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a b s t r a c t

PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hy-
drogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High
purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC).
PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and
enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples
after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture
of LiF and PuF3.

© 2018 Published by Elsevier B.V.
1. Introduction

TheMolten Salt Reactor (MSR) is a Generation IV nuclear reactor
[1] in which the thermal carrier is a liquid mixture of salts, gener-
ally chlorides or fluorides. The nuclear fuel (uranium and/or
plutonium) is dissolved in the primary coolant making this concept
very interesting for fuel clean-up, which can occur online and
continuously [2,3]. The liquid fuel provides also a homogenous
reactor with promising features in terms of safety and sustain-
ability [4]. But the challenging goals of the Generation IV Interna-
tional Forum (GIF) still require significant efforts in terms of
research [5].

The MSR technology has been developed since the 1940s, when
ene�s).
this concept was investigated at the Oak Ridge National Laboratory
(ORNL) in USA for powering aircrafts [6]. In the 1960s, the MSR
technology was applied at ORNL to construct the Molten Salt
Reactor Experiment (MSRE), an 8-MWth nuclear reactor, which had
the purpose to demonstrate the feasibility of the key features of the
molten salt power reactors for civilian applications [6,7]. In the
1960s and 1970s the interest on the MSR also reached United
Kingdom [8] and Russia [9], but until the beginning of the new
millennium, the research for its development remained modest
[10]. However, the vast heritage of knowledge left from the
research in the second half of the twentieth century is a milestone
and still represents the state of the art of several research fields
concerning the investigation of actinide fluorides.

Since the Generation IV International Forum (GIF) selected the
MSR as one of the six innovative nuclear reactor concepts [11], the
research and the interest for this technology has been continuously
growing and spreading in several countries worldwide attracting
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both public and private investors [12]. All these R&D activities led
to the development of several MSR concepts exploring different
possible applications [10,12]. Indeed, in addition to electricity and
heat production, the MSR is very promising also as:

- Breeder, exploiting both uranium and thorium fuel cycle;
- Actinide burner, allowing significant reduction of transuranic
elements in the nuclear waste, which actually represents a
serious limit in nuclear energy utilization.

In the light of these potentialities, the European Commission
(EC) has been supporting continuous and coordinated R&D activ-
ities since 2001, funding several projects in order to investigate the
feasibility of the Molten Salt Fast Reactor (MSFR), a 3000 MWth
liquid-fuel reactor concept, in which a mixture of molten fluorides
circulates at ambient pressure in the primary circuit reaching
temperatures close to 800 �C [13]. This reactor concept is based on a
closed thorium fuel cycle [14], exploiting important advantages in
terms of availability of rawmaterial [15]. This implies that the main
fissile material in normal operation should be 233U obtained from
232Th by means of neutron absorption and two subsequent beta
decay reactions. Nevertheless, the MSFR allows the employment of
both 235U or 239Pu as fissile material [16]. This latter case is inter-
esting because it allows utilizing the plutonium produced in ther-
mal reactors, outlining the field and the motivation of the present
work.

Because fluoride mixtures are thermodynamically stable at high
temperature, with very high boiling points, they are generally
considered to bemore suitable for theMSFR, compared to chlorides
[17]. A potential fuel salt composition is a binary fluoride salt,
composed of LiF enriched in 7Li to 99.995% and a heavy nuclei
mixture initially composed of fertile thorium and fissile matter. At
present, the two fuel salt initial compositions have been selected:

- Fuel 1: LiF-ThF4-233UF4 (77.5-20-2.5mol%)
- Fuel 2: LiF-ThF4-enrUF4-(Pu-MA)F3 (77.5-6.6-12.3-3.6mol%),

in which MA stands for Minor Actinides. The second composition
considers plutonium in the form of trifluoride as fissile material,
therefore the thermodynamic assessment of the PuF3-LiF system is
fundamental for the development of the MSFR and understanding
how thermodynamic properties change when varying the amount
of fissile material. Since only one experimental study was found in
literature on the PuF3-LiF phase diagram [18], the goal of the pre-
sent work is to perform another independent study of phase
equilibria data and to extend the range of the existing experimental
values. Because of the high liquidus temperatures of mixtures with
significant amount of plutonium trifluoride, Barton and Strehlow
could not measure mixtures with more than 38mol% of plutonium
trifluoride. In the present work, we measured phase transition
temperatures of samples with plutonium trifluoride content up to
60mol%.

2. Literature survey on the PuF3 synthesis

Because of the consequences of possible impurities in the
measured samples on the evaluated thermo-physical properties,
which might influence the safety assessment of the MSR reactor
concepts, the purity of the end-members is a crucial issue. For
laboratory scale experiments, lithium fluoride is commercially
available at very high purity (>99.9%), but plutonium trifluoride is
generally not readily available. Various ways of PuF3 synthesis
starting from different materials (generally plutonium oxides) were
reported and are summarized in the following literature survey.

The synthesis of plutonium trifluoride has been studied in the
past exploring several methods, which can be divided in two main
categories: methods in which the final product is obtained by
precipitation in aqueous solutions [19,20], and those in which the
plutonium trifluoride is the reaction product of plutonium oxalate,
dioxide or peroxide with gaseous fluorinating agents, as described
below.

The aqueous method based on direct precipitation of plutonium
fluoride is generally not a favoured process because of possible
filtration problems, if precipitation conditions are not closely
controlled [21]. The synthesis by means of gaseous fluorination
appears more interesting for production at a gram scale and
different gases such as HF [22e25], F2 [26e29], NF3 [30], ClF3
[26,27] or Freon-12 (dichlorodifluoromethane) [31,32] have been
considered. Even though some of these gases are typically used for
preparation of plutonium fluorides with higher oxidation states
(PuF4 or PuF6), it is possible to utilise them for synthesis of PuF3,
which is then obtained by successive reduction of the fluorination
product by means of reducing agents such as H2, CO, Br2, I2, SF4 or
NiF2 [27].

Finally, because many fluorination gases and hydrogen present
safety issues for storage and usage, Claux et al. [33] recently pub-
lished a method for synthesis of PuF3 from PuO2 by fluorination
using ammonium difluoride, which is stable and solid at room
temperature. The work was based on the previous studies pub-
lished by Tolley [34], Benz [35] and Wani [36].

3. Experimental

The work (i.e., synthesis of PuF3 including preparation of initial
materials and samples and all analytical and thermodynamic
measurements) was carried out at the JRC-Karlsruhe laboratories.
The synthesis was done in a facility specially designed for fluori-
nation of radioactive actinide materials. A detailed description of
the installation is given in awork of Sou�cek et al. [37]. The storage of
the initial materials and the preparation of the samples took place
in a glove box under purified Ar atmosphere controlled to keep
concentration of H2O and O2 less than 2 ppm.

3.1. Preparation of initial materials

3.1.1. PuF3
Initial PuO2 powders were prepared by thermal decomposition

of plutonium oxalate [38,39]. To enhance the kinetics of the fluo-
rination reaction, the oxalate decomposition has been performed at
moderate temperature in order to obtain porous oxide powderwith
small crystallite size [40]. Plutonium oxalate hexahydrate has been
obtained by dropping Pu(IV) nitrate solution in an oxalic acid so-
lution at room temperature. The obtained powder has been filtered,
dried and calcined under air at 600 �C. The process can be sum-
marized by the following reactions of precipitation (1) and calci-
nation (2):

PuðNO3Þ4 þ 2C2O4H2 þ 6H2O�!20
�C
PuðC2O4Þ2,6H2OYþ 4HNO3

(1)

PuðC2O4Þ2,6H2O ��!600�C
PuO2 þ 6H2O[þ 2CO2[þ 2CO[ (2)

Composition of the initial plutonium nitrate solution was
measured at JRC-Karlsruhe by means of analytical techniques:
plutonium content was determined by Isotopic Dilution Mass
Spectrometry (IDMS) while uranium, americium and neptunium
content were determined by Inductively Coupled Plasma Mass
Spectrometry (ICP-MS). The actinide composition is presented in
Table 1 and shows the high purity of the plutonium used in this



Table 1
Actinide composition of initial nitrate solution relatively to the full actinide
composition obtained by IDMS (Pu) and ICP-MS (U, Am and Np).

Actinide Relative amount Absolute uncertainty

Pu 99.71% ±0.04%
U 0.14% ±0.02%
Am 0.12% ±0 01%
Np 0.03% ±0 01%
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study. XRD analysis of the final oxide confirmed the formation of a
pure plutonium dioxide with a lattice parameter of 5.396 (1) Å and
crystal size around 45 nm.

PuF3 was synthesized by dry heterogeneous solid-gas reaction
from the high specific surface PuO2 powder using pure HF gas for
fluorination (3) and Ar-H2 (6%) gas for consequent reduction (4) at
elevated temperatures.

PuO2 þ 4HF ¼ PuF4 þ 2H2O (3)

PuF4 þ
1
2
H2 ¼ PuF3 þ HF (4)

The reactions were carried out in a horizontal tube reactor
inserted in a resistance furnace. About 1 g of the initial material was
introduced in an Inconel boat to the homogeneous heating zone of
the reactor. The reactor was gas-tight closed, evacuated to an ab-
solute pressure of 1mbar and heated to 550 �C. Pure HF gas was
then slowly introduced into the reactor and after reaching a slight
overpressure of 1.05 bar, HF gas was flushed through the reactor to
the off gas treatment absorber using a flow rate of 50ml/min. The
volume of HF gas used corresponds to molar excess over the re-
action stoichiometry slightly more than 30. The procedure is
analogous as described in detail in Ref. [37] for synthesis of UF4 and
ThF4.

After hydrofluorination and removal of the excess of HF gas by
argon gas flushing, the reactor was kept closed at the working
temperature, evacuated, heated to 600 �C and filled with Ar-H2 (6%)
gas to reduce PuF4 (formed in the first step according to Equation
(3)) to PuF3 (according to Equation (4)). The duration of the
reduction reaction was approximately 15 h at a flow rate of 100ml/
min. Straight after the synthesis, the PuF3 needed for DSC mea-
surements was put inside an aluminium container and transferred
inside the argon glove box where the preparation and the encap-
sulation of the samples took place.
3.1.2. LiF
Lithium fluoride was purchased from Alfa Aesar, which declares

for this product a metal purity of 99.99%. Since lithium fluoride is
hygroscopic, it was stored and handled in argon glove boxes in
which very low concentration of moisture and oxygen is ensured.
Before the preparation of the samples, LiF was also purified in a
process which consists in heating up to 400 �C in argon flow for 4 h,
long enough to vaporize the contained residual water.
3.2. Techniques

The synthesized PuF3 and PuO2 were analysed by X-ray
diffraction (XRD). The technique was also used on four mixtures of
PuF3-LiF to assess the formation of possible compounds between
the end-members during the DSC experiments, in which the
samples were heated up to 1300 �C. The XRD samples were pre-
pared by embedding approximately 50mg of product powder into
an epoxy resin to avoid dispersion of radioactive material in the
glove box (nitrogen atmosphere). The powder was beforehand
homogenised by manual grinding in an agate mortar. The XRD
measurements were carried out using a Bruker D8 Bragg-Brentano
Advance diffractometer (Cu Ka1 radiation) equipped with a Lyn-
xEye Linear Position Sensitive detector. The operation conditions
were 40 kV and 40mA. Powder diffraction patterns were recorded
at room temperature across an angular range 20� � 2q� 110�. Re-
finements of the patterns were done using Jana 2006 crystallo-
graphic software [41].

Equilibrium data were measured by Differential Scanning
Calorimetry (DSC), a well-established technique for determining
phase transition temperatures and enthalpies. The technique al-
lows also assessing the purity of samples, as the presence of im-
purities can be revealed by the appearance of additional peaks in
the DSC curve. The apparatus used in this work is a Setaram Multi-
detector High Temperature Calorimeter (MHTC 96) equipped with
a DSC sensor with B-type thermocouple allowing measurements
from room temperature to 1600 �C. Eleven different PuF3-LiF mix-
tures of approximately 60mg each were prepared mixing the end-
members in the corresponding ratios in an agate mortar and
encapsulated immediately after in stainless steel crucible with a
nickel liner for chemical compatibility [42]. For details about the
encapsulation technique we refer to our earlier work [43]. Every
sample was prepared, encapsulated and measured within the same
day.

Barton and Strehlow [18,44], suggested a eutectic composition
with a content of plutonium trifluoride between 19 and 20mol%,
deduced from an experimental study of the PuF3-LiF system. Other
authors, who coupled the experimental data of Barton and Streh-
low with CALPHAD calculations, have proposed the mixture PuF3-
LiF (21e79mol%) [45,46], which was taken as reference eutectic
composition also in the present work.

Preparation of samples was performed inside argon glove boxes
specially designed for handling plutonium. The weights of the
samples were in the range 50e70mg. The experimental chamber of
the DSC was connected to a helium line to prevent the crucibles
from the oxidation and was purged and evacuated twice before
each experiment.

The temperature program (the same for each sample) consisted
of two ramps up and down at 10 K/min. For the thermodynamic
assessment only the second ramp was considered as the first one
was aimed at getting a perfect mixing between the end-members.
The maximum temperature of each experiment was either 1200 �C
or 1300 �C depending on the expected liquidus temperature ac-
cording to the phase diagram assessed in Ref. [46]. Acquisition and
post-processing of the data were carried out using Calisto software
v1.10. A silver reference sample was used as internal standard for
calibration to determine the enthalpy of transition of the eutectic
composition [47]. Finally, because the temperature revealed by the
detector is generally slightly different from the real one, mainly due
to the geometry of the detector and thermocouple position, the
measured values presented in this work were corrected by tem-
perature calibration based on melting points of several reference
metals (Sn, Pb, Zn, Al, Ag, Cu).

4. Results

4.1. Characteristics of the products

A purple homogeneous powder was obtained after both fluo-
rination and reduction reactions, which agrees with the reported
appearance of PuF3 generally described as purple [48] or dark lilac
[33]. The pictures of the initial and final products are shown in
Fig. 1. For the colour photos, please refer to the online version of the
article. It should be noted that it is likely that the observed colour is
remarkably influenced by the light conditions inside the glove box.



Fig. 1. Photos of the initial material PuO2 (a) and final product PuF3 (b). For the colour photos, please refer to the Web version of this article.

Fig. 2. XRD pattern of the synthesized plutonium fluoride (a), and of different PuF3-LiF mixture at room temperature after melting point measurements, showing that the system
goes back to initial mixture of LiF and PuF3 (b).
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The gravimetric mass balance indicated very high conversion
efficiency with a yield of 99.8%. The deviation from ideal mass can
be explained by possible losses during manipulations in the glove
box.
Fig. 3. Determination of the melting temperature of the eutectic composition PuF3-LiF (21e7
4.2. X-ray diffraction analysis

The XRD analysis of the plutonium fluoride obtained in this
study showed a pure P-3c1 single phase (Fig. 2-a). A Rietveld
refinement of the pattern was done with atomic positions from the
9mol%) (a), and liquidus temperature for the composition PuF3-LiF (7.5e92.5mol%) (b).



Fig. 4. Determination of the liquidus temperature for the composition PuF3-LiF (15e85mol%) (a), and for the composition PuF3-LiF (41e59mol%) (b).

A. Tosolin et al. / Journal of Nuclear Materials 503 (2018) 171e177 175
published data for CeF3 [49]. The good refinement of the data
confirmed that PuF3 crystallises in the same structure (a¼ 7.095 (1)
Å and c¼ 7.257 (1)Å). No extra diffraction peaks were visible in the
pattern, which confirms the high purity of the plutonium fluoride.
Four encapsulated samples were recovered after DSC measure-
ments and analysed by XRD (results are presented in Fig. 2-b). The
analysis showed that after melting of the samples and cooling
down to room temperature, no reaction products stabilize between
the 2 end-members. The system returns to a mixture of LiF and
PuF3.

4.3. PuF3-LiF phase diagram and enthalpy of fusion of the eutectic
composition

Phase transition temperatures for the PuF3-LiF phase diagram
were derived from the second heating ramp of all DSC experiments.
As confirmed by the XRD analysis described in the previous section,
plutonium trifluoride and lithium fluoride do not form any stable
intermediate compounds during heating up to 1300 �C, in agree-
ment with the DSC outcome, which shows no more than two
events for a single ramp. These phase transition events correspond
to the eutectic melt (solidus) and the complete melting (liquidus).
The solidus point can be derived from the onset temperature of the
first peak that appears, according to Fig. 3-a. The determination of
the liquidus temperature is not always evident. When the liquidus
transition appears in the DSC heat flow signal with a second broad
Fig. 5. Determination of supercooled phase transition temperatures during the cool
peak, we can derive the liquidus point from the offset temperature
of this peak. It was possible to apply this criterion to the compo-
sition PuF3-LiF (7.5e92.5mol%) as shown in Fig. 3-b.

For mixtures with a PuF3 content close to the eutectic compo-
sition it is not possible distinguishing two peaks since the solidus
and liquidus signals are overlapping. However, the shape of the
single peak clearly indicates the contributions of two different
phase transition events. In this case, we derive the liquidus point
from the offset temperature of the peak displayed, as shown for the
composition PuF3-LiF (15e85mol%) in Fig. 4-a. Finally, for PuF3
content higher than the eutectic composition, the liquidus event
can be difficult to identify due to continuous enthalpy effect: the
heat flow signal shows a slight change of the slope. In these cases,
we selected as liquidus temperature the intersection between the
extrapolated lines before and after the change of slope according to
Fig. 4-b, where the DSC curve of the composition PuF3-LiF
(41e59mol%) is shown. The onset and offset points were deter-
mined by Calisto software using the derivative method, while the
changes of slope were determined visually. Table 2 summarizes all
the phase transition temperatures obtained in this work. The un-
certainty on the onset point has been evaluated as ± 4 K, based on
the results of the calibration, whereas the equilibria identified from
the offset and/or changes of slope were determined as high as
±10 K, mainly due to the broader profile of the heat flow peak as
shown e.g. in Fig. 4.

DSC curves during the cooling confirm the two phase equilibria
ing at 10 K/min for PuF3-LiF (7.5e92.5mol%) (a), and PuF3-LiF (55-45mol%) (b).



Fig. 6. The PuF3-LiF phase diagram. (C) Data measured in this study. Values for eutectic melting and liquidus points are affected by an uncertainty of ±4 K and ±10, respectively. (◊)
Data obtained from Barton and Strehlow [18]. Solid line, data calculated by Bene�s and Konings [46].

Table 2
Phase transition temperatures of the PuF3-LiF systemmeasured by DSC in this work.

Mole % PuF3 Equilibrium Temp (K)

7.50 Eutectic 1012± 4
7.50 Liquidus 1090± 10
15.00 Eutectic 1012± 4
15.00 Liquidus 1060± 10
21.00 Eutectic 1014± 4
21.03 Eutectic 1015± 4
25.02 Eutectic 1017± 4
25.02 Liquidus 1068± 10
29.83 Eutectic 1011± 4
29.83 Liquidus 1158± 10
35.02 Eutectic 1008± 4
35.02 Liquidus 1229± 10
41.01 Eutectic 1006± 4
41.01 Liquidus 1287± 10
44.81 Eutectic 1012± 4
44.81 Liquidus 1325± 10
49.76 Eutectic 1007± 4
49.76 Liquidus 1386± 10
54.90 Eutectic 1005± 4
54.90 Liquidus 1435± 10
59.99 Eutectic 1000± 4
59.99 Liquidus 1466± 10
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as identified from the heating curves. In this case, the solidus and
liquidus phase transition events always result in two peaks as
shown in Fig. 5. Phase equilibria temperaturesmeasured during the
cooling are affected by supercooling phenomena, which may
depend on the cooling rate and the kinetic driven nucleation pro-
cess [50]. The extent of the supercooling effect found in the present
study was as high as 30 K and thus the values were not considered
in the final analysis. However, the DSC signal during the cooling
provides an important input in identifying the number of phase
equilibria, as they are generally revealed more clearly, with sharp
peaks.

With reference to the samples with plutonium fluoride content
below 35mol%, the phase transition temperatures measured in
this work are in excellent agreement with the values measured
by Barton and Strehlow [18]. Moreover, as shown in Fig. 6, all
measured values excellently fit the thermodynamically assessed
phase diagram calculated by Bene�s and Konings [46].

Finally, the enthalpy of fusion of the eutectic composition PuF3-
LiF (21e79mol%) was measured for the first time by DSC using
silver as calibration material, obtaining (26± 2) kJ/mol. The
enthalpy of fusion calculated using the thermodynamic model
proposed by Bene�s and Konings [46], 25.5 kJ/mol, is in perfect
agreement with our experimental value.

5. Conclusion

The present work explores a binary system of great interest for
the Generation IV MSFR (the PuF3-LiF system). A literature review
of plutonium trifluoride synthesis is given in order to describe the
state of the art and for understanding the reasons why fluorination
with HF gas was selected for the present work. A method for
obtaining PuF3 on a gram scale is described. XRD and DSC analysis
confirmed the good purity of the final product.

Plutonium trifluoride was then used for studying phase equi-
libria in the PuF3-LiF system. The obtained phase transition tem-
peratures of compositions with PuF3 content in the range 0e40mol
% confirm the experimental results published by Barton and
Strehlow [18], the only ones available in literature. In addition,
phase transition temperatures of compositions with PuF3 content
in the range 40e60% were measured for the first time, confirming
experimentally the phase diagrams calculated in our earlier studies
[46,51] as well as the one suggested by Mulford [45].

The XRD analysis performed on four samples selected after DSC
measurements confirmed that after solidification from the liquid,
the system returns to a mixture of LiF and PuF3 with no interme-
diate compound.

Finally, the enthalpy of fusion of the eutectic composition PuF3-
LiF (21e79mol%) was measured for the first time. The calculated
value using the thermodynamic model provided by Bene�s and
Konings [46] is in excellent agreement with the experimental value
measured in the present work, and therefore we conclude that no
re-optimization of the phase diagram is needed.
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