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Next Generation Indexing for Genomic Intervals
Vahid Jalili, Matteo Matteucci, Jeremy Goecks, Yashar Deldjoo, and Stefano Ceri

Abstract—Di4 (1D intervals incremental inverted index) is a multi-resolution, single-dimension indexing framework for efficient,
scalable, and extensible computation of genomic interval expressions. The framework has a tri-layer architecture: the semantic layer
provides orthogonal and generic means (including the support of user-defined function) of sense-making and higher-lever reasoning
from region-based datasets; the logical layer provides building blocks for region calculus and topological relations between intervals;
the physical layer abstracts from persistence technology and makes the model adaptable to variety of persistence technologies,
spanning from small-scale (e.g., B+tree) to large-scale (e.g., LevelDB). The extensibility of Di4 to application scenarios is shown with
an example of comparative evaluation of ChIP-seq and DNase-Seq replicates. Performance of Di4 is benchmarked for small and large
scale scenarios under common bioinformatics application scenarios. Di4 is freely available from https://genometric.github.io/Di4.

Index Terms—Index structures; efficient query processing; genomic data management

F

1 INTRODUCTION

THE third paradigm shift in genome sequencing
technologies—real-time, single-molecule—is emerging,

upending the field after electrophoretic (first) and mas-
sively parallel or next generation sequencing (NGS, second)
paradigm shifts. These technological improvements dimin-
ish genome sequencing cost (from $100M per genome in
2001 to $1K in 2015, with expected further drop to $100
soon) and expedite sequencing time (e.g., Oxford Nanopore
yield data within 30min of sample application), thereby
enabling “universal monitoring” of nucleic acids [1]. Due
to these technological advances, we are approaching the
milestone where genome of 0.1% of living humans are
sequenced to some extent [1]. This emphasizes the explosive
growth in genomic data production and application [2],
which may soon become the biggest and most important
big data problem of humanity [3]. In this paper we discuss
a holistic information retrieval framework which provides
building blocks for a scalable and transparent sense-making
from genomic datasets.

1.1 A genomics primer

The procedure of a genome sequence analysis can be de-
fined in three steps; primary, secondary, and tertiary analy-
sis [4]. Primary analysis is concerned with genome sequenc-
ing, producing short reads of four nucleotides (i.e., Adenine
(A), Guanine (G), Cytosine (C) and Thymine (T) in DNA,
or Uracil (U) in RNA). Secondary analysis is concerned
with assembling or aligning the sequenced DNA/RNA frag-
ments and building a whole genome representation, which
is then analyzed for feature extraction (e.g., determination of
variations). Tertiary analysis is concerned with making sense
from the extracted features, e.g., discovering how hetero-
geneous regions (i.e., regions of independent experiments
identifying genomic characteristics with different markers)

• Dip. di Elettronica, Informazione e Bioingegneria (DEIB) – Politecnico di
Milano. 20133 Milano, Italy
E-mail: vahid.jalili@polimi.it

Manuscript received XXXX; revised XXXX

interact with each other; it is attracting increasing inter-
est, as huge datasets produced by secondary analysis are
made available by large international consortia (such as EN-
CODE (encodeproject.org), TCGA (cancergenome.nih.gov),
and 1000 Genomes Project (internationalgenome.org)).

1.2 The challenge

While genomic data is generally abstracted as sequences
of nucleotides at primary and secondary analysis, tertiary
analysis commonly describes genomic data in the form
of regions of DNA, because these contiguous stretches of
nucleotides have known biological functions, such as coding
for proteins or serving as binding sites for proteins. Region-
based, genome-wide datasets include variations (e.g., modi-
fications, insertions, or deletions at given DNA positions),
signals (e.g., measures of transcriptional activity), peaks
(e.g., regions with higher DNA read density with respect to
the background signal), or structural properties of the DNA
(e.g., break points where the DNA is damaged, or junctions
where DNA creates loops).

The challenges of information retrieval from genomics
interval-based data can be studied from three facets; first,
while each dataset describes a single biological experiment,
it is the comparative assessment of datasets that enable
studies such as precision medicine, or drug response pre-
diction. However, comparative assessment of large datasets
(e.g., UK Biobank with 500,000 participants, the largest
human genetic dataset) is a massive operation that requires
novel approaches for genomic interval operations. Second,
a problem-driven explorative approach for making sense of
data during tertiary analysis commonly leads dry-lab scien-
tists to roll proprietary and ad-hoc solutions, typically by
integrating existing “building blocks”. This highlights the
need for a generic, comprehensive, extensible, and orthogo-
nal region calculus for genomic intervals. Third, the runtime
of tertiary analysis is marginal to that of primary and sec-
ondary analysis, however, the primary and secondary anal-
ysis operations are commonly run only once on a given data,
while tertiary analysis operations are executed frequently

https://genometric.github.io/Di4
encodeproject.org
cancergenome.nih.gov
internationalgenome.org
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for exploration and sense-making, which highlights the need
for an agile query execution framework.

While many solutions for efficient data management of
“sequence reads” have been developed, this manuscript
concentrates on efficient data management for genomic
intervals. We present Di4 (1D intervals incremental in-
verted index), a multi-resolution single-dimension indexing
framework over interval-based NGS data. Di4 aggregates
concepts from spatio-temporal databases, H264 video en-
coding, and signal processing to deliver a high-end indexing
framework for genomics, with the objective of facilitating
efficient sense-making.

1.3 State of Art
We organize the state of the art by first illustrating the
foundations and limitations of methods for region-based
computation, then common practices in bioinformatics and
related studies in temporal databases.

Classical search trees such as interval trees [5], segment
trees [6], range trees [7], or Fenwick trees [8] are optimal
solutions each for particular interval-based retrieval, and
some are used in common bioinformatics tools as underly-
ing data structure (e.g., UCSC Genome Browser uses R-Trees
[9]). However, such data structures do not natively provide
a comprehensive solution for tertiary analysis challenges.
For instance, the query “find all the intervals intersecting a
given interval” can be solved in O(log n + m) (where n is
the number of intervals in the tree, and m is the number of
intervals returned at a query execution) using an interval
tree, but the query “find n-th closest intervals” requires
defining a new method for traversing the interval-tree. As
another example, R-tree partitions intervals into hierarchical
bins, hence non-uniformly distributed intervals (which are
common in genomic datasets such as ChIP-seq, RNA-seq,
and exome sequencing) unbalance bin loads; consequently,
some bins take considerably longer time to be processed
than others.

Some array storage technologies are adapted to
store/query genomic data. Among them, the tool
TileDB [10] persists NGS data, and queries them through
its wrapper called GenomicsDB. Despite of promising per-
formance in persisting and querying data, array-based ap-
proaches fail to support general purpose NGS data querying
needs due to the choice of specific array dimensions. For
instance, TileDB stores single-nucleotide polymorphisms
(SNPs) in either column or row storage formats, chosen
at initialization time. If the former is chosen, queries can
efficiently compute the intersection of SNPs, but queries
for regions with a particular number of SNPs require a
linear scan. If latter is chosen, queries for SNPs belonging
to a sample are efficiently supported, but querying for the
intersection of SNPs requires a linear scan on the whole
array. However, random access to array columns/rows is an
incomplete region calculus, which is limited in computing
other typical bioinformatics functions, e.g., calculating the
Jaccard index of datasets.

NGS machines produce files each referring to a biological
experiment, and bioinformatic pipelines apply to input files
yielding output files; therefore many bioinformatics tools
and environments operate on data stored in plain text for-
mat on file systems. A drawback of leveraging on such file

systems is the penalty of sequential accesses. For instance,
the query “given a region, find overlapping regions across
all the files” can be answered by linearly scanning all the
files independently and in parallel. However, queries such
as “find regions where at least 80% of the files have an
overlap” (similar to querying Fenwick trees [8]) requires
scanning all the files together. There has been efforts to
provide random access to NGS interval-based files, e.g.,
BITS [11] returns a “count” of intersection, similar to the
cardinality of the output of querying an interval tree [5],
however, returning only the count of intersection is insuffi-
cient to execute typical bioinformatics functions on interval-
based genomic data.

The bioinformatics community offers some tools for
particular querying purposes, such as GEMINI [12] which
leverages SQLite to provide retrievals on genetic variations.
It is mainly designed to explore mutational burden in
pathways and interacting proteins. Additionally, GEMINI
leverages basic SQLite functions to execute queries such as
“how many heterozygote are observed for a given varia-
tion” (similar to TileDB and BITS queries). However, such
systems are tailored for particular querying purpose, and
cannot be extended to support the wider querying demands
of NGS data sense-making challenges.

The bioinformatics community attempted to define re-
gion calculus building blocks, and offers tools such as
BEDTools [13] and BEDOPS [14]. These tools are widely
accepted by the community and are used in both systemic
solutions (e.g., Galaxy [15]) and ad-hoc pipelines. However,
the functions implemented in such tools are mainly de-
signed for ad-hoc solutions, and do not scale efficiently w.r.t.
the large-scale and growing genomic datasets. Accordingly,
Di3 [4], an indexing framework with building blocks for
querying big genomics data, and Giggle [16], a large scale
similarity search tool, are developed. A detailed discussion
is presented in Section 3.

1.4 Our contribution

The most important contribution of Di4 is its extendable,
orthogonal, and comprehensive region calculus. In spite
of focusing on the genomic domain, Di4 is designed for
any domain that provides a comparer for the chronological
order of its elements and an operator for absolute distance
between any two elements.

Di4 design is coherent with three major design decisions.
First, the framework is defined at data access layer, indepen-
dently from business logic and data layer, and adaptable
to any underlying key-value pair persistence technology
(spanning classical data structures such as B+ tree, or a
cloud-based B+ tree [17], to LevelDB (github.com/google/
leveldb) and Monkey [18], according to the architecture
in Figure 1). Such separation makes Di4 adaptable to a
variety of application scenarios from small scale ad-hoc
solutions (using B+ tree), to large scale systemic solutions
(using cloud-based key-value pair persistence technologies,
e.g., LevelDB or Monkey [18]). Second, the framework is
extensible, as it has a modular definition of functions, where
each of them accepts user-defined functions (UDF) through
behavioral design patterns, such as the strategy pattern (see
Figure 1, and Section 2.2 for deeper discussion). Third,

github.com/google/leveldb
github.com/google/leveldb
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Fig. 1: Di4 architecture and functional components.

it adopts a multi-resolution design to optimize querying
data with sargable and non-sargable criteria. Its primary
resolution indexes NGS intervals by coordinate attributes,
and its secondary resolutions use PDF-optimized scalar
quantization to heuristically optimize non-sargable queries
(deeper discussion postponed to Section 2.3.4).

Di4 improves over Di3 [4], which stores all the intervals
overlapping the left or right-end of an interval on the
genome; conversely, Di4 recursively infers this information
from neighbor regions. Additionally, Di4 benefits from sig-
nal scalar quantization methods to efficiently load-balanced
parallelization and implements an effective heuristic for
decreasing the number of elements to be processed when
executing a query. As a consequence, Di4 is faster than Di3
in retrieving from the index (deeper discussion is postponed
to Section 3.3), and also faster than BEDTools, BEDOPS, and
Giggle (benchmarked in Section 3).

In the following, first the interval-based abstraction of
genomic regions is explained, then the Di4’s approach for
modeling these intervals is discussed. Querying genomic
intervals leveraging Di4’s model is subsequently explained
in three layers of abstractions. The method of organizing
intervals in Di4’s model is discussed in sections 2.3 and 2.4.
Finally, Di4 is benchmarked against state-of-the-art in Sec-
tion 3.

2 METHOD

The genome consists of nucleic acid sequence—a succession
of four nucleotides: A, C, G, and T/U—and it is commonly
modeled as a linear (unbranched) and one-dimensional
succession of A, C, G, and T/U letters.

A position on genome is commonly referenced with
three methods; first, the nucleotide sequence of the position
(see panel C on Figure 2). Second, represent three consec-
utive nucleotides (codon) by a letter (i.e., amino acid code)

associated with the corresponding proteinogenic amino acid
(see panel D on Figure 2). A third approach is to use the
coordinates of a position on a genome; commonly refer-
enced as chromosome, start and stop positions (see panel E
on Figure 2), which is commonly associated with a set of
metadata for the position (e.g., a p-value of a DNA-protein
binding significance).

Each of these reference types is used in various genome
data analysis [4]. The data indexing framework discussed in
this manuscript (Di4) is defined over the interval represen-
tation. Accordingly, in this section we provide a conceptual
description of the Di4 data model, including its data struc-
tures and operations.

2.1 Di4 Data Model
Consider a continuous domain with an order relation, i.e.,
an arbitrary element eA proceeds/succeeds element eB . Let
us represent a durative event on the domain with three
attributes: (i) start, a single point-in-domain where the action
begins, (ii) stop, a single point-in-domain where the action
is accomplished, and (iii) middle, an infinite sequence of
points-in-domain where the action is being executed; such
that, a durative event is happening between an inclusive
start and exclusive stop. Events are commonly modeled as
intervals on a domain, with start and stop of the event being
respectively the left and right-end of the interval. Addition-
ally, an interval describes an events using its metadata (e.g.,
the p-value of a ChIP-seq peak, or reference and alternative
alleles of a variation).

Di4 leverages the research in the field of temporal
databases and multi-dimensional data structures (surveyed
in [19], [20]), and augments the snapshot index [21], [22] and
the organization of time index on a tree data structure [23],
[24], to model genomic intervals using snapshots. A snapshot
is a key-value pair object Bb which bookmarks a position on
a domain by capturing coordinate characteristics, overlap-
ping intervals, and their relative behavior (see Section 2.3).
Snapshots bookmark intervals leveraging the instantaneous
model assumption according to which any intervals on a
continuous domain can be explicitly represented using just
its start and stop attributes, and the middle attribute of
durative events is represented implicitly. Let us consider,

Gene bodyPromoterSilencerDistal enhancer A

B

C

D

E

CGCGAGACGAAG UUAAAG CCCGAU

KT ER L K P D

Chr1:3..9 Chr1:20..26 Chr1:40..46 Chr1:53..59

Fig. 2: A synthetic example of various genomic data rep-
resentation methods. Genome is represented linearly by
chromosomes; a chromosome is a DNA molecule (B) that
has functional units (A), which are commonly referenced
using nucleic acid sequence (C), protein sequence (D), or
intervals referring to the first and last base-pair of a regions-
of-interest (E). These methods (C, D, and E) are commonly
used to represent various genomic activities such as DNA-
protein interaction or variations.
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Fig. 3: Di4 notation and data structure. Posting lists denote
causal intervals, for instance, I1

1 at λ1. µ is the number of
overlapping non-causal events, for instance µ2 = 1 because
I1
1 is a non-causal event for B2. ω is the number of causal

and stopping events, for instance, ω4 = 1 because I2
1 stops at

e4.

for instance, the two “Flight” events of Figure 3 modeled
using four snapshots as follows:

B1 8:00AM. Explicit: Flight-A departs (causal event).
B2 8:30AM: Explicit; Flight-B departs (causal event). Im-

plicit: Flight-A is flying, and was flying between
8:00AM and 8:30AM.

B3 9:00AM: Explicit; Flight-A lands (causal event). Im-
plicit: both flights were flying between 8:30AM and
9:00AM.

B4 9:30AM: Explicit; Flight-B lands (causal event). Im-
plicit: Flight-B was flying between 9:00AM and 9:30AM.

In general, a snapshot on the domain has at least one
causal event, and any number of non-causal events. The causal-
event and non-causal-events of a snapshot, are respectively the
events whose start/stop, or middle attribute is bookmarked
by the snapshot. For instance, the causal even of snapshot
B2 is the “depart of Flight-B”, and its non-causal event
is “Flight-A is flying“. Snapshots bookmark causal events
explicitly by pointers to the events. For instance, the snapshot
B2 has a pointer to the “Flight-B” in its posting list (see
Figure 3; discussed in details in Section 2.3); a pointer could
be, for instance, the ID of a flight in a database containing
all the related information such as the passenger list.

To bookmark events with a snapshot, a pointer to a
causal event is required, while pointers to non-causal events
can be inferred from neighbor snapshots; hence storing
those is normally suboptimal and redundant. Di4 adopts
an incremental inverted index paradigm where the pointers to
non-causal events are not stored. Snapshots represent non-

causal events implicitly by keeping track of their count only
(using the µ component of a snapshot; discussed in details
in Section 2.3); for instance, in the example of Figure 3,
the snapshot at 8:30AM reports “Flight-B departs and one
other flight is flying” (µ2 = 1), without knowing that the
other flight is “Flight A” (i.e., no pointer to the “Flight A” is
present in the posting list of the snapshot).

2.2 Di4 Information Retrieval and Inference
Di4 retrieval functions are defined at three levels, physical,
logical, and semantic, as described in Figure 1. The functions
of each layer are defined leveraging the functions of the
layers beneath it (and physical layer leverages data layer
application programing interface (API)).

The semantics of the Di4 retrieval functions has been di-
vided between internal and external semantics. The internal
semantic is a function-specific logic, and the external seman-
tic is an application-specific logic provided to the function as
a procedural parameter (aka user-defined function (UDF)).
The internal and external semantics are integrated, which
allows manipulation of intermediate steps of the function
by the external semantics. Such design keeps Di4 retrieval
functions at an abstract level, while still applicable to any
application specific scenarios. MuSERA, a tool for repro-
ducibility assessment across ChIP-seq replicates which is
based on the Di3 index [25], uses these retrieval functions as
building blocks to identify consensus peaks across ChIP-seq
replicates [26], to assess the correlation of replicates, to find
the distance distribution of nearest neighbors on functional
genome positions, and to implement a genome browser.

Table 1 presents sample application scenarios which
can be implemented by augmenting Di4 retrieval functions
with UDFs, which the present section explains Di4 retrieval
functions (building blocks) and their integration with UDFs.

2.2.1 Low-level (physical level)
Physical level functions bridge the Di4 data model to
the data layer. The operations provided by the physical
level, are low-level operations spanning Create, Read, Update,
Delete (CRUD), Enumerate, and Reconstruct (see Figure 1)
leveraging API of the actual data layer technology. These
operations create and manipulate the snapshots and orga-
nize them in a key-value pair storage, by translating input
intervals into snapshots, and retrieving and reconstructing
intervals from snapshots (see Section 2.3.3). They are inter-
nal to Di4 and, accordingly, do not incorporate UDFs.

2.2.2 Mid-level (logical level)
Logical level functions leverage physical level operations,
and they yield the essential elements for region calculus
using snapshots.

These functions stem from the co-occurrence of intervals,
such that they either (a) find indexed intervals co-occurring
a given interval, (b) find co-occurring indexed intervals
which satisfy a criterion, or (c) retrieve an (aggregated)
attribute of co-occurring indexed intervals.

Two events are called co-occurring if they are co-localized
on the domain (i.e., the distance between them is con-
strained, but not necessarily set to zero). We adopt a defi-
nition that keeps into account the following aspects. First,



JOURNAL OF IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Function Description Application Example 

INTERSECT Find index intervals co-occurring with a given interval.  How many COSMIC variants appear in c-Myc transcription factor binding regions? 

COVER 
Find regions on domain where a particular number of intervals are 
co-occurring. 

Find those sites related to H3k4me3 modification where a significant (p-value < 1E-8) DNA-protein 
binding is observed in at least 10 samples, and their combined significance at each site, using Fisher’s 
method, is more stringent than 1E-10.  

ACCHIS 
Computer histogram of accumulation on entire domain or selected 
areas. 

Intersect and create histogram of all cancer variants in COSMIC vs. ENCODE annotations. The goal 
would be to understand if some transcription factor binding sites are subject to mutation more often 
than others are.  

NEAREST 
NEIGHBOR 

Find indexed intervals at a given proximity to a given reference 
interval. 

Determine a distance distribution between indexed enriched regions and a given set of peaks, which 
could indicate how close the determined binding sites are to known genomic features.  

CORRELATION 
ASSESSMENT 

Find Jaccard index between reference and indexed intervals, 
computed as a ratio between the number of overlapping genomic 
bases and the total number of bases. 

Find how similar (in terms of Jaccard index) the determined enriched regions are to c-Myc 
transcription factor binding sites. 

 

TABLE 1: Sample application scenarios for a subset of Di4 retrieval functions.

Algorithm 1 INTERSECT function; it finds intervals overlap-
ping or at d distance of reference intervals {Ir}, and passes
them to a UDF (U ).

1: procedure INTERSECT({Ir}, d, U )
2: for each Ir do
3: block← find a block whose left-end is closest on the right of

¯
Ir − d

4: Bb ← find a snapshot whose coordinate is closest on the right of
¯
Ir − d

5: i← 0
6: do
7: OPEN(Bb+i, block) . see Algorithm 4
8: i← i+ 1
9: while eb+i < Īr + d do

10: INRECONSTRUCT(Bb+i) . see Algorithm 4
11: i← i+ 1

12: while false = canClose← EXRECONSTRUCT(Bb+i, U, 〈Ir, d〉) do
13: i← i+ 1
14: if Bb+i overlaps Ir+1 with d distance proximity then
15: r ← r + 1
16: break
17: while canClose = false

the location of events in some applications could be ap-
proximated; for instance, in genomics, the location of a peak
on ChIP-seq data could be considered with ±10base-pair
approximation. Second, co-occurrence could be studied on
coarse granularity; for instance, in genomics, two intervals,
one on an enhancer, and another on a related gene transcrip-
tion start site, might be considered co-occurring when they
are at a given distance from each other (e.g., at 340kbase-
pair [27]).

The first function is INTERSECT, which is based on the
co-occurrence of intervals and covers classical region calcu-
lus (see Algorithm 1). For instance, “given a point/interval
on the domain, find all intervals overlapping with it”, simi-
lar to the queries on interval trees [5] and segment trees [6].
Note that the INTERSECT function considers two intervals
overlapping if they are d distance apart.

A common inference on spatial, temporal, and spa-
tiotemporal data, is the check for events compliance with a
particular property or function f ; this is commonly known
as coverage on f . This analysis has application-specific defi-
nition and criteria. For instance, “find positions on genome
where a test statistic calculated by combining p-values of co-
occurring intervals using Fisher’s method, is more stringent
than 1e−8”. Accordingly, Di4 defines a COVERAGE function
which finds a proportion of the domain which contains
snapshots all evaluated as true value of interest defined by
function f . The semantic of COVERAGE is partially deter-
mined by function f , which is a UDF. The Di4 can analyze

for coverage on f both on the entire domain and specific
positions with d distance proximity. Note that, the criteria
of function f could be defined on indexed or non-indexed
attribute of intervals (sargable or non-sargable). Accord-
ingly, Di4 leverages its secondary resolutions to heuristically
improve executing coverage on f for non-sargable attributes
(e.g., see Algorithm 2 and Section 2.3.4).

Genomics is commonly interested in “coverage of ac-
cumulation” (i.e., f := accumulation). Accumulation is the
number of intervals overlapping a certain point on the
domain. For example, as more intervals are found to include
a particular variant, the higher the confidence that the
variant is real and not a sequencing artifact. Accordingly,
the coverage of accumulation function, COVER, yields a set of
consecutive snapshots whose referenced intervals are of a
specific accumulation (see Algorithm 2). The function lever-
ages two aggregated attributes of snapshots encapsulated
by secondary resolution blocks (see Section 2.3.4) to mini-
mize the number of snapshots to be traversed; the attributes
are gmin and gmax, which are the minimum and maximum
accumulation at snapshots encapsulated by secondary res-
olution blocks. Note that, blocks can store any user-defined
aggregated attribute(s) of intervals/snapshots; accordingly,
gmin and gmax are an example of aggregated attributes used
for coverage on accumulation (i.e., COVER) function.

In the simplest setup of the COVER function, Di4 im-
plements MERGE and COMPLEMENT functions which are
respectively the coverage of at “least one” and “zero” ac-
cumulation. Additionally, Di4 defines SUMMIT and BASE
functions, which respectively maximize and minimize the
COVER function. In other words, they find regions on the
domain with local maximum or minimum accumulation
within a given range.

Note that the logical level functions incorporate a UDF
and can be applied on the entire domain or the specific
positions with d distance proximity. This design makes the
functions extremely extensible. For instance, consider the
following query:

(a) find promoter regions which are covered by at least
3 overlapping intervals within a 1kbp proximity, (b)
where the p-value of each interval is more stringent
than 1e−4 , (c) and their combined p-value using
Fisher’s method is more stringent than 1e−8.

The section (a) of this query defines portions on the genome
where a COVER function should search for the accumula-
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Algorithm 2 COVER function; it finds regions on domain
where at least amin and at most amax intervals overlap, and
passes them to a UDF (U ).

1: procedure COVER(amin, amax, U )
2: for each block in secondary resolution do
3: if amax < gmin or gmax < amin then
4: continue
5: atag ← −1; btag ← −1; i← 1
6: Bb ← first snapshot encapsulated by the block
7: if amin ≤ accumulation at eb+i ≤ amax then
8: atag ← accumulation at eb; btag ← b
9: OPEN(Bb, block) . see Algorithm 4

10: do
11: i← i+ 1
12: if atag = −1 & amin ≤ accumulation at eb+i ≤ amax then
13: atag ← accumulation at eb+i; btag ← b
14: OPEN(Bb, next block) . see Algorithm 4
15: else if atag 6= −1 then
16: if accumulation at eb+i not in range [amin, amax] then
17: atag ← −1
18: while false = canClose←EXRECONSTRUCT(Btag, U, 〈btag, b+ i〉) do
19: i← i+ 1
20: if amin ≤ accumulation at eb+i ≤ amax then
21: break
22: else
23: INRECONSTRUCT(Bb+i) . see Algorithm 4
24: while canClose = false

tion of at least 3 intervals (internal logic). The section (b)
defines a criteria for counting the accumulation (internal
logic and UDF). The section (c) manipulates the output
of the COVER function and returns the promoter region if
the combined p-value of the overlapping intervals is more
stringent than 1e−8, which is a logic defined by a UDF.
This query defines a comparative enrichment assessment
of genomic intervals—a daily-based analysis in genomics
pipelines, and it is partially an application-specific query;
however, still it can be implemented using Di4 without
altering the functions due to the internal and external logic
(UDF) integration of the functions.

Di4 also defines functions for statistical summary of
data; the functions are based on the COVERAGE function,
and summarize accumulation as histogram (ACCHIS) and
frequency (ACCDIS) distribution.

2.2.3 High-level (semantic level)

Upon physical level operations and logical level functions,
Di4 builds semantic level functions. The goal of these func-
tions is to facilitate high-level reasoning on data. These
functions are based on coordinate attributes, provide first
subjective impression on the data, and, through UDF, allow
further application-specific processing. In the following we
briefly discuss some of these functions.

Co-occurrence patterns: A co-occurrence pattern rep-
resents a subset of samples whose intervals are frequently
co-localized on the domain. Genomics is interested in both
co-occurrence (only coordinate attribute) and mixed-feature
(coordinate and additional attributes) patterns. The later is
well-studied as mixed-drove co-occurrence pattern mining,
where patterns are commonly identified in multiple steps,
that is by identifying mixed-drove candidate patterns on
one attribute based on contributing or non-contributing
(false-candidates) intervals, and pruning-out the candidates
by patters of other attributes. Di4 adapts to mixed-drove
co-occurrence pattern mining by identifying quantity-based
co-occurrence patterns on coordinate attributes, and incor-

Algorithm 3 Nearest neighbor function; it finds nearest
neighbors to the given point e on domain which satisfies
a user-defined criteria, U , and returns the nearest neighbors
or their distance depending on the d argument.

1: procedure NEAREST NEIGHBOR(e, d, U )
2: find Bb where eb−1 < e ≤ eb
3: i← 0
4: do
5: i← i+ 1
6: d← −1
7: if U ({intervals bookmarked by Bb−i}) = true then
8: d← eb − eb−i
9: if U ({intervals bookmarked by Bb+i}) = true then

10: d← min(d, eb+i − eb)
11: while d 6= −1
12: if t = true then
13: return d
14: else
15: return intervals bookmarked by Bd

porating user-defined application-specific pattern finding
method on additional attributes via UDF.

Nearest neighbor: Genome is commonly modeled as
a single dimension domain (chromosome, start, stop), and
it differentiates between up-stream (preceding) and down-
stream (succeeding) neighbors of a given reference interval.
Di4 determines nearest neighbors based on two distance
metrics: chronological order (n-th closest neighbor), and
absolute distance (neighbor at maximum d distance). To
find neighbors, Di4 first finds the pivot snapshot (reference
point), and processes its up- and down-stream neighbor
snapshots based on the distance metric, to return the in-
tervals bookmarked by the determined snapshots (see Al-
gorithm 3). For instance, it can execute queries such as “find
nearest position on domain to a given e point, where the
position is a promoter region with at least 3 overlapping
intervals each with p-value < 1e−8”. It requires O(logb n)
(when a B+ tree is used as persistence technology, for a
blocking factor b and n number of snapshots) to find a
pivot snapshot, and O(1) to access each of its neighbors
(regardless of the distance metric); therefore, the asymptotic
performance of Di4 for this operation isO(logb n). The pseu-
docode of nearest neighbor function is given in Algorithm 3.

Correlation assessment: Similar to co-occurrence pat-
terns, correlation is also an attribute-dependent function.
Therefore, Di4 takes a similar approach to co-occurrence
patterns by defining correlation based on coordinate at-
tribute, and enabling a UDF to process additional attributes.
Di4 uses Jaccard index to determine a coordinate-based
correlation coefficient; it finds the regions of intersection and
union using the functions SUMMIT and MERGE respectively.

2.3 Di4 Data Indexing

Di4 adopts a multi-resolution approach for interval index-
ing. At the first resolution Di4 takes snapshots of events and
stores minimal essential information for data integrity, ac-
curacy, and consistency. Data in the first resolution are then
aggregated into the second resolution layer which aggregates
the information of first resolution to heuristically prune the
number of snapshots to be scanned for specific queries and
speed up search and retrieval. In the following we describe
the details of first and second resolution indexing.
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2.3.1 First Resolution Data Structure

Let Σ denote the domain (i.e., the universe of all elements
constituting intervals) and e ∈ Σ any element of such
domain. I = [

¯
I, Ī),

¯
I < Ī denotes an interval with

¯
I ∈ Σ

and Ī ∈ Σ stating respectively the start (left-end) and
stop (right-end) of interval I . An interval I is then a left-
closed and right-open interval of ascending ordered pair of
e elements.

Intervals referring to a common phenomenon are orga-
nized in sets, or samples (e.g., all regions produced by a given
experimental condition), denoted as S := {S1, . . . Sj , . . . SJ}
where Sj := {Ij1 , . . . I

j
i , . . . I

j
|Sj |}.

The superimposition of intervals given by input samples
(S) induces a new set of non-overlapping intervals on the
domain, denoted by S′ (see Figure 3). The intervals of S′

dichotomize the domain, and form the basis of the first
resolution index. Let I ′ denote an interval of a new set
S′ := {I ′1 . . . I ′i . . . I ′|S′|}, where the coordinates of I ′i are
defined by the input intervals. For instance, referring to
Figure 3, the left and right ends of I ′1 is defined respectively
by the left ends of intervals I1

1 and I2
1 .

The first resolution of Di4 implements the essential as-
pects of the model through an incremental inverted index
where each unique point on the domain (ei) defined by
the left or right ends of I ′i , induces a snapshot Bi (see
Figure 3). In general, let D denote the first resolution of Di4;
D := {B1, . . . Bb, . . . B|D|} is the set of snapshots B on Σ, as
in Figure 3. By definition, the mapping D � Σ is injective
and non-surjective.

Di4 models a snapshot as a key-value pair element. The
key, eb ∈ Σ, is the coordinate of snapshot Bb which refers to a
location on the domain where a causal event has occurred; it
is the unique identifier of Bb. The value is a tuple as 〈µ, ω, λ〉
(see Figure 3), where each component is defined as follows.

• The µ ∈ N0 component is the count of non-causal
events at the snapshot; e.g., see µ2 on Figure 3.

• The λ component is the posting list of the snapshot, and
it is a list of 〈ϕ,@I〉 tuples. Each tuple corresponds to
a causal event, it references the event (using @I), and it
informs whether the left (ϕ := L) or right (ϕ := R) end
of the interval overlaps the snapshot key (e.g., see λ2

and λ3 on Figure 3). The ϕ component has a retrieval
optimization purpose: without it, Di4 should lookup
a database by using the explicit reference to retrieve
the interval coordinates and then compare these co-
ordinates with the snapshot coordinate to determine
overlaps; by using ϕ, the database lookup is avoided.

• The ω component is the number of causal intervals
which overlap the snapshot with their right-end. In
other words, the ω component is the count of posting
list tuples with ϕ = R. This component also serves
an optimization purpose. Using ω, Di4 determines the
number of intervals overlapping the snapshot with left
and right ends inO(1), respectively calculated as |λ|−ω
and ω. Otherwise, Di4 should linearly scan all tuples in
the posting list. The number of intervals overlapping a
snapshot with their left or right-end is used to calculate
interval accumulation at a snapshot; this is a frequently
used property in retrieval functions, and load-balanced
partitioning for parallel processing.

2.3.2 Indexing Algorithms
Di4 indexes intervals through a batch indexing procedure.
In general, the procedure of indexing an interval requires
two steps. First, it creates, or updates (if they already exist),
two snapshots to bookmark the left and right ends of an
interval, respectively Bα and Bγ . Second, it increments the
µβ , α < β < γ component of Bβ snapshots.

A single-pass and a double-pass indexing algorithms have
been defined. Single-pass indexing algorithm ensures con-
sistency by correctly initializing Bα, Bγ and the µβ com-
ponents and maintains their value (see Algorithm 6 in
appendix). Double-pass indexing neither fully initializes nor
maintains Bα, Bγ and µβ components at the first-pass (see
Algorithm 7 in appendix), it rather ensures consistency
only at the second-pass (see Algorithm 8 in appendix). The
algorithms are explained using an example in appendix
Section B.

The superiority of one algorithm over the other for
indexing a sample S depends on |S| (number of intervals in
the sample) and |D| (current number of snapshots in the first
resolution). The single-pass indexing is optimal for updating
Di4 data structure (i.e., when |S| � |D|), while double-pass
indexing is superior for initializing it (i.e., when |S| � |D|,
see appendix Section B).

2.3.3 Interval Reconstruction
Di4 has an incremental structure, such that each snapshot
has pointers to causal intervals only, and pointers to non-
causal intervals are implied by neighbor snapshots (each
snapshot is structured analogous to P-frame in video encod-
ing). Pointers to the intervals are required to access metadata
and execute UDFs; therefore, Di4 reconstructs the intervals
bookmarked by the snapshots to execute a query.

In general, given a snapshot, the reconstruct algorithm
traverses its succeeding neighbor snapshots for the pointers
to its non-causal intervals. The number of neighbor snap-
shots to be traversed, depends on the number of snapshots
between the given snapshot, and the snapshot that book-
marks the right-most end of the non-causal events of the
given snapshot. Therefore, given a snapshot, the number of
neighbor snapshots to be traversed to reconstruct the book-
marked intervals, cannot be determined; it could be as small
as 1, or as big as the size of whole first resolution. Therefore,
the reconstruction process is potentially very expensive.
However, Di4 significantly minimizes this number by a
heuristic approach defined using λ∗ of secondary resolution;
a process similar to the reconstruction of P-frames from an I-
frame in video decoding (see Section 2.3.4). The pseudocode
of reconstruction algorithm is given in Algorithm 4, and it
is explained with an example in appendix Section C.

2.3.4 Di4 Secondary Resolution
Di4 secondary resolutions are defined upon the first reso-
lution indexing; they group snapshots and aggregate some
attributes of the snapshots and/or bookmarked intervals.
Different secondary resolutions can exist, being application-
specific and independent from each other.

A secondary resolution is a set of blocks (see Figure 3), a
block encapsulates a set of consecutive snapshots such that
blocks do not have any snapshot in common. A block is a
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Fig. 4: Illustration of an example of creating blocks using the three built-in secondary resolution methods. U: uniform
quantization boundaries, P: PDF-optimized quantization boundaries.

Algorithm 4 The reconstruct algorithm consists of four pro-
cedures as explained here. The parameters n, λ, and λtmp
(initialized as λtmp ← ∅) are scoped to all the procedures of
this algorithm.

1: procedure OPEN(Bb, block)
2: cache the block
3: n← µb − |λtmp| . the number of snapshots to be reconstructed
4: λ← λtmp . the set of reconstructed intervals
5: λtmp ← ∅
6: INRECONSTRUCT(Bb)
7: for each interval in the last cached λ whose right-end is not determined do
8: add the interval to λ
9: n← n− 1

1: procedure INRECONSTRUCT(Bb) . Inclusive Reconstruct
2: for each interval I bookmarked by Bb do
3: if the interval’s left-end overlaps Bb then
4: add the interval to λ
5: else
6: UPDATELAMBDAS(I )
7: if the cached block’s left-end overlaps Bb then
8: for each interval in λ∗ which is not in λ do
9: add the interval to λ and all the cached λs

10: n← n− 1

1: procedure EXRECONSTRUCT(Bb, U, Args) . Exclusive Reconstruct
2: for each interval I bookmarked by Bb do
3: if the interval’s left-end overlaps Bb then
4: add the interval to λtmp
5: else if the interval I is in λtmp then
6: remove the interval from λtmp
7: else
8: UPDATELAMBDAS(I )
9: if n = 0 then

10: for each 〈Args, λ〉 do . including cached Args and λs
11: U(Args, λ)
12: return true
13: else
14: return false

1: procedure UPDATELAMBDAS(I)
2: if the interval I is not in the last cached λ then
3: add the interval I to all the λs
4: n← n− 1
5: else
6: set its ϕ = R in all the λs . i.e., the interval’s right-end is determined

key-value pair element where the key is the first and last
point on the domain that are bookmarked by the encap-
sulated snapshots. The key is defined using a user-defined
grouping function; its application is described in Algorithm 5.
Di4 has three built-in grouping functions defined in Sec-
tion 2.3.5.

The value has two parts; the first part is a user-defined
tuple of aggregated attributes of encapsulated snapshots
and/or intervals. The second part (λ∗) is a list of point-

Algorithm 5 Indexing second resolution. Θ is a secondary
resolution partitioning function, it could use any of the de-
fault functions (see Section 2.3.5) or a user-defined function.
The UDF (U ) aggregates attributes of bookmarked intervals
or snapshots as value of secondary resolution blocks.

1: procedure SECONDARYRESOLUTION(Θ, U )
2: a← 0
3: t← {}
4: λ∗ ← {}
5: initialize Θ with accumulation at B0, and λ0

6: for each snapshot Bb do
7: if Θ(accumulation at Bb, λb) = true then
8: insert a new block to secondary resolution initialized as:

key: [ea, eb], value: 〈λ∗, U(t)〉
9: a← b

10: t← λ∗

11: insert all intervals starting at Bb to t
12: else
13: insert all intervals in λb to t
14: insert all intervals starting at Bb to λ∗

15: remove all intervals stopping at Bb from λ∗

ers to the non-causal intervals overlapping the left-most
encapsulated snapshot; such that all intervals overlapping
this snapshot are reconstructed independent from neighbor
snapshots (this property makes the snapshot analogous to
I-frame in video encoding).

The motivations of secondary resolutions are threefold;
first, a heuristic approach for pruning the number of snap-
shots to be processed for executing a query without altering
the design of the underlying data structure, thereby optimiz-
ing the performance of specific queries. For instance, let us
consider a computational biology application where Di4 is
commonly queried with coordinate (indexed attribute) and
statistical significance (p-value, an application specific non-
indexed attribute) criteria. Without a secondary resolution,
Di4 finds all the candidate intervals that comply coordinate
criteria, and then passes them to a UDF to be filtered by
p-value, and possibly further processed. However, with a
secondary resolution which groups consecutive snapshots
by p-value, Di4 can search candidate intervals that comply
coordinate criteria only in the groups that comply the p-value
criterion, which minimizes the number of candidates to be
passed to a UDF for possible further processing.

Second, secondary resolutions are used to optimize par-
allel execution. In an application with Di4 being used in a
Cloud environment over Big data, where it is essential to
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optimally distribute workloads across multiple computing
resources, secondary resolution can efficiently split data into
load-balanced partitions (bins), and then allocating partitions
evenly across all nodes. This is a load-balancing policy
which minimizes the idle time of computing resources.

Third, secondary resolution is finally used to optimize
the reconstruction of bookmarked intervals. Indeed, Di4
leverages λ∗ of the closest block to reconstruct the intervals
bookmarked by a snapshot. With a balanced secondary
resolution (see Section 2.3.5, this significantly reduces the
number of snapshots to be traversed in a reconstruction
process, hence increasing the reconstruction speed, and
accordingly, the query execution time.

A secondary resolution is not equivalent to a secondary
index [28], [29]. A secondary resolution index is commonly
defined on the same attribute as the primary resolution,
while primary and secondary indexes are commonly de-
fined on different attributes. For instance, while a primary
resolution of Di4 indexes coordinates of intervals, its sec-
ondary resolution can index groups of snapshots bookmark-
ing position on the domain overlapping various functional
portions of the genome (e.g., gene body, or transcription
factor binding site).

2.3.5 Default Secondary Resolutions

Di4 implements 3 default methods to create a secondary-
resolution, listed below in increasing order of complexity:
(1) Zero thresholding, (2) Uniform scalar quantization (SQ)
and (3) probability density function (PDF) optimized scalar
quantization (where (2) and (3) are two variants of scalar
quantization). In the following, we describe each of these
methods:

1) Zero thresholding, it defines a block as a set of contiguous
snapshots all bookmarking at least one interval (see
Figure 4).

2) Uniform scalar quantization. The goal of quantization is
to approximate a distribution of given points with 2n

points, where n is the number of quantization levels.
A scalar quantization is a function that maps its input
to distinct regions (quantization regions), and repre-
sents each region by a point (reconstruction point).
Here the scalar quantization method is defined over
accumulation of intervals; and it defines a block as a
set of contiguous snapshots all belonging to the same
reconstruction point, i.e., it breaks a block at a snapshot
with different reconstruction points with respect to its
prior snapshot. In uniform quantization, the quantiza-
tion regions are equally spaced, and the reconstruction
levels are at the midpoint of each interval.

3) PDF-optimized scalar quantization. In this modified quan-
tization scheme, the quantization regions are shortened
or lengthened according to the probability of each re-
gion. We adopted the well-known Lloyd-Max quanti-
zation for our purpose [30]. In this method, the quan-
tization reconstruction levels are the centroid, or center
of mass, of the signal PDF in the related quantization
regions.

We provide an example of creating blocks using the
three built-in secondary resolution methods as illustrated
in Figure 4. The upper part of the figure shows synthetic

input intervals, where for each position on the domain a
snapshot is created; however, for readability of the figure,
the snapshots are not displayed. The lower part of the figure
shows how consecutive snapshots are organized in blocks
using the three built-in methods, where each level of lines
represent a secondary resolution method, and line breaks
at each level represent different blocks. The quantization
regions are shown on the left-most to the input, vertical
lines above U and P . As it can be seen, the quantization
regions have equal distances in uniform quantization and
variable/unequal distances in PDF-optimized approach.

By looking at the figure one can note how differently
consecutive snapshots are organized in blocks using three
methods, quantitatively (i.e., zero-thresholding v.s. scalar
quantization methods) or qualitatively (i.e., uniform v.s. PDF-
optimized scalar quantization).

2.4 Di4 Data Serialization
The Di4 serialization process (de)serializes a Di4 snapshot
into an array of bits, then the persistence technology or-
ganizes the array in its internal structure. The Di4 design
is agnostic to a key-value pair persistence technology (see
Figure 1), hence Di4 does not implement how a serialized
snapshot is organized and persisted on disk. This design
allows us to focus on an optimal (de)serialization of a
snapshot independent from its organization on disk. Di4
leverages serialization methods used in protocol buffers [31],
and serializes a snapshot into an “arranged” binary rep-
resentation, which uses fewer bits than common serializa-
tion methods (e.g., JavaScript Object Notation) to serialize
an object. Additionally, Di4 uses the variable-length quan-
tity method to encode an unsigned integer in a compact
representation, commonly referred-to as 7-bit encoded int
or varint [31], [32]. Accordingly, Di4 concisely serializes a
snapshot. For instance, it serializes the B2 snapshot in the
Figure 3 using 48 bits, which would require at least 136 bits
otherwise. Detailed discussion is available in Section E of
appendix.

3 EXPERIMENTAL EVALUATION

The present section provides a benchmark of Di4, and a
comparison with the state of the art.

3.1 Experimental and Environment Setup
Di4 is customized for genomics with Di4B (Di4 for Bioin-
formatics) at business logic layer, and Di4BCLI (Di4B Com-
mand Line Interface) at presentation layer. Di4B defines a
genomics-specific environment setup (e.g., define the do-
main), and initializes several independent Di4 instances,
one for each DNA chromosome and strand. Di4BCLI is
a command-line interface which provides user interaction
through a set of commands which has been used in the
experiments (see Figure 1).

The performance of Di4 is evaluated using samples
downloaded from ENCODE which is a public repository of
NGS data. The downloaded data are grouped in 9 datasets
as described in Table 3, the A4 dataset is the current biggest
publicly available dataset from this public repository. See
appendix Section D for details on the datasets.
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Performance is assessed on a current modern machine
with specifications summarized on Table 2. Theoretical peak
performance of the machine’s processor is given in Giga
Floating Point Operations Per Second (GFLOPS). The ma-
chine has a Solid-State Drive (SSD) storage device, which is
assessed for sequential read/write (i.e., the time it takes to
read and write a 1GB file), and random read/write of 4K
blocks.

Di4 runs at a user-defined degree-of-parallelism (dp), de-
fined as Di4B-level dp × Di4-level dp, that is respectively the
number of independent instances of Di4 (i.e., chromosomes
and strands) being executed concurrently, and the number
of threads read/write each Di4 instance. The experiments
have been performed using 4 × 2 = 8 threads. The tools
used later in this section to benchmark Di4, are run in
their native degree of parallelism (i.e., we do not implement
a parallelization method if they run single-threaded, or
modify their parallelization capabilities). The scripts and
data used for running benchmarks presented in this section
are available at genometric.github.io/Di4/benchmark.

Note that Di4 is defined at data access layer, and it
does not implement a persistence technology (see Fig-
ure 1). Therefore, its performance can vary depending
on the technology utilized at persistence level; to mini-
mize the bias on persistence technology, we benchmark
using a B+tree implementation (github.com/csharptest/
CSharpTest.Net.Collections).

3.2 Di4 Operations Benchmark

The INTERSECT and COVERAGE functions are fundamental
to Di4 operations; accordingly, their performance is in direct
relation with the performance of the majority of Di4 opera-
tions. Therefore, these functions are primarily benchmarked.

INTERSECT: “How long it takes Di4 to find all in-
tervals overlapping a reference interval?”. This operation
includes finding a pivot snapshot (i.e., the snapshot that
overlaps or is the closest down-stream to the left-end of a
reference interval), traversing snapshots, and reconstructing
the bookmarked intervals (see Algorithm 1). This operation
is benchmarked using datasets A1-A4, and the results are
plotted on panel A of Figure 6. The results are based on
10 executions of INTERSECT function on 196, 180 reference
intervals (i.e., 1, 961, 800 runs of INTERSECT function). The
query processing time does not include data indexing time.

COVERAGE: “How long it takes Di4 to assess the com-
pliance of all snapshots with a given coverage function?”.
This operation includes traversing the snapshots, recon-
structing the bookmarked intervals, and check for the com-

Laptop
Physical Processor Intel® Core™ i7-7920HQ

# of Cores 4
# of Threads 8

Clock speed (GHz) 3.1
IPC 8

GFLOPS 99.2
16

Seq (R/W) 2186.22 / 1206.01
4K (R/W) 11.15 / 15.11

4K 64-Thread (R/W) 1501.97 / 527.98
SSD (MB/s)

Machine type

Processor

RAM (GB)

TABLE 2: The specifications of the machine used for bench-
marking.

pliance with the given coverage function. Here we bench-
mark Di4 for coverage of accumulation (i.e., COVER function),
with and without the utilization of a secondary resolution
(created using PDF-optimized scalar quantization) using
datasets A1-A4. We benchmarked using 20 accumulation
ranges (same query ranges as in appendix section A) and
executed each range for 10 times (i.e., 200 executions of
COVER function). The results are plotted on panels B and C
of Figure 6 as snapshot bulk processing speed (i.e., snapshot
per second). The query processing time does not include
data indexing time.

3.3 Inverted vs. Incremental Inverted Index

A previous indexing framework for genomic intervals,
which we have taken inspiration from, is called Di3 [4]. Di3
and Di4 have a common goal of providing the genomics
data processing with a holistic and extensible information
retrieval framework, but they have fundamental differences
in the model, and Di4 benefits from a significantly more
effective secondary resolution methods. As a result, Di4
executes indexing and retrieval functions significantly faster
than Di3, while having a considerably smaller index size.
The differences are discussed in details in the following.

The fundamental design decision making the difference
between Di4 and Di3 is at model level; while Di3 leverages
the inverted index paradigm, Di4 has an incremental in-
verted index structure, yielding to different first resolution
indexes. In general, for each position on the domain, Di3
bookmarks causal and non-causal intervals, while Di4 book-
marks only causal intervals (see Section 2.1). This design
makes λ component (posting list) of Di4 snapshots signif-
icantly smaller than the λ component of Di3 snapshots; our
test using the A4 dataset shows 4× smaller components (see
panel A on Figure 5), an immediate effect of which is the
(approximately) 5× smaller index file size (see panel B on
Figure 5), without penalizing indexing operation (see panel
C on Figure 5). A smaller snapshot is faster to deserialize
and process, hence making Di4 operations significantly
faster than Di3 operations; for instance, testing COVERAGE
function shows 2–12× expedited runtime (see panel E on
Figure 5). Note that COVERAGE is the base function of most
Di4 operations, hence similar expedited runtime is expected
from all the functions which stem from COVERAGE.

However, the expedited runtime is only partially due to
the smaller snapshots, and its partially due to the heuris-
tically more efficient secondary resolution blocks (see Sec-
tion 2.3.4), which (a) heuristically decreases the number of
snapshots to be processed when executing a query, and

Dataset Label File Count Interval Count

C1 12 89,623
C2 22 258,406
C3 45 456,385
B1 90 1,407,493
B2 180 4,649,767
A1 500 28,392,674
A2 1,000 59,980,303
A3 1,500 94,997,460
A4 2,000 143,563,549

TABLE 3: The datasets used for benchmarks, which are
downloaded from ENCODE.

genometric.github.io/Di4/benchmark
github.com/csharptest/CSharpTest.Net.Collections
github.com/csharptest/CSharpTest.Net.Collections
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Fig. 5: Panel A compares the λ size of Di3 and Di4 when indexing the A4 dataset; it shows that Di4 has significantly
smaller λ component which results into a considerably smaller index file size, shown in panel B. Panel C shows Di4
indexing speed is comparable to Di3 (both running a double-pass indexing method). The secondary resolutions of Di4
heuristically minimize the number of snapshots to be traversed when executing a query, panel D plots this improvement
w.r.t. Di3. As a result of smaller snapshots (panel A), smaller index size (panel B), and heuristically improved query
execution (panel D), Di4 runs significantly faster than Di3 (panel E).

(b) optimally load-balances parallelization. Our test using
the A4 dataset shows that Di4 executes the same query as
Di3 traversing 10–60% (20% on average) of the snapshots
traversed by Di3 (see panel D on Figure 5).

Having bookmarked all intervals overlapping a position
on domain in a Di3 snapshot, Di3 can “find all intervals
overlapping a point on domain” (queries similar to segment
trees) leveraging a single snapshot; while executing such
queries on Di4 would require traversing at least one snapshot
to reconstruct all the intervals overlapping the given point.
However, our tests for “find all intervals from the A4 dataset
overlapping 196, 180 reference intervals” (where the length
of each reference interval is 1) using both Di3 and Di4,
shows that Di4 runs faster than Di3 (12.75sec and 137.17sec
for Di4 and Di3 respectively as the average of 10 executions).
This observation emphasizes that traversing Di3’s bigger
index (w.r.t. Di4) and deserializing a single snapshot, is
slower than traversing Di4’s smaller index and deserializing
at least one smaller snapshot (w.r.t. Di3).

3.4 Comparison with BEDTools and BEDOPS

In this section, the performance of Di4 has been bench-
marked against Di3 [4] and current latest versions of two
commonly used tools in bioinformatics, BEDTools [13] (ver-
sion 2.27.1) and BEDOPS [14] (version 2.4.32). Given that
BEDTools and BEDOPS run on two input samples, scripts
for their batch execution have been prepared (available
at genometric.github.io/Di4/benchmark). Di4 INTERSECT
has been benchmarked against bedtools intersect,
bedops intersect, and MAP from Di3. The performance
is evaluated in three scenarios, covering typical dry-lab ex-
periments, discussed as follows.

On-the-Fly Processing: The daily-based data process-
ing activity of a bioinformatician is running a NGS data
processing pipeline, obtaining a relatively small dataset, and
evaluating comparatively this dataset with related small
datasets. Based on the results, the outcome should either be
archived for further processing, or discarded. Di4 is bench-
marked against Di3, BEDTools and BEDOPS for this sce-
nario on the INTERSECT operation using a reference sample
from “ENCODE narrow peak” repository which contains
196, 180 intervals, and the C1, C2, and C3 target dataset (see
Table 3). Additionally, since BEDTools and BEDOPS run in
memory, Di3 and Di4 are also executed in memory. This
on-the-fly processing scenario consists of processing and
pre-processing; therefore, the query runtime incorporates
pre-processing, which is sorting data for BEDTools and
BEDOPS, and indexing for Di4 and Di3. The results, which
are the average of 10 executions, are plotted on panel D of
Figure 6 as total query runtime.

Personal Repository: This is also a common scenario
for bioinformaticians, where a personal repository of in-
house data is comparatively evaluated or cross-referenced
for further assessments. Di4 is benchmarked against Di3,
BEDTools and BEDOPS for this scenario on INTERSECT
operation using B1, and B2 datasets (see Table 3) and a
reference sample from “ENCODE narrow peak” reposi-
tory which contains 196, 180 intervals. Since BEDTools and
BEDOPS run in-memory, Di4 and Di3 are also executed in-
memory. Given that a personal repository is a collection of
properly organized data (i.e., sorted, concerning BEDTools
and BEDOPS, or indexed concerning Di4 and Di3), the
query time excludes pre-processing time in all cases. The
results, which are the average of 10 executions, are plotted
on panel E of Figure 6 as total query runtime.

genometric.github.io/Di4/benchmark
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Fig. 6: Benchmarking Di4 operations. Panels A, B, and C plot the performance of Di4 base operations. Panels D, E, and F
plots the performance of Di4 against Di3, BEDTools, and BEDOPS (each runtime is the average of 10 executions).

Large-Scale Scenario: As public repositories of NGS
data are rapidly growing, sense-making from NGS data
through large-scale comparative evaluation is becoming
ubiquitous. This highlights a demand for holistic and scal-
able framework for comparative evaluation of NGS data.
Di4, Di3, BEDTools, BEDOPS are benchmarked for this sce-
nario using datasets A1-A4. Since such repositories are col-
lection of properly organized and persisted data (i.e., sorted,
concerning BEDTools and BEDOPS, or indexed concerning
Di4 and Di3), the query time excludes pre-processing time.
Di4 and Di3 are both executed using a persisted index. These
tools are benchmarked as average of 10 executions, and the
results are plotted on panel F of Figure 6.

3.5 Comparison with Giggle

Giggle [16] is a tool for querying genomic datasets, which
leverages an index structure similar to Di3. Giggle finds
indexed intervals overlapping a given set of query intervals,
and ranks the results using the product of − log10(p-value)
and log2(odds ratio). Di4 and Giggle can be compared from
two facets; first, unlike Giggle that is defined for a particu-
lar application scenario, Di4 is a framework implementing
“building blocks” for a wide-variety of application scenar-
ios. Accordingly, while Giggle mainly targets an end-user,
Di4 is designed for developers who can augment it for their
particular application.

Second, the performance of Di4’s most similar function-
ality to Giggle. Accordingly, Di4 is benchmarked against
Giggle (version 0.6.3) for querying from small and large
datasets, respectively, Roadmap Epigenomics dataset (used
in [16] for benchmarking Giggle) containing 1, 905 samples
and 55, 558, 166 intervals, and A4. The datasets are queried
using 5 samples downloaded from ENCODE (see appendix
Table 4) with a varying number of intervals in each, span-
ning from 29, 972 to 442, 035. Each query sample is queried
10 times using Di4 and Giggle, and their average runtime is
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Fig. 7: The runtime plotted here is the average of 10 execu-
tions of each query. The results show that Di4 runs up to 3×
faster than Giggle on a large dataset (panel A), and up to 6×
faster on a small dataset (panel B).

plotted in Figure 7. As plotted in Figure 7, Di4 runs up to
6× faster than Giggle.

3.6 Evaluation of second resolution

One of the main goals of secondary resolutions is to opti-
mize querying non-sargable attributes. Without utilizing a
secondary resolution, executing such queries would require
linearly scanning the entire first resolution. Therefore, in this
section we benchmark the default secondary resolutions on
how much they expedite executing such queries.

As explained in Section 2.2, Coverage on f is one of the
most common queries on non-indexed attributes in genomic
research. Accordingly, we define a base query, which is the
execution time of the COVER function without a secondary
resolution (i.e., linearly scanning the entire first resolution).

We evaluated the performance of the different secondary
resolution indexing methods using A4 dataset (see Table 3).
The query execution time is used to assess the performance
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of the various methods and the results were normalized
w.r.t. the base query execution time to show the improve-
ment with respect to the latter. The base query time was
measured as tbase = 177.89 sec, which is the average of
10 executions. A normalized query time of smaller than 1
shows improvement in querying execution time.

The panels A and B on Figure 8 show the query times
for the range and point queries with respect to the defined
query ranges. As it can be seen on both panels, all the 3
curves lie below the base query time (i.e., the horizontal line
at 1). This is an important observation and highlights the
effectiveness of the proposed secondary resolution methods
in improving the retrieval performance.

Our results also indicate that the PDF-optimized scalar
quantization method provides the best performance com-
pared with the other two secondary resolution schemes
where the amount of improvement is approximately 80%
on average. We carried out 1-way ANOVA to investigate
whether there is a significant difference between the means
of three secondary resolution methods [33] (i.e., the means
of the curves shown on Figures 7). The statistical test reveals
that the PDF-optimized quantization methods outperforms
other approaches with statistically significant difference
(p < 0.05 i.e., with confidence level of 95%) while the other
two approaches do not show a significant difference with
respect to each other. This is an interesting outcome and
can highlight the promising results that can be achieved if
the proposed quantization scheme is utilized to create the
secondary resolutions. Indeed:
• base query linearly scans the entire first resolution,

which, utilizing a secondary resolution, linear scan is
limited to particular sets of consecutive snapshots (i.e.,
the snapshots encapsulated by a block whose aggre-
gated attribute overlaps the query criteria).

• the reconstruction time of intervals bookmarked by
snapshots is expedited using the λ∗ component of
blocks which allows reconstruction of intervals in-
dependent from neighbor snapshots (similar to key-
frames in video encoding/decoding).

• an optimal parallelization would require independent
regions for each thread/node; however, splitting first
resolution to independent regions without scanning it,
would be a challenge. Each block of secondary resolu-
tion defines a set of snapshots which can be processed
independently and in parallel with other snapshots.
Zero-thresholding defines the simplest splitting, and
PDF-optimized defines load-balanced regions.

4 CONCLUSION AND FUTURE WORK

Di4 is an instrument for fast indexing of large repositories
for tertiary data analysis, supporting very fast interval-
based operations over region-based heterogeneous genomic
datasets; in comparison with other interval-based data man-
agement systems, it supports abstractions that make it the
most suitable tool for making sense of genomic data. We
expect this application to became increasingly important,
as the availability of processed genomic datasets is growing
at an huge and unprecedented speed; genomic data inte-
gration will be key to major discoveries in biology and will
open the route to personalized medicine.
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Fig. 8: Second resolution evaluations. A, B the performance
of the three built-in methods for secondary resolution nor-
malized to base query time.

Di4 is a single-dimensional index, and we envision a
future work toward a multi-dimensional index paradigm
for two primary reasons; first, improve performance for
executing particular location-agnostic queries. For instance,
while leveraging secondary resolutions, Di4 can perform a
heuristically-optimized liner scan to “find regions where at
least any n samples overlap”, it cannot leverage the same
heuristics to “find regions where at least n of the given
samples overlap”. An optimal execution of the latter query
demands an additional dimension to Di4 where intervals
are indexed based on a sample ID to which they belong.

Second, genome is commonly modeled linearly; how-
ever, recent advances unfold long-range interactions that
can be explained considering spatial organization of DNA.
To adapt with this emerging trend, new coordinate at-
tributes should be identified and incorporated into Di4’s
model.
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platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update,” Nucleic acids research, vol. 46, no. W1, pp.
W537–W544, 2018.

[16] R. M. Layer, B. S. Pedersen, T. DiSera, G. T. Marth, J. Gertz, and
A. R. Quinlan, “Giggle: a search engine for large-scale integrated
genome analysis,” Nature methods, 2018.

[17] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed b-tree,” Proceedings of the VLDB Endowment, vol. 1,
no. 1, pp. 598–609, 2008.

[18] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal
navigable key-value store,” in Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. ACM, 2017, pp. 79–94.

[19] J. F. Roddick and M. Spiliopoulou, “A survey of temporal knowl-
edge discovery paradigms and methods,” IEEE Transactions on
Knowledge and data engineering, vol. 14, no. 4, pp. 750–767, 2002.

[20] G. Ozsoyoglu and R. T. Snodgrass, “Temporal and real-time
databases: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 7, no. 4, pp. 513–532, 1995.

[21] C. S. Jensen, C. E. Dyreson, M. Böhlen, J. Clifford, R. Elmasri,
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APPENDIX A
INDEXING PARAMETER SETUP

We performed a series of experiments in which we chose
three query types:: (i) range query, which scans Di4 for
snapshots/intervals satisfying a range criteria; for instance,
minimum and maximum accumulation of 1 and 2 respec-
tively (represented by range query 〈1, 2〉), (ii) point query,
which scans Di4 for snapshots/intervals satisfying a point
criteria; for instance, exact accumulation of 1 (represented
as point query 〈1, 1〉), and (iii) base query, which is the linear
scan of Di4 starting from first to the last snapshot. We
tried query ranges 〈1, 2〉, 〈5, 10〉, 〈10, 20〉, 〈50, 60〉, 〈80, 90〉,
〈100, 200〉, 〈200, 300〉, 〈300, 320〉, 〈400, 500〉 and 〈550, 1000〉
for the former and 〈1, 1〉, 〈10, 10〉, 〈20, 20〉, 〈50, 50〉, 〈60, 60〉,
〈80, 80〉, 〈100, 100〉, 〈150, 150〉, 〈200, 200〉, and 〈500, 500〉 for
the latter. For quantization methods, we tried quantization
levels n = 2, 4, 8, 16, 32, 64, 128, 256. Each query is executed
10-times on the A4 dataset (see Table 3), and results are
averaged (in total, 16K tests are conducted).

In order not to be biased to particular queries, for any
query type at a specific query range, we find the quan-
tization level which leads to the best (i.e., lowest) query
time. Accordingly, the uniform and PDF-optimized scalar
quantization methods with different parameter setup are
benchmarked for executing the COVER function. Specifically,
we aim to select the quantization level(s) which lead(s) to
the best performing query time across different query cover-
ages in order not to be biased to particular queries. For this,
for a given query, we normalize the raw query time across
different quantization levels using min-max normalization
method. The results are plotted on Figure 9 and suggest
that on average the best quantization levels are achieved at
n = 8 for scalar quantization and n = 16 levels for PDF-
optimized quantization for both query types. Note that,
since we applied quantization methods on the accumulation
of intervals, the results reported in Figure 9 are valid for
any dataset with interval accumulation distribution similar
to the A4 dataset (see Figure 14). Henceforth, the proposed
methods are benchmarked at their best-performing quanti-
zation levels.

APPENDIX B
SINGLE AND DOUBLE PASS INDEXING ALGORITHMS

Di4 indexes intervals in a multi-resolution indexing scheme;
its first resolution bookmarks coordinate attribute of in-
tervals using snapshots on the domain, and its secondary
resolutions group snapshots and store aggregated attributes
of the intervals (see Section 2.3). The algorithms for indexing
the first and secondary resolutions of Di4 are discussed in
the following.

The first resolution holds two properties for each in-
dexed interval; first, the left and right ends of the interval
are bookmarked as causal events of two snapshots (via a
pointer in the snapshots posting list). Second, the interval is
implicitly bookmarked as non-causal event in all snapshots
the interval overlaps (see Section 2.1). The first property
requires adding two snapshots to the first resolution (if
not already added), while the second property requires
updating the existing snapshots. Accordingly, Di4 defines

two indexing methods: single and double-pass indexing
algorithms. Single-pass method ensures both properties for
each interval before proceeding with a next interval to be
indexed (see Algorithm 6). In contrast, double-pass indexing
algorithm ensures first property at its first pass (i.e., creates
snapshots and sets their λ and ω, see Algorithm 7), then
at its second-pass ensures the second property for all the
indexed intervals (i.e., updates the µ component, see Al-
gorithm 8). In other words, the double-pass indexing algo-
rithm indexes causal events at its first pass, and implicitly
bookmarks the non-causal events at its second pass.

The algorithms are explained using the example illus-
trated in Figure 12; batch indexing intervals I1 and I2 in
“Step 1”, “Step 2”, and “Step 3”. The steps for a single-pass
indexing are discussed as it follows.

Step 1: Indexing interval I1 (see step 1 of single-pass al-
gorithm in Figure 12). Two snapshots organized
as B1 and B2 are created to index the interval I1.
Since I1 is the causal event for both the snapshots,
their λ components have pointers to the interval
I1. The snapshots are not bookmarking any non-
causal event, hence their µ component is set to 0.
TheB1 snapshot is bookmarking the left-end of the
interval, hence its ω component is set to 0, while
the ω component of B2 is set to 1 because it is
bookmarking the right-end of the interval.

Step 2: Indexing interval I2 (see step 2 of single-pass al-
gorithm in Figure 12). Two snapshots organized
as B2 and B4 are created to index the interval I2.
Note that, the algorithm maintains the chronolog-
ical order of the snapshots based on their keys;
hence the snapshot which was previously orga-
nized as B2, is now organized as B3. Both B2

and B4 snapshots have pointers to the interval I2
in their λ component. The ω component of the
snapshots B2 and B4 is respectively set to 0 and
1, because they are respectively referring to the
left and right ends of the interval. The interval
I1 is overlapping with the position on the domain
which the snapshot B2 is bookmarking; hence the
interval I1 is implicitly bookmarked at B2 by set-
ting its µ to 1. Similarly, the interval I2 is implicitly
bookmarked at B3 by setting its µ component to 1.

The steps for a double-pass indexing are discussed as it
follows.

Step 1: Indexing interval I1 (see step 1 of double-pass
algorithm on Figure 12). Two snapshots organized
as B1 and B2 are created to index the interval I1,
and a pointer to the interval I1 is added to their
λ components. Additionally, the ω component of
snapshots B1 and B2 are respectively set to 0 and
1. The µ component is not changed at first pass,
and it is set to its default value 0.

Step 2: Indexing interval I2 (see step 2 of double-pass
algorithm on Figure 12). Two snapshots organized
as B2 and B4 are created to index the interval I2,
and a pointer to the interval I2 is added to their λ
components. Additionally, the ω component of B4

is set to 1 because it is referring the right-end of the
interval. The µ components are set to their default
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Fig. 9: Uniform and PDF-optimized scalar quantization parameter setup.

values 0 at first pass.
Step 3: Second-pass (see step 3 of double-pass algorithm

on Figure 12). Iterates over all the snapshots and
updates their µ components to correctly count the
number of non-causal intervals (see Algorithm 8).

The superiority of one algorithm over the other for
indexing a sample S depends on |S| (number of intervals in
the sample) and |D| (current number of snapshots in the first
resolution). In general, if n intervals to be indexed overlap,
then the single-pass indexing algorithm increments the µ
component of some snapshots for n times. However, the
double-pass indexing algorithm implicitly bookmarks non-
causal events at its second pass. Accordingly, the first pass
of double-pass indexing algorithm performs significantly
faster than single-pass algorithm in bookmarking causal
events. Benchmarking the algorithms using A4 dataset (see
Table 3) shows that the first pass of the double-pass indexing
algorithm performs approximately 10x faster than single-
pass indexing algorithm (see Figure 10).

The second-pass of double-pass indexing algorithm tra-
verses all the snapshots, and updates their µ component, if
necessary, to implicitly bookmark the non-causal intervals.
However, the number of µ components required to be
updated, is a function of coordinate and cardinality of snap-
shots and intervals indexed at first pass; hence, traversing
the entire first resolution could be suboptimal for updating
a limited number of µ components, and it could affect the
overall performance of double-pass indexing algorithm. Ac-
cordingly, we benchmark the overall performance of single
and double pass indexing algorithms for indexing dataset
A1 (see Table 3) under two scenarios discussed as it follows.

1) The Di4 is initialized with 1% of the A1 dataset. Then
we benchmark the single and double-pass indexing
algorithms for adding the remaining 99% of the A1
dataset. The results presented in panel A of Figure 11
shows that double-pass indexing algorithm performs
roughly 5x faster than the single-pass indexing algo-
rithm.

2) The Di4 is initialized with 99% of the A1 dataset. Then
we benchmark the indexing algorithms for adding the
remaining 1% of the A1 dataset. The results show that
the single-pass indexing algorithm indexes data in 10%
of the time spent by the double-pass indexing algorithm
(see panel B on Figure 11).
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This benchmark suggests that the single-pass indexing
is optimal for updating Di4 data structure (i.e., when |S| �
|D|), while double-pass indexing is superior for initializing
it (i.e., when |S| � |D|).
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Algorithm 6 Single-pass batch index first resolution
1: procedure SINGLEPASSINDEX(I)
2: Bα ← find first snapshot Bb where eb ≥

¯
I

3: if Bα = null then
4: insert a new snapshot initialized as:

key: e←
¯
I , value: µ← 0, ω ← 0, λ← 〈L,@I〉

5: insert a new snapshot initialized as:
key: e← Ī , value: µ← 0, ω ← 1, λ← 〈R,@I〉

6: return
7: if

¯
I = eα then

8: insert 〈L,@I〉 to λα
9: else

10: insert a new snapshot initialized as:
key: e←

¯
I , value: µ← µα + ωα, ω ← 0, λ← 〈L,@I〉

11: while α+ 1 < number of snapshots do
12: α← α+ 1
13: if eα < Ī then
14: µα ← µα + 1
15: else if eα = Ī then
16: insert 〈R,@I〉 to λα and ωα ← ωα + 1
17: return
18: else
19: insert a new snapshot initialized as:

key: e← Ī , value: µ← µα + ωα, ω ← 1, λ← 〈R,@I〉
20: return
21: insert a new snapshot initialized as:

key: e← Ī , value: µ← 0, ω ← 1, λ← 〈R,@I〉

Algorithm 7 Double-pass batch index first resolution; first
pass

1: procedure FIRSTPASSINDEX(I)
2: Bα ← find snapshot Bb where eb =

¯
I

3: if Bα 6= null then
4: insert 〈L,@I〉 to λα
5: else
6: insert a new snapshot initialized as:

key: e←
¯
I , value: µ← 0, ω ← 0, λ← 〈L,@I〉

7: Bα ← find snapshot Bb where eb = Ī
8: if Bα 6= null then
9: insert 〈R,@I〉 to λα and ωα ← ωα + 1

10: else
11: insert a new snapshot initialized as:

key: e← Ī , value: µ← 0, ω ← 1, λ← 〈R,@I〉

Algorithm 8 Double-pass batch index first resolution; sec-
ond pass

1: procedure SECONDPASSINDEX
2: c← 0
3: t← {}
4: for each snapshot Bb do
5: c← |t| − ωb
6: for each @I in λb do
7: if t contains @I then
8: remove @I from t
9: else

10: insert @I to t
11: if µb 6= c then
12: update µb with c

APPENDIX C
A HEURISTIC APPROACH FOR RECONSTRUCTING
NON-CAUSAL INTERVALS

A snapshot has pointers to its causal intervals only (λ),
and only keeps a count of its non-causal intervals (µ, see
Section 2.1). However, to execute a query, pointers to both
causal and non-causal intervals are required. Therefore, Di4
defines reconstruct algorithm which traverses neighbors of
a snapshot to determine pointers to its non-causal intervals
(see Section 2.3.3 and Algorithm 4). In order to minimize
the number of neighbor snapshots to be traversed, Di4
stores pointers to both causal and non-causal intervals for
particular snapshots (similar to I-frames in video compres-
sion); called key-snapshot henceforth. A key-snapshot is the
first snapshot encapsulated by a secondary resolution block.
In order to store pointers to non-causal intervals of the
key-snapshots without altering their incremental structure,
each block has a λ∗ component which is a list of non-
causal intervals of the key-snapshot. Therefore, pointers to all
the intervals overlapping key-snapshots Bb are available via
λb ∪ λ∗b . Note that, the scalar quantization methods used
to define boundaries of secondary resolution blocks (see
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Section 2.3.5), indeed optimally distribute the key-snapshots
throughout the domain.

The application of λ∗ component is explained by the
following example. The Figure 13 depicts four intervals I1,
I2, I3, and I4; the intervals are indexed by 6 snapshots
(i.e., B1 to B6) and 2 blocks. In the following, we explain
reconstructing intervals bookmarked by the snapshot B2,
with and without utilizing λ∗ components.

To reconstruct the intervals bookmarked by B2 without
using λ∗, the algorithm traverses neighbor snapshots in the
following order.

B3: This snapshot bookmarks 1 causal interval I3, and
2 non-causal intervals. The non-causal intervals are
explained as follows:
• Since the left-end of the interval I4 is bookmarked

at B2, and its right-end is not determined yet, then
one of the non-causal intervals of B3 is I4.

• The second non-causal interval is the same interval
overlapping B2, and its pointer is not determined
yet.

B4: The snapshot bookmarks 1 causal interval I2, and 3
non-causal intervals, which are explained as it fol-
lows.
• The left-end of intervals I4 and I3 are respectively

bookmarked at snapshots B2 and B3. Since their
right-end is not determined yet, then I4 and I3 are
two of the non-causal intervals of snapshot B4.

• The third non-causal interval is the same interval
overlapping B2 and B3 which its pointer is yet to
be determined.

B5: The snapshot bookmarks 1 causal interval, and 3 non-
causal intervals, which are explained as it follows.
• The left-end of intervals I4, I3, and I2 are respec-

tively bookmarked at snapshots B2, B3, and B4.
Since, their right-end is not determined yet, then
these intervals are the 3 non-causal intervals of
snapshot B5.

• This snapshot does not have a non-causal interval
whose pointer is undetermined. Additionally, since
this snapshot is bookmarking the right-end of its
causal interval, I1; then I1 is the non-causal inter-
val of B2, B3, and B4 which its pointer was not
determined by prior snapshots.

Therefore, to reconstruct I1 without using a secondary
resolution, the algorithm had to traverse 3 snapshots.

To reconstruct the intervals bookmarked by B2 using a
secondary resolution, the algorithm traverses to the neigh-
bor snapshot B3. This snapshot bookmarks 1 causal interval
I3, and 2 non-causal intervals. However,B3 is a key-snapshot,
and its non-causal intervals are given by λ∗2 = {@I1,@I4}.
The interval I4 is the causal interval of the snapshot B2.
Hence, I1 is the non-causal interval of the B2 snapshot.

According, leveraging λ∗ component, the non-causal
interval of B2 is reconstructed traversing 1 snapshot, while
without utilizing λ∗ it requires traversing 3 snapshots.

Additionally, to optimize the performance, the recon-
struction algorithm is intertwined within the retrieval func-
tions; such that, when a retrieval function is traversing
snapshots to execute a query, the reconstruction algorithm
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Fig. 13: An example of reconstructing intervals using λ∗.

uses each traversed snapshot to reconstruct the bookmarked
intervals (e.g., see Algorithm 2).

APPENDIX D
EXPERIMENTAL SETUP

Di4 has been benchmarked against state-of-the-art using
real data downloaded from the ENCODE repository. The
downloaded data are grouped in 9 datasets (see Table 3
in the manuscript), and are available for download from
genometric.github.io/Di4/benchmark. The datasets vary in
size, but are similar in their interval accumulation distri-
butions which are plotted in Figure 14. Indeed, the ac-
cumulation distribution could have a strong effect on the
performance of an indexing framework; non-uniformly dis-
tributed data accumulate a big load of information on some
snapshots, while other snapshots may have lighter load.
This is sub-optimal from an index perspective because some
keys are very expensive to process while others are cheap,
this affects also parallel execution as some threads are busy
for a very long time while others are set free very early.

Additionally, Di4 is benchmarked against Giggle using
the Roadmap Epigenomics dataset. The benchmarks pre-
sented in Giggle’s manuscript, use this dataset for com-
paring Giggle against BEDTools. We mirrored this dataset
from the source linked in the Giggle’s manuscript, and we
host it at genometric.github.io/Di4/benchmark. The query-
ing speed of Di4 on the Roadmap Epigenomics dataset is
benchmarked against Giggle using 10 query samples, listed
in Table 4. The download links for these query samples are
available at genometric.github.io/Di4/benchmark.

APPENDIX E
DI4 DATA SERIALIZATION

The Di4 serialization process (de)serializes a Di4 snapshot
into an array of bits, then the persistence technology orga-

genometric.github.io/Di4/benchmark
genometric.github.io/Di4/benchmark
genometric.github.io/Di4/benchmark
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Fig. 14: Accumulation distribution in datasets.

Dataset #Intervals

wgEncodeSydhTfbsH1hescUsf2IggrabPk 29,972

wgEncodeSydhTfbsH1hescCebpbIggrabPk 66,007

wgEncodeOpenChromDnaseHuvecPk 126,695

wgEncodeOpenChromFaireMrtg4016Pk 270,181

wgEncodeUwDgfH7esPkV2 442,035

TABLE 4: The query datasets used in benchmarking Di4
against Giggle.

nizes the array in its internal structure (e.g., B+ tree nodes
and leaves for snapshots keys and values respectively). The
Di4 design is agnostic to a key-value pair persistence tech-
nology (see Figure 1), hence Di4 does not implement how a
serialized snapshot is organized and persisted on disk. This
design allows us to focus on an optimal (de)serialization of
a snapshot independent from it organization on disk.

Di4 implements (de)serializers for the following primi-
tive data types which are required for a snapshot serializa-
tion.

• Unsigned integer (used for (de)serialization of λ and
ω). Di4 uses the variable-length quantity method to en-
code an unsigned integer in a compact representation,
commonly referred-to as 7-bit encoded int or varint. For
instance, the integer number 1 can be represented by
a single byte, and three bytes of a 32-bit integer are
excessive. Common serializers use at least 4 bytes to

serialize a 32-bit integer regardless of its value, while
varint uses least possible number of bits to encode
the value of an integer. The varint encoding is a com-
monly used method in various binary serialization tech-
nologies including Microsoft .NET Framework binary
read/write [32] and Google’s protocol buffer [31]. A
pseudocode of the varint encoding is given in Algo-
rithm 9, see also [31], [32].

• Enumerated type (e.g., ϕ). Di4 uses a single byte to
serialize an enumerated (enum) type.

• An array of enum, integer, or 〈boolean, integer〉 tuple
(e.g., λ and λ∗). Di4 follows a “length-prefix” approach
(not self-delimiting or self-describing) to serialize an
array, where the array size is serialized followed by the
elements of the array.

Di4 uses the serializers of the primitive data types, and
serializes a snapshot into an “arranged” binary representa-
tion (see Figure 15). In other words, a binary representation
can only be deserialized using an external specification.
This technique is similar to the protocol buffer message type
descriptor (i.e., the .proto file), except that the message
descriptor is hard-coded in Di4 (i.e., the components are
always serialized in the following order: µ, ω, λ size, and λ;
see Figure 15). The advantage of this method over common
data serialization techniques is that: message schema is not
included, and no delimiting or describing bytes are added;
hence the message is smaller and faster to (de)serialize other
common serializes.
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Algorithm 9 Varint encoding. AND and OR are the bitwise
binary conjunction and disjunction operations respectively.

1: procedure ENCODE (n)
2: while n ≥ 128 do
3: write (low 7 bits of n) OR 128
4: binary shift right the written 7 bits of n
5: write the remaining maximum 7 bits
6: procedure DECODE
7: n← 0 . decoded value
8: i← 0 . bit index
9: while i 6= 5 ∗ 7 do . Prevents excessive read; 5 bytes max per Int32

10: b← read byte
11: n← n OR (b AND 127, then left-shift by i number of bits)
12: i← i+ 7
13: if b AND 128 = 0 then
14: return n

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

μ ω |λ|

1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0

ϕ @I

λ

Fig. 15: The figure shows the binary serialization of the snap-
shot B2 illustrated in the Figure 3, assuming @I2

1 = 300.
The components of a snapshot (µ, ω, λ) are serialized in
a predefined order. The λ array is serialized in a length-
prefix format, however, since no other schema information
is required, and the components of integer type are encoded
in a compact format (varint), the snapshot is serialized
concisely. Therefore, the snapshot B2 is serialized using 48
bits, which would require at least 136 bits otherwise (4 ∗ 32
for integers and a 8 bit ϕ).
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