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Abstract 

This paper deals with a design strategy for the provision of fast-response synthetic inertia services from 

a grid-connected converter interfaced to the low-voltage grid by means of a constant power control 

structure, like the one traditionally implemented for renewables generators. The novelty introduced lies 

in the inclusion of the external grid characteristics in the definition of the current-controlled inertia loop; 

this analytical approach allows to predict the stability of the dynamics associated to the grid itself and 

to the converter during inertia provision. 

Introduction 

The integration of PQ-controlled generators in power systems is becoming a serious problem both as 

regards transmission networks as well as for low-voltage microgrids: the increase of renewables is 

causing a higher percentage of production to be interfaced to the grids by means of a regulation scheme 

that does not allow a direct feedback between the injected power and the actual balancing state of the 

system. 

According to European ENTSO-E directives [1], the provision of inertia services to the grid is becoming 

a factual problem [2]; at a national level, the Italian grid code has recently introduced new technical 

constraints for photovoltaic units connected to medium and high voltage public grids during over-

frequency transients: the converter should curtail active power at the interface according to a negative-

slope linear behaviour with respect to system frequency as soon as the higher limit of the dead-band is 

reached; this can be obtained by acting on the MPPT control of the PV generator. The intrinsic drawback 

of this approach lies in the fact that currently no constraints are prescribed when the network is 

undergoing an under-frequency condition. A possible solution consists in keeping a margin with respect 

to the Maximum Power Point Tracking (MPPT) conditions, to use such a reserve for grid sustainment 

in case of under-frequency [3]-[4]; however, this technique implies the knowledge of the maximum 

available power even in de-loading conditions to guarantee the regulation service when required [5]-[6]. 

Another possible solution consists in generating a transitory power response during frequency transients: 

this property goes under the name of synthetic inertia and it is defined as the capability of a PQ-

controlled converter to modulate its injected power when an external unbalance between load and 

generation is causing a frequency drift on the network. In this way it is emulated the presence of a 

rotating machine by means of electronic converters. For photovoltaic plants, a storage unit or a super-

capacitor has to be placed in parallel to the DC bus to be able to provide the required regulating energy. 

Consistent work has been done on numerical simulations related to the synthetic inertia implementation 

at a system level, considering both wind generators [7]-[8], storage and supercapacitor units [9]. Still it 

seems that a clear proposal for an analytical design of the control parameters that includes both the 

characteristics of the grid and the stability margins of the converter during regulation service is currently 

unavailable: this paper tries to focus the attention on such a perspective.  
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System model 

External grid model 

Consider the model of a three-phase grid-connected converter, interfaced to an external grid by means 

of a LC filter and a transformer (Figure 1.a); the grid is represented by an inductive-resistive impedance 

(𝑅𝑔, 𝐿𝑔)  in series with a sinusoidal voltage source (�̅�𝑔). 

 

 
 

Fig. 1: (a) Equivalent structure of the system and (b) linearized model of the grid used for frequency 

transients’ analysis. In the system structure is shown the convention adopted for power measurement. 

 

The fundamental frequency of the grid takes into account the primary regulation performed by the grid-

forming units and the inherent inertia of the system. Typically, the PQ converter acts as a constant power 

source, thus Δ𝑝𝑐𝑜𝑛𝑣 = 0; under these conditions the primary frequency regulation can be modelled 

according to (1) and (2), 

𝜔𝑔 =  𝜔𝑔𝑛 +  𝐾𝑔(𝑠) ⋅ Δ𝑝𝑔 (1) 

𝐾𝑔(𝑠) =
Δ𝜔𝑔

Δ𝑝𝑔
=

(1+𝑠𝜏)

𝑠2𝑇𝑎𝜏+𝑠 𝑇𝑎+𝐾𝑟𝑒𝑔
 (2) 

where 𝑇𝑎 is the equivalent inherent starting time of the inertia frequency regulation, 𝜏 is the delay 

associated to the primary regulation, 𝐾𝑟𝑒𝑔 is the regulating energy and  Δ𝑝𝑔 is the power imbalance on 

the grid, given by the difference between generation change and load change 𝛥𝑝𝑔 = 𝛥𝑝𝑔𝑒𝑛 − 𝛥𝑝𝑙𝑜𝑎𝑑. 

On the other hand, when synthetic inertia is introduced, the contribution Δ𝑝𝑐𝑜𝑛𝑣 of the PQ-converter 

during frequency transients is not null; thus, in the following, it will be developed a model whose aim 

is to underline the dynamics of the frequency transients during synthetic inertia provision.   

It is worth noting that all the values are referred to the per unit reference system of the converter, while 

in general the characteristics of the external grid are referred in respect to its nominal regulating power; 

thus the following base-transformation has to be performed: 𝑇𝑎 = 𝑇𝑎
′ ⋅ 𝐴𝑏

′  / 𝐴𝑏 , 𝐾𝑟𝑒𝑔 = 𝐾𝑟𝑒𝑔
′ ⋅ 𝐴𝑏

′  / 𝐴𝑏 

and 𝛥𝑝𝑔 =  𝛥𝑝𝑔
′ ⋅ 𝐴𝑏

′ / 𝐴𝑏, being 𝐴𝑏 the base power of the PQ converter and 𝐴𝑏
′  the one of the grid. This 

allows to take into account the mutual strength in terms of regulating power between the PQ converter 

and the external grid which is performing primary regulation (the external grid may be either another 

converter with droop control or a traditional generator). 

In this perspective, the proposed design model adapts both to the case of a strong power system or a 

weak droop-controlled microgrid in island mode, provided that the correct numerical values are used; 

in the following, it will be shown the formal equivalence in the two cases. In case of a portion of MV/HV 

grid is deliberately or unintentionally operated in island conditions, the converter represents the 

aggregate of all the renewable generators controlled with a PQ scheme. 

Non-linear system model  

Figure 2 shows the general structure of the control system: as in a traditional PQ scheme [10], an external 

DC-bus control with a slow pass-band defines the reference for the internal active power control; as for 

the reactive contribution, it is assumed an external constant reference 𝑄𝑟𝑒𝑓. 

 

(b) (a) 



 
Fig. 2: Structure of the control system. It consists of an external DC-bus voltage control and an internal 

power control; a frequency-locked loop (FLL) estimates the derivative of the angular frequency �̃̇�𝑔. An 

independent phase-locked loop (PLL) determines the estimated synchronous control frame �̃��̃�𝑠 with 

respect to the real one 𝑑𝑞𝑠. 

 

Considering the physical system (Figure 2), it is possible to derive the equation associated to the 

inductive filter, referred to the rotating frame 𝑑𝑞𝑠 aligned with the capacitor voltage �̅�𝑜, whose angle is 

𝜃𝑠. All the quantities are expressed in per unit as space vectors in the Park domain (𝑝 =  
𝑑

𝑑𝑡
): 

�̅� = �̅�𝑜 + 𝑗𝜔𝑠𝐿𝑓𝑖̅ + 𝐿𝑓
𝑝

𝜔𝑏
𝑖̅ + 𝑅𝑓𝑖 ̅ (3) 

In the equation above, 𝜔𝑠 represents the per-unit time-derivative of the angle 𝜃𝑠:  𝜔𝑠 = 𝑝𝜃𝑠/𝜔𝑏. 

To align the control system to the synchronous frame, the estimation �̃�𝑠 of the voltage angle is carried 

out by means of a phase-locked loop (PLL) algorithm generally used for the synchronization of PQ-

controlled units [10]. This generates the frame of the control system indicated as �̃��̃�𝑠 (Figure 2): the 

angular difference (𝜃𝑠 − �̃�𝑠) represents the error of the PLL. 

The dynamic of the DC-bus can be obtained from the capacitor power balance: 

𝑝 (
1

2
𝐶𝑑𝑐 ⋅ (𝑉𝑏 𝑑𝑐 ⋅ 𝑣𝑑𝑐

 )2) = (𝑝𝑑𝑐 ⋅ 𝐴𝑏 − 𝑝𝑖𝑛𝑣 ⋅ 𝐴𝑏) (4) 

𝐶𝑑𝑐 ⋅ 𝑣𝑑𝑐
 ⋅ 𝑝 𝑣𝑑𝑐

 ⋅ (𝑉𝑏 𝑑𝑐
2 /𝐴𝑏) = (𝑝𝑑𝑐 − 𝑝𝑖𝑛𝑣) (5) 

where 𝐶𝑑𝑐 is the capacitance of the DC-bus, 𝐴𝑏 and 𝑉𝑏 𝑑𝑐 are the values of base power and DC voltage, 

𝑣𝑑𝑐
  is the per-unit DC voltage and (𝑝𝑑𝑐 − 𝑝𝑖𝑛𝑣) represents the charging power of the capacitor in per 

unit. Defining 𝜏𝑑𝑐 = 𝐶𝑑𝑐 ⋅ 𝑉𝑏 𝑑𝑐
2 /𝐴𝑏 and assuming a lossless behaviour of the inverter, the following 

non-linear equation can be derived:   

𝜏𝑑𝑐𝑣𝑑𝑐 ⋅ 𝑝 𝑣𝑑𝑐 = 𝑝𝑑𝑐 − 𝑝𝑖𝑛𝑣 ≅ 𝑝𝑑𝑐 −   𝑅𝑒{�̅�𝑑𝑞𝑠
𝑖�̅�𝑞𝑠

 ∗ }  (6) 

As for the inertia control, it behaves as an additional active power reference proportional to the 

frequency approximate derivative �̃̇�𝑔; in order to extract the signal derivative avoiding the disturbances 

generated by numeric derivation, a QSOGI-FLL algorithm [11] has been introduced. It has been chosen 

to keep separate the derivative estimation from the synchronous-frame definition to increase the degrees 

of freedom associated to the design of the control system. According to [11], the linearization of the 

FLL block leads to the following approximation between the estimated derivative �̃̇�𝑔 and the real 

angular frequency 𝜔𝑔, where 𝜔𝐹𝐿𝐿 is the cut-off frequency of the QSOGI-FLL loop: 

�̃̇�𝑔 =
𝑠

1+𝑠/𝜔𝐹𝐿𝐿 
 𝜔𝑔 (7) 

The complete non-linear model associated to the dynamics of the system is reported in Figure 3 for 

completeness. All the quantities of the physical system are referred to the frame 𝑑𝑞𝑠, while the variables 

of the control are synchronous with the estimated one �̃��̃�𝑠.  

 



 
Fig. 3: Complete non-linear model of the system, which includes PQ-converter and grid dynamics. 

 

Linearized model  

Starting from the complete system (Figure 3), the linearized models for active and reactive power 

control, corresponding to direct and quadrature axis components, are shown in Figure 4. The following 

approximations are introduced during the derivation of the linearized system: 

• given its high pass-band, the effect associated to the PLL is negligible; thus 𝜃𝑠 − �̃�𝑠 ≅ 0 and a 

single frame 𝑑𝑞 can be considered, with angular frequency 𝜔𝑠; 

• assuming a small voltage drop on the filter, the magnitude of the Park voltage �̅�𝑜 is close to �̅�: 

|�̅�𝑜| =  |𝑉|  ≅ 𝑉𝑑 and 𝑣𝑜𝑞 
= 𝑣𝑞 = 0; 

• low power losses on the interface filter: 𝑝𝑖𝑛𝑣 = 𝑅𝑒{�̅�𝑑𝑞𝑠
𝑖�̅�𝑞𝑠

 ∗ } ≅ 𝑝𝑐𝑜𝑛𝑣 = 𝑅𝑒{�̅�𝑜 𝑑𝑞𝑠
𝑖�̅�𝑞𝑠

 ∗ }  

The DC-bus linearized dynamic is calculated as:  

𝜏𝑑𝑐( 𝑉𝑑𝑐+ Δ𝑣𝑑𝑐) ⋅ 𝑝( 𝑉𝑑𝑐+ Δ𝑣𝑑𝑐) = ( 𝑉𝑑𝑐+ Δ𝑣𝑑𝑐) ⋅ ( 𝐼𝑑𝑐+ Δ𝑖𝑑𝑐) -( 𝑉𝑑+ Δ𝑣𝑑) ⋅ ( 𝐼𝑑+ Δ𝑖𝑑) (8) 

By neglecting second order differentials and considering the derivative of the steady-state solution equal 

to zero, it is possible to derive:  

𝜏𝑑𝑐𝑉𝑑𝑐𝑝Δ𝑣𝑑𝑐 =  𝑉𝑑𝑐  𝐼𝑑𝑐 +   𝑉𝑑𝑐Δ𝑖𝑑𝑐 +   𝐼𝑑𝑐Δ𝑣𝑑𝑐 −  ( 𝑉𝑑  𝐼𝑑 +  𝑉𝑑  Δ𝑖𝑑 +  𝐼𝑑  Δ𝑣𝑑) (9) 

Now considering that  𝑉𝑑𝑐  𝐼𝑑𝑐 =   𝑉𝑑  𝐼𝑑 at steady state and assuming a negligible value of the voltage 

increase Δ𝑣𝑑, the final linear equation is retrieved and transformed to the Laplace domain: 

Δ𝑣𝑑𝑐 =
𝑉𝑑

 (𝐼𝑑𝑐−𝜏𝑑𝑐 𝑉𝑑𝑐 𝑠) 
Δ𝑖𝑑 −

𝑉𝑑𝑐

(𝐼𝑑𝑐−𝜏𝑑𝑐 𝑉𝑑𝑐 𝑠)
Δ𝑖𝑑𝑐 (10) 

 
Fig. 4: Linearized model for the design of the control system – direct (a) and quadrature (b) axis.  

(a) 

(b) 



The design of the selective inertia is performed including the external grid model into the linearized 

system. The linearized model allows to derive the equivalent open-loop function associated to the inertia 

control (Figure 5), which is given by: 

𝐿(𝑠) =
𝑠

1+𝑠/𝜔𝐹𝐿𝐿 
⋅

𝐾𝑖𝑛

1+𝑠𝜏𝑖𝑛 
⋅  𝐾𝑔(𝑠) ⋅ 𝐾𝐼(𝑠) (11) 

 
Fig. 5: Equivalent control loop associated to the inertia regulation. 

Inertia provision in droop-controlled microgrids 

Equivalence between primary regulation and droop models  

In this section it will be analysed the case of inertia provision for a low-voltage microgrid where primary 

regulation is carried out by means of droop control (grid supporting element in Figure 1). To exploit the 

above-mentioned model, a formal equivalence between droop and primary frequency regulation is 

carried out: in this way it will be analysed the equivalent inertia provided by the droop-controlled 

converters in island microgrids. Here it is considered the transfer function of the droop as generally 

presented in literature [12] - [13], including linear 𝑚 coefficient, equivalent delay introduced by the 

internal voltage control of the converter 𝜏𝑑𝑟𝑜𝑜𝑝 and time constant used for active power calculation 𝑇𝑝: 

𝐾𝑑𝑟𝑜𝑜𝑝(𝑠) =
Δ𝜔𝑔

Δ𝑝𝑔
=

1

(1+ 𝑠⋅𝜏𝑑𝑟𝑜𝑜𝑝)
⋅

𝑚

1+𝑠⋅𝑇𝑝
 (12) 

Droop transfer function (12) is formally equal to the one used for traditional grids (2). It is possible to 

retrieve the coefficients equivalence by pole comparison of (12) and (2), considering the small value of  

𝜏𝑑𝑟𝑜𝑜𝑝 (in particular 𝜏𝑑𝑟𝑜𝑜𝑝 ≪ 𝑇𝑝): 

𝜏 = 𝜏𝑑𝑟𝑜𝑜𝑝        Ta =
𝑇𝑝

𝑚
        𝐾𝑟𝑒𝑔 =

1

𝑚
 (13) 

The important result associated to the proposed method lies in the parallelism that can be obtained 

between high-inertia traditional systems and low-inertia microgrids; this enables the adoption of the 

proposed design model for selective inertia provision for both cases, simply changing the numerical 

values of the actual study case of interest.  

 

Inertia design for droop-controlled microgrids 

Consider the case of a droop-controlled microgrid; given the typical values of the droop parameters 

reported in literature [12] - [13], it is very common that a pole of the grid transfer function 𝐾𝑔(𝑠) (2) 

simplifies with the zero, thanks to the small value of the equivalent delay 𝜏 associated to the droop. 

Thus, in this case the equivalent transfer function of the grid can be approximated as a first order system: 

𝐾𝑔 (𝑠)|
𝜏→0

 ≅
1

𝑇𝑎𝑠+𝐾𝑟𝑒𝑔
 (14) 

Neglecting the effect of the internal current control generally much faster than the considered dynamics 

( 𝐾𝐼(𝑠) ≅ 1 ), the open loop function associated to the inertia control becomes (Figure 5): 



𝐿(𝑠) ≅
𝑠

1+𝑠/𝜔𝐹𝐿𝐿 
⋅

𝐾𝑖𝑛

1+𝑠𝜏𝑖𝑛 
⋅  

1

𝑇𝑎𝑠+𝐾𝑟𝑒𝑔
 (15) 

which, for 𝜔 <  1/𝜏𝑖𝑛, gives an approximate closed loop function (Figure 5) equal to: 

𝐾′
𝑔(𝑠) =

Δ𝜔𝑔

Δ𝑝𝑔
=

𝐾𝑔 (𝑠)

1+𝐿(𝑠)
≅

1

(𝑇𝑎+𝐾𝑖𝑛)⋅𝑠+𝐾𝑟𝑒𝑔
 (16) 

The introduction of the selective inertia moves the pole of the grid to lower frequencies, contributing to 

the slow-down of the frequency transients; the equivalent starting time becomes: 

𝑇𝑎
𝑒𝑞

= 𝑇𝑎 + 𝐾𝑖𝑛  for 𝜔 <  1/𝜏𝑖𝑛 (17) 

A sufficient condition for the stability of the inertia loop is given by  
𝐾𝑖𝑛

𝑇𝑎
< 1, as |𝐿(𝑗𝜔)| < 1 ∀ 𝜔. 

 
Fig. 6: (a) Bode diagram of the equivalent grid transfer function, with and without synthetic inertia 

provision in the case of microgrids. The introduction of the selective inertia moves the cut-off frequency 

of the grid function towards lower values. (b) Simplified open-loop function associated to the inertia 

control. 

 

Additionally, as the pole of the inertia regulator is moved to higher frequencies, the lower is the stability 

margin associated to the inertia loop. For 1/𝜏𝑖𝑛  ≅   𝜔𝐹𝐿𝐿 the sufficient condition becomes necessary as 

the crossing of the 0 dB axes occurs with slope -2: the system becomes unstable for the Bode criterion. 

Case study and results 

The proposed method has been validated considering the values associated to a PQ converter operated 

in parallel to a droop-controlled unit in island mode (grid supporting element in Figure 1). The two 

converters are characterized by the same nominal power; parameters used for the simulation are shown 

in Table I and Table II for the two converters respectively. 

Table I: System parameters for PQ converter 

Parameter Numeric value 

Base power 𝐴𝑏, Base angular frequency 𝜔𝑏 2.4 kVA, 2𝜋 ⋅ 50 rad/s 

Base voltages: 𝑉𝑏 (AC), 𝑉𝑏 𝑑𝑐 (DC) 200 V rms, √2 ⋅200 V 

Current 𝜔𝑐𝐼 and voltage 𝜔𝑐𝑉 loops cut-off frequencies  2𝜋 ⋅ 350 rad/s, 2𝜋 ⋅ 1 rad/s 

Filter parameters 𝑅𝑓 , 𝐿𝑓 0.0072 p.u. , 0.0448 p.u. 

FLL cut-off frequency 𝜔𝐹𝐿𝐿 100 rad/s 

Inertia control time constant 𝜏𝑖𝑛 60 rad/s 

Table II: Equivalent characteristic of the droop unit  

Parameter Numeric value 

Droop coefficient 𝑚  0.02 p.u. 

Droop time constant 𝑇𝑝 0.2 s 

Equivalent delay 𝜏𝑑𝑟𝑜𝑜𝑝 (2𝜋 ⋅ 50)−1 = 3.2 ms 

(b) (a) 



By recalling the formal correspondence between primary regulation and droop (13), it is possible to 

derive the equivalent grid parameters associated to this study case: 𝜏 = 3.2 ms, Ta = 10 𝑠, 𝐾𝑟𝑒𝑔 = 50 

p.u. associated to the model in (2). Poles and zeros can be approximated (for 𝜏 → 0) considering the 

linearized behaviour of the square root: 

𝑝1,2 = −
1

2𝜏
⋅ (−1 ± √1 −

4𝜏𝐾𝑟𝑒𝑔

𝑇𝑎
) ≅ {

𝑝1 ≅  −𝐾𝑟𝑒𝑔/𝑇𝑎

𝑝2 ≅ −1/𝜏
 (18) 

Leading to the cancellation of pole 𝑝2 with the corresponding zero 𝑧1 = −1/𝜏. 

In this case the exact values are: 𝑝1 =  −5 rad/s, 𝑝2 =  −309 rad/s, 𝑧1 =  −314 rad/s).   

 

 
  

Fig. 7: (a) Frequency transient profile and (b) estimated FLL derivative with different inertia provision 

in the case of droop-controlled microgrids. 

 

The derived stability condition is verified considering 𝐾𝑖𝑛 = 1.2 𝑇𝑎 : according to the mathematical 

model the system should tend to instability. This is confirmed by the simulation: oscillations occur as 

soon as the inertia loop is inserted (Figure 8). 

 

 
 

Fig. 8: Unstable behaviour for 𝐾𝑖𝑛 = 1.2 𝑇𝑎; this result confirms the mathematical correctness of the 

derived model.

(a) (b) 



Inertia provision in traditional grids 

Inertia design for traditional grids 

Synthetic inertia becomes especially useful in case primary regulation is performed by traditional 

machines with longer response delays during power transients. Differently from the case of droop where 

the time delay 𝜏 is negligible, for traditional grids the provision of primary regulation service occurs 

with an internal delay comparable with the grid starting time 𝑇𝑎. Under these conditions, the analysis of 

the equivalent grid transfer function 𝐾𝑔(𝑠) in Figure 9 shows the presence of a couple of complex 

conjugate poles with natural frequency 𝜔𝑛 = √Kreg/(𝑇𝑎𝜏)  and damping 𝜉 = 0.5 √Ta/(𝜏 𝐾𝑟𝑒𝑔) . In the 

common case where 𝜉 < √2/2, this gives rise to a resonance peak in 𝜔𝑝 ≅ 𝜔𝑛 that produces oscillatory 

behaviours in the frequency time-response. The introduction of the selective inertia changes the 

properties of the equivalent grid transfer function according to the procedure already shown in the case 

of a microgrid: 

𝐾′𝑔(𝑠) =
𝐾𝑔(𝑠)

1+𝐿(𝑠)
≅  

(1+𝑠𝜏)

𝑠2(𝑇𝑎𝜏+𝐾𝑖𝑛𝜏)+𝑠 (𝑇𝑎+𝐾𝑖𝑛)+𝐾𝑟𝑒𝑔
     for   𝜔 < 1/𝜏𝑖𝑛 (19) 

that corresponds to an equivalent natural frequency of 𝜔𝑛
′ = √𝐾𝑟𝑒𝑔/(𝑇𝑎𝜏 + 𝐾𝑖𝑛𝜏)  and a damping of  

𝜉′ = 0.5 √(Ta + 𝐾𝑖𝑛)/(𝜏 𝐾𝑟𝑒𝑔) . The introduction of the inertia provision reduces the equivalent natural 

frequency of the grid and increases the equivalent damping; the magnitude of the resonance peak reduces 

according to the diagram shown in Figure 9. 

 
Fig. 9: (a) Equivalent grid function without synthetic inertia (dashed line) and with synthetic inertia 

(dashed-dotted line); (b) open-loop transfer function of the selective inertia loop. All the quantities 

reported in the graph are analytically derived from the corresponding transfer functions. 

 

A sufficient condition for stability is  |𝐿(𝑗𝜔𝑝)| < 1 thus:  

𝐾𝑖𝑛

𝑇𝑎
< √

𝑇𝑎

𝐾𝑟𝑒𝑔𝜏
  (20) 

Case study and results 

The proof of the proposed approach has been verified by means of simulations, introducing the actual 

discretization both in the converter control and in the measurement of frequency derivative with the 

QSOGI-FLL algorithm. For equal comparison, it has been chosen a study case in which the regulating 

energy 𝐾𝑟𝑒𝑔 and starting time 𝑇𝑎 are the same as the ones considered in the microgrid case; on the other 

hand, the delay 𝜏 has been increased up to the values generally obtainable with the traditional primary 

regulation. Parameters used for the simulation are recalled in Table III while results are in Figure 10. 

(a) (b) 



Table III: System parameters for slow-regulation grids 

Parameter Numeric value 

Regulating energy 𝐾𝑟𝑒𝑔  50 p.u. 

Starting time 𝑇𝑎 10 s 

Equivalent delay 𝜏 0.5 s 

 

In the simulation, a load step-change with Δ𝑝𝑔 = −1 p.u. has been introduced at 𝑡 = 0.5 𝑠; results 

associated to the frequency value and to the measured derivative are reported below. 

 
 

 

 

 

 

 

Fig. 10: (a) Frequency and (b) measured derivative with inertia provision in the case of traditional grids. 

 

To assess the correctness of the derived mathematical model, transient characteristics derived from 

simulated behaviour are compared to the theoretical ones associated to the model (Table IV). Tables 

shows that the predicted dynamic properties are obtained also in the simulation: the correspondence 

confirms the correctness of the mathematical derivation. Moreover, it is possible to see that the inertia-

less case is characterized by a higher uncertainty due to the cancellation of higher-order dynamics.  

  

Table IV: Comparison between theoretical and simulated results 

Transient characteristic Case 
Expected 

value 

Simulated 

result 

Steady state value 

𝜔∗ = 𝜔𝑜 + Δ𝑃𝑔/𝐾𝑟𝑒𝑔   (Δ𝑃𝑔 = 1 𝑝. 𝑢. ) 
𝐾𝑖𝑛 = 0, 𝑇𝑎, 2𝑇𝑎 0.98 p.u. 0.98 p.u. 

Natural frequency 

𝜔𝑛
′ = √𝐾𝑟𝑒𝑔/(𝑇𝑎𝜏 + 𝐾𝑖𝑛𝜏) 

𝐾𝑖𝑛 = 0 3.16 rad/s - 

𝐾𝑖𝑛 = 𝑇𝑎 2.23 rad/s - 

𝐾𝑖𝑛 = 2 ⋅ 𝑇𝑎 1.82 rad/s - 

Damping factor 

𝜉′ = 0.5 √(𝑇𝑎 + 𝐾𝑖𝑛)/(𝜏 𝐾𝑟𝑒𝑔) 

𝐾𝑖𝑛 = 0 0.31 - 

𝐾𝑖𝑛 = 𝑇𝑎 0.44 - 

𝐾𝑖𝑛 = 2 ⋅ 𝑇𝑎 0.54 - 

Period of the oscillation 

𝑇 = 2𝜋/ (𝜔𝑛
′ ⋅ √1 − 𝜉′2)  

𝐾𝑖𝑛 = 0 2.09 s 2.13 s 

𝐾𝑖𝑛 = 𝑇𝑎 3.14 s 3.07 s 

𝐾𝑖𝑛 = 2 ⋅ 𝑇𝑎 4.12 s 4.21 s 

Overshoot 

 
(𝜔𝑚𝑖𝑛−𝜔∗)

 𝜔∗  = exp (− 𝜉′𝜋 / √1 − 𝜉′2)  

𝐾𝑖𝑛 = 0 40 % 70 % 

𝐾𝑖𝑛 = 𝑇𝑎 22 % 35 % 

𝐾𝑖𝑛 = 2 ⋅ 𝑇𝑎 14 % 18 %  

(a) (b) 



Conclusion 

In this paper are analysed the effects associated to the introduction of a synthetic inertia loop in the 

control of a power converter. Starting from the traditional PQ scheme generally adopted for renewables 

or storage applications, an additional current feedback with an approximated derivative controller has 

been considered. 

Starting from the non-linear model of the control, the simplified linearized system has been derived with 

the objective of inertia parameters tuning; the proposed method has been validated considering both the 

case of a droop-controlled microgrid and the one of a power network with traditional primary regulation. 

The analysis confirms the strong effect of the control parameters on the system stability and the 

mathematical validity of the proposed model. In this perspective, it becomes evident the need to estimate 

in real-time the equivalent system inertial properties to introduce an automatic tuning of the parameters 

associated to the control. This aspect could be developed in future works.  
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