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Abstract
Novel technologies and growing interest have resulted in a large in-

crease in the amount of data available for genomics and transcriptomics
studies, both in terms of volume and contents. Biology is relying more
and more on computational methods to process, investigate and extract
knowledge from this huge amount of data. In this work, we present the
TICA web server (available at http://www.gmql.eu/tica/), a fast and
compact tool developed to support data-driven knowledge discovery in
the realm of transcription factor interaction prediction. TICA leverages
both the GenoMetric Query Language, a novel query tool (based on the
Apache Hadoop and Spark technologies) specialized in the integration and
management of heterogeneous, large genomic datasets, and a statistical
method for robust detection of co-locations across interval-based data, in
order to infer physically interacting transcription factors. Notably, TICA
allows investigators to upload and analyse their own ChIP-seq experiments
datasets, comparing them both against ENCODE data or between them-
selves, achieving computation time which increases linearly with respect
to dataset size and density. Using ENCODE data from three well-studied
cell lines as reference, we show that TICA predictions are supported by ex-
isting biological knowledge, making the web server a reliable and efficient
tool for interaction screening and data-driven hypothesis generation.
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1 Motivation
Gene expression in prokaryotes and eukaryotes determines almost every internal
and external behaviour of the cell(s), from reaction to stimuli all the way to
cell development and death. To modulate gene expression, cells have evolved
different mechanisms. One of the most well known and studied is the activity
of Transcription Factors (TFs): these proteins possess highly specific DNA-
binding domains that they use to latch onto specific parts of the DNA. Once
attached, TFs can enhance or repress RNA polymerase access to the DNA area
encoding for a particular gene, thereby reducing or enhancing the amount of its
expression. This is one of the most basic forms of regulation and is widely used
across all species in the natural world; thus, it is of high interest for researchers
to understand the role of each transcription factor in the regulatory machinery.

Transcription factors are known to implement their regulatory mechanisms
in coordination, acting as functional groups. Ways to discover TF complexes
include in vivo experiments, observation of live cells and testing potential inter-
actors in vitro; however, given the intrinsic combinatorial nature of the problem,
these approaches are unlikely to be complete or even feasible over the whole spec-
trum of TF-TF interactions. In the context of gene regulation, computational
biology has become a powerful hypothesis generation tool, rooted in mathemat-
ical interpretation of experimental data: by screening unlikely interactions, the
investigator can then focus resources on verifying the most interesting candidate
interactors using more traditional methods.

In this chapter, we present the TICA (Transcriptional Interaction and Co-
regulation Analyser) web server, a convenient tool for analysing chromatin im-
munoprecipitation and sequecing dataset targeting TF binding locations and
predicting TF-TF interaction. The TICA web server leverages two powerful
assets:

• the expressive power of GenoMetric Query Language (GMQL) [7], a novel
high-level declarative language for seamless integration, management and
querying of heterogeneous genomic datasets;

• a statistical classifier which predicts colocation between interval-based
data on a single reference system by exploiting the structural and po-
sitional information given by the intervals themselves.

We developed TICA in the context of the TF-TF interaction prediction prob-
lem (hence the name), and therefore its model is tailored to the needs of this
biological context. The TICA web server, developed in the Django framework,
is available for both data exploration of ENCODE narrowpeaks on Homo Sapi-
ens cell lines and for analysis of novel biological datasets, provided by biological
investigators.
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This Chapter is structured as follows: in Section 2 we describe the web
server, the main workflow and resulting output. In Section 3, we provide an
overview of the implementation strategies we used to develop the web server and
underlying algorithm, and discuss the advantages of using GenoMetric Query
Language queries. In Section 4, we analyse the performance of the web server,
in particular we describe datasets provided in the initial deployment and how
the prediction algorithm scales with increasing amounts data provided by the
user. Finally, in Section 5, we highlight the most interesting aspects of the
web service in terms of performance, accuracy and acceptable data formats.

2 TICA web server
We have developed and deployed a web server (and related web application),
with which investigators can use the TICA framework to predict TF-TF inter-
action on ChIP-seq datasets on a set of model cell lines from Homo Sapiens.
The web server can be accessed at: http://www.gmql.eu/tica/. The web
implementation can be employed in three ways:

1. users can investigate the latest version of ENCODE ChIP-Seq data avail-
able to search for evidence regarding interaction hypotheses;

2. they can upload their own TF ChIP-seq datasets to the database and
analyse all possible interactor couples therein; or

3. they can upload their datasets and compare them with the ENCODE
datasets, searching for potential interaction phenomena.

2.1 Workflow
Users connecting to the server see the welcome page reported in Figure 2.1. They
are not required to create an account or authenticate in any way in order to use
the web server: data uploaded is stored in a temporary folder (with a session
ID for tracking during analysis), and subsequently discarded. In the welcome
page, the user is prompted to select the context cell line: this determines the
p-values for statistical tests (due to different null distributions) and the list of
ENCODE TFs available for comparisons.

The workflow in the cases 1, 2 and 3 above is identical, except for the up-
load procedure required to submit, transform and filter user-provided datasets
(see Section 3.1). Experimental data have to be uploaded via a single zip file
containing one folder for each TF, which must be named as the TF itself. Each
sample will be assigned to the TF inferred by its folder, regardless of the actual
filename; single files should be in ENCODE bed narrow-peak format•.

If the user selects ”ENCODE” in the main page , they will be immediately
redirected to parameter selection.

•The schema for ENCODE narrowpeak data files is defined in https://genome.ucsc.edu/
FAQ/FAQformat.html#format12
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Figure 1: Screenshot of TICA web application main page. Through the drop-
down menu, the users can decide the context cell line among those available;
users can also select whether they want to upload data or use ENCODE data.
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2.2 Parameters
After uploading data (if required) users have to specify the parameters for the
analysis using the parameter input page (Figure 2). A user can tune most of
the TICA classifier parameters to suit biological assumptions or experimental
conditions (cf. Table 2): among other choices, the user can restrict the analysis
to a sublist of the TFs to be compared, define mindist couples maximum distance
(from preselected values: 1100, 2200, 5500 bp), declare which test conditions
have to be used (by ticking or unticking the corresponding test names) and state
global significance level required and minimum number of test conditions to be
satisfied (for additional details on the TICA classification algorithm, see Section
3.2). Default values are provided, matching specifications in Table 2.

2.3 Output
Results are presented to the user through a table and a heatmap (see Figure 3):
the heatmap shows the number of test conditions satisfied, with -1 represents
TF-TF pairs that do not meet the biological information screening criteria (see
Section 3.2). Details on each feature extracted from observed mindistance couple
distributions are given in a separate table, on the same page. Results can be
exported as a .csv file using the ”Export to CSV” link (also in Figure 3).

2.4 Deployment
All mindistance couples and related distances for the default cell lines in EN-
CODE data are precomputed and stored in a PostgreSQL database. These
tables are only refreshed during major data updates; when user-provided data
is uploaded in the system, only minimal distance couple distance distributions
between TFs provided are computed on the fly. The server was developed us-
ing the Django v1.11.7 framework (http://djangoproject.com); queries are
implemented inside the Django framework using the Python API for GMQL,
PyGMQL [9].

3 Implementation
The back-end supporting TICA is made of two conceptual blocks:

• a data preprocessing step, which takes either ENCODE or user-provided
narrowpeaks and removes noisy binding sites and inactive transcription
start sites, according to the context cell line (described in Section 3.1)
and is implemented using GMQL;

• the prediction algorithm, a statistical procedure that compares candidate
TF-TF pairs against null distributions from random pairs in the same cell
line, with respect to a set of statistical aggregators (Section 3.2).
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Figure 2: Screenshot of TICA parameter input page.
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Figure 3: Screenshot of TICA results page, after submitting a query on cell
line GM12878. Middle table report all features from statistical tests and de-
terministic filters. Blue squares in the heatmap denote higher number of tests
passed.
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3.1 Data preprocessing
We implement the preprocessing step of TICA by taking advantage of Geno-
Metric Query Language (GMQL), a high-level, declarative query language which
supports data extraction as well as many standard data-driven computations re-
quired by tertiary data analysis [7]. We use mostly ChIP-seq datasets extracted
from ENCODE, but GMQL supports an integrated repository with datasets
extracted from ENCODE, TCGA, Epigenomic Roadmap, GDC, and GEO; in-
tegration of heterogeneous datasets is supported by the GDM data model [8].
In GDM, a dataset includes several samples; each sample is a pair of regions
and metadata. For instance, in the case of a sample resulting from a ChIP-seq
technology, regions describe the peaks of expressions (their start, stop, peak
positions and score; region samples are similar to tracks that can be seen on a
genome browser); metadata describe additional attributes of each sample, for
instance the specific experiment name and tissue.

GMQL queries are written as sequence of statements operating on abstract
variables, each representing a genomic dataset; it is a high-level language whose
conditions apply both to regions and to metadata. GMQL implements most of
the standard relational algebra operations [2], such as SELECT, PROJECT,
GROUP, ORDER, UNION, DIFFERENCE; it also supports domain-specific
operations, such as genometric JOIN, MAP and COVER, whose semantics and
implementation are defined in [5]§.

GMQL is particularly powerful as a data extraction language, due to its
implicit iteration over multiple samples of a dataset and its very compact and
readable query specification. The language is also highly effective when inte-
grating data coming from vastly different data sources, as the standardization
to GDM allows for direct comparison between regions (represented by the same
coordinates, such as chromosome, start and stop) while preserving all informa-
tion ascribed to a particular data format (such as peak calling p-values from
ChIP-seq experimental data, or rpkm values from RNA-seq). GMQL seam-
lessly combines these attributes using commands such as PROJECT and MAP,
supporting and streamlining data analysis pipelines.

As an example of the above, we show the queries which are used for extract-
ing TF binding sites (TFBSes) and transcription start sites (TSSes), relative to
a given cell line, from the repository (Listing 1). The TFBS filtering query (lines
1 through 6, same Listing) is also performed on user-provided narrowpeaks.

1 # extracts 1−base exact TF peaks and produces one sample fo r each TF
2 TFS = SELECT( experiment_type == 'ChIP−seq ' AND c e l l == ' target_ce l l ' )

ENCODE_NARROWPEAK;
3 TF_PEAKS = PROJECT( region_update : l e f t AS star t + peak , r ight AS star t +

peak +1) TFS;
4 TF_PEAK = COVER(1 ,ANY; groupby : tf_name) TF_PEAKS;
5

§The full description of GMQL language for the latest version (2.1 at the time of writing)
can be found at http://www.bioinformatics.deib.polimi.it/geco/?try.
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6 # extracts TFBSes by looking at enc los ing windows with enough TF signal
, i . e . enough peaks f a l l i n g in a window of 1000 bases

7 WINDOW = PROJECT( region_update : s ta r t AS star t − 1000 , stop AS stop +
1000) TF_PEAK;

8 MAPPED_WINDOW = MAP( joinby : tf_name) WINDOW TF_PEAK;
9 TF_EXTRACTED = SELECT( region : count >= w) MAPPED_WINDOW;

10
11 # extract histone marks −−− H3K9ac and H3K4me3 are found in promoter

areas of ac t ive ly transcr ibed TSSes . Similar quer ies are written
for histones H3K4me1 ( enhancers ) and H3K36me3 ( exons ) − here
omitted

12 HMS = SELECT(( histone_name == 'H3K9ac ' OR histone_name == 'H3K4me3 ' )
AND c e l l == ' target_ce l l ' ) ENCODE_BROADPEAK;

13 HM = COVER(1 ,ANY) HMS;
14
15 # f i l t e r TSS with enough overlap with histone marks
16 TSS = SELECT( annotation_type == 'TSS ' ) ENCODE_BED_ANNOTATION;
17 PROMOTER = PROJECT( region_update : s ta r t as s ta r t − 2000 , stop as stop +

200) TSS;
18 MAPPED_PROM = MAP() PROMOTER HM;
19 TSS_FILTERED = SELECT( region : count >= h) MAPPED_PROM;
20
21 # further f i l t e r s TSS with enough overlap with TF−PEAKS – from

arbitrary TF peaks
22 MERGED_PEAKS = MERGE() TF_PEAKS
23 MAPPED_TSS = MAP() TSS_FILTERED MERGED_PEAKS
24 TSS_EXTRACTED = SELECT( region : count >= k) MAPPED_TSS;

Listing 1: GMQL query used to filter TF binding sites and TSSes used by the
method (summary).

• Lines 2-4: the TFS variable includes all the relevant TF samples ex-
tracted from ENCODE narrowpeak datasets†. The PROJECT operation
is used to reduce the size of ChIP-seq regions to a single base pair. The
COVER(1,ANY) operation is used to combine replicates from different
transcription factors, keeping all regions from all samples and merging
any two or more regions which overlap. The groupby option limits the
merging to samples that share the same tf_name metadata attribute, i.e.
contain experiment data on the same transcription factor. The result in-
cludes one sample for each distinct TF, with regions corresponding to a
single base pair where the peak is located.

• Lines 7-9: Candidate TFs for the method are selected. A window of 1000
base pairs is constructed around each peak, and TFs associated with win-
dows enclosing a counter of peaks over a threshold (w) are extracted. The
PROJECT operation builds the WINDOW, the MAP operation counts
the number of peaks included in each window, and the final SELECTion
extracts the TFs.

†ENCODE narrowpeaks are also given for ChIP-seqs targeting histone modifications. We
remove them from the dataset by means of NOT clauses - omitted for brevity.
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According to the method, TSSes are extracted based on three progressively
applied conditions: overlap with histone marks of promoters, of exons, and
of enhancers; we only explain how to select TSSes by using histone marks of
promoters, as the second and third extractions are very similar.

• Lines 12-13: Histone marks are selected. Extraction is done by means of
a SELECTion; replicates are then combined using the COVER, keeping
all regions from all samples and merging any two or more regions which
overlap. Eventually, each HM sample includes all the regions of a given
(set of) histone modifications present in ENCODE.

• Lines 16-19: TSSes are filtered. Promoter regions are built, and overlap-
ping histone modification regions are counted; a TSS is selected if it is
supported by a sufficient number of overlaps (one for each histone mark
in the relevant regions). As promoter regions, we take standardised exten-
sions of transcription start sites; these are built using a PROJECT, which
takes TSSes and modifies their start and stop positions by extending them
2000 pairs upstream and 200 pairs downstream‡. Then, the MAP opera-
tion counts the number of overlapping regions and the final selection filters
the TSSes.

• Lines 22-24: Finally, TSSes to be used in the method are extracted. In
addition to overlaps with histone modifications, we also require TSSes to
be supported by a sufficient number of TF peaks. The MERGE operation
puts all the peaks of different transcription factors into a single sample,
then the MAP counts how many peaks overlap with promoter regions for
TSS as defined above; the final SELECT extracts the TSSes.

3.2 Interaction prediction method
After TF binding site data has been filtered and reduced to 1bp length by
means of the GMQL queries, TICA investigates colocation between two sets
of transcription binding sites in a statistically robust way. It does that by
performing a significance test based on the null hypothesis that two random
TFs (named candidate interactors) are not found in close position to one another
(according to suitable aggregation functions, as below).

Briefly, the main concept behind TICA is the minimal distance couple (or
mindist couple for short), a pair of intervals which are found to be the closest to
one another according to the given coordinate system, and are not located too
far apart. Minimal distance couples for a given pair of transcription factors (rep-
resented by the positions of their binding sites) induce a distance distribution
via the genomic distance function, which is used to generate a set of observa-
tions related to that particular pair of TFs. TICA uses both standard (average,

‡These are nominal values for promoter and exon length, chosen for our experiments.
Different investigators can use their own values for regulatory regions extension, depending
on their biological assumptions.
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median) and novel (median absolute deviation, distribution right tail size) sta-
tistical aggregators of the distances as features to feed a statistical classifier.
The output of the classifier is whether the null hypothesis above is rejected for
a certain TF-TF pair.

TICA builds null distributions for each feature by randomly sampling pairs
of TFs from those available in ENCODE phase 2 and 3 datasets (narrowPeak
format) in a given cell line. Data comes from chromatin immunoprecipitation
and sequencing experiments on three major context cells: HepG2, GM12878,
K562. For each cell line, we also extract the TSSes which are more likely to
be actively transcribed, based on available histone marks (see Section 4.1) and
TF binding information, which we use to impose additional restriction on the
candidate interactors: TICA rejects a candidate pair if the ratio of couples which
colocate in the same promoter is too low, with respect to the total size of the
distribution. This is done to make sure that results have biological relevance
as indicators of potential coregulatory behaviour, which is linked with physical
interactions [3].

We calculate p-values of null distributions and TFBS colocation in promoters
using a Python script (v3.6). In particular, mindistance couples are computed
first with respect to one of the TF (meaning, for each of its binding sites, the
algorithm find the ones for the potential partner which are closest and not above
the distance threshold), then with respect to the other. The two results are then
intersected, yielding the final mindist couple list: this is done to avoid scenarios
where one binding site is the closest with respect to a target, but the reverse is
not true (Figure 4).

3.3 Data format
TICA can in principle work with any kind of genomic regions, due to the fact
that data is managed by the flexible GDM model via GMQL. However, it is
reasonable to assume that the required maximum displacement between candi-
dates will be small (in other words, we expect regions to be very close to each
other with respect to the linear dimension of the universe set): this is due to
the fact that physical interaction between TFs happens at molecule scale, where
distances are in the order of 1 to 10 nucleotide base pairs [4] (compare with the
average size of a human chromosome, 1.2 · 108 base pairs).

Data from ChIP-seq experiments is given in variable size, usually in the range
of 101 (point-source information or TSS locations) to 103 base pairs (histone
modifications, genes), making certain fine-grained analysis much more difficult.
We overcome this by using ENCODE narrowpeak regions, which contain the
position of the highest confidence point-source for each region (as offset from the
starting point): we represent each binding site using only this high-confidence,
1 base pair-long peak in order to make statistics on small values of distance
meaningful.
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Figure 4: Example computation of mindistance couples, highlighting possible
ambiguities. Two TF track snippets are given (blue and orange). Proceeding
as per the scanning direction, if blue is chosen as anchor (and orange as ex-
periment), the minimal distance couples are correctly identified as (a,b) and
(d,e) (note that d is closer to e than to c). However, if roles are inverted, three
couples will be found instead: (b,a), (c,d), (e,d). Intersecting results guarantees
consistency with the model.
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Figure 5: Distance distribution inferred from minimal distance couples of tran-
scription factors CTCF and JUN in cell link HepG2. Vertical lines denote
statistical aggregators used in TICA tests (mean, median and median absolute
deviation). Two dimension for the right tail are given: long (distance greater
than 500bp, orange) and short (distance greater than 1000bp, red). Right tail
size in this case is approximately 15% of the total.
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Cell line TF num-
ber

File num-
ber

Data size
[Gb]

Data size
[Millions
regions]

Actively
tran-
scribed
TSSes
number

HepG2 200 1085 13.16 181 25097
GM12878 148 794 8.66 121 31660
K562 288 2057 23.19 322 32356

Table 1: Data volume used in pipeline experiments, listed by cell. TSS numbers
refer to sample size after GMQL filtering.

4 Performance
4.1 Materials
We test and validate our model using data from ENCODE phase 2 and 3 ChIP-
seq experiments in narrowpeak format, currently available in GMQL public
repositories. Our chosen model organism was Homo Sapiens. We use the fol-
lowing data in our experiments:

• Context cell lines: three cell lines were selected due to data availability
and quality: HepG2 (liver carcinoma), K562 (myelogenous leukemia) and
GM12878 (healthy lymphoblastoids);

• TF binding locations: data representing transcription factor binding points
(TFBSes) in narrowPeak format [6], due to higher peak precision and
presence of point-source location information for each region;

• Histone marks: the following marks have been chosen for highlighting
actively transcribed TSS (see Section 3): H3K36me3 (exons), H3K9ac
and H3K4me3 (promoters), H3K4me1 (enhancers). Data from ENCODE
phase 2 and 3 repository, limited to cell lines mentioned above. Data
format chosen is ENCODE broadPeak [6];

• Transcription start sites: data also from ENCODE phase 2 experiments,
in standard bed format. TSS are described in terms of the first exon base
only (regions are 1bp in length).

Data quantities are listed in the Table 1.

4.2 Parameter settings
Parameter chosen for GMQL queries and TICA algorithm during performance
evaluation are reported in Table 2. The choice of parameters is driven by the
following biological considerations:
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Parameter Value

Genomic dimensions(*)
Exon length 200bp
Promoter length 2000bp
Enhancer length 100kbp

Data filters
Clustering value k 3
TFBS scanning window
size

1000bp

Min. number of TFBS
in active promoters

50

Metric constraints Mindist couple max dis-
tance

2200bp

Tests and thresholds

Number of points in
nulls

≥ 10000

Right-tail threshold 1000
Test p-value 0.2
Required number of re-
jected null hypotheses

3

Minimum number of
mindist couples

1

Minimum fraction of
mindist couples colo-
cating in a promoter

0.01

Table 2: Parameter setting for TF-TF interaction prediction pipeline. (*):
extending TSS according to their strand.
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• standardised regulatory region length is a common assumption when work-
ing with gene expression regulation;

• TFBS window of accumulation is chosen so that it covers most of a stan-
dard promoter size without overextending;

• mindist couple max distance is one promoter length plus one exon (as-
sumed size of promoter area)

• the minimum number of TFBSes in active promoter is chosen as the first
quartile of the overall distribution of the counts of TFBSes in promoters
in HepG2 (taken as preferred modelling environment).

Experiments and performance evaluation have been performed on the GeCo
server at DEIB, Politecnico of Milano. The TICA web server is hosted on a Dell
PowerEdge R730xd server with 2 Intel Xeon E5-2660 v4 processors and 384 GB
of RAM.

4.3 Performance assessment
Performance estimation for the web server can be divided in two blocks:

• computation time needed to (re)generate the database from ENCODE
data and/or to analyse novel data;

• accuracy of predictions.

In the context of this work, we focus mostly on evaluation of the actual com-
putation performance (i.e., time consumed) as opposed to discussing algorithm
accuracy. Future works will be targeted towards the correctness of the method.

4.3.1 Null distribution generation from ENCODE

Execution times for the full pipeline on ENCODE data are listed in Table 3.
Cell lines and data volumes correspond to those reported in Section 4.1. The
pipeline has been split in four major parts:

• TFBS query: corresponding to lines 2 through 9 of Listing 1;

• TSS query: corresponding to lines 12 through 24 of the same;

• TSS map: the mapping of each binding site to all TSS in the promoter
of which it binds, used to determine whether a mindist couples binds to
shared promoter;

• Mindist couples: where the mindistance couples are computed by TICA.

Computation times reported in Table 3 refer the full analysis of the entire EN-
CODE cell line they refer to, which can involve thousands of millions of regions
at a time (in the case of K562, ca. 3 · 108 regions are analysed - cf. Table 1).
In typical use cases, the computation times are faster by two to three orders of
magnitude (cf. next paragraph).
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Cell line TFBS query TSS query TSS map Mindist cou-
ples

HepG2 108 194 21 120
GM12878 77 138 15.5 60
K562 204 407 46 376.5

Table 3: Tabulation of execution times for TICA pipeline steps on the three
context cell lines. Input data is taken directly from ENCODE (see Table 1).
Time measured in minutes.

4.3.2 Analysis of novel data

As a simulation of typical levels of workload, we generate synthetic data in
narrowpeak format with variable levels of data volume. Two scaling factors
were considered:

• number of transcription factors (each with a given number of regions): this
influences the amount of candidates and therefore the number of times
each step must be executed;

• sample size (in number of regions per sample, for a fixed amount of TFs):
influences the amount of data filtered by TFBS queries, the mapping times
and the number of comparisons during mindist couples’ distance distribu-
tion creation.

Note that each TF contains only one sample: giving more for each TF would not
influence the computation times in a tangible manner (the COVER operation
would collapse them to a single one).

We time the execution of the full pipeline on seven different scenarios, using
HepG2 as context cell line: results are reported in Table 4. The datasets are
built as follows:

• we first consider a baseline scenario where the user provides data for 20
TFs, each containing 5000 regions of 100bp length - we estimate this to
be a typical data size for user-submitted datasets;

• moving on the TF number scale, we submit one small (10 TFs), one
medium (100 TFs) and one large (1000 TFs) dataset. Each dataset con-
tains one sample per TF, and all samples contain 1000 regions (lines);

• moving on region-per-sample number scale, we submit three other datasets:
small (103 regions), medium (104 regions) and large (105 regions). Each
dataset contains 50 TFs and one sample per TF as before.

Note that each level (small, medium, large) increases the raw amount of data
by a factor of 10, hence the increase in time is linear rather than exponential.
To visualize this, we provide loglog plot of the scaling curves for TF- and sample

16



Cell line TFBS query TSS map Mindist cou-
ples

Total

Baseline 34 12 3 0.8’
TF-small 11 5 0.5 0.5’
TF-medium 35 52 23 2’
TF-large 219 525 802 26’
SAMPLE-
small

13 28 7 1’

SAMPLE-
medium

111 33 23 3’

SAMPLE-
large

613 41 38 12’

Table 4: Tabulation of execution times for TICA pipeline steps on synthethic
datasets. Context cell line chosen is HepG2. Time measured in seconds except
for total, which is converted to minutes for clarity.
.

size-scaling in Figure 6. Note that TSS query filter time has not been timed in
this scenario, as TSSes are not recomputed when user data is uploaded.

Baseline scenario is successfully computed in approx. 1 minute, which is also
the expected time for a typical user-provided dataset.

4.3.3 Accuracy

Briefly, we compare TICA predictions against existing biological knowledge,
represented by two databases: CORUM [10], a collection of experimentally
verified mammalian protein complexes, and BioGRID [11], which reports func-
tional interactions between proteins based on both high-throughput datasets
and individual focused studies. We consider an interaction to be supported by
evidence if its two components are mentioned in a complex (CORUM) or as
a protein-protein interaction (PPI, in BioGRID). The quality metrics that we
use are recall (fraction of interactions correctly as positives out of all interac-
tion supported by evidence), specificity (fraction of intersection not identified
as positives out of all interactions which are not supported by evidence) and
geometric mean performance (square root of the product between recall and
specificity [1]). Results are tabulated in Table 5 for the largest cell line, K562.

A caveat is that not all TF-TF interactions correspond to complexes or PPIs
(e.g. antagonistic TF-TF interactions), and not all complexes and PPIs corre-
spond to TF-TF interactions. Nonetheless, co-operative TF-TF interactions are
expected to be enriched in complexes and PPIs. This enrichment can be com-
puted as recall over 1 minus specificity, which evaluates to 1.95 in our specific
example. That is, a TF-TF pair that is predicted by TICA to interact is twice
as likely to be found in a complex or as a PPI than a pair that is predicted not
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Figure 6: Loglog scale graph of execution time for TICA on ENCODE datasets.
Each line corresponds to one of the three algorithm steps timed as per Table
4. Upper: scaling with respect to the number of TF in a datasets, with fixed
number of regions per sample; lower: scaling with respect to number of region
in a sample, with fixed number of TFs (and hence samples).
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Cell line Recall Specificity Geometric
mean perfor-
mance

Enrichment

K562 0.297 0.848 0.502 1.95

Table 5: Tabulation of quality measures for TICA predictions, with respect to
the union of CORUM and BioGRID databases. Data from ENCODE cell line
K562.

to interact.

5 Discussion
In this work, we introduce the TICA web server, a convenient tool for biologists
to analyze ChIP-seq data on TF bindings for TF-TF interaction prediction.
TICA leverages on GMQL, a novel language for data management, integration
and querying of large, heterogeneous genomic datasets. Through the TICA web
server, one can easily appreciate the expressive power and ease of use of the
GMQL query language.

The TICA web server is a compact tool which nonetheless allows for fast
analysis of entire cell lines from ENCODE ChIP-seq experiments: once data
is generated (typically only after a major ENCODE release), running the pre-
diction algorithm on repository data is computed in a short execution time.
Updating the repositories with novel data has also very reasonable time re-
quirements, considering that a repository’s update rarely occurs (the cell line
with the most data available, K562, takes about 16h from start to finish on the
server specified in 4.1).

TICA scales very well with increasing data size provided by the user: as
shown in Figure 6, it exhibits a linear or close to linear increase with respect to
both the number of regions available in each samples, and the number of TFs
(samples) in the user provided datasets. This gives us confidence in saying that
TICA can be used as a component of larger pipelines in the investigation of
TF-TF interactions.

When cross-checked with popular protein-protein interaction (PPI) and pro-
tein complex databases, TICA shows very good specificity (>=80%) while main-
taining acceptable recall (circa 30%), considering that these reference datasets
are currently incomplete. Given these quality measures, TICA can be used
both as an effective screening tool in preparation for wet-lab experiments, and
as direct computational tool for investigating the interaction between novel tran-
scription factors and/or experiments in specific conditions, such as disease or
different cell lines.

Thanks to the expressive power of GMQL, the user is not required to pre-
process data or convert it to any particular schema: peaks called in the standard
narrowpeak format are sufficient to perform analysis, and are reduced to their
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point-source form directly by the query tool. Also, the TICA web server sup-
ports a high level of customization, allowing investigator to tune almost every
parameter of the prediction algorithm without any loss of performance with re-
spect to what has been mentioned above. In conclusion, we suggest the TICA
web server as a compact, reliable and efficient tool for tackling the TF-TF in-
teraction prediction problem.
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