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Motivation
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Model formulation

The orbit of a massless Earth’s satellite in high orbit (no drag) can be
modelled as a perturbed Keplerian motion

H = Hkep + Hzonal + Hthird-body

Keplerian part:

Hkep = − µ

2a
Zonal Harmonics:

Hzonal = −µ
r

∑
j≥2

(
R⊕
r

)j

Cj ,0Pj ,0(sinφ)

Third-body attraction (Sun and Moon):

Hthird-body = −µ
′

r ′

(
r ′

||r − r′|| −
r · r′
r ′2

)
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Equatorial reduction

Express all positions in the equatorial frame

Satellite’s position: x
y
z

 = R3(−Ω)R1(−i)R3(−θ)

 r
0
0


Moon’s position: x$

y$
z$

 = R1(−ε)R3(−Ω$)R1(−i$)R3(−θ$)

 r$
0
0


Sun’s position: x�

y�
z�

 = R1(−ε)R3(−θ�)

 r�
0
0


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Equatorial reduction

Reduction of the J2 part of the Hamiltonian:

HJ2 =
µ

r

(
R⊕
r

)2

J2P2(sinφ)

where
sinφ =

z

r

We average over the satellite’s mean anomaly to get:

H̄J2 = H̄J2(a, e, i ,−,−,−;µ, J2,R⊕) =
J2R⊕µ(3 sin2 i − 2)

4a3η3

with η =
√

1− e2.
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Equatorial reduction

Reduction of the Sun’s perturbing effect

H� = −n�a3�
r�

(
r

r�

)2

P2(cosψ�)

where

cos(ψ�) =
xx� + yy� + zz�

rr�

H� = H�(a, e, i ,Ω, ω,M, θ�; n�, a�, ε)

We average in closed form over the satellite’s mean anomaly

H̄� = H̄�(a, e, i ,Ω, ω,−, θ�; n�, a�, ε)
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Equatorial reduction

Reduction of the Moon’s perturbing effect

H$ = −β
n$a3$
r$

(
r

r$

)2

P2(cosψ$)

where

cos(ψ$) =
xx$ + yy$ + zz$

rr$

H$ = H$(a, e, i ,Ω, ω,M,Ω$, θ$;β, n$, a$, i$, ε)

We average in closed form over the satellite’s mean anomaly

H̄$ = H̄$(a, e, i ,Ω, ω,−,Ω$, θ$;β, n$, a$, i$, ε)
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Equatorial reduction

We average one more time again in closed form, over the Moon’s
mean anomaly

¯̄H$ = ¯̄H$(a, e, i ,Ω, ω,−,Ω$,−;β, n$, a$, i$, ε, η$)

The full system is
¯̄H = H̄ + H̄� + ¯̄H$

and has 2.5 degrees of freedom

¯̄H = ¯̄H(a, e, i ,Ω, ω,−,Ω$, θ�;µ, J2,R⊕, ε, n�, a�, n$, a$, η$)

If we try to further reduce the system by an elimination of the
satellite’s node, time-dependent terms associated with Ω$ and θ�
still remain.
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Ecliptic reduction

Express all positions in the ecliptic frame

Satellite’s position: ξ
η
ζ

 = R3(−Ω)R1(−i)R3(−θ)

 r
0
0


Moon’s position: ξ$

η$
ζ$

 = R3(−Ω$)R1(−i$)R3(−θ$)

 r$
0
0


Sun’s position:  ξ�

η�
ζ�

 = R3(−θ�)

 r�
0
0


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Ecliptic reduction

Reduction of the J2 part of the Hamiltonian:

HJ2 =
µ

r

(
R⊕
r

)2

J2P2(sinφ)

The relation between equatorial and ecliptic coordinates is simply x
y
z

 = R1(−ε)

 ξ
η
ζ


and

sinφ =
z

r
=
ζ cos(ε) + η sin(ε)

r
We average in closed form over the satellite’s mean anomaly

H̄J2 = H̄J2(a, e, i ,Ω,−,−;µ, J2,R⊕, ε)
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Ecliptic reduction

Reduction of the Sun’s perturbing effect

H� = −n�a3�
r�

(
r

r�

)2

P2(cosψ�)

where

cos(ψ�) =
ξξ� + ηη� + ζζ�

rr�

H� = H�(a, e, i ,Ω, ω,M, θ�; n�, a�)

We average in closed form over the satellite’s mean anomaly

H̄� = H̄�(a, e, i ,Ω, ω,−, θ�; n�, a�)
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Ecliptic reduction

Reduction of the Moon’s perturbing effect

H$ = −β
n$a3$
r$

(
r

r$

)2

P2(cosψ$)

where

cos(ψ$) =
ξξ$ + ηη$ + ζζ$

rr$

H$ = H$(a, e, i ,Ω, ω,M,Ω$, θ$;β, n$, a$, i$, ε)

We average in closed form over the satellite’s mean anomaly

H̄$ = H̄$(a, e, i ,Ω, ω,−,Ω$, θ$;β, n$, a$, i$, ε)

June 19, 2018 — I. Gkolias — High Earth orbits — Page 14 of 27



Ecliptic reduction

We average one more time again in closed form, over the Moon’s
mean anomaly

¯̄H$ = ¯̄H$(a, e, i ,Ω, ω,−,Ω$,−;β, n$, a$, i$, ε, η$)

The full system is
¯̄H = H̄ + H̄� + ¯̄H$

and is still of 2.5 degrees of freedom

¯̄H = ¯̄H(a, e, i ,Ω, ω,−,Ω$, θ�;µ, J2,R⊕, ε, n�, a�, n$, a$, η$)

However, in this representation, the time-dependencies appear
coupled with the satellite’s ecliptic node.
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Ecliptic reduction

Therefore, we can proceed with a further elimination of the ecliptic
node. This is accomplished by working in a suitable rotating frame
and is a valid operation when the perturbations are of the same
order, i.e. for distant Earth’s satellites.

¯̄HJ2 =
J2R

2
⊕µ(3 cos2 i − 1)(3 sin2 ε− 2)

8a3η3

¯̄H� = a2n2�

(
−15

16
e2 cos 2ω sin2 i +

1

16
(2 + 3e2)(3 sin2 i − 2)

)

¯̄̄
H$ = −

a2n2$β(3 cos2 i$ − 1)((2 + 3e2)(3 cos2 i − 1) + 15e2 sin2 i cos 2ω)

32η2$
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Ecliptic reduction

The reduction on the ecliptic results in a 1 D.O.F Lidov-Kozai type
Hamiltonian

¯̄̄
H =

A

η3
(2− 3 sin2 i) + B((2 + 3e2)(2− 3 sin2 i) + 15e2 sin2 i cos 2ω)

where

A = −J2R⊕µ
8a3

(2− 3 sin2 ε)

and

B = − 1

16

(
n2� +

n2$
η$

β
3 cos2 i$ − 1

2

)
a2
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Study of the reduced model

We introduce the non-singular elements

k = e cosω, h = e sinω

and the equations of motion are

dk

dt
= −
√

1− h2 − k2

na2
dV (k, h)

dh

dh

dt
=

√
1− h2 − k2

na2
dV (k, h)

dk

Equilibrium points: dk/dt = dh/dt = 0

Stability determined from the eigenvalues of the linearised system

Parameter space of (a,icirc)
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Bifurcation diagram
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Phase-space study
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Phase-space study
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Phase-space study
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Phase-space study
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Bifurcation diagram vs numerical simulations
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Disposal design
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Conclusion

We have reduced the problem of high Earth satellites using an
ecliptic representation

The resulting 1 D.O.F system describes the in-plane stability

We studied the reduced phase-space by computing the equilibrium
points and their stability

We have calculated the bifurcation diagram

Further work:

Recover the short-periodic terms

Add more perturbations, J22 and up to P4 for the Moon

Study the equilibria and their bifurcation on a sphere

Exploit the reduced dynamics for preliminary mission design
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Fast re-entering orbits
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High Earth Orbits lifetimes

June 19, 2018 — I. Gkolias — High Earth orbits — Page 29 of 27



Effective cleansing mechanism
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