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Abstract—Physical resources are highly virtualized in today’s
datacenter-based cloud-computing networks. Servers, for ex-
ample, are virtualized as Virtual Machines (VMs). Through
abstraction of physical resources, server virtualization enables
migration of VMs over the interconnecting network. VM migra-
tion can be used for load balancing, energy conservation, disaster
protection, etc. Migration of a VM involves iterative memory copy
and network re-configuration. Memory states are transferred
in multiple phases to keep the VM alive during the migration
process, with a small downtime for switchover. Significant net-
work resources are consumed during this process. Migration
also results in undesirable performance impacts. Suboptimal
network bandwidth assignment, inaccurate pre-copy iterations,
and high end-to-end network delay in wide-area networks (WAN)
can exacerbate the performance degradation. In this study, we
devise strategies to find suitable bandwidth and pre-copy iteration
count to optimize different performance metrics of VM migration
over a WAN. First, we formulate models to measure network
resource consumption, migration duration, and migration down-
time. Then, we propose a strategy to determine appropriate
migration bandwidth and number of pre-copy iterations, and
perform numerical experiments in multiple cloud environments
with large number of migration requests. Results show that our
approach consumes less network resources when compared with
maximum and minimum-bandwidth provisioning strategies while
using an order of magnitude less bandwidth than maximum-
bandwidth strategy. It also achieves significantly lower migration
duration than minimum-bandwidth scheme.

I. INTRODUCTION

Public and enterprise Internet services are increasingly run-
ning over cloud-computing systems hosted in geographically-
distributed datacenters interconnected by wide-area networks
(WANSs) [1]. Datacenter physical resources and networks are
generally virtualized [1] [2] [3]. Servers are virtualized to
support one or more Virtual Machines (VMs), which in turn
host applications and services. Among other benefits, virtu-
alization enables seamless migration of VMs across physical
servers. Live migration has been shown to be beneficial for
cloud providers with single or multiple datacenters [4] [5] [6].
While migration within a single datacenter over a local-area
network (LAN) has been commonly used, recently migrations
across datacenters over WANs are also becoming popular [7].
Due to much larger network delays, difficulty in migrating
VM configurations, and, in many cases, unavailability of
sufficient bandwidth, migrations over a WAN require different
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considerations than over a LAN. Different aspects of WAN
migration are addressed in several studies [4] [5] [7] [8].

VM migration is performed in multiple steps. A network
connection is first established between source and destination
locations. VM memory, and optionally disk-storage, states
are then transferred in multiple iterations, called pre-copy
iterations. In the first iteration, the full memory, and optionally
disk storage, is transferred. Successive iterations transfer only
the delta, or the modified/dirtied part of the memory (see
Section III for details). Finally, the VM is stopped at the source
location, and it is re-configured and resumed at the destination
location. The last step incurs a small downtime during which
the VM is unavailable. The rate at which a VM modifies
or dirties its memory (or disk storage) is called memory-
dirtying rate, a key characteristic impacting migration. Each
of these migration steps requires a significant amount of
computation which can cause performance degradation of the
VM. Allocating sufficient network bandwidth for migration
can reduce migration downtime and performance degradation.

Depending on the constraints and objectives of migrations,
cloud providers may wish to minimize any of three perfor-
mance metrics: migration duration, downtime, and network
resource consumption. For some cloud applications, limiting
migration downtime is of utmost importance [9] [10], while for
others, optimizing network resource consumption is necessary
[11] [12]. Additionally, VM migrations may have to meet
a constraint on acceptable downtime [13], in which case
reducing migration duration to meet this constraint is impor-
tant. While higher network bandwidth can reduce migration
downtime, it can increase resource consumption. Also, as
network bandwidth is scarce and an expensive resource,
provisioning very high bandwidth for migrations may not
be possible. On the other hand, bandwidth can be decreased
to reduce resource consumption but will increase migration
duration and downtime. Number of pre-copy iterations has
similar effect, with increased number of iterations causing
high migration duration but low downtime. Some state-of-the-
art solutions use a minimum possible bandwidth that could
achieve a certain constraint (e.g., downtime constraint) to per-
form migrations [4]. While this strategy performs well under
certain conditions, it is far from optimal, as we demonstrate
through our experimental results in this study.

In this study, we first analyse and understand the char-
acteristics of a VM migration over a WAN. To this end, we
derive comprehensive models — based on existing studies



— to quantify three characteristics of a VM migration
over a WAN, namely total duration, migration downtime,
and resource consumption. We then perform numerical
analysis to demonstrate the applicability of these models
in a cloud environment. These results also help us to
identify control parameters to perform migrations more
efficiently,. We then propose a strategy to identify an
appropriate value of this control parameter, which is then
used to calculate an effective migration bandwidth and
number of pre-copy iterations to optimize performance
characteristics and achieve any desired performance goals.
Finally, we use this strategy in multiple cloud environments
to perform migrations and discuss experimental results. In
a nutshell, we propose a bandwidth-provisioning strategy
that receives migration request information as input, and
determines bandwidth and pre-copy iteration count as output
to find a balance among all three metrics to meet performance
goals.

The rest of this study is organized as follows. In Section II,
we discuss recent related studies. In Section III, we derive
models that quantify VM migration performance metrics. In
Section IV, we identify key aspects and controllable param-
eters of these models; and based on these observations, we
propose a bandwidth—provisioning strategy. In Section V, we
present results of our strategy in multiple simulated cloud
environments. Finally, Section VI concludes our study.

II. RELATED WORK

VM migration over WAN has been investigated in previous
research works. Refs. [4] [8] demonstrate the usefulness and
practicality of live VM migration over a WAN, and discuss
results on migration duration and downtime. A practical ex-
ample of VM migration over WAN with acceptable downtime
is presented in [8]. Experimental results with a range of
VMs and applications are presented in [4], where the authors
propose a rate-limiting strategy to dynamically adapt migration
bandwidth depending on the memory-dirtying rate during
one iteration. A special case of this approach is explored in
our previous work [12]. However, re-provisioning migration
bandwidth in each iteration can add significant overhead
for resource allocation and de-allocation. Ref. [7] proposes
VM migration over a WAN employing several optimization
techniques, such as stop-and-copy, use of memory-page delta,
content-based redundancy, etc. Experimental results are pre-
sented after applying these techniques to applications with
different workload characteristics.

Other research studies have analysed VM migration char-
acteristics [9], [14], [15], [16]. Ref. [9] presents models to
predict migration performance for specific workloads on a Xen
virtual machine monitor, noting that network bandwidth and
VM memory-dirtying rate are key factors impacting migration
characteristics. Ref. [15] presents performance models for
varying amount of available CPU resources and VM char-
acteristics. Ref. [14] provides an intuitive model for migration
duration, migration energy, and resource consumption, based
on provisioned bandwidth and VM characteristics. However,
they are specifically applicable to migrations over a LAN.

We took inspiration from [14] and proposed initial models
for migrations over a WAN in [12]. In our current study,
we generalize the approach in [12] by proposing models
which depend on provisioned bandwidth, VM characteristics,
and inter-iteration delay (which may depend on end-to-end
network delay). Several existing studies consider a range of
bandwidths for migration over a WAN, for example, Ref. [7]
considers from few Mbps to few Gbps, and finds that migration
performance metrics vary for different bandwidths. Similar
results are presented in [9], where three bandwidth values are
considered: 100 Mbps, 1 Gbps, and 10 Gbps. The authors
suggest that network bandwidth and memory-dirtying rate
have non-linear effect on migration performance, and note that
the ratio of memory-dirtying rate and provisioned bandwidth is
a key factor. In our previous study [12], we proposed a two-
stage bandwidth provisioning strategy as a special case for
heterogeneous bandwidth (vs. homogeneous bandwidth)
provisioning. In our current study, we extend the models
presented in [12] to quantify VM migration characteristics
in a more comprehensive manner. Based on the models
and numerical experiments, we emphasize that the main
controlling parameter to optimize migration performance
is the ratio of bandwidth and memory-dirtying rate. We
then propose a strategy to identify suitable values of this
parameter and, as a result, value of migration bandwidth.

Ref. [13] proposes a scheme to limit the number of iterations
in the pre-copy phase to satisfy a downtime constraint or a
desired ‘progress’ of memory copy in successive iterations.
This scheme performs the minimum number of iterations to
meet this constraint. While minimum number of iterations
is necessary, it is not clear if it is also sufficient. Ref. [9]
takes a similar approach. In addition, it restricts the number
of iterations to a maximum value in case other conditions fail.
Our work demonstrates that the minimum number of iterations
(to achieve a downtime constraint) is also sufficient to optimize
migration performance.
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Fig. 1: An example cloud system with VM migrations.

III. MODELING VM MIGRATION

VM migration across datacenters requires additional net-
work resources in a WAN. Figure 1 shows an example of a
nationwide cloud system with multiple datacenters, connected
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Fig. 2: Timing diagram of iterative pre-copy-based VM migration technique.

by a WAN. VMs are migrated in this cloud system across
datacenters. These migrations generate significant amount of
traffic in the WAN, adding to the already-existing user traffic.
As VM migrations become key operational technique, WAN
will require significant additional network resources [6] [7].
We consider an iterative pre-copy-based live migration [7]
[8] [14]. Figure 2 shows an example timing diagram of this
process. In the first iteration, the entire VM memory, say
Vi Mb, is copied to the destination. During this iteration,
part of the VM memory at the source gets modified, or
‘dirtied’, again. The next iteration, therefore, copies only
the dirtied memory from the previous iteration. Similarly,
the following iteration copies the dirtied memory from this
iteration, and so on. We consider a small delay, 7 seconds,
between subsequent iterations caused by a combination of
end-to-end network delay (round-trip time (RTT)) and data-
processing delay. Duration of each iteration, therefore, consists
of memory transmission time and the inter-iteration delay, 7.
The iterative copy phase is stopped when a predefined number
of iterations has been performed or the amount of dirtied
memory is low enough to achieve a desired downtime. A final
stop-and-copy phase is then started. In this phase, the VM
is first stopped at its source, dirtied memory is copied, and
the network is re-configured before bringing the VM up at
the destination location. This phase may also involve request
rerouting and redirection [5]. This last stop-and-copy phase
causes VMs and hosted applications/services to be unavailable.
Duration of this downtime largely depends on the amount of
dirtied memory that needs to be copied in the last iteration.

A. VM Migration Modelling

To develop an analytical model of VM migration, we need
to identify the duration and/or amount of dirtied memory in
each iteration. How fast a VM dirties its memory depends
on the characteristics of the VM and its hosted applications.
While this amount may vary for different iterations, a constant
average dirtying rate can be assumed for a particular VM [6]
[9] [14]. We denote this dirtying rate by D Mbps, number
of iterations in the pre-copy phase by n, amount of memory
transferred in iteration ¢ by V; Mb, and duration of this
iteration by 7; seconds. Note again that T} consists of memory
transmission time and inter-iteration delay, 7. Memory copied

during iteration one, Vi, is equal to the size of VM memory,
Vas. If the provisioned bandwidth for migration is R Mbps,
data transmitted in round ¢ can be stated as:
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Duration of iteration ¢ can be calculated as:

ifi=1
otherwise
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Here, A\ = D/R, which is the ratio of the memory-
dirtying rate and the provisioned bandwidth, and is a
key parameter in this study. We assume the value of )\
is always less than 1, i.e., the migration bandwidth, R, is
always larger than memory-dirtying rate, D. Otherwise,
the iterative phase will make no progress as the memory
will be dirtied faster than transfer of the dirty memory.
Now, the duration of iteration 1, 2, 3, 4 ... is given by:
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Additionally, 7} can be represented as 7; = %)\O +
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Fig. 3: Migration duration and downtime for different D and .

Total migration time, T},;4, can now be expressed as:

n
Tmig = ZE + tdown

i=1
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where g, 1S the duration of stop-and-copy phase, during
which the VM is unavailable. This downtime includes final
memory copy and network reconfiguration time. Given that
the iterative phase performs n iterations, amount of dirtied
memory to be transferred after VM is stopped, V?, equals:

1—-A"
Vi=T,XxD=Vy\"+r1 D
1—-A
Therefore, duration for which the VM is down is given by:
Ve Vi
tdown = — +tg = —A" + AT ty 3
d 7 tte= AT — + (3)

where t, is the network re—conﬁguratlon time, denoting the
time required to perform necessary reconfiguration to route
requests to the new VM location. Finally, network resource
consumption can be represented by:

Wmig = Tmig x R. (4)

For sake of clarity, let us evaluate these models using
some numerical examples. Following Egs. (2) and (3), Fig.
3 presents total migration time and migration downtime for
VMs with 4 GB of memory and dirtying rates of 50 Mbps,
250 Mbps, and 500 Mbps as a function of A = D/R. We
note here that, for a particular D, ) is inversely proportional
to provisioned bandwidth, R. Each point in Fig. 3 is calculated
by applying Eqgs. (2) and (3) for a given value of A and
D. Inter-iteration delay, 7, and network reconfiguration time,
t4, are considered on the order of few hundred milliseconds.
The y-axes in these figures represent migration duration and
downtime in seconds, while x-axes represent A values. Note
that the trend of migration duration (and downtime) with
decreasing value of A follows a similar pattern for VMs with

varying dirtying rates. These results (and additional unreported
results) exhibit close similarity to published data [4] [7] [8] [9]
[15] [13] [17], validating further usefulness of these models.

B. Migration Control Parameters

Numerical results from our models, specifically from Egs.
(2) and (3), show that, for a particular VM, migration duration
and downtime can be controlled by adjusting two parameters:
provisioned bandwidth, R, and number of iterations, n. The
results also show that A\ is more important in determining
migration performance than provisioned bandwidth alone. In
fact, migration performance can be better optimized with a
fixed value instead of using a fixed bandwidth for all VM mi-
grations (as in prior solutions). Similar observation is made in
[9]. To further illustrate, let us first evaluate a simple example
strategy which provisions a fixed amount of bandwidth for all
migrations. Our goal is to show how ineffective this strategy
can be in certain scenarios. Let the fixed bandwidth used in
this strategy be 100 Mbps. Migrating a VM with dirtying rate
of 250 Mbps using this strategy (making A\ = 250/100 = 2.5)
will result in a very high migration downtime. This is because
the VM memory will be dirtied faster than it can be transmitted
using the provisioned bandwidth, causing the iterative phase
to not make any significant progress and the last stop-and-
copy phase to have higher duration. On the other hand, this
strategy will perform well when migrating a VM with dirtying
rate 10 Mbps (A = 10/100 = 0.1). But the provisioned
bandwidth is unnecessarily high and will be underutilized. So,
this strategy not only performs bad for the pathological case of
A > 1.0 but also for other scenarios. This is further supported
by the numerical results in the next few sections.

Now, as opposed to the previous strategy, we aim to main-
tain a fixed A value for all migrations, say 0.4. Provisioned
bandwidth for migrating the VM with dirtying rate 250 Mbps
is R =250/0.4 = 625 Mbps, and for VM with dirtying rate
10 Mbps, its R = 10/0.4 = 25 Mbps. Migration duration
and downtime for the first VM is significantly lower with
this strategy compared to the fixed-bandwidth strategy. For the
second VM, while these values are similar for both strategies
(higher bandwidth does not notably reduce migration duration
and downtime for the VM with low dirtying rate), network
resource consumption, as defined in Eq. (4), is significantly



lower with this strategy. For both migrations, this strategy
is able to achieve reasonable migration performance when
the previous strategy fails to do so. Therefore, we can say
that A is a more suitable control parameter for migrations
than bandwidth. However, note that identifying an optimal A
value is a challenging task as it involves optimising metrics
defined in Egs. (2), (3), and (4). In this study, using the above
analytical models and numerical experiments and observations,
we investigate strategies to determine optimum A value(s) for
all migrations. We also investigate the optimum value for
number of pre-copy iterations (n).
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Fig. 4: Migration duration for different iterations and .
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IV. BANDWIDTH-—PROVISIONING STRATEGY

To determine optimal A and n for VM migrations, we
first present results from numerical experiments using models
established in the previous section. We then observe patterns of
these results to devise a strategy. This strategy will receive VM
migration details as input, and determine A\ and n values. From
the A value, we can calculate required migration bandwidth,
R = D/X. As noted earlier, a VM migration request may
contain a desired downtime constraint. The values of R and n
for those requests must ensure that the experienced downtime
respects this constraint. In addition, the R and n values
from this strategy should lead to a balance among all three
performance metrics, namely migration duration, downtime,

and network resource consumption. In some cases, we also
consider optimizing only a subset of these metrics.

A. Preliminary Observations

1) Influence of n on Ty,;4: Given Egs. (2) and (3), Fig. 4
shows total migration duration for different values of A and n
[9]. The y-axis shows total migration duration in seconds and
the x-axis represents the number of iterations. Total migration
duration decreases steadily with decreasing iterations for all
A values. This is because performing more iterations results
in longer duration. Therefore, we observe that, if migration
duration is to be minimized for a VM, it is favorable to perform
as few iterations as possible, and provision as high bandwidth
(lower \) as possible. However, if there is any constraint on
downtime, it will impose a lower limit on the number of
iterations to meet this constraint. This is also observed in [13],
where the authors suggest performing the minimum number
of iterations that ensures downtime within allowable limit.

2) Influence of n on tyown: Figure 5 shows minimum
required number of iterations that achieves a given downtime
constraint for varying A and dirtying rates. We consider migra-
tion downtime constraint values that are uniformly distributed
between 1s to 1.2s with 7 ~ 0.7s and ¢, ~ 0.5s." The x-axis
shows a range of X\ values starting from 0.9. As in [9] and
[13], we restrict maximum number of iterations to 30, when
necessary, to stop the iterative phase. For higher values of A,
minimum required number of iterations is much larger than
30, and in some cases may never be achievable. Those cases
are stopped after 30 iterations, as shown in the figure. On the
other hand, with decreasing values of A\, minimum number of
required iterations decreases rapidly. However, after a certain
point, the minimum number of iterations does not change
significantly any more. From these results, we gain another
observation: a lower X value is desirable to reduce minimum
required number of iterations; but if \ value is low enough,
the required number of iterations does not change drastically,
and there is no significant advantage in further decreasing .

3) Influence of n and A on Wp,;4: Figure 6 shows resource
consumption, Wp,;,, in Megabits (Mb), for decreasing A
values. Minimum required number of iterations is performed
for these migrations to ensure a downtime constraint (uniform
between 1 sec and 1.2 sec). We see that resource consumption
reduces fast with decreasing A, especially in case of higher
A values. We noted similar results for migration duration
in Fig. 3(a). For both high and low dirtying rates, Fig. 6
shows that W,,;, converges fast as we decrease A\ values, and
beyond a threshold (x0.4), it does not decrease as quickly. For
higher dirtying rate, Fig. 6(a) shows that resource consumption
starts to increase if A\ values are decreased beyond a certain
threshold. This is because a lower \ value translates to higher

'Note that tg and 7 values depend on network round-trip-time (RTT).
Assuming few hundred msec as a reasonable RTT for the example network in
Fig. 1 and another few hundred msec for the processing time at the source and
destination hosts, 7 and t4 values remain below one second. But the value of
7 will generally be higher than ¢4 as each migration iteration involves more
processing than the final re-configuration. Throughout our experiments, we
consider 7 between 0.5 to 0.75 and ¢4 ~ 0.5. These values are conservative
and for illustration purpose only. Different values can be used for evaluation.
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bandwidth. Although higher migration bandwidth causes faster
transmission of VM memory, resource consumption, W4,
increases due to slower decrease of T,;4, as shown in Fig.
3. This trend is not similar for lower dirtying rate, as seen
in Fig. 6(b), in which cases, resource consumption does not
change significantly beyond a threshold A\ value. A values
beyond which W,,,;, starts to increase in Fig. 6(a) and remains
unchanged in Fig. 6(b) are both close to 0.1 to 0.15. Note that
these observed trends are due to the non-linear relationship
presented in Egs. (2) to (4).

From the above observations, we surmise that migration
performance metrics are optimized for most migrations if A
values are within a range. These experiments show that this
range is somewhere from 0.4 to 0.1. To generalize, let us
assume that VM migrations can be optimized if A\ values are
constrained within a range, say Ay to Ap. This range can
be estimated to be Ay = 0.4 to A\, = 0.1 from the results
presented above. We make one more general observation from
the results: higher X\ values lead to good performance results
in case of higher dirtying rate and lower \ values perform
well enough for lower dirtying rates. This is because, not only
lower A values translate to high enough provisioned bandwidth
for low dirtying rates, but higher A\ values translate to high
migration bandwidth for high dirtying rates as well. This also
avoids the extreme cases of unnecessarily high bandwidth (if
low A value was used for high dirtying rate) or insufficient low
bandwidth (if high A value was used for low dirtying rate).
Therefore, any strategy that aims to identify A values should
ensure higher A value for high dirtying rate and lower A value
for low dirtying rate. However, this presents the problem of
identifying whether a given dirtying rate is high or low. As
a solution, we assume that, for a given cloud system, it is
possible to determine the lowest and highest possible values
of VM dirtying rates a priori. Let us denote the lower limit of
dirtying rate by D;, and higher limit by Dp.

Identifying the above two range of values is a perquisite and
an important aspect of our bandwidth-provisioning strategy
described next. While observed range of A values remains
similar across our experiments with different cloud networks,
we note that it may not be the case for all systems. For
a different cloud system, this range of A\ values can be

determined through similar experiments and observations, if
necessary. And the range of dirtying rates can be identified
from the VMs and the application characteristics hosted at the
VMs. Additionally, as this strategy will work with a flexible
range of D values, this range can be estimated easily. By way
of example, the value of D; can be measured from the
memory-dirtying rate of an idle server running only the
necessary services while not serving any load. On the other
hand, value of Dy can be measured from the memory-
dirtying rate of the same server with a high simulated
load. Another example method might be to use the limit
of CPU to memory bandwidth as Dy and the CPU to
memory bandwidth usage for an idle server as Dy.

B. Proposed Algorithm: \-range Mapping

From the above considerations, we now present a strat-
egy that accepts a VM’s migration request information and
identifies a bandwidth and iteration count for the pre-copy
phase. A VM migration request consists of memory size of
the VM, V,;; dirtying rate, D; inter-iteration delay, 7; and
an optional downtime constraint, tdown. If no value of the
constraint is provided, a default value, 45,5, is assumed. To
determine an appropriate bandwidth, we first identify a certain
A value for the given migration request with dirtying rate D,
and determine the required bandwidth from the relationship of
A, D, and R, namely R = D/\. To identify \, we uniformly
map the range of dirtying-rate values, i.e., Dy, to Dy, to the
range of A\ values, namely from Aj to Ag, such that a value
close to Ay is identified for a VM with dirtying rate close
to Dy, and a value close to Ay, is identified for a VM with
dirtying rate close to Dy . This can be done using the equation:

(Ag —AL)(D - Dp)
Dy — Dy,

A= |+

This ensures that, to migrate a VM with high dirtying rate,
a high value of \ is provisioned, and for a VM with low
dirtying rate, a low value of A is used. We previously noted
this as necessary in our observations. We call this strategy A-
range mapping. Now, for a given VM with dirtying rate D,



this strategy determines the bandwidth as:

D (Ag —Ap)(D—Dp)] "
R—X—DX )\L+ DH—DL
Also, migrations must perform a minimum required number
of iterations. If a downtime constraint is provided for the
migration request, the minimum required number of iterations
can be determined from Eq. (3). If no constraint is provided,
a default downtime constraint can be used to determine the
minimum required iteration. We take this approach to simplify
our strategy, but other approaches can be used as well (for
example, a fixed number of iterations can be used). Algorithm
1 shows the pseudo code of our proposed strategy.

(&)

Algorithm 1 A-range mapping
1: Define Dy, Dy, AL, g > Global constants.
2: Define ¢, default downtime constraint, tdown
3: procedure MIGRATIONPARAMETERS (Vr, D, T, tdown)
4 Il tgown 1s downtime constraint.

5 if £g0uwn < O then > Negative, if no value is specified.
6: tdown — tdown
7: end if ( ’ :
Amr—A)(D—D
8 A+ )‘L+—HD;7DL L
9: R+ D/
10: n <— MIGRATIONITERATIONS(tgown, Vars B, A, T)

11: Return (R, n)

12: end procedure

13: procedure MIGRATIONITERATIONS (tgown, Vars By A, T)
14: Solve Eq. (3) for n with t4own, Var, R, A, 7, 4

15: Round n

16: Return n

17: end procedure

V. APPLICATION IN CLOUD: NUMERICAL EXAMPLES

Now, we apply A-range mapping in sample cloud systems to
quantitatively validate this approach. For comparison, we con-
sider three other bandwidth-provisioning strategies: minimum-
bandwidth, maximum-bandwidth, and A-increment.

e The minimum-bandwidth scheme assigns bandwidth
larger than the dirtying rate by a predefined amount [4],
say 0. This is to ensure that the migration bandwidth,
R, is greater than memory-dirtying rate, D. As noted
earlier, otherwise the iterative phase will not make
any progress. This also ensures A < 1. Typical value
of ¢ used is 50 Mbps [4].

o The maximum-bandwidth scheme provides a maximum
predefined amount of bandwidth for all migrations. For
our experiments, this value is 10 Gbps, as in [9].

o The A-increment strategy takes a similar approach to our
previous work [12]. For a VM migration with dirtying
rate D, we identify bandwidth R from a series of values
(D+A,D+2A,D+3A,...), and a predefined A, such
that the following condition holds:

(Trnig(R) — Tinig(R + A))/Tiig(R) — % <e

where € is a predefined threshold.

Each of these strategies serves a purpose for comparing
performance metrics against our proposed A-range mapping
technique. For example, the minimum-bandwidth scheme re-
sembles the current operation technique, where low bandwidth
is provided for most VM migrations [4]. Maximum-bandwidth
scheme provides an indication towards an ideal solution where
networks have almost unlimited bandwidth. Note that this
strategy should predictably outperform all other strate-
gies. However, as noted earlier, because bandwidth is an
expensive resource, using maximum bandwidth is not a
practical solution. But this strategy provides a benchmark
for comparing against other strategies. The A-increment
strategy resembles finding a local minima in Fig. 3(a). The
smaller the € value is, closer it can get to the optimum. Here,
we verify our approach in multiple sample cloud systems and
compare results against these approaches.

As cloud infrastructures, we consider two US-wide national
networks. The first is shown in Fig. 1 with 11 datacenters,
and the other is the NSF network [11] with 8 datacenters.
The first network has 24 backbone nodes while the second
has 14 backbone nodes. Each link has capacity of 100 Gbps.
A datacenter can host thousands of VMs, and we simulate
total number of VM migration requests on the order of 50-
75 thousand. Dirtying rates for VMs are assigned values
within the range Dy to Dy. Each of these values is picked
using three different probability distributions: uniform, normal,
and negative exponential. All these distributions have mean
value of (D + Dr)/2. VM memory sizes are uniformly
distributed between 4 GB to 8 GB. Range of A considered is
Ar = 0.1to A = 0.4, and range of dirtying rates considered
is Dy, = 0.1 Mbps to Dy = 500 Mbps. Downtime constraint
is uniformly distributed in the range 0.5 sec to 1.5 sec. Other
values considered are A = 25 Mbps, § = 50 Mbps, t, =
0.5 sec, 7 = 0.75, ¢ = 0.1, and maximum number of iterations
= 20. We provision migration bandwidth as soon a request
arrives, and they arrive following a Poisson distribution. Note
that some of the values used here are different from previous
experiments to further validate our approach.

We use these experimental settings with the bandwidth-
provisioning strategies listed earlier. For each of these ex-
periments, we calculate four metrics: average provisioned
bandwidth, average number of iterations, average migra-
tion duration, and average network resource consumption.
Each experiment is performed several times to ensure vari-
ation in the probabilistic distribution of memory-dirtying
rates and downtime constraints. Each of the metrics is
then averaged first over the number of experiments and
then again over number of VM migrations performed. We
present these results in Figs. 7 through 10.

Figure 7 shows average provisioned bandwidth for the
three different provisioning strategies, excluding results for
maximum-bandwidth strategy, as for maximum-bandwidth
strategy, provisioned bandwidth is always 10 Gbps. On aver-
age, A-range mapping provisions bandwidth around 800 Mbps
to 1 Gbps, which is only 10% of the maximum-bandwidth
strategy (a 90% reduction). A-increment provisions around
400 Mbps, and minimum-bandwidth strategy provisions only
around 300 Mbps. Average bandwidth provisioned by the
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Fig. 7: Average migration bandwidth for different provisioning strategies.
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Fig. 8: Average number of iterations for different provisioning strategies.

minimum-bandwidth strategy has this range because the mean
of dirtying rates is close to 250 Mbps. We see a similar trend in
the NSF network as well. Note that, as our bandwidth strat-
egy does not depend on network configuration, provisioned
bandwidths in the two networks are very similar. We see
the effect of network topology and configuration when we
consider resource consumption.

Figures 8 and 9 present average iteration counts and average
migration duration. Average iteration count is minimum for
maximum-bandwidth scheme because high bandwidth ensures
that the downtime constraint can be achieved in few iterations,
but for minimum-bandwidth scheme, it is close to the maxi-
mum value (note that we use maximum number of iterations as
20). Similar trend is seen for A-increment scheme as the band-
width provisioned remains close to the minimum-bandwidth
scheme. A significant change is seen in A-range mapping
scheme. While average iteration count of our approach is
not as low as the maximum-bandwidth scheme, it is very
close and significantly lower than minimum-bandwidth and
A-increment schemes. This, in turn, explains the variation in
the average migration duration in Fig. 9. Again, the maximum-
bandwidth scheme has very low migration duration, while in
minimum-bandwidth strategy, it is very high. A\-range mapping
has reasonably low migration duration which is significantly
lower than minimum-bandwidth scheme. A-increment scheme

shows similar result as A-range mapping. This again is due to
the fact that migration duration decreases exponentially with
decreasing A, as seen in Fig. 3(a).

Finally, we compare average resource consumption per
migration (in Megabits) in Fig. 10. Resource consumption
for minimum-bandwidth scheme is significantly higher than
any other scheme. Results of average resource consumption
and average migration duration together demonstrate that
minimum-bandwidth provisioning is not very beneficial for
VM migrations. While A-increment shows significantly lower
resource consumption than minimum-bandwidth scheme, it is
still higher than in A-range mapping and maximum-bandwidth
schemes. In most cases, the A-range mapping consumes less
resources than the maximum-bandwidth scheme. This differ-
ence is around 5-10% in most cases. Note that the absolute
resource consumption is different for different networks due
to the differences in distances between source and destination
hosts and number of hops in different networks.

The results shown above demonstrate the relatively strong
aspects of A\-range mapping compared to the other approaches.
This bandwidth-provisioning scheme finds a reasonable bal-
ance among provisioned migration bandwidth, migration du-
ration, iteration counts, and resource consumption. Bandwidth
provisioned using our scheme is 90% less than the maximum-
bandwidth scheme. While migration duration for minimum-
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Fig. 9: Average migration duration for different provisioning strategies.
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Fig. 10: Average resource consumption per migration for different provisioning strategies.

bandwidth and A-increment schemes are incompara-
bly higher than the maximum-bandwidth scheme, our
scheme produces comparable migration duration while
using significantly low bandwidth. On the other hand, while
our approach uses slightly higher bandwidth than minimum-
bandwidth and the A-increment schemes, iteration count and
migration duration are significantly lower than these schemes.
Most importantly, our scheme exhibits best network resource-
consumption behavior. Using an average bandwidth of only
1/10% of the maximum-bandwidth scheme, our approach not
only achieves comparable resource consumption, but in most
cases it reduces resource consumption by 5-10%. This result
is consistent in different networks with different number of
nodes, links, datacenters, and migration requests.

As noted earlier, the A-range values used in our approach
can be re-evaluated for a particular cloud provider, if required,
and the new values can be easily plugged in. While we used
a wide range of VM memory-dirtying rates, this range can
also be easily modified. Depending on VM and application
characteristics of a cloud provider, different range of dirtying
rates can be used. Furthermore, the range of A can be modified
to favor some performance metrics over others. For example,
if only migration duration is important and high network
resource consumption can be tolerated, smaller values of g
and Az can be assigned in our scheme. As seen in Fig. 3(b),
this will ensure lower migration duration. Similarly, for other

performance metrics, A range can be appropriately changed.
Therefore, our bandwidth-provisioning strategy is adaptable to
different environments.

VI. CONCLUSION

In virtualized cloud systems, migration of VMs over a
WAN is a very useful technique for cloud providers. However,
performance degradation for migrations over a WAN are much
more critical than in migrations over a LAN. In this study,
we first proposed a model to quantify migration duration and
downtime for a WAN. Through evaluation over a range of
migration parameters, we showed that our proposed model
can produce results similar to published data. Based on these
models and based on observation of results, we proposed a
strategy, called A-range mapping, to determine appropriate
bandwidth and pre-copy iteration count to optimize migration
over a WAN with respect to migration duration, downtime,
and network resource consumption. We then applied this
strategy to multiple cloud systems and compared it with
standard approaches. Results demonstrated that our proposed
bandwidth-provisioning scheme finds a compromise among
several performance metrics while using low bandwidth. Also,
the flexibility of our approach allows adaptability by cloud
providers to achieve any desired migration performance goals.
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