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Abstract 

Current solutions for new concrete constructions in Extremely Aggressive Exposures, as 

recommended and enforced by design codes, are not taking into account new cement-based 

construction materials, such as Ultra High Performance Fibre Reinforced Concrete, neither new 

constituents specifically conceived to improve the concrete durability, because of the lack of 

standards and technical awareness by most designers and contractors. The H2020 

ReSHEALience project will upgrade to the concept of Ultra High Durability Concrete (UHDC), 

combining nano-scale constituents (nano-cellulose, alumina nanofibers) and self-healing 

promoters (crystalline admixtures). The paper will present the approach pursued in the project 

together with a synopsis of the results of ongoing research.  
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1. INTRODUCTION 

Reinforced Concrete structures exposed to Extremely Aggressive Environments (EAE) 

experience several durability time-dependent problems, including ageing and corrosion of 

reinforcement, which may result into the need of early and often continuous repairs. A recent 

case history analysis [1], showed that 50% of the repaired concrete structures failed once again, 

25% of which in the first 5 years, 75% within 10 years and 95% within 25 years. This highlights 

the urgent need of a profound rethinking of the concept and design processes for new and 

repaired R/C structures in EAE in view of cost-effectiveness demands. Current solutions as 

recommended and enforced by design codes, are not taking into account new cement-based 

construction materials, such as Ultra High Performance (Fibre Reinforced) Concrete - 

UHP(FR)C, neither new constituents specifically conceived to improve the concrete durability, 

because of the lack of standards and technical awareness by most designers and contractors. 

UHPFRC can be regarded among the most significant innovations in concrete technology 

introduced in the last twenty years or so. The material concept relies upon a micro-mechanical 

design of the mix composition, based on the balance between crack-tip toughness and fibre 

pull-out work [2-4]. Once the first crack is formed, the crack bridging action of the fibres is 

activated. This results into signature tensile behaviour, characterized by stable multiple 

cracking process and strain-hardening response, up to the onset of the unstable localization of 

one single crack [5]. The mix-composition that enables the material to achieve this signature 

tensile behaviour is characterized by a high binder content and a low water/binder ration, 

compensated by a high dosage of superplasticizer and results into: 

- a superior performance in the fresh state, highly conducive to self-compacting consistency, 

which may also result into the possibility of tailoring the fibre alignment along the direction 

of the casting flow and optimize the “in-structure” material performance [6-8]; 

- a superior durability in the un-cracked state, because of the high compactness of the matrix, 

as due to the high content of fibres as well as to the use of small aggregates; 

- a superior durability in the cracked state, due to the highly effective crack-width control, the 

penetration of aggressive agents being governed by the width of the single crack [9-10]. 

Moreover, the synergy between crack tightness and material composition also results into a 

high conduciveness to autogenous self-healing, with synergetic effects on the enhancement of 

the material and structural durability [11-24]. Healing products reconstruct the through-crack 

continuity and also improve the fibre-matrix bond, which may result, when reloading a healed 

specimen, into the formation of new cracks instead of the re-opening of the healed one [17]. 

Despite the widely predicated and lab-scale demonstrated benefits that the UHPC/UHPFRC 

technology is able to bring to the construction sector, its market penetration is still limited. This 

is due, on the one hand, to the higher inertia of the construction sector in implementing 

innovation, as compared to other industry sectors, as also due to the “safety of people concerns” 

embedded in the design and building of each and all building/civil engineering feats as well as 

to the “uniqueness” of each feat. On the other hand, though some national guidelines are going 

to be published, UHPFRC still suffers from the lack of internationally recognized testing and 

design standards, which would provide engineers the required confidence to exploit its multiple 

benefits in the design and construction of high-end engineering applications. Information is also 

scant with reference to the durability in the cracked state, which is the true service condition 

directly affecting the service life of the structure. The methodology proposed by the H2020 

project ReSHEALience in order to fill the aforementioned gap will be addressed in this paper. 
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2. ULTRA HIGH DURABILITY CONCRETE (UHDC): TOWARDS A 

METAMATERIAL CONCEPT AND A HOLISTIC DESIGN METHODOLOGY.  

Improving the durability and extending the service life of structures exposed to EAEs, at the 

same time reducing their maintenance needs, is an extremely challenging goal which the civil 

engineering community has to face in the current social and economic framework. The H2020 

project ReSHEALience is proposing to upgrade the concept of UHPFRC through the 

incorporation of tailored functionalities to a “metamaterial” concept, named Ultra High 

Durability Concretes (UHDCs), which will share the signature tensile “strain hardening” 

behaviour of UHPFRC.  

The ReSHEALience consortium has agreed upon the following definition of UHDC: “strain-

hardening (fibre reinforced) cementitious material with functionalizing micro- and nano-scale 

constituents (alumina nanofibers, cellulose nanofibers/crystals, crystalline admixtures, 

especially added to obtain a high durability in the cracked state”. It is understood that UHDC 

contains fibres to obtain the strain-hardening response (so it is a FRC, and also a HPFRCC) and 

it has a special selection of solid particles to achieve the required durability as well as a self-

compacting consistency, also instrumental to obtain a homogeneous fibre distribution. 

3. TAILORED FUNCTIONALIZATION OF UHDC MIXES: LITERATURE 

SURVEY AND PRELIMINARY RESULTS 

The implemented metamaterial approach to the UHDC concept and design aims to transform 

the material from a passive provider of protection against degradation into an active player able 

to govern degradation processes through multi-scale manipulation of the material structure. In 

order to achieve this goal, three main strategies will be followed, including: 

 Densification of the matrix: nano-cellulose fibrils and crystals will be used to improve the 

density of the Interfacial Transition Zones (ITZs) and compensate autogenous shrinkage. 

• Crack growth control: alumina nano-fibres will be used to control the crack initiation phase 

and different types of micro- and macro-fibres for the propagation phase. 

• Self-healing: self-healing admixtures (crystalline admixtures) will be employed to seal 

small cracks and defects, in case also guaranteeing recovery of material properties. 

3.1 Nano-cellulose products 

Different nano-cellulose products, including fibrils and crystals, obtained by refining pulps 

from different sources have been reportedly used in cementitious composites [25], in 

percentages not higher than 1% by volume. Reported obtained benefits range from increase of 

compressive and flexural strength [26-29] to reduction of autogenous shrinkage [30]. 

Microstructural analyses have shown that the obtained improvements are due to two 

concurrent mechanisms. The first mechanism is the steric stabilization, as confirmed by 

rheological and heat flow rate measurements and microscopic imaging. The second proposed 

mechanism, which is likely to be dominant, is referred to as short circuit diffusion, which 

appears to increase cement hydration by increasing the transport of water from outside the 

hydration product shell on a cement grain to the unhydrated cement cores. [27]. 

The ReSHEALience project consortium will employ BioPlus ® Cellulose Nanofibrils 

(CNF), with dimensions ranging from 5-20 nm in diameter and 500-2,000+ nm in length, and 

BioPlus® Cellulose Nanocrystals (CNC), with dimensions ranging from 5 nm in diameter and 

50-500 nm in length (Figure 1) supplied in sonicated suspension at 10% solid content. 
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Figure 1: Bioplus ® cellulose nanocrystals (left) and nanofibrils (right). 

3.2 Alumina nanofibers 

In the literature, the use of alumina Al2O3 nano-particles, employed at dosages varying from 

0.5% to 1%, is reported to improved strength and reduced setting time, as a results of more 

compact microstructure. A lower strength decay after exposure to high temperature was also 

reported [31] as well as an improvement in freeze-thaw resistance [32]. 

The aluminium oxide nanofibers branded as NAFEN™ , which will be employed in the 

current project, have been so far applied into a broad range of industrial products (aerospace, 

automotive, energy), resulting into a confirmed 20-50% improvements in mechanical properties 

of polymer and composite end products. The fibres are 4 to 11 nm in diameter and from 100 to 

900 nm long, with a specific surface equal to 155 m2/g [Figure 2]. In order to be employed into 

a cementitious composite mix featuring low w/b ratios they need to be supplied into a sonicated 

suspension at a solid concentration ratio equal to 10%, much higher than for other applications. 

Preliminary investigation has been performed at University of Wisconsin at Milwaukee, with 

reference to a typical UHPC matrix, with NAFEN fibres dosed at 0.25% by weight of cement, 

and in case with 1% addition of either meta-kaolin or silica-fume. The results have shown a 

roughly 30% increase of both 7 and 28 days compressive strength. The same improvements are 

confirmed also when different fibres (12 mm long) have been added (Figure 3). 

3.3 Crystalline admixtures 

Though Crystalline Admixtures, are well known and widely used in modern concrete 

technology, being classified as a special type of permeability reducing admixture, they have 

only recently started receiving special attention as self-healing promoters. Significant amount 

of work in this respect has been done [33-38]. Moreover, an interesting synergy with the 

dispersed fibre reinforcement has been observed [39 – Figure 4a-b], in the case of a UHPFRC 

mix (w/b ratio 0.18) containing 0.8% by cement weight of Penetron Admix ® and 100 kg/m3 

straight short steel fibres (lf/df = 13/0.16). The filling of the cracks by crystalline healing 

products is likely to activate a sort of chemical pre-stressing throughout the cracked material, 

from which the healing induced recovery of the performance is likely to benefit to a greater 

extent than in the case of ordinary FRC and plain concrete. A contribution in this sense may 

also come from the light shrinkage-reducing effect that the admixtures may provide, as from 

preliminary results shown in Figure 5. 
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Figure 2. NAFEN® aluminium oxide nano-fibres at different magnification scale. 

 

Figure 3. Effect of NAFEN™ fibres on the compressive strength of UHPC mortars (left) and 

effect of fibres on compressive strength of UHPC mortars with NAFEN ™ fibres (right). 

The research activity performed in the framework of the project is going to further 

investigate this issue, so far limited to the results of a tailored experimental campaign, also with 

reference to the EAE of interest as well as to the synergy between the employed crystalline 

admixture and the selected nano-scale constituents detailed above. 

(a) (b) 

Figure 4. Crack-healing induced recovery of mechanical properties (4point bending) in UHPC 

specimens without (a) and with (b) crystalline admixture cured in water after cracking [52]. 
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Figure 5. Effect of crystalline admixture (0.8% by cem weight Penetron Admix ®) on free 

drying shrinkage in FRC mix (0.45 w/c ratio) 

4. CONCLUSIONS 

The main objective of H2020 project ReSHEALience is to upgrade the concept of UHPC to 

Ultra High Durability Concrete (UHDC). The underlying key idea is to transform, through the 

incorporation of self-healing stimulators and nano-constituents, the material from a passive 

provider of protection into an active player, able to respond to degradation processes as a 

function of the durability requirements. The self-healing functionalization, with continuous 

tailored recovery of performance achievable on demand, will reduce the need of repair actions 

and the global cost, which will compensate the higher initial material cost (Figure 6). This will 

result into a breakthrough metamaterial concept in which durability is not a bonus but becomes 

the governing objective, able to “convert” cement-based construction materials from “durability 

passive” spectators with structural functions, into active players, using value-added synergy-

acting functionalities “tailored” to an as broad as possible range of applications. 

 

(a) 

(b) (c) 

Figure 6. Concept of HPC and UHDC (a-b) durability in performance/repair/time frame (c). 
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