbit/s and
from ∼ 506 to ∼ 497 Mbit/s, respectively.

The improvement of the MAE of ∼ 30 Mbit/s with respect
to the best baseline is significant considering an average traffic
on links of ∼ 301 Mbit/s and that 50% of the measured
loads are below 180 Mbit/s (see Table II, where we show
several values of the percentile of the load on links). The
improvement of the RMSE is the least impressive. This result
can be explained saying that the DCRNN performs in general
a better prediction of the next link loads (as indicated by
the remarkable decrease of the MAPE), but it hardly predicts
sudden high peaks (i.e., burst events). We do not consider this
a limitation of the model, since the prediction of this type of
event is essentialy not possible. As for the convergence speed,
the time needed to train the DCRNN (i.e., ∼ 512sec) is one
order of magnitude higher than the LSTM-based architecture,
which presents the most time-consuming training process
among the baselines (i.e., ∼ 19sec). We underline that the
forecasting process introduces a negligible delay for all the
considered models.

A straightforward application of a reliable estimator of
traffic load is the early detection of congestion events. In
the second set of experiements, we assess the ability of our
approach to perform this task and we compare it with the

TABLE II
PERCENTILE OF THE LOAD MEASURED ON LINKS FOR THE TEST SET

25% 50% 75% 100%
Traffic On Links (Mbits/s) 59.67 180.33 389.41 5929.52

baselines. We assume that a congestion occurs on a link if the
traffic load is above a threshold that is directly proportional (of
a factor α) to the average amount of traffic observed on that
link. In this way, we perform a fair comparison that takes into
consideration the different patterns of link load that Abilene
presents. The evaluation is done considering the following
metrics: percentage of false positives, false negatives, true
positives and true negatives, from which we derive precision,
accuracy, recall and F-score.

In Table III we show the results obtained with α = 3 (i.e., a
link is congested when the volume of traffic is above 3 times
the average load). The DCRNN outperforms the baselines
for all the considered metrics. In particular, the precision
(i.e., the percentage of congestion predictions that are actually
congestion events) is increased of up to 25% with respect the
the best baseline (i.e., the LSTM-based architecture).

As far as the congestion prediction task is concerned,
the recall is the percentage of congestion events that are
correctly predicted, whereas the accuracy is the percentage
of correct predictions (being they referred to congestion or
normal loads). Hence, they both give essential indications to
a network operator that takes decision based on the likelihood
that congestion will (or will not) occur.

We depict the accuracy and the recall in Fig. 1(a) and Fig.
1(b), respectively, as a function of the threshold congestion
expressed by α ∈ [1.5, ..., 5]. We notice that the DCRNN
always outperforms the baselines also in this task. Increasing
α maens to limit the congestion events only to traffic volumes
that are significantly higher than the average link load. This
has two opposite effects on the accuracy and on the recall. In
fact, the accuracy increases as a consequence of the increased
number of non-congestion events, which positively affects the
number of correct classifications. Conversely, the recall shows
a general decrease with increasing α. This can be explained
considering that the models hardly predict very high and
sudden peaks, as already discussed in relation to the RMSE.
α = 5 represents the hardest conditions to detect a con-

gestion event. In this scenario, in fact, the DCRNN reaches
a recall of ∼ 34%, which means that 56% of the actual
congestions are not detected. Notice, however, that this result
is still 32% higher than the recall obtained by the best baseline

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

85

90

95

Threshold of congestion

A
cc

ur
ac

y
%

CNN
LSTM
Fully-Connected
CNN-LSTM
DCRNN

(a) Accuracy of the effectiveness to detect a congestion event

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

20

40

Threshold of congestion

R
ec

al
l

%

CNN
LSTM
Fully-Connected
CNN-LSTM
DCRNN

(b) Recall of the effectiveness to detect a congestion event

Fig. 1. Comparison of all the methods considering the ability to detect a congestion event in terms of Accuracy and Recall

TABLE III
COMPARISON OF THE DEEP LEARNING ARCHITECTURES CONSIDERING THEIR ABILITY TO DETECT A CONGESTION EVENT WHEN THRESHOLD FACTOR

α = 3

TP TN FP FN Accuracy Precision Recall F-score
DCRNN 1,97 94,70 0,93 2,40 96,67 67,93 45,01 54.14
LSTM 1,14 93,64 1,92 3,03 95,05 42,37 31,80 36,33
CNN 1,58 93,15 2,40 2,85 94,74 41.86 35,67 37,85
CNN-LSTM 1,36 93,57 1,98 3,08 94,93 40,71 30.70 34,93
Fully-Connected 1,15 93,44 2.11 0.029 94,91 41,31 32,94 36,45

(i.e., the CNN-based architecture).

VI. CONCLUSIONS

In this work, we employ an existing graph-based machine
learning algorithm (i.e., the DCRNN) to forecast the next
traffic load on the links of the backbone telecom network Abi-
lene. The main novelty of this appraoch is the ability to learn
a representation of the telecom network that considers both
the features (i.e., the load on the links) and the topological
relations among them (i.e., if the links are connected or not).
The DCRNN is compared to the baselines (e.g., LSTM and
CNN) considering the effectiveness of the forecasting and the
ability to detect congestion events. For example, a reduction of
the MAPE from 210% to 43% is observed. These promising
results suggest that the forecasting of events within a telecom
network may significantly benefit from using ML approaches
explicitely-designed to capture, along with the properties of
the events themselves, also the structure of the network.

VII. ACKNOWLEDGEMENTS

The work leading to these results has been supported by
the European Community under grant agreement no. 761727
Metro-Haul project and by the EU FP7 ERANET program
under grant CHIST-ERA-2016 UPRISE-IOT.

REFERENCES

[1] M. Joshi and T. H. Hadi, “A review of network traffic analysis and
prediction techniques,” CoRR, vol. abs/1507.05722, 2015. [Online].
Available: http://arxiv.org/abs/1507.05722

[2] R. Alvizu, S. Troia, G. Maier, and A. Pattavina, “Matheuristic with
machine-learning-based prediction for software-defined mobile metro-
core networks,” Journal of Optical Communications and Networking,
vol. 9, no. 9, pp. D19–D30, 2017.

[3] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” 2018.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[5] A. Azzouni and et al, “Neutm: A neural network-based framework for
traffic matrix prediction in sdn,” CoRR, vol. abs/1710.06799, 2017.

[6] Y. Liu and et al, “Short-term traffic flow prediction with conv-lstm,” in
Wireless Communications and Signal Processing (WCSP), 2017. IEEE,
2017, pp. 1–6.

[7] Q. Zhuo and et al, “Long short-term memory neural network for network
traffic prediction,” in ISKE. IEEE, 2017, pp. 1–6.

[8] X. Cao and et al, “Interactive temporal recurrent convolution network
for traffic prediction in data centers,” IEEE Access, vol. 6, pp. 5276–
5289, 2018.

[9] P. Bermolen and D. Rossi, “Support vector regression for link load
prediction,” Computer Networks, vol. 53, no. 2, pp. 191–201, 2009.

[10] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances
in Neural Information Processing Systems, 2016, pp. 3844–3852.

[13] X. Wang, C. Chen, Y. Min, J. He, B. Yang, and Y. Zhang, “Efficient
metropolitan traffic prediction based on graph recurrent neural network,”
arXiv preprint arXiv:1811.00740, 2018.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[15] D. P. Kingma and et al, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

