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Abstract. We are interested in studying doubling metric spaces with the property that at
some of the points the metric tangent is unique. In such a setting, Finsler–Carnot–Carathéodory
geometries and Carnot groups appear as models for the tangents.

The results are based on an analogue for metric spaces of Preiss’s phenomenon: tangents of
tangents are tangents. In fact, we show that, if X is a general metric space supporting a doubling
measure µ, then, for µ-almost every x ∈ X, whenever a pointed metric space (Y, y) appears as a
Gromov–Hausdorff tangent of X at x, then, for any y′ ∈ Y , also the space (Y, y′) appears as a
Gromov–Hausdorff tangent of X at the same point x. As a consequence, uniqueness of tangents
implies their homogeneity. The deep work of Gleason–Montgomery–Zippin and Berestovskĭı leads
to a Lie group homogeneous structure on these tangents and a characterization of their distances.

1. Introduction

This paper shows that there is a relation between isometrically homogeneous
spaces and uniqueness of tangents for metric spaces. It is a consequence of the work
of Gleason, Montgomery–Zippin, Berestovskĭı, Mitchell, and Margulis–Mostow that
a finite-dimensional geodesic metric space with transitive isometry group has the
property that at every point the tangent metric space is unique. Such a tangent
is in fact a Carnot group equipped with a Carnot–Carathéodory distance. In the
following paper we consider doubling-measured metric spaces with the property that
at almost every point the tangent metric space is unique and show that almost all
tangents have transitive isometry group. Consequently, if in addition the metric
space is geodesic, then the tangents are almost surely Carnot groups equipped with
Carnot–Carathéodory distances.

Our results are founded on the translation in the context of metric spaces of a
fact that is well known in Geometric Measure Theory: tangent measures of tangent
measures are tangent measures. In fact, let µ be a doubling measure in the Euclidean
space Rn. Then one can define the tangent measures of µ at a point x ∈ Rn by taking
weak* limits of measures translated by x and dilated by larger and larger factors.
Namely, setting Tx,ρ(y) := ρ(y − x), one defines

ν ∈ Tan(µ, x) ⇐⇒ ν = lim
i→∞

ci(Tx,ρi
)#µ, for some ρi →∞ and ci → 0.

In [Pre87], Preiss showed the useful fact that, for µ-almost every x, any tangent
measure of a tangent measure of µ at x is itself a tangent measure of µ at x. In fact,
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what he first showed is that, for µ-a.e. x and for every ν ∈ Tan(µ, x), if y is in the
support of ν, then the ‘translated measure’ (Ty,1)#ν is still in Tan(µ, x).

We shall consider tangents in the class of complete doubling metric spaces. Let
(X, d) be a metric space whose distance is doubling. Gromov showed that one can
consider the tangent spaces at a point x ∈ X as the limits of sequences of pointed
metric spaces (X, ρjd, x), with ρj →∞, as j →∞. We denote the collection of such
spaces as Tan(X, x).

We shall consider doubling-measured metric spaces, i.e., metric spaces endowed
with a doubling measure. As a consequence, the distance itself is doubling. We show
that the analogue of Preiss’s phenomenon holds:

Theorem 1.1. Let (X, µ, d) be a doubling-measured metric space. Then the
following two properties hold.

(1) For µ-almost every x ∈ X, for all (Y, y) ∈ Tan(X, x), and for all y′ ∈ Y we
have (Y, y′) ∈ Tan(X, x).

(2) For µ-almost every x ∈ X, for all (Y, y) ∈ Tan(X, x), and for all y′ ∈ Y we
have Tan(Y, y′) ⊆ Tan(X, x).

Notice that as pointed metric spaces (Y, y) and (Y, y′) might be different. A limit
space is defined up to isometry. Hence, (Y, y) and (Y, y′) are equal when there exists
an isometry f : Y → Y with the property that f(y) = y′. Therefore, if it is the case
that there is only one tangent metric space at a point x where the conclusion of the
part (1) of Theorem 1.1 holds, then such a metric space (Y, y) in Tan(X, x) has the
property that (Y, y) is isometric to (Y, y′), for all y′ ∈ Y . In other words, the isometry
group of Y acts on Y transitively. In conclusion, uniqueness of tangent spaces leads
to isometric homogeneity of such tangents.

In the next theorem we completely characterize the tangents that can appear, if
in addition the metric space is geodesic. For more general results see Section 2.

Theorem 1.2. Let (X,µ, d) be a doubling-measured geodesic metric space. As-
sume that, for µ-almost every x ∈ X, the set Tan(X, x) contains only one element.
Then, for µ-almost every x ∈ X, the element in Tan(X, x) is a Carnot group G en-
dowed with a sub-Finsler left-invariant metric with the first layer of the Lie algebra
of G as horizontal distribution.

Recall that a Carnot group G of step s ≥ 1 is a connected, simply-connected
Lie group whose Lie algebra g admits a step s stratification: this means that we can
write

g = V1 ⊕ · · · ⊕ Vs,

with [Vj, V1] = Vj+1, for 1 ≤ j ≤ s, such that Vs 6= {0} and Vs+1 = {0}. The
subspace V1 is called the first layer of the Lie algebra g. A sub-Finsler left-invariant
metric with V1 as horizontal distribution is defined as follows. One fixes a norm ‖·‖
on V1. The space V1 defines a left-invariant sub-bundle ∆ of the tangent bundle of
G. The norm ‖·‖ extends left-invariantly on ∆ as well. The triple (G, ∆, ‖·‖) is
a left-invariant sub-Finsler structure for which the Finsler–Carnot–Carathéodory or
sub-Finsler distance dCC is defined as, for any x, y ∈ G,

(1.3) dCC(x, y) := inf{Length‖·‖(γ) | γ ∈ C∞([0, 1];G), γ(0) = x, γ(1) = y, γ̇ ∈ ∆}.
To conclude the introduction, we would like to mention a similar result of Mattila,

which as well was obtained by proving a Preiss’s phenomenon for measures on locally
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compact groups with metric dilations. Namely, in [Mat05] it is shown that if a
measure on such a group has unique tangents, then its tangents are almost surely
Haar measures with respect to some closed dilation-invariant subgroup.

1.1. Other consequences. Given a metric space (X, d), we denote the dilated
space by a factor ρ > 0 by

ρX := (X, ρd) .

Fixed a point x ∈ X, we denote by Tan(X, x) the space of all Gromov–Hausdorff
limits of sequences of pointed metric spaces

(ρiX, x), with ρi →∞, as i →∞.

In the next section we will recall the definition of Gromov–Hausdorff convergence.
However, consider that the elements in Tan(X, x) are defined up to isometric equiv-
alence.

A measure µ on a metric space (X, d) is said to be doubling, if there exists a
constant C such that, for all x ∈ X and r > 0,

0 6= µ(B(x, 2r)) < Cµ(B(x, r)).

Notice that if µ is a doubling measure, then d is a doubling distance, i.e., there is a
constant N such that any ball can be covered by N balls of half the radius. Gromov
showed that, whenever (X, d) is a doubling metric space, then, for any x ∈ X, the
set Tan(X, x) is non-empty, see [Gro81, Gro99].

The following theorem is a more detailed version of Theorem 1.2. For its proof
we will use the work of Gleason–Montgomery–Zippin [MZ74] and the applications by
Berestovskĭı [Ber88, Ber89a, Ber89b].

Theorem 1.4. Let (X, µ, d) be a doubling-measured metric space. Let Ω ⊆ X
be the subset of elements x ∈ X such that the set Tan(X, x) contains only one
element. Then, for µ-almost every x ∈ Ω, the element in Tan(X, x) is an isometrically
homogeneous space of the following form. There is a Lie group G and a compact
subgroup H < G, such that the tangent space at the point x is isometric to the
manifold G/H equipped with some G-invariant distance function.

If, moreover, the distance d is geodesic, then, for µ-almost every x ∈ Ω, the
element in Tan(X, x) is a Carnot group G endowed with a sub-Finsler left-invariant
metric with the first layer of the Lie algebra of G as horizontal distribution.

The following result is an application of the previous techniques (i.e., Theo-
rem 1.1) to the theory of biLipschitz homogeneous spaces. We refer to [LD09, LD08]
for more results on these spaces. A metric space (X, d) is said to be locally biLipschitz
homogeneous if, for every two points x1, x2 ∈ X, there are neighborhoods U1 and U2

of x1 and x2 respectively and a biLipschitz homeomorphism f : U1 → U2, such that
f(x1) = x2. We call finite-dimensional isometrically-homogeneous space a manifold
of the form G/H, with G a Lie group and H a compact subgroup H < G, endowed
with some G-invariant distance function.

Theorem 1.5. Let (X,µ, d) be a doubling-measured metric space. Assume that
(X, d) is locally biLipschitz homogeneous. Assume also that there are a point x0 ∈ X
and, for some K > 1, a family of K-biLipschitz maps F such that F is a group,
i.e., F is closed under composition, and, for all pair of tangents (Z1, z1), (Z2, z2) ∈
Tan(X, x0), there is a map ψ ∈ F with ψ : (Z1, z1) → (Z2, z2). Assume that any
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element in Tan(X, x0) is locally connected. Then, there is a finite dimensional isomet-
rically homogeneous space G/H, such that, for all x ∈ X, each element in Tan(X, x)
is biLipschitz equivalent to G/H.

Since the isometries form a group, we immediately have the following result.
The local connectedness of tangents is not assumed, since it is a consequence of
Proposition 3.7.

Corollary 1.6 (of Theorem 1.5). Let (X, µ, d) be a doubling-measured metric
space. Assume that (X, d) is locally biLipschitz homogeneous and that, for some
point x0 ∈ X the collection Tan(X, x0) contains only one metric space, up to isometric
equivalence. Then, there is a finite dimensional isometrically homogeneous space
G/H, such that, for all x ∈ X, each element in Tan(X, x) is biLipschitz equivalent
to G/H.

Next, one should wonder what are the consequences of having tangents equal to
Carnot groups. The answer is definitely not easy at least because there are uncount-
ably many Carnot groups. The case when the tangents are Euclidean is relatively
easier. Indeed, David and Toro considered such a case in their study of Reifenberg
flat metric spaces, see [DT99]. In the particular case when the metric space is nicely
embedded in a Hilbert space, then we observe that the standard ‘cone criterion’ gives
the following easy fact.

Corollary 1.7. Let X be a locally compact subset of a separable Hilbert space
H. Let d be the distance function on H restricted to X. Let µ be a doubling measure
for (X, d). Assume that, at µ-almost every point x ∈ X, the dilated spaces

ρ(X − x)

converge in the Hausdorff sense, as ρ → ∞. Then X is contained in the union of
countably many Lipschitz graphs, up to a set of µ-measure 0.

Question 1.8. Which are the metric spaces that can be isometrically embedded
in a separable Hilbert space having the property that, almost everywhere, the Gromov
tangents can be calculated as Hausdorff tangents?

2. Tangents as limit of pointed spaces

A pointed complete metric space (X∞, d∞, x∞) is a tangent of a metric space
(X, d) at the point x ∈ X, if there are Hausdorff approximations

{φi : (X∞, d∞, x∞) → (X, di, x)}i∈N ,

with di = 1
λi

d for some λi → 0 as i → ∞. By definition, the fact that the φi’s are
Hausdorff approximations explicitly means that, for all R ≥ 0 and all δ > 0,

lim
i→∞

sup {|di(φi(y), φi(z))− d∞(y, z)| : y, z ∈ B(x∞, R) ⊂ X∞} = 0

and
lim
i→∞

sup {di(y, φi(B(x∞, R + δ))) : y ∈ Bdi
(x,R) ⊆ (X, di)} = 0.

The first condition says that
1

λi

d(φi(y), φi(z)) → d∞(y, z),
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uniformly in y and z on bounded sets. The second condition can be written as

lim
i→∞

sup

{
1

λi

d(y, φi(B(x∞, R + δ))) : y ∈ B(x, λiR)

}
= 0.

Roughly speaking, this means that the sequence of (smaller and smaller) sets φi(B
(x∞, R + δ)) covers B(x, λiR) better and better, in fact with a sub-linear gap.

3. Proofs of the results

Given a Radon measure µ on a space X, one can consider the outer measure µ∗,
defined for any A ⊆ X by

µ∗(A) := inf {µ(B) : B Borel, B ⊇ A} .

Even if any geometric intuition says that the following fact is obvious, it is the
key point implying Theorem 1.1.

Proposition 3.1. Let (X, µ, d) be a doubling-measured metric space. Let A ⊆
X be any set and let a ∈ A be a point of density for A, i.e.,

lim
r↓0

µ∗(A ∩Br(a))

µ(Br(a))
= 1.

Then Tan(A, d, a) = Tan(X, d, a).

Corollary 3.2 (of the proof of Proposition 3.1). If (Y, y) ∈ Tan(X, x) and x is
a point of density for a set A, then there are Hausdorff approximations φi : Y → X
such that Im(φi) ⊆ A.

Lemma 3.3. Let (X, µ, d) be a doubling-measured metric space. Let A ⊆ X be
any set and let a ∈ A be a point of density for A. Then, for all δ > 0 and all R ≥ 0,
we have

lim
λ→0

sup

{
1

λ
d(p, A ∩B(a, (R + δ)λ)) : p ∈ B(a, λR)

}
= 0.

Proof. Fix ε > 0. Let C and Q be the constants (cf. [Hei01]) of the doubling
property for µ, i.e., for all R > r > 0,

µ(BR)

µ(Br)
< C

(
R

r

)−Q

.

Take λ small enough such that

µ∗(B(a, (R + δ)λ) \ A)

µ(B(a, (R + δ)λ))
< α :=

1

2C

(
ε/2

2R + δ

)Q

.

We shall prove that, for such a λ, the supremum is smaller than ε. We can assume
ε/2 < δ. Assume, by the way of contradiction, that there is some p ∈ B(a, λR) such
that

d(p,A ∩B(a, (R + δ)λ)) ≥ ε

2
λ.

Note that, by triangle inequality, we have

B(p,
ε

2
λ) ⊂ B(a, (R + δ)λ)

and thus
A ∩B(p,

ε

2
λ) = ∅.
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Therefore,

µ(B(p,
ε

2
λ)) ≤ µ∗(B(a, (R + δ)λ) \ A) ≤ αµ(B(a, (R + δ)λ))

≤ αµ(B(p, (2R + δ)λ)) ≤ αC

(
ε/2

2R + δ

)−Q

µ(B(p,
ε

2
λ))

≤ 1

2
µ(B(p,

ε

2
λ)).

This last calculation implies that 1 ≤ 1/2, which is a contradiction. ¤
3.1. Proof of Proposition 3.1.

Proof of Tan(X, a) ⊆ Tan(A, a). Let (X∞, d∞, x∞) ∈ Tan(X, a). So there are
Hausdorff approximations{

φi : (X∞, d∞, x∞) → (X,
1

λi

d, a)

}

i∈N

,

with rescale factors λi → 0. For all p ∈ X∞, define φ′i(p) as a closest point in A to
φi(p). Notice that A might be considered closed, since A, the completion Ā of A,
and the closure C (A) of A in X have Gromov–Hausdorff distance 0, therefore they
have the same tangents:

Tan(A, a) = Tan(Ā, a) = Tan(C (A), a).

So, we constructed maps
φ′i : X∞ → A.

We claim the following:

Claim 1:
1

λi

d(φ′i(·), φi(·)) → 0 uniformly on bounded sets,

Claim 2: The maps{
φ′i : (X∞, d∞, x∞) → (A,

1

λi

d, a)

}

i∈N

are Hausdorff approximations, and so (X∞, d∞, x∞) ∈ Tan(A, a).
Proof of Claim 1. Fix R > 0. Observe that, clearly, for any δ > 0,

d(·, A) ≤ d(·, A ∩B(a, (R + δ)λi)).

Therefore, Lemma 3.3 gives

lim
i→∞

sup

{
1

λi

d(p,A) : p ∈ B(a, λiR)

}
= 0.

Fix some η > 0. For i big enough, we have that, for all q ∈ B(x∞, R− η),
1

λi

d(φi(q), a) ≤ R.

By definition of φ′i, we have

d(φi(q), φ
′
i(q)) = d(φi(q), A).

Thus,

lim
i→∞

sup

{
1

λi

d(φi(q), φ
′
i(q)) : q ∈ B(x∞, R− η)

}
= 0. ¤
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Proof of Claim 2. First,

sup {|di(φ
′
i(y), φ′i(z))− d∞(y, z)| : y, z ∈ B(x∞, R) ⊂ X∞}

≤ sup{|di(φi(y), φi(z))− d∞(y, z)|+ |di(φ
′
i(y), φi(y))|+ |di(φi(z), φ′i(z))| :

y, z ∈ B(x∞, R)}
≤ sup{|di(φi(y), φi(z))− d∞(y, z)| : y, z ∈ B(x∞, R)}

+ sup{|di(φ
′
i(y), φi(y))| : y, z ∈ B(x∞, R)}

+ sup{|di(φi(z), φ′i(z))| : y, z ∈ B(x∞, R)}
→ 0 + 0 + 0 = 0.

Second,

sup{di(y, φ′i(B(x∞, R + δ))) : y ∈ B(a, λiR) ∩ A}
≤ sup{di(y, φ′i(B(x∞, R + δ))) : y ∈ B(a, λiR)}
≤ sup{di(y, φi(B(x∞, R + δ))) : y ∈ B(a, λiR)}

+ sup{di(φi(z), φ′i(B(x∞, R + δ))) : z ∈ B(a, λiR)}
≤ sup{di(y, φi(B(x∞, R + δ))) : y ∈ B(a, λiR)}

+ sup{di(φi(z), φ′i(z)) : z ∈ B(a, λiR)} → 0. ¤
Proof of Tan(A, a) ⊆ Tan(X, a). Vice versa, an element (X∞, d∞, x∞) ∈ Tan(A, a)

gives Hausdorff approximations
{

φi : (X∞, d∞, x∞) → (A,
1

λi

d, a)

}

i∈N

,

with rescale factors λi → 0.
We claim that the following maps are Hausdorff approximations:

{
φ′i : (X∞, d∞, x∞) → (X,

1

λi

d, a)

}

i∈N

,

defined as
φ′i := ι ◦ φi,

where ι : A → X is the inclusion. The first requirement to check is that

di(φ
′
i(y), φ′i(z)) = di(φi(y), φi(z)) → d∞(y, z),

uniformly in y and z on bounded sets, which is clearly true. The second condition is
consequence of Lemma 3.3:

lim
i→∞

sup {di(y, φ′i(B(x∞, R + δ))) : y ∈ B(a, λiR)}
≤ lim

i→∞
sup {di(y,A ∩B(a,R + δ/2))) : y ∈ B(a, λiR)}

+ lim
i→∞

sup {di(y, φi(B(x∞, R + δ))) : y ∈ B(a, λi(R + δ/2)) ∩ A} = 0. ¤

Remark 3.4. Both the doubling property and the density point property are
necessary in both of the containments in the proof of Proposition 3.1. Indeed, let
(X, d) be the Euclidean plane R2. Let A be the subset R × {0}. Notice that
Tan(X, 0) = {R2}, Tan(A, 0) = {R}, and that no one is contained in the other.
Now, if we take µ = H 2, then µ is doubling, but 0 is not a point of density for A.
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On the other hand, if µ = H 1xA, then 0 is a point of density for A, but such a µ is
not doubling.

Proof of Corollary 3.2. By Proposition 3.1, the space (Y, y) is in Tan(A, x). So
there are Hausdorff approximations

ψi : Y → A.

Consider then the maps φi = ι ◦ ψi, where ι : A → X is the inclusion. The calcu-
lations at the end of the proof of Proposition 3.1 show that such φi’s are Hausdorff
approximations for X with image in A. ¤

3.2. Some facts on the space of metric spaces. Let M be a family of
separable pointed metric spaces. Assume that M is ‘uniformly totally bounded on
bounded sets’, namely, for all R > 0 and for any ε > 0, there exists a natural
number N = N(ε, R) such that every R-ball in every Y ∈ M admits a covering by
N balls of radius ε. In particular, a family of uniformly doubling metric space is
uniformly totally bounded on bounded sets. In our case, M will be the collection of
the doubling metric space X, its dilated λX, its tangents, and the iterated tangents.
We consider the pointed Gromov–Hausdorff convergence on the set M .

A first fact to recall is that such a topology is metrizable: There exists a distance
function d on M such that

(X∞, d∞, x∞) ∈ Tan(X, d, x) ⇐⇒ lim
λi→0

d

(
(X,

1

λi

d, x), (X∞, d∞, x∞)

)
= 0.

A second fact to recall is that the space (M , d) is separable. In particular, for
each k ∈ N there exists a countable cover of sets with diameter less than 1/2k.
Namely,

(3.5) M =
⋃

l∈N

Bl,

such that, if (Y, y) and (Y ′, y′) are both in Bl, then

d ((Y, y), (Y ′, y′)) <
1

2k
.

3.3. Proof of Theorem 1.1.

Proof of Theorem 1.1. We need to show that

µ
({x ∈ X : ∀(Y, y) ∈ Tan(X, x),∀y′ ∈ Y : (Y, y′) ∈ Tan(X, x)}c)

= 0.

In other words,

µ ({x ∈ X : ∃(Y, y) ∈ Tan(X, x), ∃y′ ∈ Y : (Y, y′) /∈ Tan(X, x)}) = 0.

Using the distance d on the collection of metric spaces, we just need to show that,
for all k, m ∈ N, we have

µ

({
x ∈ X : ∃(Y, y) ∈ Tan(X, x),∃y′ ∈ Y : d

(
(Y, y′), (

1

t
X, x)

)
>

1

k
, ∀t ∈ (0,

1

m
)

})

= 0.
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Using the cover (3.5) coming from the separability, we need to show that, for all
k, l, m ∈ N, each set{

x ∈ X : ∃(Y, y) ∈ Tan(X, x), ∃y′ ∈ Y :

(Y, y′) ∈ Bl and d

(
(Y, y′), (

1

t
X, x)

)
>

1

k
, ∀t ∈ (0,

1

m
)
}

is µ-negligible. Assume that one of these sets above is not µ-negligible and call it A;
so k, l and m are now fixed and µ∗(A) > 0. Here we use the outer measure µ∗, since
we don’t want, and don’t need, to show measurability of such a set.

Let a be a point of density of A for µ∗. Since a ∈ A, there exist (Y, y) ∈ Tan(X, a)
and y′ ∈ Y such that (Y, y′) ∈ Bl and d

(
(Y, y′), (1

t
X, a)

)
> 1

k
, for all t ∈ (0, 1

m
).

Since (Y, y) ∈ Tan(X, a), there is a sequence λi → 0 such that
( 1

λi

X, a
)

GH→ (Y, y).

Let φi : Y → X the Hausdorff approximations with Im(φi) ⊆ A, given by Corol-
lary 3.2. Let ai = φi(y

′) ∈ A. Then
( 1

λi

X, ai

)
GH→ (Y, y′).

Now take i big enough so that

d

(
(

1

λi

X, ai), (Y, y′)
)

<
1

2k
.

Since ai ∈ A, there are spaces (Yi, yi) ∈ Tan(X, ai) and y′i ∈ Yi such that (Yi, y
′
i) ∈ Bl

and d
(
(Yi, y

′
i), (

1
t
X, ai)

)
> 1

k
, for all t ∈ (0, 1

m
). So we arrive at a contradiction:

1

k
< d

(
(Yi, y

′
i), (

1

t
X, ai)

)
≤ d ((Yi, y

′
i), (Y, y′)) + d

(
(

1

λi

X, ai), (Y, y′)
)

≤ Diamd(Bl) + d

(
(

1

λi

X, ai), (Y, y′)
)

<
1

2k
+

1

2k
. ¤

3.4. Proof of Theorem 1.4. Next theorem is well-known in the theory of
locally compact groups. It is a consequence of a deep result of Montgomery and
Zippin, [MZ74, Corollary on page 243, section 6.3], together with the work [Gle52]
of Gleason. An explicit proof can be found in Drutu and Kapovich’s lecture notes,
[DK11].

Theorem 3.6. (Gleason–Montgomery–Zippin) Let Y be a metric space that is
complete, proper, connected, and locally connected. Assume that the isometry group
Isom(Y ) of Y acts transitively on Y . Then Isom(Y ) is a Lie group with finitely many
connected components.

Proof of Theorem 1.4. Using Theorem 1.1, up to removing a µ-negligible set,
we may assume that for all x ∈ Ω we have that

Tan(X, x) = {(Y, y)}
and for all y′ ∈ Y we also have (Y, y′) ∈ Tan(X, x). Thus, (Y, y′) is isometric to
(Y, y′′) for all y′ and y′′ ∈ Y . In other words, the metric space Y is isometrically
homogeneous.
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Since Y is a tangent of a doubling space, Y is doubling as well. In particular, Y
is proper. Moreover, notice that, for all λ > 0, we have (λY, y) is in Tan(X, x) and
thus it is isometric to (Y, y). Thus, by the next Proposition 3.7, we have that Y is
connected and every neighborhood of y contains a connected neighborhood of y. By
homogeneity we conclude that Y is in fact locally connected.

By Theorem 3.6, the group of isometries G :=Isom(Y ) of Y is a Lie group, and
thus Y is homeomorphic to a quotient G/H, where H is the stabilizer of a point.
Thus there is a G-invariant distance on G/H for which Y is isomorphic G/H.

If, moreover, X is geodesic, then Y and G/H are geodesic as well. By Berestovskii’s
Theorem [Ber88], the G-invariant distance function on G/H is a G-invariant sub-
Finsler metric dSF , i.e., there is a G-invariant sub-bundle ∆ on the manifold G/H
and a G-invariant norm on ∆, such that dSF is the Finsler–Carnot–Carathéodory
distance associated.

We show now that in fact the space G/H is a Carnot group. Indeed, for all λ > 0,
one has (λY, y) ∈ Tan(X, x). Consequently,

Tan(Y, y) ⊆ Tan(X, x).

First, by Mitchell’s Theorem [Mit85], the tangent to Y = G/H is a Carnot group G.
Second, by uniqueness of tangents, we have that Y = G. ¤

In the above theorem we made used of the following general fact.

Proposition 3.7. Let (Y, y0) be a proper pointed metric space. Assume that,
for all λ > 0, the pointed metric spaces (Y, y0) and (λY, y0) are isometric. Then Y is
connected. In fact, any closed metric ball at y0 is connected.

Here is a lemma for the proof of the proposition.

Lemma 3.8. In the assumptions of the above proposition, let ε > 0 and ȳ ∈ Y ,
with ȳ 6= y0. Then there exists y′ ∈ Y such that d(ȳ, y′) < ε and d(y′, y0) < d(ȳ, y0).

Proof. For each δ ∈ (0, 1], consider the set

Ωδ := {f(ȳ) | f : δY → Y isometry with f(y0) = y0} .

It is easy to check that Ωδ ⊆ {y ∈ Y : d(y0, y) = δd(y0, ȳ)}. The assumption that
(δY, y0) is isometric to (Y, y0) rephrases as Ωδ 6= ∅. Since the space is proper, we
can make use of Ascoli-Arzelà’s Theorem. Indeed, for δ ∈ (1/2, 1), pick zδ ∈ Ωδ and
the respective δ-homothety fδ. Using the Ascoli–Arzelà argument to the uniformly
Lipschitz maps fδ, we have that there exists a sequence δn ↗ 1 for which the maps
fδn converge uniformly on compact sets to an isometry f . In particular, f(y0) = y0

and fδn(ȳ) → f(ȳ), as n →∞.
Set yn := f−1(fδn(ȳ)). Then observe that,

d(ȳ, yn) = d(f(ȳ), fδn(ȳ)) → 0, as n →∞,

and

d(y0, yn) = d(f(y0), fδn(ȳ)) = d(y0, fδn(ȳ))

= d(fδn(y0), fδn(ȳ)) = δnd(y0, ȳ) < d(y0, ȳ).

Thus, for n large enough, one can take y′ as yn for the conclusion of the lemma. ¤
Proof of Proposition 3.7. Assume that a closed ball B̄(y0, R) (R > 0) is not

connected. Thus there exist two non-empty closed sets K1, K2 ⊆ B̄(y0, R) such that
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K1 ∩ K2 = ∅ and K1 ∪ K2 = B̄(y0, R). Assume y0 ∈ K1. Since Y is proper, both
K1 and K2 are compact. Therefore, first ε := d(K1, K2) > 0. Second, there exists
ȳ ∈ K2 such that d(ȳ, y0) = d(K2, y0). By the above lemma, there is some y′ ∈ Y
such that d(ȳ, y′) < ε and d(y′, y0) < d(ȳ, y0). By the second inequality, we get
that y′ /∈ K2 and that y′ ∈ B̄(y0, R). By the first inequality, we get that y′ /∈ K1.
We just contradicted the fact that K1 ∪K2 = B̄(y0, R). Hence B̄(y0, R) cannot be
disconnected.

Finally, since Y =
⋃

R>0 B̄(y0, R), then Y is connected as well. ¤
3.5. Proof of Theorem 1.5.

Proof of Theorem 1.5. Let Ω ⊂ X be a full-measure set for which the conclusion
of Theorem 1.1 holds. Let x ∈ Ω. Fix any (Y, y) ∈ Tan(X, x).

Since (X, d) is biLipschitz homogeneous, there exists an L-biLipschitz map

f : (Ux, x) → (Ux0 , x0),

where Ux and Ux0 are neighborhoods of x and x0 respectively. Since x ∈ Ω, we have,
for all y′ ∈ Y , that (Y, y′) ∈ Tan(X, x).

Let λi → 0 be the rescaling factors giving the tangent (Y, y′). Consider now the
same dilations for the set X but now pointed at x0:

(X,
1

λi

d, x0).

Up to considering a subsequence, since such dilated spaces are uniformly doubling,
the sequence converges to a metric space

(3.9) (Zy′ , zy′) ∈ Tan(X, x0).

Moreover, the L-biLipschitz map f induces an L-biLipschitz map

(3.10) fy′ : (Y, y′) → (Zy′ , zy′).

Just a remark: as map defined on the set Y , fy′ could differ from fy′′ . The reason
is that we are considering metric spaces up to isometric equivalence. We could make
explicit the fact that (Y, y′) should be identified via an isometry with another tangent.
However, such a rigor will only add heaviness on the reading.

Using the notations of (3.9) and (3.10), we consider the set

G :=
{
g = f−1

y′′ ◦ ψ ◦ fy′ : y′, y′′ ∈ Y, ψ : (Zy′ , zy′) → (Zy′ , zy′′), ψ ∈ F
}

.

It is immediate that G is a group of KL2-biLipschitz maps which acts transitively on
Y . By taking the supremum over the G-orbit of the distance function, one gets an
KL2-biLipschitz equivalent metric with respect to which G acts by isometries. Then
by Montgomery-Zippin, G is a Lie group. We conclude that any Y is biLipschitz
equivalent to G/H, where H is the stabilizer of the action. Since the map fy′ of
(3.10) is biLipschitz, then Zy′ ∈ Tan(X, x0) is biLipschitz equivalent to G/H as well.
Since by assumption all tangents at x0 are biLipschitz equivalent, then they are all
biLipschitz equivalent to the same G/H. Finally, by biLipschitz homogeneity, all
tangents at any point x ∈ X are biLipschitz equivalent to the same G/H. ¤
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